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Abstract 

Sri Lanka is heavily dependent on both rain-fed and irrigated agriculture and thus irrigation 

has had a unique contribution towards country`s agro economy from history to this date. The 

established patterns of rainfall in different parts of the country have changed and the demand 

for agricultural water has to be balanced with the municipal and industrial water demand.  

The improved procedures for estimating agricultural water requirements both for irrigation 

and rain-fed agriculture have become an important research particularly due to erratic 

rainfall patterns and inadequate water resources in dry season. The aim of this study is 

therefore to develop time series models to predict weekly reference evapotranspiration (ETo) 

for Yala and Maha seasons in Polonnaruwa district using climate data from 2010 to 2015. As 

actual evapotranspiration is not available, those values on weekly basis were computed using 

Pan Evaporation method based on relative humidity, wind speed and pan evaporation. 85% 

of the data computed were used for training and balance of 15% was kept for validation. The 

weekly evapotranspiration during Yala varied from 2.23mm (6 – 12 September 2013 ) to 

5.37mm (1 – 7 May 2015) with mean of 3.62mm and SD of 0.53 and that during Maha 

varied from 0.76mm (21 – 27 December 2012) to 5.56mm (17 – 23 October 2014) with 

mean of 2.29mm and SD of  0.85. Both series were able to make stationary by taking one 

short-term difference and one long-term difference with the length of 26. The identified best 

fitted ARIMA models for Yala and Maha weekly evapotranspiration were SARIMA (1,1,1) 

(1,1,1)26. The errors produced by two models were found to be white noise. The percentage 

errors in both models for validation data set were within the range of ± 3% and it was found 

that the correlations between observed and predicted values for Yala (r=0.90) and for Maha 

(r = 0.88) were highly significant (p<0.05). The best fitted model identified for the pooled 

weekly series was SARIMA (0,1,2) (0,1,1)52. Though the errors found to be satisfied all the 

diagnostic tests, the percentage error was higher in the combined model than the 

corresponding values for two separate models. Therefore, it is recommended to use the 

developed separate models to forecast ET0 on short-term or long-term basis which will be 

useful for the appropriate water management for real time irrigation scheduling in Dry Zone 

of Sri Lanka.These models can also be used for estimating irrigation water requirements for 

different crops. It is suggested to use Artificial Neural Network (ANN) techniques to 

improve the accuracy of the developed models. 

 

Keywords: Dry Zone, Maha, Reference Evapotranspiration, Yala, SARIMA. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background 

Water scarcity is considered, along with climate change, as one of the most pressing 

environmental issues of the 21st century. About 67% of the global water withdrawal 

is related to agricultural production, and 87% of the consumptive water is for 

irrigation purposes. Agriculture is greatly concerned with water shortage, and in 

areas characterized by arid or semi-arid climates, irrigation is often the only option to 

secure productivity (Mancosu, et al., 2015). 

Sri Lanka being an agricultural country, the irrigation has had a unique contribution 

towards country`s agro economy from history to this date. Sri Lanka is heavily 

dependent on both rain-fed and irrigated agriculture form the backbone of rural 

livelihoods. Scientists have suggested that the overall rainfall received by Sri Lanka 

has decreased in many areas of the country. The established patterns of rainfall have 

changed and the distribution of rainfall in different parts of the country also appears 

to be undergoing changes. Therefore, demand for agricultural water has to be 

balanced with the municipal and industrial water demand (Anon., 2013).  

Sri Lanka is a humid tropical island, situated in the path of two monsoons, the south-

west and the north-east monsoons. The average annual rainfall over Sri Lanka is 

approximately 1850 mm. Though the average water potential is high in the country, 

there exists three climatic regions as wet, dry and intermediate due to the variation in 

range of rainfall (Department of Agriculture, 2006). Location, climate and 

topography are the main factors that influence precipitation and water availability 

(Wijesekara, et al., 2005). 

Ever growing population and projected shifts in precipitation patterns, which are 

likely to increase the trend of prolong droughts in some areas, in the other hand it is 

expected that irrigation demand will increase in future with the growth of population. 

Clearly, only a prudent choice of irrigation strategies, based on quantitative estimates 
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of the water requirements, will allow sustainable use of water resources (Smith, et 

al., 2012).  

Planning and coordinating irrigation water is also very important to save the excess 

use of water. Farmer organizations, local institutions and state agencies such as the 

Agrarian Development Department, Department of Agriculture, Department of 

irrigation, and the Department of Meteorology all have an important role to play in 

water management by working closely and sharing knowledge and information. It 

will help for better management of irrigation water through an IWRM approach 

(Rajakaruna, 2014).  

Agricultural managers have relied on evapotranspiration (ET) measurements or 

estimations, for purposes of timely and efficient water application. Therefore, an 

accurate assessment of ET is essential to improving water management practices. ET 

is one of the main components of the hydrological cycle. It is a complex process 

driven mainly by weather parameters. Accurate estimation of ET is very important, 

but providing a reliable short-term forecast of ET plays as the critical constituent for 

management of irrigation systems (Bachour, 2013).  

1.2 Irrigation in Sri Lanka 

Sri Lanka is greatly reliant on agriculture, both rain-fed and irrigated agriculture.  In 

relation to current statistics, the total cultivated area in Sri Lanka is valued at 1.86 

million ha. About 632,000 ha of this area is irrigated; the rest is rain-fed. Irrigated 

agriculture is mainly consist of of major irrigation schemes. Furthermore, there are 

numerous minor schemes, which can be named as semi rain-fed systems. They 

include over 15,000 village tanks disseminated over the dry zone areas of the country 

(Rajakaruna, 2014).  

Majority of the irrigated land in Sri Lanka is used for paddy cultivation. The demand 

for water is high in paddy cultivation compared to many other crops. Water is 

essential for the preparation of land, and the planting and maintenance of the crop 

throughout the planting-harvest cycle (Facon, 2000). 
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Two main cropping seasons  associated  with  rainfall pattern. The  Second  Inter  

Monsoonal  (SIM)  and North East Monsoon (NEM) rainfall seasons together forms 

major cultivation season known as “Maha”  (October–  March)  while  the First  Inter  

Monsoonal (FIM)  and  South  West Monsoon  (SWM)  collectively  forms  the  

minor  cultivation  season  recognized  as  “Yala” (April – Septeber) (FAO, 1997).  

Nearly eighty per cent of the annual rainfall is experienced in heavy storms during a 

period from September to January. In general, this period is cool and wet. Although 

dry spells are not uncommon, rainfall during this period is evenly distributed 

(Mahendrarajah, 1981). Following this period, a dry spell occurs. The ensuing three 

months are under the full dominance of the south-west monsoon with a pronounced 

drought during months from June to August. The few occasional rains are also 

ineffective in the sense that they are relatively small compared with the evaporation. 

The drying wind together with persistent high temperatures leads to aridity 

(Rajakaruna, 2014).  

1.3 Irrigation and Water Resources Management in Sri Lanka 

Significant efforts have been put by governments over the past few years to establish 

novel infrastructure, rehabilitate or renovate existing dams, reservoirs and canals, and 

encourage agro wells and micro-irrigation technologies to meet the increasing 

demand for agricultural water. In spite of such efforts, the problem of water scarcity 

is growing continously. Therefore, innovative approaches are needed to cater the 

future demand of agricultural water (Rajakaruna, 2014).  

Agriculture is the highest water use sector in Sri Lanka (Amarasinghe,et al., 1999).  

In many parts of the country, productivity of the rice is below optimum levels due to 

inadequate irrigation water deliveries. The major challenge is, therefore, to produce 

more food with less water in order to meet the rising food demand. Best  

management  strategies  is essential to putting into practice for  efficient  irrigation  

water  use  to maximize  production  per  unit  of  water  being  used (Mancosu, et 

al., 2015).   
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Irrigation scheduling is one of the most effective tools to preserve water (Fereres, 

1996) and it makes possible an increase in crop yield, water economy by identifying 

the crop water requirements during the growth season and  avoiding excessive water 

consumption (Werner, 1996). Crop evapotranspirations are an important components 

used in the planning, design, implementation, operation, and maintenance of agro 

economical conditions (Ertek,et al., 2002). 

1.4 Evapotranspiration (ET) 

ET is a combination of two independent processes, namely evaporation and 

transpiration. Evaporation is a process in which water is evaporated or lost from the 

wet soil into the atmosphere. In transpiration water is breathed or lost into the 

atmosphere from small openings on the surface of the leaves. Evaporation and 

transpiration occur simultaneously, and there is no easy way to distinguish between 

the two processes (Allen,et al., 1998). 

Actual evapotranspiration is a main process of hydrological cycle which driven by 

climatic parameters, crop characteristics, management practices and environmental 

aspects. Evapotranspiration plays a vital role in mimicking hydrological impact on 

climate change, and a thorough study on evapotranspiration estimation methods in 

hydrological models is of vital important (Zhao, et al., 2013). And also accurate 

estimation of evapotranspiration is required for efficient irrigation management as 

water losses in irrigation schemes occur mainly due to Evapotranspiration. So the 

total water demand of crop is directly proportional to ET. Therefore, ET is often 

referred to as crop water demand terminology. As a result, the knowledge of ETs 

becomes even more important when designing and maintaining irrigation plans 

(Brouwer & Heibloem, 1986).  

But the relationship between ET and its driving factors are complex and not easy to 

model (Partal 2009; Torres,et al., 2011). Therefore, the concept of reference 

evapotranspiration (ETo) is introduced because it is not related to crop types, crop 

development stages and management practices. Associating evapotranspiration with 
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a specific surface provides a reference that can be related to evapotranspiration from 

other surfaces.  

1.5 Modelling and Predicting Reference Evapotranspiration 

Seeing the real-world limitations of large-scale and complex hydrological models, 

the objective of the current work was to develop a simple modeling mechanism to 

interpret the refeence evapotranspiration.  

Numerous equations have been proposed to develop refeence evapotranspiration 

(ETo) on the basis of measured weather parameters, classified as temperature-based, 

radiation-based, pan evaporation-based and combination-type. The Food and 

Agricultural Organization of the United Nations (FAO) has developed Penman-

Monteith (PM) model that has become a generally accepted standard for calculating 

ETo (Allen,et al., 1998, 2006). This method is the most widely used in the world, 

and has been proven to accurately estimate ETo in different climates (Allen,et al., 

1998; De Bruin and Stricker, 2000; Hussein and Al-Ghobari, 2000; Smith, 2000; 

Walter,et al., 2000).  

A major drawback to application of the PM, is the relatively high data demand, 

where the method requires air temperature, wind speed, relative humidity, and solar 

radiation data that are not always available, especially in developing countries. The 

number of meteorological stations where all of these parameters are observed is 

limited in many areas of the globe. The number of stations where reliable data for 

these parameters exist is an even smaller subset. This is true in Sri Lanka where 

reliable collection of wind speed, humidity, and radiation is limited (Allen, et al., 

1998). 

This lack of meteorological data leads to the development of simpler approaches to 

estimate ETo that require only a few climatic parameters. As a result of that 

researchers have developed numerous approaches to retrieve ETo. The 

internationally accepted equations for estimating ETo based on the limited climatic 

variables are as follows: Hargreaves- Samani (Hargreaves and Samani1985), Jensen-

Haise (Jensen and Haise, 1963; Jensen and Burman,1990), Makkink (Makkink, 
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1957), Priestley-Taylor (Priestley and Taylor, 1970) and Blaney–Criddle (Blaney and 

Criddle, 1962). Though there are many equations available to estimate ETo, due to 

their different weather data requirements and climate specificity statistical analysis 

came to action. Time series analysis is one of the statistical technique that has been 

widely used for modeling and predicting different hydrological parameters including 

ETo (Mariño,et al., 1993; Cigizoglu 2003; Gorantiwar,et al., 2011) as ETo is 

characterized by high non-linearity and non-stationarity (Hernandez,et al., 2011). 

Several researchers have found that the seasonal autoregressive integrated moving 

average (SARIMA) model provides good forecasts of monthly and weekly ETo 

(Trajkovic 1998; Landeras,et al., 2009). However, researchers have motivated to 

look for other modeling approaches including the use of data-driven tools or 

statistical learning machines, such as artificial neural networks (ANN), multiple 

regression methods, support vector machines (SVM), and relevance vector machines 

(RVM). Satellite remote sensing can be identified as one of the other promising 

techniques that is widely used for estimating global or regional reference 

evapotranspiration (ETo) (Adhikai & Agrawal, n.d.). 

1.6 Problem Statement 

The dry zonal area in Sri Lanka contributes 70% of national paddy cultivation by  

depending on irrigated water. As the report on Climate Change Vulnerability in Sri 

Lanka states, the dry zonal area is highly vulnerable due to a prolonged drought 

season and diminishing precipitation (Ministry of Environment, 2011). Erratic 

rainfall patterns and inadequate water resource during the dry season and poor water 

management practices in irrigation systems significantly contributed to the low 

agricultural production and water productivity in dry zone of Sri Lanka. 

Since 2011, erratic rainfall during the northeast monsoon characterized by 

flood/drought cycles has led to increased number of disaster affected people in Dry 

Zone. In 2013 the northeast monsoon, which supplies water for the main rain-fed 

agriculture (Maha) season across the key paddy producing areas in the country was 

delayed and brought the lowest reported precipitation (less than 40 percent) (Source: 

Dept. of Meteorology Sri Lanka). Climate change and delayed monsoon has caused 

20% loss of paddy harvest in the country during Maha 2013. By April 2014, the 
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Department of Agriculture reported that lack of rain has damaged 83,746 hectares of 

paddy planted area resulting an estimated production loss of 280,000 MT of rice.  

All these cases are clearly described that, thousands of acres of paddy cultivation are 

on the verge of being destroyed due to lack of sufficient water since their cultivations 

totally depend on irrigation water.  

Therefore, every possible effort have to be put in order to optimize the water usage to 

achieve increased crop production. Recent reports on water management activities of 

several irrigation schemes in the Dry Zone indicates that the water distribution is not 

meeting the demands of farmers in terms of adequacy, reliability & timeliness. In 

order to address these issues a proper water management system has to be introduced 

to the area.  

1.7 Significance of the Study 

Water scarcity conditions have forced to devote considerable efforts to increase 

water efficiency based on the assertion. Better water management usually refers to 

improvements in allocation of irrigation water effectively. This can be achieved by 

irrigation scheduling in the area. Irrigation scheduling is the process used by 

irrigation system managers to determine the correct frequency and duration of 

watering, or in other words the decision of when and how much of water to apply to 

a field. This can be calculated once the volume of water needed for crop productivity 

at their different growth stages, is known (Pechlivanidis & Arheimer, 2015). In order 

to define the crop water requirements reference evapotranspiration (ETo) are widely 

used in irrigation engineering. These estimates can be used to manage water 

distribution in existing schemes as well as to develop the planning process for 

irrigation schemes (Ahmed & Liu, 2013).  

This study will contribute to accurate estimates of weekly crop evapotranspiration 

(ET) which will be important for irrigation and water management in Dry Zone of 

Sri Lanka where crop water demand exceeds rainfall.  
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1.8 Objectives of the Study 

On view of the above explanations the primary objective of the present study is to 

develop a statistical models to predict weekly evapotranspiration in Yala and Maha 

seasons from the historical data of selected meteorological area.  

The secondary objectives of this study are to:  

• Study the temporal variability of evapotranspiration during both Yala and 

Maha period 

• Develop a statistical model for pooled data using both Yala and Maha 

• Validate the models  

• Forecast the ETo values for upcoming weeks 

1.9 Structure of the Dissertation 

This thesis consists of five chapters. The first chapter presents the Introduction to this 

study, outlined the objectives and scopes of this research. The descriptions of the 

current irrigation patterns and related problems also discussed in this chapter. 

The first section following this Introduction presents a review of the relevant 

literature starting with Hydrology by describing the hydrological cycle, 

evapotranspiration mechanism and ETo modelling approaches. The next section of 

the literature review briefly describes the pan evaporation method used to calculate 

reference evapotranspiration. Then applications of ETo in agricultural management 

is described. At last previous studies related to analysis of evapotranspiration using 

Time Series were explained along with Chapter Summary.  

The proposed models for evapotranspiration modelling and methodologies, 

secondary data and details of the study area are described in Chapter 3.  

The results and discussions are presented in Chapter 4. Results of the three different 

time series models are discussed with the performance, the robustness and limitations 

and the applications of the proposed models were discussed.  
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Chapter 5 of the study conclude the findings of the statistical analysis and 

recommendations are sugested for future analysis to improve the outcomes. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Hydrological Cycle 

Water is one of the most valuable natural resources in the world. Without it, there 

would be no life on earth. Hydrology is the science that prevalence the occurrence, 

circulation, movement and properties of the water of the earth and their association 

with the environment in each stage of the hydrologic cycle (U.S. Department of the 

Interior, 2016). Water cycle, additionally known as hydrologic cycle that 

encompasses the continual circulation of water within the Earth-atmosphere system 

(Figure 2.1). Beyond the various processes concerned within the water cycle, the 

foremost vital are evaporation, transpiration, condensation, precipitation, and runoff. 

Though the full quantity of water inside the cycle remains basically constant, its 

distribution among the varied processes is regularly dynamical (Britannica, 2018). 

 

Figure 2.1: Hydrological cycle 

(Source: RMB Environmetal Laboratories, 2018) 

Evaporation, one in all the main processes within the cycle, is that the transfer of 

water from the surface of the planet to the atmosphere. By evaporation, water within 
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the liquid state is transferred to the gasiform, or vapour, state. This transfer happens 

once some molecules during water mass have earned sufficient kinetic energy to 

eject themselves from the water surface. The factors touching the measure of 

evaporation are temperature, humidity, wind speed, and radiation. The direct 

measuring of evaporation, although fascinating, is challenging and attainable solely 

at point locations. The principal supply of vapour is that the oceans, however 

evaporation moreover happens in soils, snow, and ice. Evaporation from snow and 

ice, the direct conversion from solid to vapour, is understood as sublimation. 

Transpiration is that the evaporation of water through minute pores, or stomata, 

within the leaves of plants. For reasonable purposes, transpiration and the dissipation 

from all water, soils, snow, ice, vegetation, and different surfaces are lumped 

together and called evapotranspiration, or total evaporation (Britannica, 2018). 

The transition method from the vapour state to the liquid state is named 

condensation. Condensation could manifest itself as before long when the air 

contains a lot of water vapour evaporated at the prevailing temperature. This 

condition happens because the consequence of either cooling or the blending of air 

lots at various temperatures. Water vapour subjected to condensation is discharged to 

form precipitation (USGS, 2016). 

