OPTIMUM HYBRID POWER SUPPLY SYSTEM VIA BATTERY BANK MIXING FOR TELECOM BASE STATIONS

W.W.B.S. Wijetunga

159383R

Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science in Electrical Installation

Department of Electrical Engineering

University of Moratuwa Sri Lanka

July 2018

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief, it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature of the candidate:

Date:

.....

Eng. W.W.B.S. Wijetunga

The above candidate has carried out research for the Masters Dissertation under my supervision.

Signature of the supervisor:

Date:

.....

Dr. Asanka S. Rodrigo

ABSTRACT

The power requirement to operate a radio base station site is getting increased day by day due to the introduction of new services. Apart from that in order to provide a high-quality service to their customers operators tends to invest more on redundant power sources as well. At the same time, it's very important to reduce the capital costs and operational costs as much as possible to maintain the financial stability of the mobile operating companies. So, it's important to address the power requirements in an optimum manner. This thesis comprehensively explains an effort taken to identify the optimum way of providing grid power and the backup power for the telecom base stations. A simulation model is developed to derive the optimum hybrid power supply model with the best combination of mixed battery bank and diesel generator that determines, the optimal capital & operational cost for an RBS site with given load, type and environmental factors. This simulation model will mainly address existing energy sources optimization, backup power for poor grid connected sites and capacity upgrades in backup power supply. Also for the first time in Sri Lanka battery bank mixing was introduced for the radio base station sites with the help of this study.

ACKNOWLEDGEMENT

First and foremost, I would like to express my sincere gratitude to my advisor Dr. W. D. Asanka S. Rodrigo, Senior Lecturer from Electrical Engineering Department at University of Moratuwa for the continuous support of my M.Sc. study and research, for his patience, motivation, enthusiasm, and immense knowledge. Besides my advisor, I would like to thank the rest of the lectures from Electrical Engineering Department at University of Moratuwa for their encouragement, insightful comments, and hard questions in progress reviews.

This research was supported by Dialog Axiata PLC and E.co Services Lanka. I thank Energy Management Division who provided insight and expertise that greatly assisted in this research and a special gratitude to Gayathri Amarakoon & Kasun Wijesinghe from E.co Services Lanka group for providing me the resource and valuable knowledge in technical calculations and with industrial references.

Last but not the least; I would like to convey my sincere gratitude to my spouse, parents, family members & friends for helping me in numerous ways to achieve my goals all the time.

TABLE OF CONTENT

DECLARATION	i
ABSTRACT	ii
ACKNOWLEDGEMENT	iii
LIST OF FIGURES	vi
LIST OF TABLES	vii
LIST OF ABBREVIATIONS	viii
CHAPTER 1	1
1. Introduction	1
1.1. Background	1
1.2. Problem Statement	3
1.3. Objective	4
1.4. Methodology	4
CHAPTER 2	6
2. Literature Review	6
CHAPTER 3	9
3. Proposed Solution	9
3.1. Current Issues in Battery Bank Mixing	9
3.2. Proof of Concept	9
3.3. Test Cases and Results	10
CHAPTER 4	14
4. Characteristics of Radio Base Station Sites	14
4.1. Energy Sources	14
4.2. Load differentiation at Radio Base Station Site	16
CHAPTER 5	19
5. Research Design	19
5.1. Introduction to proposed energy model	19
5.2. Work flow of the model	19
5.3. Algorithm	21
5.4. Inputs to the model	24
5.5. Output of the model	26
CHAPTER 6	30
6. Parameters for simulation model	30

6.1.	Parameters for Battery	30
6.2.	Parameters for Diesel Generator	31
6.3.	General Parameters	33
CHAPT	TER 7	35
7. Mo	odel for Optimum Battery Bank Mixing	35
7.1.	Capacity planning of Battery Bank	35
7.2.	Diesel Generator Requirement	36
7.3.	Sample Calculation for existing site energy sources optimization	38
7.4.	Financial Analysis for existing site energy sources optimization	41
7.5.	Solution Optimization for existing site energy sources optimization	43
7.6.	Output of existing site energy sources optimization	43
7.7.	Sample Calculation for capacity upgrades using BB mixing	44
7.8.	Financial Analysis for capacity upgrades using BB mixing	45
7.9.	Solution Optimization for capacity upgrades using BB mixing	48
7.10.	Output of capacity upgrades using BB mixing	48
7.11.	Result Verification	49
CHAPT	TER 8	53
8. Co	nclusions	53
8.1.	Limitations of the study	54
8.2.	Suggestion for Further Study	55
REFER	ENCES	56