There are four main ways to distribute precipitation that falls to the Earth: some is 

returned to the atmosphere by evaporation, some may be captured by vegetation and 

then evaporated from the surface of leaves, some percolates into the soil by 

infiltration, and the remainder flows directly as surface runoff where water runs 

overland into nearby streams and lakes; the steeper the land and the less porous the 

soil, the bigger the runoff. Overland flow is mainly visible in urban areas. Rivers be a 

part of one another and eventually form one major watercourse that carries all of the 

sub-basins' runoff into the ocean. Some of the infiltrated precipitation may later 

percolate into streams as groundwater runoff. Direct measure of runoff is created by 

stream gauges and plotted against time on hydrographs (USGS, 2016). 

Most groundwater that has percolated through the soil comes from precipitation. 

Groundwater flow rates, compared with those of surface water, are terribly slow and 
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vary from millimetres to metres on a daily basis. Movement of groundwater is 

studied by tracer techniques and remote sensing (USGS, 2016). 

Ice and snow on the Earth’s surface come about in numerous forms such as to frost, 

sea ice, and glaciers, once vapour in the soil get freezes. Ice also forms underneath 

the Earth’s surface, forming permafrost. About 18,000 years ago approximately one-

third of the Earth’s land surface covered by glaciers and ice caps. Nowadays it has 

been reduced to 12% of the land surface due to melting of ice as a result of global 

warming (USGS, 2016). 

The engineering hydrologists, or water resources engineers, are engaging, planning, 

analysis, design, construction and operation of projects for the control, utilization, 

and management of water resources with the use of analytical knowledge on 

hydrological process (Dyck, 1990). 

2.2 Evapotranspiration Process 

The combination of two separate processes whereby water is lost on the one hand 

from the soil surface by evaporation and on the other hand from the crop by 

transpiration is referred to as evapotranspiration (ET) (Savva & Frenken, 2002). 

2.2.1 Evaporation 

Evaporation is the method whereby liquid water is transformed to water vapour 

(vaporization) and removed from the evaporating surface (vapour removal). Water 

evaporates from a various surfaces, such as lakes, rivers, soils and wet vegetation. In 

order to change the state of the molecules of water from liquid to vapour, energy is 

the must. This energy is provided by direct solar radiation and the ambient 

temperature of the air, to a lesser extent (Savva & Frenken, 2002). 

Difference between the water vapour pressure at the evaporating surface and that of 

the surrounding atmosphere play as the driving force of removing water vapour from 

the evaporating surface. As evaporation continues, the surrounding air becomes 

progressively saturated and the process will slow down and might stop when the air 

get fully saturated where no more wet air is not transferred to the atmosphere (Savva 

& Frenken, 2002). 
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Replacement of the saturated air by drier air depends greatly on the wind speed. 

Hence, to assess the process of evaporation, climatological parameters such as solar 

radiation, air temperature, air humidity and wind speed have to be considered. Where 

the evaporating surface is the soil surface, the degree of shading of the crop canopy 

and the amount of water available at the evaporating surface are other factors that 

affect the evaporation process further to the above (Savva & Frenken, 2002).  

2.2.2 Transpiration 

Transpiration comprises of the vaporization of fluid water contained in plant tissues 

and the vapour expulsion to the atmosphere. Crops predominately lose their water 

through stomata. These are tiny openings on the plant leaf through which gases and 

water vapour pass. The water, together with nutrients, is taken up by the roots and 

transported to the plant. The vaporization happens inside the leaf, to be specific in 

the intercellular spaces, and the vapour exchange with the air is controlled by the 

stomata opening. Almost all water taken up is lost by transpiration and just a little 

portion is utilized inside the plant. Transpiration, as immediate dissipation, relies 

upon the energy supply, vapour pressure gradient and wind. Subsequently, radiation, 

air temperature, air humidity and wind terms ought to be considered while surveying 

transpiration. The soil water content and the capacity of the soil to lead water to the 

roots also decide the transpiration rate, as do waterlogging and soil water saltiness. 

The transpiration rate is furthermore affected by crop characteristics, environmental 

aspects and cultivation practices. Various types of plants may have diverse 

transpiration rates. The variety of crop, as well as the crop development, environment 

and management ought to be considered while evaluating transpiration (Savva & 

Frenken, 2002). 

2.2.3 Evapotranspiration (ET) 

Evaporation and transpiration happen at the same time and there is no simple method 

for recognizing the two procedures separately (Figure 2.2). The evaporation from the 

cropped soil is mainly determined by the water availability in the top soil layer and 

fraction of the solar radiation reaching the soil surface. Fraction of solar radiation 

that touch the soil layer get decreases over the growing period of the crop as the crop 
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develops, the crop canopy shades increasingly over the ground area. When the crop 

is small, water is predominately lost by soil evaporation, but once the crop is well 

developed and completely covers the soil, transpiration becomes the main process 

(Savva & Frenken, 2002).  

 

Figure 2.2: Process of Evapotranspiration 

(Source: Savva & Frenken, 2002) 

2.2.4 Reference Evapotranspiration (ETo) 

The evapotranspiration from the reference surface is defined as reference crop 

evapotranspiration or reference evapotranspiration, denoted as ETo. The reference 

surface is a hypothetical grass reference crop with an assumed crop height of 0.12 m, 

a fixed surface resistance of 70 s m-1 which implies a moderately dry soil surface 

resulting from about a weekly irrigation frequency and an albedo of 0.23. The 

reference surface closely looks like a widespread surface of green, well-watered 

grass of uniform height, actively growing and completely shading the ground (Savva 

& Frenken, 2002). 

The reason for introducing the concept of ETo was to study the evaporative demand 

of the atmosphere without any effect of the crop type, crop development stage and 

management practices.  In other words it removes the need to define a separate 

evapotranspiration level for each crop and stage of growth. Once water is ample at 

the evapotranspiring surface, soil factors do not affect evapotranspiration. Relating 

evapotranspiration to a specific surface provides a reference to which 

evapotranspiration from other surfaces can be related (Savva & Frenken, 2002).  
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Only climatic parameters affect ETo. Therefore, ETo can be identified as a climatic 

parameter that can be computed from weather data. ETo expresses the evaporative 

demand of the atmosphere at a specific location and time of the year and does not 

consider crop and soil factors (Savva & Frenken, 2002).  

2.3 Determining Evapotranspiration 

Measuring Evapotranspiration is difficult. To determine evapotranspiration, specific 

devices and precise measurements of various physical parameters or the water 

balance of the soil in lysimeters are required. These methods are often expensive and 

demanding in terms of accuracy of the measurements. Therefore, these methods are 

not considered as practicable measures for routine measurements (Savva & Frenken, 

2002). 

2.3.1 Energy Balance and Microclimatological Methods 

Relatively large volume of energy, either in the form of sensible heat or radiant 

energy is required by the water evaporation. Therefore, the evapotranspiration 

process is directed by energy interchange at the vegetation surface and is restricted 

by the amount of energy available. Because of this limitation, it is possible to predict 

the evapotranspiration rate by applying the principle of energy balance. The energy 

that reaches the surface must be equal to the energy that leaves from the surface 

during the same time period. All fluctuations of energy should be considered when 

deriving the equation of energy balance (Lin, et al., 2008). The equation for an 

evaporating surface can be written as shown in Equation 2.1  

 𝑅𝑛  − 𝐺 −  𝜆 𝐸𝑇 − 𝐻 = 0 (2.1) 

Where, 

Rn -   Net radiation,  

H  -   Sensible heat,  

G  -   Soil heat flux and  

λ ET  -    Latent heat flux.  
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These various terms can be either positive or negative. Positive net radiation implies 

energy to the surface and positive G, λ ET and H remove energy from the surface. In 

above equation only vertical fluxes are considered and the net rate at which energy is 

being transferred horizontally is ignored. Therefore, the equation is applicable to 

large, widespread surfaces of homogeneous vegetation only. When all the other 

variables are known, energy balance equation can be used to calculate the latent heat 

flux (λ ET) or the energy that is used to evaporate water representing the fraction of 

evapotranspiration (Allen, et al., 2006). 

2.3.2 Mass Transfer Method 

The mass transfer method is another method of estimating evapotranspiration. This 

method reflects the vertical movement of small packs of air (eddies) above a large 

homogeneous surface. Eddies transport material (water vapour) and energy (heat, 

momentum) from and towards the evaporating surface. By assuming steady state 

conditions and that the eddy transfer coefficients for water vapour are proportional to 

those for heat and momentum, the evapotranspiration rate can be computed via the 

Bowen ratio which use the vertical gradients of air temperature and water vapour. 

Other direct measurement methods use are gradients of wind speed and water 

vapour. These methods and several other methods such as eddy covariance require 

precise measurement of vapour pressure, and air temperature or wind speed at 

different levels above the surface. Therefore, this application is restricted to primarily 

research situations (Renuka, n.d.). 

2.3.3 Soil Water Balance 

Measuring the different components of the soil water balance can also use to 

determine Evapotranspiration. The method consists in evaluating the flow of water 

entering and leaving for a certain period of time into the crop root zone over same 

time period. Irrigation (I) and rainfall (P) add water to the root zone. Part of I and P 

might be lost by surface runoff (RO) and by deep percolation (DP) that will 

eventually recharge the water table. Water transport upward by capillary rise (CR) 

from a shallow water table towards the root zone or even transferred horizontally by 

subsurface flow in (SFin) or out of (SFout) the root zone. However, except under 
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conditions with large slopes, in many surfaces, SFin and SFout are negligible and can 

be ignored. Soil evaporation and crop transpiration exhaust water from the root zone. 

If all fluxes other than evapotranspiration (ET) can be measured, the 

evapotranspiration can be deduced from the variation in soil water content (∆SW) 

over the time period (Feddes & lenselink, 1994) as given by Equation 2.2. 

 ET = I + P - RO - DP + CR ± ∆SF ± ∆SW  (2.2) 

 

 

Figure 2.3: Process of soil water balance 

(Source: Allen, et al., 2006) 

Some fluxes such as subsurface flow, deep percolation and capillary rise from a 

water table are difficult to measure and even challenging for short time periods. ET 

assessments given by the soil water balance method are typically only for long time 

periods of the order of week-long or ten-day periods (Allen, et al., 2006). 

2.3.4 Lysimeters 

Lysimeters are also use the soil water balance equation by isolating the crop root 

zone from its environment and governing processes. In lysimeters the crop grows in 

isolated tanks filled with moreover disturbed or undisturbed soil. In precision 

weighing lysimeters, where the loss of water is measured directly by changing mass, 

the evapotranspiration can be obtained with an accuracy of a few hundredths of a 

millimeter and can be considered a short time of one hour. In lysimeters that do not 

weigh, the evapotranspiration for a given period of time is determined by subtracting 
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the drainage water, collected in the lower part of the lysimeters, from the total water 

input. A requirement of lysimeters is that the vegetation both inside and immediately 

outside the lysimeter will fit perfectly (same height and leaf area index). This 

requirement has not been closely complied in majority of lysimeter studies in history 

and has resulted in severely erroneous and unrepresentative ETc and Kc data (Allen, 

et al., 2006). The use of lysimeters is limited to specific research purposes due to 

their difficultness and expensiveness to construct and as their operation and 

maintenance require special care (Allen, et al., 2006). 

2.3.5 ET Computed from Meteorological Data 

Owing to the problem of getting accurate field measurements, weather data is 

employ to compute ET. Empirical or semi-empirical equations have been developed 

largely for assessing crop or reference crop evapotranspiration using meteorological 

data (Yoder, et al., 2005). Some of these methods can only be used under specific 

climatic and agronomic conditions and cannot be applied under any other conditions 

apart from the originally developed (Kale, et al., 2013). 

2.3.5.1 FAO Penman-Monteith method 

As a result of an Expert Consultation held in May 1990, the FAO Penman-Monteith 

method is now recommended as the standard method for the definition and 

computation of the reference evapotranspiration, ETo. The ET from crop surfaces 

under standard conditions is determined by crop coefficients (Kc) that relate ETc to 

ETo. The ET from crop surfaces under non-standard conditions is adjusted by a 

water stress coefficient (Ks) and/or by modifying the crop coefficient (Savva & 

Frenken, 2002). The formula for ETo is given by Equation 2.3. 

 

ETo =  
0.408 ∆ (Rn − G) +  γ 

900

T+273
u2  (es  − ea ) 

∆ +  γ (1 + 0.34 u2  )
 

(2.3) 

 

Where, 

ETo – Reference evapotranspiration [mm day-1], 

Rn – Net radiation at the crop surface [MJ m-2 day-1], 
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G  – Soil heat flux density [MJ m-2 day-1], 

T – Air temperature at 2 m height [°C], 

u2 – Wind speed at 2 m height [m s-1], 

es – Saturation vapour pressure [kPa], 

ea – Actual vapour pressure [kPa], 

es-ea – Saturation vapour pressure deficit [kPa], 

∆ – Slope vapour pressure curve [kPa °C-1], 

γ  – Psychrometric constant [kPa °C-1] 

 

2.3.5.2 ET estimated from pan evaporation 

Evaporation from an open water surface provides an index of the integrated effect of 

radiation, air temperature, air humidity and wind on evapotranspiration. However, 

differences in the water and cropped surface produce significant differences in the 

water loss from an open water surface and the crop. The pan has proved its practical 

value and has been used successfully to estimate reference evapotranspiration by 

observing the evaporation loss from a water surface and applying empirical 

coefficients to relate pan evaporation to ETo (Pereira & Pires, 2011). 

2.4 Pan Evaporation Method 

The Pan Evaporation method is still widely used because this method is very 

practical and simple as the evaporation rate from pans filled with water can be easily 

obtained. The amount of water evaporated during a period (mm/day) matches with 

the decrease in water depth in that period, in the absence of rain. Pans provide a 

measurement of the combined effect of radiation, wind, temperature and humidity 

when they evaporate from the surface of the open water. There are many factors that 

create significant differences in water loss from water surface and from cropped 

surface, but the pan responds similar way to the same climatic factors which affect 

crop transpiration. Reflection of solar radiation from water in the shallow pan might 

be different from the assumed 23% for the grass reference surface. Storage of heat 

within the pan can be appreciable and may cause significant evaporation. Some crops 

transpire only during the night while most crops transpire only during the daytime. 



20 

 

There are also differences in turbulence, temperature and humidity of the air 

immediately above the respective surfaces. Energy balance can be affected by the 

heat transfer through the sides of the pans. (Ali & Faraj, 2017). 

Notwithstanding the difference between pan-evaporation and the evapotranspiration 

of cropped surfaces, the use of pans to predict ETo for longer periods may be 

acceptable. The pan evaporation is related to the reference evapotranspiration by an 

empirically derived pan coefficient (Beg, 2014) as given in the Equation 2.4. 

 𝐸𝑇𝑜 = 𝐾𝑝  × 𝐸𝑝𝑎𝑛 (2.4) 

Where, 

ETo -    Reference evapotranspiration [mm/day], 

Kp    -    Pan coefficient [], 

E pan  -    Pan evaporation [mm/day]. 

2.4.1 Pan Types and Environment 

There are different types of pans. As the colour, size, and position of the pan can be 

influence significantly on the measured results and the pan coefficients are very 

much pan specific (Allen, et al., 2006).  

2.4.1.1 The Class A Pan 

This kind of pan is very common to determining evaporation rate. This is a circular 

pan with 120.7cm in diameter and 25 cm deep (Figure 2.4). It is made of galvanized 

iron or Monel metal (0.8 mm). The pan is mounted on a wooden open frame platform 

which is 15cm above ground level. The soil built up to within 5 cm of the bottom of 

the pan. The pan must be levelled. The pan is filled with water to 5cm below the rim, 

and the water level should be not allowed to drop to more than 7.5cm below the rim. 

The water should be regularly renewed, at least weekly, to eliminate extreme 

turbidity. If galvanized, the pan needs to be painted annually with aluminium paint. 

Screens over the pan are not a standard requirement and should preferably not be 

used. Pans should be protected by fences to keep animals from drinking (Allen, et 

al., 1998). 
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Figure 2.4: Schematic diagram of Class A pan 

(Source: Allen, et al., 2006) 

The site should preferably be under grass, 20m by 20m, open on all sides to permit 

free circulation of the air. It is preferable that stations be located in the center or on 

the sheltered side of large cropped fields. Pan readings are taken daily in the early 

morning at the same time that precipitation is measured. Measurements are made in 

stilling well that is situated in the pan near one edge. The stilling well is a metal 

cylinder of about 10cm in diameter and some 20cm deep with a small hole at the 

bottom (Abubaker, 2007). 

2.4.1.2 Class B Pan 

Class B is a square pan with a 92cm square and 46cm deep, made of 3mm thick iron, 

placed in the ground with rim 5cm above the soil level (Figure 2.5). Also, the 

dimensions 1m square and 0.5m deep are frequently used. The pan is painted with 

black tar paint. The water level is maintained at or slightly below ground level, i.e., 

5cm - 7.5cm below the rim. The measurements are taken similarly to those for the 

circular pan. The sitting and environment requirements are also similar to those for 

circular pan. Sometimes the square pan is preferred in crop water requirement 

studies, as these pans gives a better direct estimation of reference evapotranspiration 

than does the circular pan. The disadvantage is that maintenance is more difficult and 

leaks are not always visible (Abubaker, 2007).  
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Figure 2.5: Schematic diagram of Class B pan 

(Source: Allen, et al., 2006) 

Together with the pan type, ground cover in the station, its surroundings, general 

wind and humidity conditions, should also be checked in selecting the appropriate 

pan coefficient.  

Pans are categorized with the sittings of the pans and the environment (Allen, et al., 

2006). This is particularly when the pan is placed in fallow rather than cropped 

fields. Two cases are commonly considered (Figure 2.6): Case A where the pan is 

sited on a short green (grass) cover and surrounded by fallow soil; and Case B where 

the pan is sited on fallow soil and surrounded by a green crop (Abubaker, 2007) . 

 

Figure 2.6: Two cases of evaporation pan sitting and their environment 

(Source: Allen, et al., 2006) 
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2.4.2 Pan Coefficients 

Pan coefficients are pan specific as the colour, size and position of the pan have 

influence on the measured results. In selecting the correct pan coefficient, factors 

such as pan type, the groundcover in the station where the pan is sited, its 

surroundings and the general wind and humidity conditions should be considered.  

2.4.2.1 Methods of Estimating Kp 

There are several methods to estimate Kp, all of them use data such as wind speed 

(U), relative humidity (H), and fetch length (F). The values of Kp were estimated 

from the following methods (Sentelhas & Folegatti, 2003) as described below: 

a) FAO Irrigation and Drainage Paper No. 24 

Appropriate Kp values applicable to the Class A& Class B pans for different 

groundcover and climatic conditions, Wind Speed and Relative Humidity can 

be read from the Table 2.1. 

Table 2.1: Estimation of Kp using FAO Irrigation and Drainage Paper No. 24 

(Source: Doorenbos & Pruitt, 1977)  

 

 

 



24 

 

b) Cuenca (1989) 

 𝐊𝐩 = 𝟎. 𝟒𝟕𝟓 − 𝟐. 𝟒 × 𝟏𝟎−𝟒𝐔 + 𝟓. 𝟏𝟔 × 𝟏𝟎−𝟑𝐇 + 𝟏. 𝟏𝟖 × 𝟏𝟎−𝟑𝐅

− 𝟏. 𝟔 × 𝟏𝟎−𝟓𝐇𝟐 − 𝟏. 𝟎𝟏 × 𝟏𝟎−𝟔𝐅𝟐 − 𝟖. 𝟎

× 𝟏𝟎−𝟗𝐇𝟐𝐔 − 𝟏. 𝟎 × 𝟏𝟎−𝟖𝐇𝟐𝐅 

(2.5) 

Where, 

U = mean daily wind speed at 2 m height in km d-1;  

H = mean daily relative humidity in percentage; and  

F = upwind fetch of low-growing vegetation,  

 

c) Snyder (1992) 

 𝑲𝒑 =  𝟎. 𝟒𝟖𝟐 + 𝟎. 𝟎𝟐𝟒 𝐥𝐧(𝑭) − 𝟎. 𝟎𝟎𝟎𝟑𝟕𝟔 𝑼 + 𝟎. 𝟎𝟎𝟒𝟓 𝑯 (2.6) 

 

d) Pereira, et al., (1995) 

 
𝐊𝐩 =  𝟎. 𝟖𝟓 ×

(𝐬 + 𝛄)

[ 𝐬 + 𝛄 (𝟏 +
𝐫𝐜 

𝐫𝐚
)]

 
(2.7) 

Where, 

s  =  Slope of the vapour pressure curve at the daily average air 

temperature;  

γ  =  Psychrometric coefficient; and  

rc/ra =  Relationship between the grass canopy resistance to the 

water vapour diffusion (rc) and the resistance offered by the air layer 

to exchange water vapour from the evaporating surface (ra) given by 

an empiric relation with the wind speed, suggested by Allen et al. 

(1989) and adopted by FAO (Smith, 1991; Allen,et al., 1998): 

 𝑟𝑐 

𝑟𝑎
 = 0.34 U 

(2.8) 
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e) Raghuwanshi & Wallender (1998) 

 𝐊𝐩 = 𝟎. 𝟓𝟗𝟒𝟒 + 𝟎. 𝟎𝟐𝟒 𝐗𝟏 − 𝟎. 𝟎𝟓𝟖𝟑 𝐗𝟐 − 𝟎. 𝟏𝟑𝟑𝟑 𝐗𝟑

− 𝟎. 𝟐𝟎𝟖𝟑 𝐗𝟒 − 𝟎. 𝟎𝟖𝟏𝟐 𝐗𝟓 + 𝟎. 𝟏𝟑𝟒𝟒 𝐗𝟔 

(2.9) 

 

Where, 

X1  = ln of the fetch distance (F) in m;  

X2, X3, and X4 = wind speed categories of 175-425, 425-700, and 

>700 km d-1, respectively, and were assigned 

values of one or zero depending upon their 

occurrence (a zero value for these variables 

represented a wind speed < 175 km d-1) 

X5 and X6= relative humidity categories of 40-70% and >70%, 

respectively (a zero value for these variables 

represent a relative humidity < 40%). 

 

f) Estimation of Kp using FAO Irrigation and Drainage Paper No. 56 

 𝑲𝒑 =  𝟎. 𝟏𝟎𝟖 − 𝟎. 𝟎𝟐𝟖𝟔 𝑼 + 𝟎. 𝟎𝟒𝟐𝟐 𝐥𝐧(𝑭) + 𝟎. 𝟏𝟒𝟑𝟒 𝐥𝐧(𝑯)

− 𝟎. 𝟎𝟎𝟎𝟔𝟑𝟏 [𝐥𝐧(𝑭)]𝟐 𝐥𝐧(𝑯) 

(2.10) 

Where, 

U = mean daily wind speed at 2 m height in km d-1;  

H = mean daily relative humidity in percentage; and  

F = upwind fetch of low-growing vegetation,  

g) Constant Kp 

This value was determined for Piracicaba, SP, Brazil, by the relationship 

between ETo and ECA with data from December 1995 to December 1996, 

during 112 days, and tested with independent data obtained in the same 

conditions described above, from January 1997 to October 1997, during 123 

days. 
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2.4.2.2 Estimation of Kp using FAO Irrigation and Drainage Paper No. 56 

In some conditions not accounted under the equation 2.10, the presented Kp 

coefficients may need some adjustment. Specially in the areas with no agricultural 

development, or where the pans are enclosed by tall crops. Not maintaining the 

standard colour of the pan or installing screens can affect the pan readings and will 

require some adjustment of the pan coefficient.  

The pan coefficients presented apply to galvanized pans annually painted with 

aluminium and to stainless steel pans. Little difference in Epan will occur where the 

inside and outside surfaces of the pan are painted white. The level at which the water 

is maintained in the pan is important; resulting errors may be up to 15% when water 

levels in the Class A pan fall 10cm below the accepted standard of between 5cm and 

7.5cm below the rim. To prevent animals from entering and drinking, the evaporation 

pan should be placed in a large, secure, wire enclosure, also affect the readings of the 

pans (Allen, et al., 2006). 

The above considerations and adjustments indicate that the use of the corresponding 

equations may not be sufficient to consider all local environmental factors 

influencing Kp and that local adjustment may be required. To overcome the above 

problems following standard are recommended for installation and maintenance of 

evaporation pan (Allen, et al., 2006). 

It is recommended that the pan should be installed inside a short green cropped area 

with a size of a square of at least 15m by 15m. The pan should not be installed in the 

centre but at a distance of at least 10m from the green crop edge in the general 

upwind direction (Allen, et al., 2006). 

Where observations of wind speed and relative humidity, required for the 

computation of Kp, are not available at the site, estimates of the weather variables 

from a nearby station have to be utilized. And then these variables be averaged for 

the computation period and that Epan be averaged for the same period is 

recommended (Allen, et al., 2006). 
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 Table 2.2: Parameters and Variables described in Equation 2.10 

(Source: Allen, et al., 1998) 

2.5 Application of ETo in Agriculture 

Estimating the crop water and irrigation requirements for a proposed cropping 

pattern is an essential part of the planning and designing of an irrigation system 

(Doorenbos & Pruitt, 1977).The irrigation requirement (IR) is one of the principal 

parameters for the planning, design and operation of irrigation and water resources 

systems. Detailed knowledge of the IR quantity and its temporal and spatial 

variability is essential for assessing the adequacy of water resources, for evaluating 

the necessity of storage reservoirs and to determine the capacity of irrigation 

systems. It is a major important parameter in formulating the policy for optimal 

allocation of water resources as well as in decision-making in the day-to-day 

operation and management of irrigation systems (A.C.C.Ltd., 2016). Incorrect 

estimation of the IR may lead to serious failures in the system performance and to the 

waste of valuable water resources (Savva & Frenken, 2002).  

2.5.1 Crop Water Requirement 

The crop water requirement is the amount of water required to compensate the 

evapotranspiration loss from the cropped field. Although the values for crop 

evapotranspiration and crop water requirement are identical, crop water requirement 

refers to the amount of water that needs to be supplied, while crop evapotranspiration 
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refers to the amount of water that is lost through evapotranspiration. FAO (1984) 

defined crop water requirements as ‘the depth of water needed to meet the water loss 

through evapotranspiration of a crop, being disease-free, growing in large fields 

under non restricting soil conditions, including soil water and fertility, and achieving 

full production potential under the given growing environment’(Allen, et al., 2006). 

Crop evapotranspiration, ETc, is calculated using the Equation 2.11 

 ETc = Kc × ETo (2.11) 

Where 

ETc - crop evapotranspiration [mm d-1], 

Kc - crop coefficient [dimensionless], 

ETo - reference crop evapotranspiration [mm d-1]. 

 

2.5.1.1 Crop Coefficient 

Experimentally determined ratios of ETc/ETo, called crop coefficients (Kc), are used 

to relate ETc to ETo. Differences in leaf anatomy, stomatal characteristics, 

aerodynamic properties and even albedo cause the crop evapotranspiration to differ 

from the reference crop evapotranspiration under the same climatic conditions. Kc 

for a given crop changes from sowing till harvest, due to variations in the crop 

characteristics throughout its growing season. Kc represents an integration of the 

effects of four primary characteristics that distinguish the crop from reference grass. 

These characteristics are (Allen, et al., 2006): 

 Crop height. The crop height influences the aerodynamic resistance term, ra, 

of the FAO Penman-Monteith equation and the turbulent transfer of vapour 

from the crop into the atmosphere. The ra term appears twice in the full form 

of the FAO Penman-Monteith equation (Allen, et al., 2006). 

 Albedo (reflectance) is the crop-soil surface. The albedo is affected by the 

fraction of ground covered by vegetation and by the soil surface wetness. The 

albedo of the crop-soil surface influences the net radiation of the surface, Rn, 

which is the primary source of the energy exchange for the evaporation 

process (Allen, et al., 2006). 
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 Canopy resistance. The resistance of the crop to vapour transfer is affected by 

leaf area (number of stomata), leaf age and condition, and the degree of 

stomatal control. The canopy resistance influences the surface resistance, rs 

(Allen, et al., 2006). 

 Evaporation from soil, especially exposed soil. 

The surface resistance, rs is influenced by soil surface wetness and the fraction of 

ground covered by vegetation. Following soil wetting, the vapour transfer rate from 

the soil is high, especially for crops having incomplete ground cover. The combined 

surface resistance of the canopy and of the soil determines the (bulk) surface 

resistance, rs. The surface resistance term in the Penman-Monteith equation 

represents the resistance to vapour flow from within plant leaves and from beneath 

the soil surface (Allen, et al., 2006). 

2.5.2 Irrigation Water Requirement 

Irrigation requirements (IR) refer to the water that must be supplied through the 

irrigation system to ensure that the crop receives its full crop water requirements. If 

irrigation is the sole source of water supply for the plant, the irrigation requirement 

will always be greater than the crop water requirement to allow for inefficiencies in 

the irrigation system. The irrigation requirement will be considerably less than the 

crop water, if the crop receives some of its water from other sources (rainfall, water 

stored in the ground, underground seepage, etc.) (Letey, 2007) 

The irrigation water requirement basically represents the difference between the crop 

water requirement and effective precipitation. The irrigation water requirement also 

includes additional water for leaching of salts and to compensate for non-uniformity 

of water application (Allen, et al., 2006). The net irrigation requirement is derived 

from the field balance Equation 2.12: 

 IRn = ETc - (Pe + Ge + Wb) + LR (2.12) 

Where, 

IRn -    Net irrigation requirement (mm) 

ETc -    Crop evapotranspiration (mm) 
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Pe -    Effective dependable rainfall (mm) 

Ge -    Groundwater contribution from water table (mm) 

Wb -    Water stored in the soil at the beginning of each period (mm) 

LR -    Leaching requirement (mm) 

2.5.3 Irrigation Scheduling 

Once the crop water and irrigation requirements have been calculated, the next step 

is the preparation of field irrigation schedules. It is very critical to schedule irrigation 

for obtaining optimal crop yields. For optimum irrigation scheduling, sound 

knowledge of the soil water status, crop water requirements, crop water stress status, 

potential yield reduction under water-stressed conditions is prerequisite to maximize 

profits and optimize the use of water and energy (Zegbe, et al., 2003; Kang, et al., 

2002). Irrigation scheduling involves the timing of irrigation and the amount of water 

applied (Brouwer & Prins, 1989). Three parameters have to be considered in 

preparing an irrigation schedules are; 

 The daily crop water requirements 

 The soil, particularly its total available moisture or water-holding 

capacity 

 The effective root zone depth 

Irrigation scheduling is conventionally based on Irrigation Water Requirement. Plant 

response to irrigation is influenced by the physical condition, fertility and biological 

status of the soil. Soil condition, texture, structure, depth, organic matter, bulk 

density, salinity, sodicity, acidity, drainage, topography, fertility and chemical 

characteristics all affect the extent to which a plant root system penetrates into and 

uses available moisture and nutrients in the soil. Many of these elements influence 

the water movement in the soil, the water holding capacity of the soil, and the ability 

of the plants to use the water. Soils to be irrigated must also have sufficient surface 

and subsurface drainage, especially in the case of surface irrigation. Internal drainage 

within the crop root zone can either be natural or from an installed subsurface 

drainage system. The irrigation system used should have the potential to match all or 

most of these conditions (Murray & Grant, 2007). 
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2.6 Historical Preference 

Gautham and Sinha have used ARIMA for forecasting mean monthly reference crop 

evapotranspiration using data series of 102 years of Bokaro District, India the 

identified best fitted model is ARIMA (0, 1, 4) (0, 1, 1)12 for the considered data set. 

The model has not been tested for an independent data set. 

Mohan and Arumugam (1995) have carried out a study on “Forecasting weekly 

reference crop evapotranspiration”. Two techniques: namely a seasonal ARIMA 

model and Winter's exponential smoothing model have been investigated in their 

study. A seasonal ARIMA model with one autoregressive of order one and order one 

moving average process and with a seasonality of 52 weeks, ARIMA (1,1,1)52 was 

found as the best fitted model. The ARIMA and Winter's models were compared 

with a simple ET model to assess their performance in forecasting. The forecast 

errors produced by these models were found to be very small and the models would 

be promisingly of great use in real-time irrigation management. 

A study conducted by Meshram, Gorantiwar, Sangale, Nagraj and Pal (2017), 

investigated for forecasting the weekly reference crop evapotranspiration (ETo) at 

Maharashtra, India. The daily values of climatic parameters were collected for 33 

years (1984 to 2016) and daily values of ETo were estimated by using Penman-

Monteith method. These weekly ETo values were used to fit the ARIMA models and 

SARIMA models by comparing 256 models. The results from an analysis shows that, 

the model fitted best is SARIMA (0,0,1) (1,0,2)52. 

Another study has carried out by Manikumari andVinodhini in year 2016 to model 

the reference evapotranspiration by two different regression models based on the 

daily evapotranspiration data collected during the period 1987 –2008 in India. Best 

model has been selected by comparing the results with Penman – Monteith (FAO-

PM). As per the findings of the study, Support Vector Regression gives the better 

estimates than multi-layer regression. 

The objective of the study carried out by Landeras, Ortiz-Barredo and Lópezin year 

2009was to compare the weekly evapotranspiration using ARIMA and artificial 

neural network (ANN)-, in Northern Spain. The application of both ARIMA and 
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ANN models improved the performance of one week in advance weekly 

evapotranspiration predictions compared to the model based on means (mean year 

model based on historical averages). 

Arca et al. (2004) have developed both ARIMA and ANN models using four years of 

reference evapotranspiration which were calculated hourly Penman-Monteith 

equation with weather data. Two year data set has used to validate the model by 

comparing the forecasted ETo with values calculated using weather data. 

2.7 Summary 

Chapter 02 provides a superficial introduction to process of evapotranspiration and 

its applications in agriculture. Evapotranspiration is a combination of two separate 

processes whereby water is lost on the one hand from the soil surface by evaporation 

and on the other hand from the crop by transpiration (ET). The evapotranspiration 

from the reference surface, is defined as reference crop evapotranspiration or 

reference evapotranspiration, denoted as ETo. The reason for introducing the concept 

of ETo was to study the evaporative demand of the atmosphere without any effect of 

the crop type, crop development stage and management practices where only 

climatic parameters affect. Energy Balance and Microclimatological Methods, Mass 

Transfer Method, Soil Water Balance, Lysimeters are the methods used for 

calculating evapotranspiration which are often expensive and demanding in terms of 

accuracy of the measurements. To overcome this issue, weather data is employ to 

compute ET. FAO Penman-Monteith method is recommended as the standard 

method for computation of the reference evapotranspiration. Due to the high data 

demand in PM method, the Pan Evaporation method is used in this study to calculate 

ETo. The pan evaporation is related to the reference evapotranspiration by an 

empirically derived pan coefficient, Kp. There are several methods to estimate Kp 

and out of those, equation derived through FAO/56 (Allen, et al., 1998) is used in 

this analysis. Reference evapotranspiration can be used in field of agriculture to 

compute crop water requirement that is the amount of water required to compensate 

the evapotranspiration loss from the cropped field and it can be further used to 

calculate the irrigation requirement. Once the crop water and irrigation requirements 
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have been calculated, field irrigation schedules can be prepared. These estimates can 

be used to manage water distribution and develop the planning process of irrigation 

schemes. 
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CHAPTER 3  

MATERIALS AND METHODS 

Previous chapter described the background of reference evapotranspiration analysis. 

This section refers to the data and methodology that are going to apply for the 

forecast of ETo in Polonnaruwa.  

3.1 Study Area 

To simplify the study, ETo is analyzed for both Maha and Yala seasons of 

Polonnaruwa district which is in the dry zone of the Sri Lanka. Polonnaruwa District 

is a major agricultural area in the North Central province of the Sri Lanka with the 

engagement of the traditional farmers who are lacking of water (Upali, et al., 2016).  

Polonnaruwa District is located between longitudes 81° 0' East, and Latitudes 7° 56' 

North with annual rainfall ranges between 1180 mm – 1800 mm in short period with 

long dry spell. Generally, average temperature is 280C and shows seasonal variation. 

Average temperature during December and January were found as approximately 27 

°C (80.6 °F) and during the warmest months of the year from April through 

September it seemed 30-32 °C (CEA, 1990).  