LIST OF FIGURES

Figure 1.1: Power components in a traditional RBS site	1
Figure 1.2: Reduction of backup time with new service addition	3
Figure 3.1: Cross Current and Bias Current	9
Figure 3.2: Single line diagram of test setup implemented for the POC test	10
Figure 3.3: Test setup implemented for POC test	10
Figure 3.4: VRLA old battery bank and VRLA new battery bank mixing	11
Figure 3.5: Li-Ion and VRLA battery bank mixing	12
Figure 4.1: Average values of loads at sites	18
Figure 5.1: High level mythology carried out by the proposed energy model	19
Figure 5.2: Algorithm used for Grid + Battery bank + DG	22
Figure 5.3: Algorithm used for battery bank capacity upgrades	23
Figure 5.4: User Input interface	24
Figure 5.5: Dashboard of the best operation model for existing site	27
Figure 5.6: Annual Cost Components for the Best Operation model	28
Figure 5.7: Dashboard of the best operation model for poor grid connected sites	28
Figure 5.8: Dashboard of the best operation model for capacity upgrades	29
Figure 7.1: Considered Inputs for the sample calculation in existing energy source	S
optimization	38
Figure 7.2: Dashboard of the existing site energy sources optimization	43
Figure 7.3: Considered inputs for the sample calculation in capacity upgrades usin	ıg
BB mixing	44
Figure 7.4: Dashboard for capacity upgrades using BB mixing	49
Figure 7.5: Installed 8kV Generator at Horowupotana Dialog site	50
Figure 7.6: Installed 800Ah Fiamm VRLA Batter Bank at site	51
Figure 7.7: Simulation model output for Horowupotana site	52

LIST OF TABLES

Table 3.1: Initial parameters for Test case 1	11
Table 3.2: Results for Test case 1	12
Table 3.3: Initial parameters for Test case 2	13
Table 3.4: Results for Test case 2	13
Table 4.1: Battery bank specifications comparison.	16
Table 6.1: Battery bank characteristics used in simulation model	30
Table 6.2: DoD % vs Cyclic lifetime of each battery bank	31
Table 6.3: General Data of Diesel Generators for Different Capacities	32
Table 6.4: Generator CPH with Loading Percentage	32
Table 6.5: Tariff Applicable for Customer Category I-1	34
Table 7.1: TCO components for existing energy sources optimization	41
Table 7.2: Cost components for existing energy sources optimization	41
Table 7.3: Cash flow for existing site energy sources optimization	42
Table 7.4: Cost comparison for each type of battery bank using BB mixing	45
Table 7.5: TCO components for capacity upgrades using BB mixing	45
Table 7.6: Cost components for capacity upgrades using BB mixing	46
Table 7.7: Cash flow for capacity upgrades using BB mixing	47
Table 7.8: General data of selected site for the result verification	49
Table 7.9: Power equipment details installed at site	50
Table 7.10: Actual Energy Cost of the Site from Jan to July 2016	51
Table 8.1: Saving Percentages Expected at Horowupotana Dialog Site	54

LIST OF ABBREVIATIONS

Abbreviation	Description
RBS	Radio Base Station
DAP	Dialog Axiata PLC
PV	Photovoltaic
OPEX	Operational Expenditure
CAPEX	Capital Expenditure
VRLA	Valve Regulated Lead Acid
DG	Diesel Generator
POC	Proof of Concept
ТСО	Total Cost of Ownership
KPI	Key Performance Indicator
BB	Battery Bank
Li Ion	Lithium Ion
AC	Alternative Current
DC	Direct Current
AGM	Absorbent Glass Mat
FCB	Free Cooling Box
DoD	Depth of Discharge
СРН	Consumption Per Hour
CEB	Ceylon Electricity Board
O & M	Operation & Maintenance
NPV	Net Present Value