Land cover map (Figure 3.1) shows that the predominant type in the area is forest 

while paddy is the next major type. This reflects that the agriculture, both irrigated or 

rainfed is influencing the living patterns of the population in the district. As per the 

records of Department of Census and Statistics, the second highest Paddy production 

is reported from Polonnaruwa district and agriculture in Polonnaruwa mainly 

depends on traditional tank based system. Today traditional tank based system is not 

sufficient to fulfill the water requirement of crops grown in Polonnaruwa district; 

therefore it is vital to develop a crop plan, which can optimize the use of rainfall to 

reduce the irrigation water demand from tanks. The objective of this study is to 

investigate ETo trends, in order to have better management of surface water 

resources and agricultural activities in Polonnaruwa. 
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Figure 3.1: Location of Polonnaruwa District. 

 

3.2 Data 

Data used for this study were obtained from Department of Meteorology Sri Lanka. 

Pan evaporation, relative humidity and wind speed collected on weekly basis at 

Polonnaruwa Meteorology station, for the period of January 2010 to December 2015. 

Data from April 2010 to May 2015 covering the period from April to September in 

five years span was used to train the model for Yala season. In order to train the 

model for Maha season data used from January 2010 to February 2015covering the 

period from October to March in five years span. Third model was fitted by pooling 
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the data used for Yala and Maha. The balance data was used to validate the fitted 

model. 

3.3 Method Statement 

Models for weekly reference evapotranspiration were developed by covering five 

successive stages as shown in Figure 3.2. 

 

Figure 3.2: Flow chart of the methodology 

First stage of research methodology was devised to acquire and process the data. 

During the second stage of the methodology, reference evapotranspiration is 

calculated using pan evaporation method. At the next stage ARIMA and SARIMA 

time series analysis were developed using Minitab and EViews softwares for Yala 

and Maha seasons separately.  

3.4 Calculation of Reference ETo 

The pan evaporation is related to the reference evapotranspiration by an empirically 

derived pan coefficient (𝐾𝑝) as shown in Equation 3.1.  

 𝐸𝑇0  =   𝐾𝑝  ×  𝐸𝑝𝑎𝑛 (3.1) 

where: 
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ETo –  reference evapotranspiration (mm/day); 

Kp –  pan coefficient, 

Epan –  pan evaporation (mm/day). 

The details of computing Kp has been defined in Equation 2.10. It should be noted 

that the evaporation pan at Polonnaruwa agromet is installed inside a short green 

cropped area with a size of a square of at least 15 by 15 m and the pan is in the centre 

but at a distance of nearly 10 m from the green crop edge in the general upwind 

direction. 

3.5 Developing Time Series Models 

A time series is a sequence of data points, typically consisting of successive 

measurements or observations on quantifiable variable(s), made over a time interval 

(Cochrane, 2005). Usually the observations are chronological and taken at regular 

intervals (days, months, years), but the sampling could also be irregular (Adhikari & 

Agrawal, n.d.). 

Time series analysis comprises methods or processes that breakdown a series into 

components and explainable portions that allows trends to be identified, estimates 

and forecasts to be made. Basically time series analysis attempts to understand the 

underlying context of the data points through the use of a model to forecast future 

values based on known past values. Such time series models include MA, AR, 

ARIMA, GARCH, TARCH, EGARCH, FIGARCH, CGARCH and ARIMA among 

others but the main focus of this study is based on MA, AR, ARIMA, and SARIMA 

models (Gahirwal & Vijyalakshmi, n.d.). 

According to (Cochrane, 2005), time series can be represented as a set of 

observations XT, each one being recorded at a specific time T; written as: 

{X1, X2,...Xt } or {XT}, where T = 1, 2,...t 

If a time series has a regular pattern i.e. trend, then a value of the series should be a 

function of previous values. If X is the target value that is to be modelled and 

predicted, and Xt is the value of X at time t, then the goal is to create a model of the 

form (Equation 3.2): 
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 Xt= f(Xt-1, Xt-2, Xt-3, …, Xt-n) + et (3.2) 

    

Where Xt-1 is the value of X for the previous observation, Xt-2 is the value two 

observations ago, etc., and et represents noise that does not follow a predictable 

pattern (this is called a random shock). Values of variables occurring prior to the 

current observation are called lag values. 

3.5.1.1 Basic Concepts and Definitions of Time Series 

Time series can be categorized into two major classes namely: univariate or 

multivariate. A univariate time series is a sequence of measurements of the same 

variable collected over time. Most often, the measurements are sequence of events 

made at regular time intervals (Fawumi, 2015). 

However, when a time series involves more than one variable, it is said to be 

multivariate. Most economic and financial information is structured in the form of 

multivariate time series. Multivariate time series can be further categorized into 

homogenous and heterogeneous multivariate time series, based on the relationships 

between the measured variables. If a variable X is useful to predict future values of 

another variable Y, the multivariate time series is said to be homogeneous, else it is 

heterogeneous (Fawumi, 2015). 

The following is a brief definition of the commonly used terminologies in describing 

time series.  

 Lag 

Lag is the time period between two observations. For example, lag 1 is between Xt 

and Xt-1. Lag 2 is between Xt and Xt-2. Time series can also be lagged forward, Xt 

and Xt+1. The observation at the current time, Xt , depends on the value of the 

previous observation, Xt-1 ( Fawumi, 2015). 

 Autocorrelation and Partial Autocorrelation Functions (ACF and PACF) 

ACF is the linear dependence of a variable with itself at two points in time of lag h, 

like equation 3.3 
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ACF (h) = Corr (xt, xt–h) = γh = 

∑ (𝑥𝑖− 𝑥 ̅)(𝑥𝑖+ℎ− 𝑥 ̅)𝑛−ℎ
𝑖=1

∑ (𝑥𝑖− 𝑥 ̅)2𝑛
𝑖=1

 
(3.3) 

 

PACF is the autocorrelation of a signal with itself at different points in time, with 

linear dependency with that signal at shorter lags removed, as a function of lag 

between points of time. Informally, the partial correlation between xt and xt+h is the 

autocorrelation between xt and xt+h without the contribution of xt+1,xt+2, ...., xt+h−1. 

 Differencing 

Differencing simply means subtracting the value of an earlier observation from the 

value of a later observation. Calculating differences among pairs of observations at 

some lag to make a non-stationary series stationary (Hyndman &Athanasopoulos, 

2012). 

Differencing the scores is the easiest way to make a non-stationary mean stationary 

(flat). The number of times you have to difference the scores to make the process 

stationary determines the value of d. If  dC0, the model is already stationary and has 

no trend. When the series is differenced once, dC1 and linear trend is removed. When 

the difference is then differenced, dC2 and both linear and quadratic trend are 

removed. For non-stationary series, d values of 1 or 2 are usually adequate to make 

the mean stationary (Hyndman &Athanasopoulos, 2012). 

 Stationary Data 

This describes a time series variable which exhibits no significant upward or 

downward trend over time (Hyndman &Athanasopoulos, 2012). In other words it can 

be known as a series vary around a constant mean level, neither decreasing nor 

increasing systematically over time, with constant variance (NIST/SEMATECH, 

2012). 

 Non-stationary Data 

A non-stationary time series data is a data with variable exhibiting a significant 

upward or downward trend over time. Seasonal Data: This describes a time series 
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variable exhibiting repeating patterns at regular intervals over time (Anderson, et al., 

2014).  

3.5.2 Autoregressive Process. 

Autoregressive models are based on the idea, that values of process 𝑋𝑡are linearly 

dependent on some number of past values of the same process𝑋𝑡. In this model, the 

actual value of the process is expressed as a sum of finite linear combination of 

previous values and the impulses, called white noise. This can be summarized in the 

Equation 3.4& 3.5(Wildi, 2013): 

 𝑋𝑡 =  𝛿 + 𝜃1𝑋(𝑡−1) + 𝜃2𝑋(𝑡−2) +  𝜃3𝑋(𝑡−3) +  … … . . +𝜃𝑝𝑋(𝑡−𝑝) + εt (3.4) 

   

 𝜃 (𝛽) = 1 − 𝜃1𝛽 − 𝜃2𝛽2 −  … … … −  𝜃𝑝𝛽𝑝 (3.5) 

Where 

δ  is a constant (intercept), and  

θ1,θ2, θ3   are the autoregressive model parameters. 

The formula describes the autoregressive model of order p. This model is often 

denoted as AR (p). In AR (p) model, the present value is made up of a random error 

component (random shock, εt) and a linear combination of prior observations. The 

parameters𝛿 and 𝜃1are usually estimated by mean least squares or maximum 

likelihood methods (Wildi, 2013). 

3.5.3 Moving Average Process. 

Independent from the autoregressive process, each element in the series can also be 

affected by the past error (or random shock) that cannot be accounted by the 

autoregressive component, that is shown in Equation 3.6 & 3.7 (Wildi, 2013): 

 𝑋𝑡 =  𝜇 +  𝜀𝑡 −  𝜑1 𝜀(𝑡−1)  − 𝜑2 𝜀(𝑡−2)  − 𝜑3 𝜀(𝑡−3)  − 𝜑4 𝜀(𝑡−4)

−  … … 

(3.6) 

   

 𝜑(𝛽) = 1 − 𝜑1𝛽 − 𝜑2𝛽2 −  … … … −  𝜑𝑝𝛽𝑝 (3.7) 
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Where, 

µ is a constant, and 

𝜑1 , 𝜑2 , 𝜑3 , … …are the moving average model parameters. 

 

That is the present values of MA(q) model is made up of a present random error 

component (random shock,𝜀𝑡 ) and a linear combination of prior random shocks 

(𝜀1, 𝜀2 , … … . . 𝜀𝑡−1). 

3.5.4 Autoregressive and Moving Average Model 

In order to achieve better prediction quality, two previous models are often merged 

into one model, autoregressive and moving average model. Common model is 

denoted as ARMA(p; q) and it unites a moving average filter of order q and auto 

regression of filtered values of order p (Wildi, 2013). 

If the time series data show evidence of non-stationarity, then the initial differencing 

step can be applied to reduce the non-stationarity. This model is usually denoted as 

ARIMA(p; d; q). The parameter d represents the degree of differencing, it 

corresponds to the integrated part of the model (Wildi, 2013). 

 𝑌𝑡 =   𝛿 +  𝜃1𝑌(𝑡−1) + 𝜃2𝑌(𝑡−2) + … … . . +𝜃𝑝𝑌(𝑡−𝑝) +  𝜀𝑡 −  𝜑1 𝜀(𝑡−1)  

− 𝜑2 𝜀(𝑡−2)  − … … … . . −  𝜑𝑞𝜀(𝑡−𝑞) 

(3.8) 

Where, 𝑌𝑡 =   𝑋(𝑡) − 𝑋(𝑡−d) 

This can be further describe by backshift operator as follows (Equation 3.9&3.10). 

 (1 − 𝜃1𝛽 − 𝜃2𝛽2 −  … … … − 𝜃𝑝𝛽𝑝) 𝑌𝑡

=  𝛿 +  (𝜑1 𝛽 −  𝜑2 𝛽
2  −  … … . . −  𝜑𝑞𝛽𝑞) 𝜀𝑡 

(3.9) 

 

 

 

 (1 −  𝛽𝑑)(1 − 𝜃1𝛽 − 𝜃2𝛽2 −  … … … −  𝜃𝑝𝛽𝑝) 𝑋𝑡

=  𝛿 +  (𝜑1 𝛽 −  𝜑2 𝛽
2  −  … … . . −  𝜑𝑞𝛽𝑞) 𝜀𝑡 

(3.10) 
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3.5.5 Seasonal Autoregressive and Moving Average Model 

A time series is said to be seasonal if there is a sinusoidal or periodic pattern in the 

series. These periodic patterns of the data series has to be taken into consideration 

separately. In these models seasonal differencing of appropriate order is used to 

remove non-stationarity from the series.  Box and Jenkins (1970) incorporated 

seasonality into existing ARIMA approaches, arriving at the seasonal autoregressive 

moving average model or SARIMA (p,d,q)(P,D,Q)S, which can be written as 

Equation 3.11 or 3.12 

 (1 − 𝜃1𝛽 − 𝜃2𝛽2 −  … … − 𝜃𝑝𝛽𝑝 − 𝜃𝑆𝛽𝑆 −  𝜃2𝑆𝛽2𝑆 −  … …

−  𝜃𝑆𝑃𝛽𝑆𝑃) 𝑍𝑡

= 𝛿

+ (𝜑1 𝛽 −  𝜑2 𝛽
2  − … … −   𝜑𝑞𝛽𝑞 −  𝜑S 𝛽

𝑆  

−  𝜑2S 𝛽
2𝑆 −  … . … −  𝜑SQ 𝛽

𝑆𝑄) 𝜀𝑡 

(3.11) 

 

Where, 𝑍𝑡 =  (𝑋(𝑡) − 𝑋(𝑡−d)) − (𝑋(𝑡−𝐷𝑆) − 𝑋(𝑡−DS−d)) 

Or 

 (1 −  𝛽𝑑)(1 −  𝛽𝑆𝐷)(1 − 𝜃1𝛽 − 𝜃2𝛽2 −  … … − 𝜃𝑝𝛽𝑝 − 𝜃𝑆𝛽𝑆

−  𝜃2𝑆𝛽2𝑆 −  … … −  𝜃𝑆𝑃𝛽𝑆𝑃) 𝑋𝑡

=  𝛿

+  (𝜑1 𝛽 −  𝜑2 𝛽
2  − … … −   𝜑𝑞𝛽𝑞 −  𝜑S 𝛽

𝑆  

−  𝜑2S 𝛽
2𝑆 −  … . … −  𝜑SQ 𝛽

𝑆𝑄) 𝜀𝑡 

(3.12) 

Where, 𝛽 denotes the backward shift operator (𝛽 𝑋𝑡 =  𝑋𝑡−1), ‘S’ the seasonal lag 

and ′ 𝜀𝑡′ a sequence of independent normal error variable with mean 0 and variance 

σ2. ′𝜃′and′𝜑′ are respectively the autoregressive and moving average parameters. ‘p’ 

and ‘q’ are order of non seasonal auto regression and moving average parameters 

respectively. Whereas ‘P’ and ‘Q’ are that of seasonal auto regression and moving 

average parameters respectively. Also ‘d’ and ‘D’ denote non seasonal and seasonal 

differences and  𝛿 is a constant. 
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3.5.6 ARIMA / SARIMA Model Building 

Box – Jenkins studied the simplified steps to obtain comprehensive information of 

ARIMA models. Four steps as per the Box – Jenkins studies are: (1) model 

identification, (2) estimation of model parameters, (3) diagnostic checking, and (4) 

application of the model forecasting (Box, Jenkins, and Reinsel 1994). 

3.5.6.1 Model identification 

The model identification stage help to decide whether the time series may be 

modelled by ARIMA, and if so, what order of autoregressive and moving average 

terms should be chosen for the validation stage. The first step in developing a Box–

Jenkins model is to determine if the time series is stationary and if there is any 

significant seasonality that needs to be modelled. 

 Detecting Stationarity 

A run sequence plot of the data is generated to determine time series stationarity i.e., 

whether the time series exhibits constant mean and scale. It can also be detected from 

an autocorrelation plot. Specifically, non-stationarity is often indicated by an 

autocorrelation plot with very slow decay. Finally, unit root tests provide a more 

formal approach to determining the degree of differencing.  

 Differencing to achieve Stationarity 

Box and Jenkins recommend the differencing approach to achieve stationarity. 

However, fitting a curve and subtracting the fitted values from the original data can 

also be used in the context of Box-Jenkins models. 

 Seasonal Differencing 

At the model identification stage, the goal is to detect seasonality, if it exists, and to 

identify the order for the seasonal autoregressive and seasonal moving average terms. 

For many series, the period is known and a single seasonality term is sufficient. 

However, it may be helpful to apply a seasonal difference to the data and regenerate 

the autocorrelation and partial autocorrelation plots. This may help in the model 
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identification of the non-seasonal component of the model. In some cases, the 

seasonal differencing may remove most or all of the seasonality effect.  

 Identifying p and q 

Once stationarity and seasonality have been addressed, the next step is to identify the 

order (i.e. the p and q) of the autoregressive and moving average terms. These are 

determined by examining the values of the autocorrelations and the partial 

autocorrelations with their corresponding plots as explained below.  The 

autocorrelation function (ACF) measures the degree of correlation between lagged 

values of the times series. The autocorrelation value is bounded by the interval [-1,1] 

where a value close to 1 indicates strong, positive correlation; a value close to -1 

indicates strong negative correlation; 

The partial autocorrelation coefficient at lag k is the autocorrelation between 

observations Xt and Xt-k that is not explained by lag k = 1 through to lag k-1. Similar 

to the ACF, the PACF is bounded on the [-1,1] interval; the numerical interpretation 

of the PACF with respect to correlative behaviour and strength are also similar to the 

ACF. 

At the identification stage, one or more parsimonious models are tentatively chosen 

that seem to provide statistically adequate representations of the available data. 

Precise estimation of the parameters can be obtained using statistical techniques, 

such as the maximum likelihood, least-squares, or Yule–Walker method. 

3.5.6.2 Diagnostic checking 

The diagnostic checking stage involves assessing the adequacy of the identified and 

fitted models through possible statistically significant test on the residuals to verify 

its consistency with the white noise process e.g. the Ljung-Box test, residual 

correlograms (ACF and PACF) and residual plots.  
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3.5.6.3 Model forecasting 

As a final step for modeling, once an appropriate time-series model is estimated, 

future values can be forecasted. Forecast precision can be evaluated against 

performance measures. 

3.5.7 ARIMA Modelling: Advantages and Disadvantages 

Time series models have been commonly used in a broad range of scientific 

applications, including hydrology; however, as per the studies it can be basically 

concluded that the SARIMA model has good model fitting degree in decision-

making for agricultural irrigation.  

Some of the major advantages of time series models include the systematic search 

capability for identification, estimation, and diagnostic checking. Time series 

models, like the Autoregressive Integrated Moving Average (ARIMA), effectively 

consider serial linear correlation among observations, whereas Seasonal 

Autoregressive Integrated Moving Average (SARIMA) models can satisfactorily 

describe time series that exhibit non-stationary behaviours both within and across 

seasons. It is found that ARIMA as a proper way in especially short term time series 

forecasting (Box, 1970; Jarrett, 1991). Taking advantage of its strictly statistical 

approach, the ARIMA method only requires the prior data of a time series to 

generalize the forecast. Hence, the ARIMA method can increase the forecast 

accuracy while keeping the number of parameters to a minimum (Zhai, 2005).  

Some major disadvantages of ARIMA forecasting are: the traditional model 

identification techniques use for identifying the correct model from the class of 

possible models are difficult to understand and usually computationally expensive. 

This process is also subjective and the reliability of the chosen model can depend on 

the skill and experience of the forecaster. The underlying theoretical models and 

structural relationships are not distinct as some simple forecasts models such as 

simple exponential smoothing and Holt-Winters (Thomas 1983). Moreover, the 

ARIMA models, as all forecasting methods, are essentially "backward looking". 

Such that, the long term forecast eventually goes to be straight line and poor at 

predicting series with turning points (Zhai, 2005). 
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CHAPTER 4  

RESULTS AND DISCUSSION 

After a thorough discussion on theoretical background of Reference 

Evapotranspiration and Time Series analysis, from the previous chapters, this chapter 

describes the development of ARIMA models for weekly reference 

evapotranspiration over six years period from 2010 to 2015 of Polonnaruwa area. 

4.1 Time Series Analysis for Yala Season 

The descriptive statistics for the weekly reference evapotranspiration over six years 

period from 2010 to 2015 during Yala Season is shown in Table 4.1. This analysis 

was made in an attempt to find more information about pattern of ETo in 

Polonnaruwa during the Yala season. 

4.1.1 Temporal Variability of Yala Season 

Table 4.1 clearly explains descriptive statistics of the data set that used to have a 

general idea of the original data set, the distribution of ETo in Polonnaruwa during 

the period of April – September in five years span. The mean reference 

evapotranspiration varied between 2.23 mm (minimum) to 5.37 mm (maximum) with 

a mean of 3.62 mm and SD of 0.53. The chance of reference evapotranspiration 

exceeds the 3.96 mm is 25% and chance of being lower than 3.23mm is also 25%. 

Table 4.1: Descriptive Statistics of the average weekly reference evapotranspiration 

from 2010 to 2015 in Polonnaruwa during Yala Season (April to September) (in mm) 

Mean SE Mean StDev Minimum Q1 Median Q3 Range Maximum 

3.62 0.05 0.53 
2.23 

(Week 102) 
3.23 3.67 3.96 3.14 

5.37 

(Week 136) 

 

Figure 4.1 shows the average weekly ETo time series during the Yala Season at 

Polonnaruwa from 01.01.2010 to 31.12.2015.The time series plots display calculated 

reference evapotranspiration in mm on the y-axis against equally spaced time 
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intervals on the x-axis. This can be used to evaluate patterns, knowledge of the 

general trend and behaviors of ETo at Polonnaruwa during the Yala season. There is 

no clear trend can be observed in the reference evapotranspiration time series and 

seasonality of the data series is doubtful (Figure 4.1). 

 

Figure 4.1: Time series plot of average weekly reference evapotranspiration from 

2010 to 2015 in Polonnaruwa in Yala season {Yt} 

4.1.2 ACF of Original Yala Data Series 

A plot of the autocorrelation of a time series by lag is called the Auto 

Correlation Function, or the acronym ACF. This plot is sometimes called a 

correlogram or an autocorrelation plot. Autocorrelation plot is a commonly-used tool 

for checking randomness in a data set. This randomness is ascertained by computing 

autocorrelations for data values at varying time lags. If random, such autocorrelations 

should be near zero for any and all time-lag separations. If non-random, then one or 

more of the autocorrelations will be significantly non-zero. In addition, 

autocorrelation plots are used in the model identification stage for Box-Jenkins 

autoregressive, moving average time series models. 
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Figure 4.2: Autocorrelation function of reference evapotranspiration in Polonnaruwa 

training data set (Yala){Yt} 

The autocorrelation graph was plotted for the reference evapotranspiration data series 

in Yala (Figure 4.2), to check the randomness of the data. In Figure 4.2 data set 

shows that the time series is not random. The autocorrelations remain strong in first 

few lags and slightly decreasing when increasing the number of lags following a kind 

of sinusoidal pattern. This emphasize that previous ETo values are obviously 

correlated to future ETo data. 

And also seasonal patterns of time series can be examined via correlograms. 

Seasonality in a time series refers to predictable and recurring trends and patterns 

over a period of time. It is hard to find seasonality in the calculated weekly ETo data 

series from figure 4.2. 

4.1.3 ACF of Stationary Series - Non Seasonal 

A common assumption in many time series techniques is that the data are stationary. 

A stationary process has the property that the mean, variance and autocorrelation 

structure do not change over time. Stationarity can be defined a series, without trend, 

constant variance over time, a constant autocorrelation structure over time and no 

periodic fluctuations (seasonality). A stationarized series is relatively easy to predict. 
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The two most common ways to make a non-stationary time series curve stationary 

are: differencing & transforming. 

ARIMA models a non-stationary time series is made stationary by applying finite 

differencing of the data points. Consider the 1st difference of the series (Figure 4.3) 

to model ARIMA for ETo in Yala season. 

 

Figure 4.3: ACF for 1st difference of original ETo data series (Yala) {Yt- Yt-1} 

The ACF property defines a distinct pattern for the autocorrelations. 1st difference of 

the series shows that significant correlations at the first lag, followed by correlations 

that are not significant, which implies that 1st difference of the reference 

evapotranspiration series is stationary. This looks like a pattern of moving average 

terms in the data, MA(1) as the number of significant correlations indicates the order 

of the moving average term. If large correlation occurs at the first season lag and 

decreases over several seasonal lags, have to difference the data using a lag equal to 

the seasonal length before attempt to identify a model. But in this case no seasonal 

lags are identified as significant. 
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4.1.4 PACF of Stationary Series - Non Seasonal 

Another useful method to examine serial dependencies is to examine the partial 

autocorrelation function (PACF). Partial Autocorrelation to calculate and plot the 

correlation between observations in a time series. A partial autocorrelation is a 

summary of the relationship between an observation in a time series with 

observations at prior time steps with the relationships of intervening observations 

removed. 

 

Figure 4.4: PACF for 1st difference of original ETo data series (Yala){Yt- Yt-1} 

In this plot (Figure 4.4) first few lags are identified as significant and followed by 

correlations are gradually tapers to 0. For an AR model, the theoretical PACF “shuts 

off” past the order of the model.  It means that the number of non-zero partial 

autocorrelations gives the order of the AR model.  For an MA model, the theoretical 

PACF does not shut off, but instead tapers toward 0.Therefore figure 4.4 further 

confirms the pattern of MA observed from ACF. 

4.1.5 Identification of Parsimonious ARIMA Models 

Examining the ACF and PACF of the first differenced series, the order of the model 

(p, d, q) was determined as follows: ACF looks like the pattern of moving average 

terms in the data, MA(1) while PACF indicates also a moving average term, 
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therefore both these patterns indicate an ARIMA (0, 1, 1) model. However this is 

only a tentative choice. There will ARIMA models with values of AR and/ or MA 

less than the parameters of the considered ARIMA. In this case following five 

parsimonious models were chosen to identify the best fit model. 

 



52 

 

Table 4.2: Comparison of the selected non seasonal parsimonious time series model for ETo in Yala season 

No Model AR (1) AR (2) AR (3) AR (4) MA (1) C MSE 
BP Statistic 

12 24 36 48 

1 ARIMA(4,1,1) 
(-0.6670, 

p=0.020) 

(-0.3920, 

p=0.003) 

(0.4150, 

p=0.000) 

(-0.3500, 

p=0.001) 

(-0.2970, 

p=0.324) 

(0.0164, 

p=0.743) 
0.202 0.082 0.634 0.655 0.806 

2 ARIMA(0,1,1) 
    

(0.5085, 

p=0.000) 

(0.0057, 

p=0.774) 
0.220 0.002 0.057 0.165 0.370 

3 ARIMA(1,1,1) 
(0.5629, 

p=0.000) 
   

(0.9892, 

p=0.000) 

(0.0003, 

p=0.808) 
0.197 0.034 0.304 0.494 0.388 

4 ARIMA(2,1,1) 
(0.5443, 

p=0.000) 

(0.0178, 

p=0.840) 
  

(0.9741, 

p=0.000) 

(0.0007, 

p=0.701) 
0.200 0.024 0.271 0.470 0.413 

5 ARIMA(3,1,1) 
(-0.4000, 

p=0.988) 

(-0.1800, 

P=0.977) 

(-0.0300, 

P=0.993) 
 

(-0.2000, 

p=0.994) 

(0.0312, 

p=0.536) 
0.232 0.000 0.014 0.076 0.173 

 

 

 



53 

 

Table 4.2 describes the results obtained for selected ARIMA models for original data 

series such as coefficients of the parameters and corresponding p value and mean square 

of error (MSE). None of the parameters are significantly different from zero (p value > 

0.05) in the fifth model.  Model 1 and 4 are also having none significant parameters 

where p value is greater than 0.05, which are marked in red colour. Parameters of Model 

2, ARIMA (0,1,1) and Model 3, ARIMA(1,1,1) reject the null hypothesis “ coefficients 

are equal to zero” with p values <0.05. Compared to the model 2, model 3 is having 

lesser MSE and SSE values. The Ljung-Box chi-square statistics are considered for the 

selected two models to determine whether the models meet the assumption that the 

residuals are independent. None of the two models are met the assumption, as the p-

values for the Ljung-Box chi-square statistics of first few lags are lesser than 0.05. 

Therefore Model 2 and 3 are rejected since the model residuals are not independent and 

have to search further for a best fit model.  

4.1.6 ACF of Stationary Series - Seasonal 

 

Figure 4.5: ACF plot of 26th difference of the 1st difference series of original data set 

(Yala) {(Yt- Yt-1) - (Yt-26  - Yt-27) } 
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Though the ACF of 1st difference of original series was not indicate a significant lag at 

lag 26, ACF plot of original data series implies a pattern of seasonal with time length of 

26. Therefore, now consider the seasonal effect of the original series to observe the best 

fit model for Yala.  In order to identify the seasonal ARIMA model, ACF plot of 26th 

difference of the 1st difference series of original data was plotted (Figure 4.5).  

At the non seasonal levels ACF has significant spikes at lag 1 and cuts off after lag 1. At 

the seasonal level, the ACF has significant lag at lag 26 and tails off thereafter. 

Therefore, conclusion can be made that 26th difference of the 1st difference series of 

original data is stationary at both seasonal and non seasonal lengths. And also this 

indicate the order of moving average terms in both seasonal and non seasonal. MA(1) & 

SMA(26) as the moving average components that can be visualized by the figure 4.5. 

4.1.7 PACF of Stationary Series - Seasonal 

Identification of AR component of the SARIMA model is often best done with the 

PACF (Figure 4.6). Few significant “spikes” were identified at non seasonal lags, 

followed by the pattern gradually tapers to 0. For seasonal component, first seasonal lag 

is identified as significant, lag at 26 and shuts off thereafter.  
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Figure 4.6: PACF plot of 26th difference of the 1st difference series of original data 

(Yala){(Yt- Yt-1) - (Yt-26  - Yt-27) } 

In other words lags 52, 78 etc. were not identified as significant lags. For an AR model, 

the theoretical PACF “shuts off” past the order of the model.  It means that the number 

of non-zero partial autocorrelations gives the order of the AR model.  For an MA model, 

the theoretical PACF does not shut off, but instead tapers toward 0. Therefore figure 4.6 

further confirms the pattern of MA observed from ACF plot for non seasonal lengths 

while order 1 of AR for seasonal lengths. 

4.1.8 Identification of Parsimonious SARIMA Models 

Examining the ACF and PACF of the both seasonal and non-seasonal differenced data, 

the order of the model (p, d, q) × (P, D, Q)s was determined as follows: As per the ACF 

plot of Figure 4.5, First and Twenty Sixth lags are significantly different from zero. This 

implies that this data series is having MA(1) and SMA(26) components. Non seasonal 

decaying pattern of PACF of differenced series describe that there may be no AR 

component in non seasonal and significant autocorrelation at lag 26 implies that there 

may be a seasonal AR component.  Both these patterns indicate an SARIMA (0, 1, 1) (1, 

1, 1)26. 
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A model comparison was carried out to find the best fit time series model for observed 

weekly ETo durinng Yala season at Polonnaruwa from selected models. Out puts of the 

considered 04 different models are as follows. 

Table 4.3 describes the results obtained for selected SARIMA models for original data 

series such as coefficients of the parameters and corresponding p values, sums square of 

errors (SSE) and mean square of errors (MSE). All the models are having parameters 

significantly different from zero where p value is less 0.05 which accept the null 

hypothesis “coefficients are equal to zero”. Comparing the MSE values of the 

parsimonious models, model with least MSE is selected as the best fit model. Comparing 

all the four models model 4, SARIMA (1,1,1)(1,1,1)26 is selected as the best fit model 

for reference evapotranspiration during Yala in Polonnaruwa as it is having the lowest 

MSE of 0.184.Mean Absolute percentage error of the selected model is varying between 

± 1.5%.   
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Table 4.3: Comparison of selected seasonal ETo time series models in Yala 

No Model AR (1) MA (1) SAR (26) SMA (26) C SSE MSE 

1 SARIMA 0,1,1) (1,1,1)26 
 

(0.6239, 

p=0.000) 

(-0.4680, 

p=0.000) 

(0.8247, 

p=0.000) 

(0.0036, 

p=0.415) 
20.9486 0.1958 

2 SARIMA (0,1,1) (0,1,1)26 
 

(0.7026, 

p=0.000) 
 

(0.7830, 

p=0.000) 

0.0066, 

p=0.197) 
25.142 0.2327 

3 SARIMA (1,1,1) (0,1,1)26 
(0.3790, 

p=0.003) 

(0.8757, 

p=0.000) 
 

(0.7800, 

p=0.000) 

(0.0021, 

p=0.373) 
22.764 0.2127 

4 SARIMA (1,1,1) (1,1,1)26 
(0.3770, 

p=0.004) 

(0.8600, 

p=0.000) 

(-0.4200, 

p=0.000) 

(0.8140, 

p=0.000) 

(0.0020, 

p=0.276) 
19.483 0.1838 
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4.1.9 Estimation of Best Fitted Model – Yala Data Series 

Then selected best fitted model was analyzed. Seasonal ARIMA model (1,1,1)(1,1,1)26 

has a constant value  which is not significantly different from zero. MSE of the 

SARIMA model is 0.184 which is less compared to the other parsimonious models. 

Mean Square of Error (MSE) is use to determine how well the model fits the data. 

Smaller values indicate a better fitting model. Therefore, (1,1,1)(1,1,1)26 model is 

selected as the best fit model for the original ETo data series for Yala season. 

To determine whether the association between the response and each term in the model 

is statistically significant, the p-value for the term is compared with the considered 

significance level to assess the null hypothesis. The null hypothesis is that the term is not 

significantly different from 0, which indicates that no association exists between the 

term and the response. Usually, a significance level (denoted as α or alpha) of 0.05 

works well. A significance level of 0.05 indicates a 5% risk of concluding that the term 

is not significantly different from 0 when it is significantly different from 0. If the p-

value is less than or equal to the significance level, then the coefficient is statistically 

significant. But, if the p-value is greater than the significance level, then the coefficient 

is statistically not significant, where the model has to be refit without the term. 

The moving average and seasonal moving average terms, autoregressive and seasonal 

autoregressive terms except the constant value have a p-value that are less than the 

significance level of 0.05 (Table 4.4). It describes that the coefficients of the fitted 

model are statistically significant by rejecting the null hypothesis, and can proceed with 

the fitted model.  

Fitted model is as shown in Equation 4.1  

 (1 − 0.377 𝐵)(1 + 0.42 𝐵26)(1 − 𝐵)(1 − 𝐵26) 𝑌𝑡

= (1 + 0.86 𝐵)(1 + 0.814 𝐵26)𝑒𝑡  

(4.1) 
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Table 4.4: Final estimates of parameters of SARIMA (1,1,1)(1,1,1)26 for Yala ETo 

Type Coefficient SE Coefficient T-Value P-Value 

AR   1 0.377 0.128 2.96 0.004 

SAR  26 -0.420 0.114 -3.67 0.000 

MA   1 0.8600 0.0748 11.50 0.000 

SMA  26 0.814 0.103 7.92 0.000 

Constant 0.00196 0.00179 1.09 0.276 

 

4.1.10 Model Diagnostic 

When conducting any statistical analysis it is important to evaluate how well the model 

fits the data and that the data meet the assumptions of the model. There are numerous 

ways to do this and a variety of statistical tests to evaluate deviations from model 

assumptions.  

4.1.10.1 Ljung-Box chi-square statistics 

The Ljung-Box chi-square statistics are used to determine whether the model meets the 

assumption that the residuals are independent. If the assumption is not met, the model 

may not fit the data and use caution when you interpret the results and have to search for 

best fit model. In these results, the p-values for the Ljung-Box chi-square statistics are 

all greater than 0.05 where conclusion can be made that the model meets the assumption 

that the residuals are independent (Table 4.5). 

Table 4.5: Modified Box-Pierce (Ljung-Box) Chi-Square Statistic of SARIMA 

(1,1,1)(1,1,1)26 for Yala ETo 

Lag 12 24 36 48 

Chi-Square 9.44 13.84 22.18 31.84 

DF 7 19 31 43 

P-Value 0.222 0.793 0.877 0.895 
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4.1.10.2 Residual Plots 

Residuals are estimates of experimental error obtained by subtracting the observed 

responses from the predicted responses. Examining residuals is a key part of all 

statistical modeling, including DOE's. Carefully looking at residuals can tell whether the 

assumptions are reasonable and the choice of the model is appropriate. Residuals can be 

thought of as elements of variation unexplained by the fitted model. For a best fit model, 

the general assumptions apply to the group of residuals that them to be (roughly) normal 

and (approximately) independently distributed with a mean of 0 and constant variance. 

 

Figure 4.7: Residual plot for Yala obtained from SARIMA (1,1,1)(1,1,1)26 

Errors were analyzed further for the fitted model of SARIMA (1,1,1)(1,1,1)26 for 

average weekly ETo in Polonnaruwa. During Yala. Figure 4.7 shows the residual plot 

for ETo. 

Use the normal plot of residuals to verify the assumption that the residuals are normally 

distributed. The normal probability plot should produce an approximately straight line if 
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the points come from a normal distribution. The following probability plot of residuals 

suggests that the residuals are normally distributed as residual are on a straight line with 

single extreme outlier. 

The histogram is a frequency plot obtained by placing the data in regularly spaced cells 

and plotting each cell frequency versus the center of the cell. Use the histogram of 

residuals to determine whether the data are skewed or whether outliers exist in the data. 

Figure 4.7 illustrates an approximately normal distribution of residuals of the fitted 

model. 

Use the residuals versus fits plot to verify the assumption that the residuals are randomly 

distributed and have constant variance. Ideally, the points should fall randomly on both 

sides of 0, with no recognizable patterns in the points. The patterns may indicate the 

model does not meet the model assumptions. There could be a non-linear relationship 

between predictor variables and an outcome variable and the pattern could show up in 

the plot if the model doesn’t capture the non-linear relationship. Equally spread residuals 

around a horizontal line without distinct patterns, is a good indication of having non-

linear relationships. Figure 4.7 also shows that residuals are scattered along a horizontal 

line of 0, implying that residuals have a constant variance. 

Residuals versus order plot is use to verify the assumption that the residuals are 

independent from one another or in other words residuals are uncorrelated with each 

other. Independent residuals show no trends or patterns when displayed in time order. 

Patterns in the points may indicate that residuals near each other may be correlated, and 

thus, not independent. Ideally, the residuals on the plot should fall randomly around the 

center line. Figure 4.7 shows that residuals are independent as they spread around the 

center line. 

4.1.10.3 ACF of Residuals 

It is assumed that the residuals are independent of (not correlated with) each other. 

Further ACF plot of residuals can be used to test the residuals. Use a graph of residuals 
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versus data order (1, 2, 3, 4, n) to visually inspect residuals for autocorrelation. A 

positive autocorrelation is identified by a clustering of residuals with the same sign. A 

negative autocorrelation is identified by fast changes in the signs of consecutive 

residuals. If no significant correlations are present, conclusion can be made that the 

residuals are independent. However, 1 or 2 significant correlations at higher order lags 

that are not seasonal lags are usually caused by random error instead and are not a sign 

that the assumption is not met. In this case (Figure 4.8), conclusion can make that the 

residuals are independent as none of the correlations for the autocorrelation function of 

the residuals are significant. 

 

Figure 4.8: ACF of residual plot of SARIMA (1,1,1)(1,1,1)26 for Yala ETo 

4.1.10.4 Predicted vs Observed 

Test data kept for validation is compared with the forecasted values. After selecting the 

ARIMA model, it is used for forecasting. Three months weekly ETo was forecasted by 

using selected model. Figure 4.9 shows the scatter plot between observed and forecasted 

ETo. The R2 value 0.81 presents good correlation (γ = 0.9) between observed and 

forecasted value. 

302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

A
u

to
c
o

rr
e
la

ti
o

n

ACF of Residuals for Yala
(with 5% significance limits for the autocorrelations)



63 

 

 

Figure 4.9: Scatter plot of observed vs forecasted ETo in Yala Season Polonnaruwa 

4.1.11 Forecasting 

Next step was to forecast the weekly ETo for coming months. Weekly ETo was 

forecasted 10 weeks ahead during the Yala season in Polonnaruwa area (Table 4.6). 

These results will be helpful to the water management officials of the area as well as the 

researchers who are willing to conduct their studies based on ETo. 

Table 4.6: Forecasted weekly ETo for Yala season in Polonnaruwa 

Year Month Week Forecasted ETo (mm) 

2016 

April 

1 3.97 

2 3.95 

3 3.54 

4 3.62 

May 

5 3.30 

6 3.87 

7 4.11 

8 4.01 

June 
9 3.98 

10 4.03 

4.254.003.753.503.253.002.752.50
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S 0.191861
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R-Sq(adj) 80.3%

Observations =  0.5723 + 0.7816 Forecat
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4.2 Time Series Analysis for Maha Season 

This section will present the results of an analysis of the weekly reference 

evapotranspiration during Maha season over six years period from 2010 to 2015 of 

Polonnaruwa area. 

4.2.1 Temporal Variability of Maha Season 

Table 4.7 clearly explains descriptive statistics of the data set to have a general idea of 

the original data series, the distribution of ETo in Polonnaruwa during the period of 

October – March in five years span. The mean reference evapotranspiration varied 

between 0.76 mm (minimum) to 5.56 mm (maximum) with a mean of 2.29 mm and SD 

of 0.85. The chance of reference evapotranspiration exceeds the 2.85 mm is 25% and 

chance of being lower than 1.63mm is also 25%. 

Table 4.7:Descriptive Statistics of the average weekly reference evapotranspiration 

from 2010 to 2015 in Polonnaruwa during Maha Season (October – March) (in mm) 

Mean SE Mean StDev Minimum Q1 Median Q3 Range Maximum 

2.29 0.07 0.85 0.76 

(Week 77) 

1.63 2.24 2.85 4.80 5.56 

(Week 120) 

 

In order to identify the best fit model for the weekly observed ETo in Maha season at 

Polonnaruwa model estimation was carried out by following several stages. As first step 

of model estimation, time series plot of the test data was analyzed. 

Figure 4.10 shows the average weekly ETo time series during the Maha Season at 

Polonnaruwa from 01.01.2010 to 31.12.2015. The time series plots display calculated 

reference evapotranspiration in mm on the y-axis against equally spaced time intervals 

on the x-axis. This can be used to evaluate patterns, knowledge of the general trends and 

behaviors of ETo at Polonnaruwa during the Maha season. There is no clear trend can be 
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observed in the reference evapotranspiration time series and seasonality of the data 

series is doubtful. 

 

Figure 4.10: Time series plot of average weekly reference evapotranspiration from 2010 

to 2015 in Polonnaruwa in Maha season{Yt} 

4.2.2 ACF of Original Maha Data Series 

The first step in identifying a preliminary model was to examine the autocorrelations for 

the raw data. The autocorrelation graph was plotted for the reference evapotranspiration 

data series to check the randomness of the data (Figure 4.11). The autocorrelations, 

which were very large at first, did not tail off towards zero quickly. They appeared to be 

forming a sine wave pattern, but because the damping process was so slow, it was 

concluded that the process was non-stationary and this emphasize that previous ETo 

values are obviously correlated to future ETo data. Seasonal patterns of time series also 

can be examined via correlograms. It confirms that there is a seasonality in the 

calculated weekly ETo data series with lag of 26. 
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Figure 4.11: Autocorrelation function of reference evapotranspiration in Polonnaruwa 

training data set (Maha){Yt} 

4.2.3 ACF of Stationary Series - Non Seasonal 

A common assumption in many time series techniques is that the data are stationary. As 

ARIMA models a non-stationary time series transforming to stationary by applying 

finite differencing of the data points. Consider the 1st difference of the series 

(Figure4.12) to model ARIMA for ETo in Maha season. 

Figure 4.12 contains the autocorrelation of the first differences. The ACF property 

defines a distinct pattern for the autocorrelations. 1st difference of the series shows none 

of the significant correlations are significant, which implies that 1st difference of the 

reference evapotranspiration series is non stationary. 
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Figure 4.12: ACF for 1st difference of original ETo data series (Maha){Yt- Yt-1} 

In order to make the series stationary consider the 2nd difference of original data series, 

ETo at polonnaruwa during Maha season (Figure 4.13). 

 

Figure 4.13: ACF for 2nd difference of original ETo data series (Maha) 
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The ACF property defines a distinct pattern for the autocorrelations. 2nd difference of the 

series shows that significant correlations at the first and second lag, followed by 

correlations that are not significant, which implies that 2nd difference of the reference 

evapotranspiration series is stationary. This looks like the pattern of moving average 

terms in the data, MA(1) & MA(2) as the number of significant correlations indicates the 

order of the moving average term. In this case no seasonal lags are identified as 

significant to consider the stationarity of seasonal component. 

4.2.4 PACF of Stationary Series - Non Seasonal 

In figure 4.14 few significant “spikes” were identified at first few lags, followed by the 

pattern gradually tapers to 0. Therefore figure 4.14 further confirms the pattern of MA 

observed from ACF plot. 

 

Figure 4.14: PACF for 2nd difference of original ETo data series (Maha){Yt- Yt-1} 

4.2.5 Identification of Parsimonious ARIMA Models 

Examining the ACF and PACF of the differenced data, the order of the model (p, d, q) 

was determined as follows: ACF looks like the pattern of moving average terms in the 
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data, MA(1) & MA(2) while PACF further confirms the MA terms observed in ACF, 

therefore both these patterns indicate an ARIMA (0, 2, 2) model. However this is only a 

tentative choice. There will ARIMA models with values of AR and/ or MA less than the 

parameters of the considered ARIMA. In this case following seven parsimonious models 

were chosen to identify the best fit model. 
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Table 4.8: Comparison of the selected non seasonal time series model for ETo for Maha 

No Model AR (1) AR (2) MA (1) MA (2) C MSE 
BP Statistic 

12 24 36 48 

1 ARIMA(0,2,2) 
  

(0.8349, 

P=0.000) 

(0.1489, 

P=0.044) 

(-0.0005, 

p=0.923) 
0.4913 0.017 0.024 0.010 0.022 

2 ARIMA(1,2,2) 
(-0.5280, 

p=0.300)  

(0.5270, 

p=0.317) 

(0.4510, 

p=0.389) 

(-0.0003, 

p=0.950) 
0.4608 0.055 0.087 0.081 0.200 

3 ARIMA(1,2,1) 
(-0.1783, 

p=0.040)  

(0.9843, 

p=0.000)  

(0.0002, 

p=0.915) 
0.4464 0.145 0.179 0.165 0.333 

4 ARIMA(2,1,2) 
(-0.0810, 

p=0.912) 

(-0.0680, 

p=0.872) 

(0.1380, 

p=0.851) 

(0.1220, 

p=0.824) 

(0.0001, 

p=0.976) 
0.4246 0.334 0.181 0.058 0.083 

5 ARIMA(0,1,2) 
  

(0.2171, 

p=0.012) 

(0.1695, 

p=0.051) 

(0.0009, 

p=0.980) 
0.41847 0.519 0.242 0.068 0.091 

6 ARIMA(2,1,0) 
(-0.2104, 

p=0.015) 

(-0.2053, 

p=0.018)   

(0.0020, 

p=0.972) 
0.4192 0.50 0.346 0.179 0.241 

7 ARIMA(1,1,1) 
(0.6951, 

p=0.000)  

(0.9798, 

p=0.000)  

(0.0004, 

p=0.850) 
0.3898 0.328 0.095 0.027 0.039 
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Table 4.8 describes the results obtained for selected ARIMA models for original data 

series such as coefficients of the parameters and corresponding p value and mean square 

of error (MSE). Model 2, 4 and 5 are having none significant parameters where p value 

is greater than 0.05, which are marked in red colour. Parameters of Model 1, ARIMA 

(0,2,2), Model 3, ARIMA (1,2,1) Model 6 ARIMA (2,1,0) and Model 7, ARIMA(1,1,1) 

reject the null hypothesis “ coefficients are equal to zero” with p values <0.05. 

Considering the BP statistics Model 1 and Model 7 were rejected as p-values for the 

Ljung-Box chi-square statistics of some lags are lesser than 0.05 which implies that 

residuals are not independent. Compared to the Model 3, Model 6 is having lesser MSE 

value, therefore model 6, ARIMA (2,1,0) is selected as the best fit model. 

4.2.6 ACF of Stationary Series - Seasonal 

Though the 1st and 2nd difference of original series was not indicate a significant lag at 

lag 26, ACF plot of original data series implies a pattern of seasonal with time length of 

26. Therefore, now consider the seasonal effect of the original series to check any 

improvements to the above selected model.  In order to identify the seasonal ARIMA 

model, ACF plot of 26th difference of the 1st difference series of original data was 

plotted (Figure 4.15).  

 

Figure 4.15: ACF plot of 26th difference of the 1st difference series of original data set 

(Maha){(Yt- Yt-1) - (Yt-26  - Yt-27) } 

605550454035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

A
u

to
c
o

rr
e
la

ti
o

n

ACF for 26th Didderence of 1st Difference Series of ET0 in Maha
(with 5% significance limits for the autocorrelations)



72 

 

At the non seasonal levels ACF has significant spikes at lag 1 & lag 2 and cuts off after 

lag 2. At the seasonal level, the ACF has significant lag at lag 26 and tails off thereafter. 

Therefore, conclusion can be made that 26th difference of the 1st difference series of 

original data is stationary at both seasonal and non seasonal lengths. And also this 

indicate the order of moving average terms in both seasonal and non seasonal. MA(1), 

MA(2) & SMA(26) are the moving average components can be visualized by the figure 

4.15. 

4.2.7 PACF of Stationary Series - Seasonal 

In this PACF plot (Figure 4.16)two spikes are identified as significant and followed by 

correlations are tails off. This indicates an autoregressive terms in the data. The number 

of significant correlations indicate the order of the autoregressive term. This pattern 

indicates an autoregressive term of order 1 and order 2. For seasonal component 

seasonal lags are considered. Significant spike at lag 26 is identified with Figure 4.16 

illustrating an seasonal AR term of order 1. 

 

Figure 4.16: PACF plot of 26th difference of the 1st difference series of original data 

(Maha){(Yt- Yt-1) - (Yt-26  - Yt-27) } 
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4.2.8 Identification of Parsimonious SARIMA Models 

Examining the ACF and PACF of the both seasonal and non-seasonal differenced data, 

the order of the model (p, d, q) × (P, D, Q) s was determined as follows: As per the ACF 

plot of Figure 4.17, First two and twenty sixth lags are significantly different from zero. 

This implies that this data series is having MA(1), MA(2) and SMA(26) components. 

PACF of differenced series describe two AR components in non seasonal and order 1 of 

seasonal AR component.  Both these patterns indicate an SARIMA (2, 1, 2) (1, 1, 1)26. 

A model comparison was carried out to find the best fit time series model for observed 

weekly ETo at Polonnaruwa for Maha season from selected models. Out puts of the 

considered 04 different parsimonious models are as follows.  

Table 4.9 describes the results obtained for selected SARIMA models for original data 

series. Third and fourth models are having none significant parameters where p value is 

greater than 0.05, which are marked in red colour. Model 2 is having none of the 

parameters significant. Only Model 1, SARIMA (1,1,1)(1,1,1)26 reject the null 

hypothesis “ coefficients are equal to zero” with p values <0.05. Therefore model 1 is 

selected as the best fit model. 
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Table 4.9: Comparison of selected seasonal ETo time series models in Maha 

No Model AR (1) AR (2) MA (1) MA (2) SAR (26) SMA (26) C SSE MSE 

1 
SARIMA (1,1,1) (1,1,1)26 

(0.5157, 

p=0.000) 
 

(0.9819, 

P=0.000) 
 

(-0.2860, 

P=0.042) 

(0.7900, 

P=0.000) 

(0.0003, 

P=0.750) 
26.7968 0.2528 

2 
SARIMA (2,1,2) (0,1,1)26 

(-0.1110, 

P=0.770) 

(0.0580, 

P=0.796) 

(0.3510, 

P=0.327) 

(0.5450, 

P=0.123) 

(-0.2510, 

P=0.095) 

(0.7780, 

P=0.000) 

(0.0050, 

P=0.037) 
37.7137 0.3626 

3 
SARIMA (2,1,1) (0,1,1)26 

(0.4510, 

P=0.000) 

(0.8884, 

P=0.088) 

(0.8884, 

P=0.000) 
- 

(-0.3040, 

P=0.041) 

(0.7730, 

P=0.000) 

(0.0030, 

P=0.209) 
39.3861 0.3751 

4 
SARIMA (1,1,2) (1,1,1)26 

(-0.0500, 

P=0.819) 
 

(0.4100, 

P=0.041) 

(0.4870, 

P=0.004) 

(-0.2520, 

P=0.089) 

(0.7820, 

P=0.000) 

(0.0050, 

P=0.024) 
37.7525 0.3595 
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4.2.9 Estimation of Best Fitted Model – Maha Data Series 

Then selected two models, seasonal and non seasonal were analyzed. ARIMA (2,1,0) 

model  is having insignificant constant with MSE of the 0.40.  Seasonal ARIMA 

model (1,1,1)(1,1,1)26 is also has a constant value  which is not significantly different 

from zero. MSE of the SARIMA model is 0.25 which is less compared to the 

ARIIMA (1,1,1). Therefore, (1,1,1)(1,1,1)26  model is selected as the best fit model 

for the original ETo data series. The identified best fitted model is having a mean 

absolute percentage error of ± 3.1% 

To determine whether the association between the response and each term in the 

model is statistically significant, the p-value for the term is compare with the 

considered significance level to assess the null hypothesis. The null hypothesis is that 

the term is not significantly different from 0, which indicates that no association 

exists between the term and the response. 

Table 4.10 : Final estimates of parameters SARIMA (1,1,1)(1,1,1)26 

Type Coefficient SE Coefficient T-Value P-Value 

AR   1 0.5157 0.0891 5.79 0.000 

SAR  26 -0.286 0.139 -2.05 0.042 

MA   1 0.98191 0.00122 801.78 0.000 

SMA  26 0.790 0.133 5.92 0.000 

Constant 0.000266 0.000832 0.32 0.750 

 

The non seasonal and seasonal terms except the constant value have p-values that are 

less than the significance level of 0.05 (table 4.10). It describes that the coefficients 

of the fitted model are statistically significant by rejecting the null hypothesis except 

the constant value, and can proceed with the fitted model.  

Equation 4.2 illustrate the fitted model for Maha season 

 (1 − 0.5157 𝐵)(1 + 0.286 𝐵26)(1 − 𝐵)(1 − 𝐵26) 𝑌𝑡

= (1 + 0.982 𝐵)(1 + 0.79 𝐵26)𝑒𝑡  

(4.2) 
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4.2.10 Model Diagnostic 

When conducting any statistical analysis it is important to evaluate how well the 

model fits the data and that the data meet the assumptions of the model. 

4.2.10.1 Ljung-Box chi-square statistics 

The Ljung-Box chi-square statistics are used to determine whether the model meets 

the assumption that the residuals are independent. In these results, the p-values for 

the Ljung-Box chi-square statistics are all greater than 0.05 where conclusion can be 

made that the model meets the assumption that the residuals are independent (Table 

4.11). 

Table 4.11: Modified Box-Pierce (Ljung-Box) Chi-Square Statistic of SARIMA 

(1,1,1)(1,1,1)26 

Lag 12 24 36 48 

Chi-Square 12.19 23.69 33.43 39.19 

DF 7 19 31 43 

P-Value 0.095 0.208 0.350 0.637 

 

4.2.10.2 Residual Plots 

Errors were analyzed for the fitted model of SARIMA (1,1,1)(1,1,1)26 for average 

weekly ETo in Polonnaruwa. Figure 4.17 shows the residual plot for ETo in Maha 

season. 

Use the normal plot of residuals to verify the assumption that the residuals are 

normally distributed. The normal probability plot should produce an approximately 

straight line if the points come from a normal distribution. The following probability 

plot of residuals suggests that the residuals are normally distributed as residual are on 

a straight line with the presence of two extreme outliers, which can be neglected. 

Histogram of residuals is used to determine whether the data are skewed or whether 

outliers exist in the data. Figure 4.17 illustrates an approximately normal distribution 

of residuals. 
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Residuals versus fits plot, verify the assumption that the residuals are randomly 

distributed and have constant variance. Figure 4.17 also shows that residuals are 

scattered along a horizontal line of 0, implying that residuals have a constant 

variance. 

 

Figure 4.17: Residual plot for Maha obtained from SARIMA (1,1,1)(1,1,1)26 

Use the residuals versus order plot to verify the assumption that the residuals are 

independent from one another or in other words residuals are uncorrelated with each 

other. Figure 4.17 shows that residuals are independent as they spread around the 

center line. 

4.2.10.3 ACF of Residuals 

Further, ACF plot of residuals can be used to test the residuals. In this case, 

conclusion can make that the residuals are independent as none of the correlations of 

the autocorrelation function for the residuals are significant (Figure 4.18). 
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Figure 4.18: ACF of residual plot of SARIMA (1,1,1)(1,1,1)26 for Maha ETo 

4.2.10.4 Predicted vs Observed 

Test data kept for validation is compared with the forecasted values. Three months, 

weekly ETo was forecasted by using the selected model. Figure 4.19 shows the 

scatter plot between observed and forecasted ETo. The R2 value, 0.78 presents good 

correlation (γ = 0.88) between observed and forecasted values. 

 

Figure 4.19: Scatter plot of observed vs forecasted ETo in Maha Season 
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4.2.11 Forecasting 

Next step was to forecast the weekly ETo for coming months. Weekly ETo was 

forecasted 10 weeks ahead during the Maha season in Polonnaruwa area (Table 

4.12). These results will be helpful to the water management officials of the area as 

well as the researchers who are willing to conduct their studies based on ETo. 

Table 4.12: Forecasted weekly ETo for Maha season in Polonnaruwa 

Year Month Week Forecasted ETo (mm) 

2016 

January 

1 3.91 

2 4.07 

3 3.96 

4 3.55 

February 

5 3.97 

6 3.82 

7 3.83 

8 3.86 

March 
9 3.62 

10 3.54 
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4.3 Time Series Analysis for Pooled Data 

This section will present the results of an analysis of the weekly refeence 

evapotranspiration over six years period from 2010 to 2015 of Polonnaruwa area.  

4.3.1 Temporal Variability of Pooled Data Series 

Descriptive statistics of the data set are used to have a general idea of the original 

data set which clearly shows in Table 4.13, the distribution of ETo in Polonnaruwa. 

The mean reference evapotranspiration varied between 0.76 mm (minimum) to 5.56 

mm (maximum) with a mean of 2.98 mm and SD of 0.95. The chance of reference 

evapotranspiration exceeds the 3.71 mm is 25% and chance of being lower than 

2.27mm is also 25%. 

Table 4.13: Descriptive Statistics of the average weekly reference evapotranspiration 

from 2010 to 2015 in Polonnaruwa (in mm) 

Mean SE Mean StDev Minimum Q1 Median Q3 Maximum 

2.98 0.055 0.95 
0.76 

(Week 156) 
2.27 3.12 3.71 

5.56 

(Week 251) 

 

Figure 4.20 shows the average weekly ETo time series at Polonnaruwa 

meteorological station in Polonnaruwa District from 01.01.2010 to 31.03.2015. This 

can be used to evaluate patterns, knowledge of the general trend and behaviors of 

ETo at Polonnaruwa over the time. There is no clear trend can be observed in the 

reference evapotranspiration time series and it seems to have seasonal pattern of the 

dataset annually. 
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Figure 4.20: Time series plot of average weekly reference evapotranspiration from 

2010 to 2015 in Polonnaruwa{Yt} 

4.3.2 ACF of Original Pooled Data Series 

The first step in the application of the methodology is to check whether the time 

series (weekly reference evapotranspiration) is stationary and has seasonality. The 

autocorrelation graph was plotted for the reference evapotranspiration data series to 

check the randomness of the data. In Figure 4.21 data set shows that the time series is 

not random, but has a high degree of autocorrelation between adjacent and near-

adjacent observations. The autocorrelations remain strong in first few lags and 

slightly decreasing when increasing the number of lags following a sinusoidal pattern 

as shown. This emphasize that previous ETo values are obviously correlated to future 

ETo data. ACF plot of reference evapotranspiration confirms that there is a 

seasonality in the calculated weekly ETo data series with lag of 52. 
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Figure 4.21: Autocorrelation function of reference evapotranspiration in 

Polonnaruwa training data set{Yt} 

4.3.3 ACF of Stationary Series - Non Seasonal 

ARIMA models a non-stationary time series by applying finite differencing of the 

data pointsto make stationary. Consider the 1st difference of the series (Figure 4.22) 

to model ARIMA for ETo.  

 

Figure 4.22: ACF for 1st difference of original ETo data series{Yt- Yt-1} 

1009080706050403020101

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

A
u

to
c
o

rr
e
la

ti
o

n

Autocorrelation Function for ET0
(with 5% significance limits for the autocorrelations)

605550454035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

A
u

to
c
o

rr
e
la

ti
o

n

Autocorrelation Function for 1st Difference of ET0
(with 5% significance limits for the autocorrelations)



83 

 

4.3.4 PACF of Stationary Series - Non Seasonal 

Another useful method to examine serial dependencies is to examine the partial 

autocorrelation function (PACF). In this plot (Figure 4.23) two spikes are identified 

as significant and followed by correlations are tails off. This indicates an 

autoregressive terms in the data. The number of significant correlations indicate the 

order of the autoregressive term. This pattern indicates an autoregressive term of 

order 1 and order 2. 

 

Figure 4.23:PACF for 1st difference of original ETo data series{Yt- Yt-1} 

4.3.5 Identification of Parsimonious ARIMA Models 

Examining the ACF and PACF of the first differenced series, the order of the model 

(p, d, q) was determined as follows: ACF looks like the pattern of moving average 

terms in the data, MA(1) & MA(2) while PACF indicates an autoregressive term of 

order 1 and order 2, therefore both these patterns indicate an ARIMA (2, 1, 2) model. 

However this is only a tentative choice. There will ARIMA models with values of 

AR and/ or MA less than the parameters of the considered ARIMA. In this case 

following five parsimonious models were chosen to identify the best fit model. 

Table 4.14 describes the results obtained for selected ARIMA models for original 

data series. None of the parameters are significantly different from zero (p value > 

0.05) in the first model that assumed through the ACF and PACF plots. 

605550454035302520151051

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

P
a
rt

ia
l 

A
u

to
c
o

rr
e
la

ti
o

n

Partial Autocorrelation Function for 1st Difference of  ET0
(with 5% significance limits for the partial autocorrelations)



84 

 

Table 4.14: Comparison of the selected non seasonal time series model for ETo 

No Model AR(1) AR(2) MA(1) MA(2) C SSE MSE 

BP Statistic 

12 24 36 48 

1 ARIMA (2,1,2) 
(-0.1500, 

p=0.771) 

(-0.6370, 

p=0.893) 

(0.1150, 

p=0.823) 

(0.1760, 

p=0.641) 

(0.0043, 

p=0.857) 
81.899 0.304 0.124 0.242 0.172 0.227 

2 ARIMA (1,1,1) 
(0.2960, 

p=0.076) 
 

(0.5840, 

p=0.000) 
 

(0.0024, 

p=0.861) 
82.703 0.305 0.116 0.213 0.148 0.194 

3 ARIMA (0,1,2)   
(0.2573, 

p=0.000) 

(0.1563, 

p=0.010) 

(0.0035, 

p=0.858) 
82.049 0.303 0.246 0.329 0.204 0.242 

4 ARIMA (2,1,0) 
(-0.2461, 

p=0.000) 

(-0.2106, 

p=0.000) 
  

(0.0055, 

p=0.868) 
82.642 0.305 0.063 0.232 0.261 0.406 

5 ARIMA (1,1,2) 
(-0.2110, 

p=0.552) 
 

(0.0530, 

p=0.879) 

(0.2240, 

p=0.045) 

(0.0043, 

p=0.858) 
81.914 0.303 0.180 0.295 0.206 0.264 
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Model 2 and 5 are also having none significant parameters where p value is greater 

than 0.05, which are marked in red colour. AR and MA parameters of Model 3, 

ARIMA (0,1,2) and Model 4, ARIMA(2,1,0) reject the null hypothesis “ coefficients 

are equal to zero” with p values <0.05. BP statistic of the Model 3 and Model 4 is 

significant (p value > 0.05). Compared to the model 4, model 3 is having lesser MSE 

and SSE values, therefore model 3, ARIMA (0,1,2) is selected as the best fit non 

seasonal model. 

4.3.6 ACF of Stationary Series - Seasonal 

In general the seasonality in a time series is a regular pattern of changes that repeats 

over time periods. Though the 1st difference of original series was not indicate a 

significant lag at lag 52 ACF plot of original data series implies a pattern of seasonal 

with time length of 52. Therefore, now consider the seasonal effect of the original 

series to check any improvements to the above selected model. 

 

Figure 4.24: ACF plot of 52nd difference of the 1st difference series of original data 

set{(Yt- Yt-1) - (Yt-52  - Yt-53) } 

In order to identify the seasonal ARIMA model, ACF plot of 52nd difference of the 

1st difference series of original data was plotted (Figure 4.24). At the non seasonal 

levels ACF has significant spikes at lag 1 & lag 2 and cuts off after lag 2. At the 

seasonal level, the ACF has significant lag at lag 52 and tails off thereafter. 
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Therefore, conclusion can be made that 52nd difference of the 1st difference series of 

original data is stationary at both seasonal and non seasonal lengths. And also this 

indicate the order of moving average terms in both seasonal and non seasonal. 

MA(1), MA(2) & SMA(52) are the moving average components can be visualized by 

the figure 4.24. 

4.3.7 PACF of Stationary Series - Seasonal 

Identification of AR component of the SARIMA model is often best done with the 

PACF (Figure 4.25). Few significant “spikes” were identified at first lags, followed 

by the pattern gradually tapers to 0.  

 

Figure 4.25: PACF plot of 52nd difference of the 1st difference series of original data 

{(Yt- Yt-1) - (Yt-52  - Yt-53) 

For seasonal component, first seasonal lag is identified as significant, lag at 52 and 

shuts off thereafter. In other words lag 104, 156 etc. were not identified as significant 

lags. Therefore figure 4.25 further confirms the pattern of MA observed from ACF 

plot for non seasonal lengths while order 1 of AR for seasonal lengths. 

4.3.8 Identification of Parsimonious SARIMA Models 

Examining the ACF and PACF of the both seasonal and non-seasonal differenced 

data, the order of the model (p, d, q) × (P, D, Q) s was determined as follows: As per 

1101009080706050403020101

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Lag

P
a
rt

ia
l 

A
u

to
c
o

rr
e
la

ti
o

n

PACF for 52nd Difference of 1st Difference Series of ET0
(with 5% significance limits for the partial autocorrelations)



87 

 

the ACF plot of Figure 4.24, First two and Fifty Second lags are significantly 

different from zero. This implies that this data series is having MA(1), MA(2) and 

SMA(52) components. PACF of differenced series describe that there may be no AR 

component in non seasonal and order 1 of seasonal AR component.  Both these 

patterns indicate an SARIMA (0, 1, 2) (0, 1, 1)52. 

A model comparison was carried out to find the best fit time series model for 

observed weekly ETo at Polonnaruwa from selected models. Out puts of the 

considered 04 different parsimonious models are as follows. 

Table 4.15 describes the results obtained for selected SARIMA models for original 

data series. First three models are having none significant parameters where p value 

is greater than 0.05, which are marked in red colour. Only Model 4, SARIMA 

(0,1,2)(0,1,1)52 reject the null hypothesis “ coefficients are equal to zero” with p 

values <0.05. Therefore model 4 is selected as the best fit model. 
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Table 4.15: Comparison of selected seasonal ETo time series models 

No Model AR(1) MA(1) MA(2) SAR(52) SMA(52) C SSE MSE 

1 
SARIMA 

(0,1,2)(1,1,1)52 
 

(0.4906, 

p=0.000) 

(0.3507, 

p=0.000) 

(-0.0407, 

p=0.683) 

(0.7894, 

p=0.000) 

(0.0017, 

p=0.433) 
58.664 0.270 

2 
SARIMA 

(1,1,2)(1,1,1)52 

(-0.0180, 

p=0.927) 

(0.4750, 

p=0.010) 

(0.3630, 

p=0.012) 

(-0.0416, 

p=0.676) 

(0.7899, 

p=0.000) 

(0.0017, 

p=0.442) 
58.637 0.271 

3 
SARIMA 

(1,1,2)(1,1,1)52 

(0.3246, 

p=0.000) 

(0.8978, 

p=0.000) 

(0.8127, 

p=0.000) 

(-0.0240, 

p=0.806) 

(0.8127, 

p=0.000) 

(0.0014, 

p=0.320) 
59.345 0.273 

4 
SARIMA 

(0,1,2)(0,1,1)52 
 

(0.4920, 

p=0.000) 

(0.3518, 

p=0.000) 
 

(0.7954, 

p=0.000) 

(0.0016, 

p=0.452) 
59.241 0.272 
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4.3.9 Estimation of Best Fitted Model – Pooled Data Series 

Then selected two models, seasonal and non seasonal were analyzed. ARIMA (0,1,2) 

model  is having insignificant constant. MSE of the fitted model is 0.30.  Seasonal 

ARIMA model (0,1,2)(0,1,1)52 is also has a constant value  which is not significantly 

different from zero. MSE of the SARIMA model is 0.272 which is less compared to 

the ARIIMA (0,1,2). Mean Square of Error (MSE) is use to determine how well the 

model fits the data. Smaller values indicate a better fitted model. Therefore, 

(0,1,2)(0,1,1)52  model is selected as the best fitted model for the original ETo data 

series. The mean absolute percentage error of the best fitted model is varying 

between ±4.8%. 

To determine whether the association between the response and each term in the 

model is statistically significant, the p-value for the term is compare with the 

considered significance level to assess the null hypothesis. The moving average and 

seasonal moving average terms except the constant value have a p-values that are 

less than the significance level of 0.05 (Table 4.16). It describes that the coefficients 

of the fitted model are statistically significant by rejecting the null hypothesis, and 

can proceed with the fitted model. Only the constant value is having a p value > 0.05 

of the significance level. 

Fitted model for pooled data is shown in Equation 4.3 

 (1 − 𝐵)(1 − 𝐵52) 𝑌𝑡

= (1 + 0.492 𝐵)(1 + 0.3518 𝐵2)(1

+ 0.795 𝐵52)𝑒𝑡  

(4.3) 

Table 4.16: Final estimates of parameters for SARIMA (0,1,2)(0,1,1)52 

Type Coefficient SE Coefficient T-Value P-Value 

MA   1 0.4920 0.0646 7.61 0.000 

MA   2 0.3518 0.0649 5.42 0.000 

SMA  52 0.7954 0.0670 11.88 0.000 

Constant 0.00162 0.00214 0.75 0.452 
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4.3.10 Model Diagnostic 

When conducting any statistical analysis it is important to evaluate how well the 

model fits the data and that the data meet the assumptions of the model.  

4.3.10.1 Ljung-Box chi-square statistics 

The Ljung-Box chi-square statistics is used to determine whether the model meets 

the assumptions that the residuals are independent. In these results, the p-values for 

the Ljung-Box chi-square statistics are all greater than 0.05 where conclusion can be 

made that the model meets the assumption that the residuals are independent (Table 

4.17). 

Table 4.17: Modified Box-Pierce (Ljung-Box) Chi-Square Statistic of SARIMA 

(0,1,2)(0,1,1)52 

Lag 12 24 36 48 

Chi-Square 8.94 18.84 30.10 38.88 

DF 8 20 32 44 

P-Value 0.347 0.532 0.563 0.690 

 

4.3.10.2 Residual Plots 

Errors were analyze for the fitted model of SARIMA (0,1,2)(0,1,1)52 for average 

weekly ETo in Polonnaruwa. Figure 4.26 shows the residual plot for ETo. 

Use the normal plot of residuals to verify the assumption that the residuals are 

normally distributed. The following probability plot of residuals suggests that the 

residuals are normally distributed as residual are on a straight line with two extreme 

outliers. 

The histogram is a frequency plot obtained by placing the data in regularly spaced 

cells and plotting each cell frequency versus the center of the cell. Figure 4.26 

illustrates an approximately normal distribution of residuals produced by a model for 

a calibration process. 
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Residuals versus fits plot use to verify the assumption that the residuals are randomly 

distributed and have constant variance. Figure 4.26 also shows that residuals are 

scattered along a horizontal line of 0, implying that residuals have a constant 

variance. 

Residuals versus order plot, verify the assumption that the residuals are independent 

from one another or in other words residuals are uncorrelated with each other. 

Ideally, the residuals on the plot should fall randomly around the center line. Figure 

4.26 shows that residuals are independent as they spread around the center line. 

 

Figure 4.26: Residual plot of ETo for the fitted model of for SARIMA 

(0,1,2)(0,1,1)52 

 

4.3.10.3 ACF of Residuals 

Further, ACF plot of residuals can be used to test the residuals (Figure 4.27). In this 

case, conclusion can make that the residuals are independent as none of the 

correlations for the autocorrelation function of the residuals are significant 
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Figure 4.27: ACF plot of residuals for fitted model of SARIMA (0,1,2)(0,1,1)52 

4.3.10.4 Predicted vs Observed 

Test data kept for validation is compared with the forecasted values. After selecting 

the ARIMA model, it is used for forecasting. Three months weekly ETo was 

forecasted by using selected model. Figure 4.28 shows the scatter plot between 

observed and forecasted ETo. The R2 value 0.62 presents good correlation (γ = .78) 

between observed and forecasted value. 

 

Figure 4.28: Scatter plot of observed vs forecasted ETo in Polonnaruwa 
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4.3.11 Forecasting 

Next step was to forecast the weekly ETo for coming months. Weekly ETo was 

forecasted three months ahead in Polonnaruwa area based on the previous six years 

of ETo (Table 4.19). These results will be helpful to the water management officials 

of the area as well as the researchers who are willing to conduct their studies based 

on ETo. 

Table 4.18: Forecasted weekly ETo in Polonnaruwa 

Year Month Week Forecasted ETo (mm) 

2016 

January 

1 1.91 

2 2.09 

3 2.43 

4 1.78 

February 

5 2.15 

6 2.55 

7 2.82 

8 2.57 

March 

9 3.22 

10 3.24 

11 3.10 

12 3.23 

 

4.4 Summary 

Chapter 04 presented the results of the analysis of weekly reference 

evapotranspiration over six years period from 2010 to 2015 of Polonnaruwa area in 

Sri Lanka. The time series plots were used to evaluate patterns, knowledge of the 

general trend and behaviors of ETo at Polonnaruwa during the Yala and Maha 

seasons separately and pooled data series. No clear trend and seasonality can be 

observed in the reference evapotranspiration time series of both Yala and Maha 

seasons, while time series plot of pooled data indicate a seasonal pattern with no 

trend. Then autocorrelation graphs were plotted for above three scenarios to check 

the randomness of the data series. ACFs confirmed that the time series are not 

random and follow a sinusoidal pattern during three cases. Differencing were 

considered to make the series stationary and as a result of that 1st difference of the 

original series were identified as the stationary series for all the three cases. After 
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making the series stationary, different parsimonious models were identified with the 

help of ACF and PACF. Selected parsimonious models were compared separately for 

three different scenarios by considering the significance of the model parameters and 

randomness of the errors.  

SARIMA models were considered by using seasonal differences of the data series 

along with the non seasonal differences. 26th difference of the 1st difference series 

were considered for both Yala and Maha data series separately in order to model a 

SARIMA while 52nd difference of 1st difference series was used for pooled data. 

Above differences made the series stationary. Hence parsimonious SARIMA were 

fitted for three cases by analyzing the ACF and PACF of differenced series. Finally, 

significance of the model parameters and randomness of the errors were considered 

to select the best fit models for three different scenarios.  

After comparing the fitted ARIMA and SARIMA models, SARIMA (1,1,1)(1,1,1)26, 

SARIMA (1,1,1)(1,1,1)26 and SARIMA (0,1,2)(0,1,1)52 were identified as best fit 

model for Yala, Maha and Pooled data respectively with minimum MSE. Fitted 

model were validated using the validation data set, and accuracy of the three fitted 

models were obtained above 75%.  
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CHAPTER 5  

CONCLUSIONS AND RECOMMENDATIONS 

This chapter highlights the conclusions and recommendations based on the models 

developed in this study along with few suggestions. 

5.1 Conclusions 

 Seasonal Auto Regressive Integrated Moving Average (SARIMA) models 

well demonstrated the weekly reference evapotranspiration (ETo) in 

Polonnaruwa 

 Two separate SARIMA models were developed to predict ETo during Yala 

and Maha seasons. 

 Models were tested for an independent data sets and found that percentage 

errors are within 3%. 

 The best fitted model developed for Yala season  is SARIMA (1,1,1) (1,1,1)26 

 The best fitted model developed for Maha season is SARIMA (1,1,1) 

(1,1,1)26 

 For the pooled data, the best fitted model developed is  (0,1,2)(0,1,1)52  

 The errors of all three models were found to be white noise. 

 The accuracy is higher in separate models than the common model. 

 Therefore, it is recommended to use separate models to predict reference 

evapotranspiration. 

 Results obtained through this study can be used effectively to plan and 

establish an appropriate strategy to manage and sustain water resources in 

Polonnaruwa area. 

 Findings can also be helpful for making local and national water policy, and 

for irrigation scheduling.   
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5.2 Recommendations 

 In order to predict short-term and long-term reference evapotranspiration in 

Polonnaruwa, it is recommend to use two models developed for Yala and 

Maha seasons.  

 Similar approaches can be investigated for other areas as well as where 

evapotranspiration is not measured. 

 Accurate ETo observations, can be further fine-tuned the fitted models to 

adjust the actual ETo scenarios. 

 The study can be considered as a pre-feasibility study for any water 

management program of the Polonnaruwa area conducted by any government 

or non-government agencies. 

5.3 Suggestions 

 To use lysimeters or other precision measuring devices to collect 

evapotranspiration data in future studies. 

 To fit a Multi-Layer Artificial Neural Network method with all the correlated 

parameters of ETo for higher accurate time series model.  
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APPENDICES 

APPENDIX A: Week No. Referring Period in Yala Season 

 

Week No From To 

1 2-Apr-2010 8-Apr-2010 

2 9-Apr-2010 15-Apr-2010 

3 16-Apr-2010 22-Apr-2010 

4 23-Apr-2010 29-Apr-2010 

5 30-Apr-2010 6-May-2010 

6 7-May-2010 13-May-2010 

7 14-May-2010 20-May-2010 

8 21-May-2010 27-May-2010 

9 28-May-2010 3-Jun-2010 

10 4-Jun-2010 10-Jun-2010 

11 11-Jun-2010 17-Jun-2010 

12 18-Jun-2010 24-Jun-2010 

13 25-Jun-2010 1-Jul-2010 

14 2-Jul-2010 8-Jul-2010 

15 9-Jul-2010 15-Jul-2010 

16 16-Jul-2010 22-Jul-2010 

17 23-Jul-2010 29-Jul-2010 

18 30-Jul-2010 5-Aug-2010 

19 6-Aug-2010 12-Aug-2010 

20 13-Aug-2010 19-Aug-2010 

21 20-Aug-2010 26-Aug-2010 

22 27-Aug-2010 2-Sep-2010 

23 3-Sep-2010 9-Sep-2010 

24 10-Sep-2010 16-Sep-2010 

25 17-Sep-2010 23-Sep-2010 

26 24-Sep-2010 31-Mar-2011 

27 1-Apr-2011 7-Apr-2011 

28 8-Apr-2011 14-Apr-2011 

29 15-Apr-2011 21-Apr-2011 

30 22-Apr-2011 28-Apr-2011 

31 29-Apr-2011 5-May-2011 

32 6-May-2011 12-May-2011 

33 13-May-2011 19-May-2011 

34 20-May-2011 26-May-2011 

35 27-May-2011 2-Jun-2011 

36 3-Jun-2011 9-Jun-2011 

37 10-Jun-2011 16-Jun-2011 
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 APPENDIX A (Continued) 

Week No From To 

38 17-Jun-2011 23-Jun-2011 

39 24-Jun-2011 30-Jun-2011 

40 1-Jul-2011 7-Jul-2011 

42 15-Jul-2011 21-Jul-2011 

43 22-Jul-2011 28-Jul-2011 

44 29-Jul-2011 4-Aug-2011 

45 5-Aug-2011 11-Aug-2011 

46 12-Aug-2011 18-Aug-2011 

47 19-Aug-2011 25-Aug-2011 

48 26-Aug-2011 1-Sep-2011 

49 2-Sep-2011 8-Sep-2011 

50 9-Sep-2011 15-Sep-2011 

51 16-Sep-2011 22-Sep-2011 

52 23-Sep-2011 29-Sep-2011 

53 30-Sep-2011 5-Apr-2012 

54 6-Apr-2012 12-Apr-2012 

55 13-Apr-2012 19-Apr-2012 

56 20-Apr-2012 26-Apr-2012 

57 27-Apr-2012 3-May-2012 

58 4-May-2012 10-May-2012 

59 11-May-2012 17-May-2012 

60 18-May-2012 24-May-2012 

61 25-May-2012 31-May-2012 

62 1-Jun-2012 7-Jun-2012 

63 8-Jun-2012 14-Jun-2012 

64 15-Jun-2012 21-Jun-2012 

65 22-Jun-2012 28-Jun-2012 

66 29-Jun-2012 5-Jul-2012 

67 6-Jul-2012 12-Jul-2012 

68 13-Jul-2012 19-Jul-2012 

69 20-Jul-2012 26-Jul-2012 

70 27-Jul-2012 2-Aug-2012 

71 3-Aug-2012 9-Aug-2012 

72 10-Aug-2012 16-Aug-2012 

73 17-Aug-2012 23-Aug-2012 

74 24-Aug-2012 30-Aug-2012 

75 31-Aug-2012 6-Sep-2012 

76 7-Sep-2012 13-Sep-2012 

77 14-Sep-2012 20-Sep-2012 
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 APPENDIX A (Continued) 

Week No From To 

78 21-Sep-2012 27-Sep-2012 

79 28-Sep-2012 4-Apr-2013 

80 5-Apr-2013 11-Apr-2013 

81 12-Apr-2013 18-Apr-2013 

82 19-Apr-2013 25-Apr-2013 

83 26-Apr-2013 2-May-2013 

84 3-May-2013 9-May-2013 

85 10-May-2013 16-May-2013 

86 17-May-2013 23-May-2013 

87 24-May-2013 30-May-2013 

88 31-May-2013 6-Jun-2013 

89 7-Jun-2013 13-Jun-2013 

90 14-Jun-2013 20-Jun-2013 

91 21-Jun-2013 27-Jun-2013 

92 28-Jun-2013 4-Jul-2013 

93 5-Jul-2013 11-Jul-2013 

94 12-Jul-2013 18-Jul-2013 

95 19-Jul-2013 25-Jul-2013 

96 26-Jul-2013 1-Aug-2013 

97 2-Aug-2013 8-Aug-2013 

98 9-Aug-2013 15-Aug-2013 

99 16-Aug-2013 22-Aug-2013 

100 23-Aug-2013 29-Aug-2013 

101 30-Aug-2013 5-Sep-2013 

102 6-Sep-2013 12-Sep-2013 

103 13-Sep-2013 19-Sep-2013 

104 20-Sep-2013 26-Sep-2013 

105 27-Sep-2013 3-Apr-2014 

106 4-Apr-2014 10-Apr-2014 

107 11-Apr-2014 17-Apr-2014 

108 18-Apr-2014 24-Apr-2014 

109 25-Apr-2014 1-May-2014 

110 2-May-2014 8-May-2014 

111 9-May-2014 15-May-2014 

112 16-May-2014 22-May-2014 

113 23-May-2014 29-May-2014 

114 30-May-2014 5-Jun-2014 

115 6-Jun-2014 12-Jun-2014 

116 13-Jun-2014 19-Jun-2014 
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 APPENDIX A (Continued) 

Week No From To 

117 20-Jun-2014 26-Jun-2014 

118 27-Jun-2014 3-Jul-2014 

119 4-Jul-2014 10-Jul-2014 

120 11-Jul-2014 17-Jul-2014 

121 18-Jul-2014 24-Jul-2014 

122 25-Jul-2014 31-Jul-2014 

123 1-Aug-2014 7-Aug-2014 

124 8-Aug-2014 14-Aug-2014 

125 15-Aug-2014 21-Aug-2014 

126 22-Aug-2014 28-Aug-2014 

127 29-Aug-2014 4-Sep-2014 

128 5-Sep-2014 11-Sep-2014 

129 12-Sep-2014 18-Sep-2014 

130 19-Sep-2014 25-Sep-2014 

131 26-Sep-2014 2-Apr-2015 

132 3-Apr-2015 9-Apr-2015 

133 10-Apr-2015 16-Apr-2015 

134 17-Apr-2015 23-Apr-2015 

135 24-Apr-2015 30-Apr-2015 

136 1-May-2015 7-May-2015 

137 8-May-2015 14-May-2015 

138 15-May-2015 21-May-2015 
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APPENDIX B: Week No. Referring Period in Maha Season 

Week No From To 

1 1-Jan-2010 7-Jan-2010 

2 8-Jan-2010 14-Jan-2010 

3 15-Jan-2010 21-Jan-2010 

4 22-Jan-2010 28-Jan-2010 

5 29-Jan-2010 4-Feb-2010 

6 5-Feb-2010 11-Feb-2010 

7 12-Feb-2010 18-Feb-2010 

8 19-Feb-2010 25-Feb-2010 

9 26-Feb-2010 4-Mar-2010 

10 5-Mar-2010 11-Mar-2010 

11 12-Mar-2010 18-Mar-2010 

12 19-Mar-2010 25-Mar-2010 

13 26-Mar-2010 30-Sep-2010 

14 1-Oct-2010 7-Oct-2010 

15 8-Oct-2010 14-Oct-2010 

16 15-Oct-2010 21-Oct-2010 

17 22-Oct-2010 28-Oct-2010 

18 29-Oct-2010 4-Nov-2010 

19 5-Nov-2010 11-Nov-2010 

20 12-Nov-2010 18-Nov-2010 

21 19-Nov-2010 25-Nov-2010 

22 26-Nov-2010 2-Dec-2010 

23 3-Dec-2010 9-Dec-2010 

24 10-Dec-2010 16-Dec-2010 

25 17-Dec-2010 23-Dec-2010 

26 24-Dec-2010 30-Dec-2010 

27 31-Dec-2010 6-Jan-2011 

28 7-Jan-2011 13-Jan-2011 

29 14-Jan-2011 20-Jan-2011 

30 21-Jan-2011 27-Jan-2011 

31 28-Jan-2011 3-Feb-2011 

32 4-Feb-2011 10-Feb-2011 

33 11-Feb-2011 17-Feb-2011 

34 18-Feb-2011 24-Feb-2011 

35 25-Feb-2011 3-Mar-2011 

36 4-Mar-2011 10-Mar-2011 

37 11-Mar-2011 17-Mar-2011 

38 18-Mar-2011 24-Mar-2011 

39 25-Mar-2011 6-Oct-2011 

40 7-Oct-2011 13-Oct-2011 
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APPENDIX B (Continued) 

Week No From To 

41 14-Oct-2011 20-Oct-2011 

42 21-Oct-2011 27-Oct-2011 

43 28-Oct-2011 3-Nov-2011 

44 4-Nov-2011 10-Nov-2011 

45 11-Nov-2011 17-Nov-2011 

46 18-Nov-2011 24-Nov-2011 

47 25-Nov-2011 1-Dec-2011 

48 2-Dec-2011 8-Dec-2011 

49 9-Dec-2011 15-Dec-2011 

50 16-Dec-2011 22-Dec-2011 

51 23-Dec-2011 29-Dec-2011 

52 30-Dec-2011 5-Jan-2012 

53 6-Jan-2012 12-Jan-2012 

54 13-Jan-2012 19-Jan-2012 

55 20-Jan-2012 26-Jan-2012 

56 27-Jan-2012 2-Feb-2012 

57 3-Feb-2012 9-Feb-2012 

58 10-Feb-2012 16-Feb-2012 

59 17-Feb-2012 23-Feb-2012 

60 24-Feb-2012 1-Mar-2012 

61 2-Mar-2012 8-Mar-2012 

62 9-Mar-2012 15-Mar-2012 

63 16-Mar-2012 22-Mar-2012 

64 23-Mar-2012 29-Mar-2012 

65 30-Mar-2012 4-Oct-2012 

66 5-Oct-2012 11-Oct-2012 

67 12-Oct-2012 18-Oct-2012 

68 19-Oct-2012 25-Oct-2012 

69 26-Oct-2012 1-Nov-2012 

70 2-Nov-2012 8-Nov-2012 

71 9-Nov-2012 15-Nov-2012 

72 16-Nov-2012 22-Nov-2012 

73 23-Nov-2012 29-Nov-2012 

74 30-Nov-2012 6-Dec-2012 

75 7-Dec-2012 13-Dec-2012 

76 14-Dec-2012 20-Dec-2012 

77 21-Dec-2012 27-Dec-2012 

78 28-Dec-2012 3-Jan-2013 

79 4-Jan-2013 10-Jan-2013 



 

111 

 

APPENDIX B (Continued) 

Week No From To 

80 11-Jan-2013 17-Jan-2013 

81 18-Jan-2013 24-Jan-2013 

82 25-Jan-2013 31-Jan-2013 

83 1-Feb-2013 7-Feb-2013 

84 8-Feb-2013 14-Feb-2013 

85 15-Feb-2013 21-Feb-2013 

86 22-Feb-2013 28-Feb-2013 

87 1-Mar-2013 7-Mar-2013 

88 8-Mar-2013 14-Mar-2013 

89 15-Mar-2013 21-Mar-2013 

90 22-Mar-2013 28-Mar-2013 

91 29-Mar-2013 3-Oct-2013 

92 4-Oct-2013 10-Oct-2013 

93 11-Oct-2013 17-Oct-2013 

94 18-Oct-2013 24-Oct-2013 

95 25-Oct-2013 31-Oct-2013 

96 1-Nov-2013 7-Nov-2013 

97 8-Nov-2013 14-Nov-2013 

98 15-Nov-2013 21-Nov-2013 

99 22-Nov-2013 28-Nov-2013 

100 29-Nov-2013 5-Dec-2013 

101 6-Dec-2013 12-Dec-2013 

102 13-Dec-2013 19-Dec-2013 

103 20-Dec-2013 26-Dec-2013 

104 27-Dec-2013 2-Jan-2014 

105 3-Jan-2014 9-Jan-2014 

106 10-Jan-2014 16-Jan-2014 

107 17-Jan-2014 23-Jan-2014 

108 24-Jan-2014 30-Jan-2014 

109 31-Jan-2014 6-Feb-2014 

110 7-Feb-2014 13-Feb-2014 

111 14-Feb-2014 20-Feb-2014 

112 21-Feb-2014 27-Feb-2014 

113 28-Feb-2014 6-Mar-2014 

114 7-Mar-2014 13-Mar-2014 

115 14-Mar-2014 20-Mar-2014 

116 21-Mar-2014 27-Mar-2014 

117 28-Mar-2014 2-Oct-2014 

118 3-Oct-2014 9-Oct-2014 
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APPENDIX B (Continued) 

Week No From To 

119 10-Oct-2014 16-Oct-2014 

120 17-Oct-2014 23-Oct-2014 

121 24-Oct-2014 30-Oct-2014 

122 31-Oct-2014 6-Nov-2014 

123 7-Nov-2014 13-Nov-2014 

124 14-Nov-2014 20-Nov-2014 

125 21-Nov-2014 27-Nov-2014 

126 28-Nov-2014 4-Dec-2014 

127 5-Dec-2014 11-Dec-2014 

128 12-Dec-2014 18-Dec-2014 

129 19-Dec-2014 25-Dec-2014 

130 26-Dec-2014 1-Jan-2015 

131 2-Jan-2015 8-Jan-2015 

132 9-Jan-2015 15-Jan-2015 

133 16-Jan-2015 22-Jan-2015 

134 23-Jan-2015 29-Jan-2015 

135 30-Jan-2015 5-Feb-2015 

136 6-Feb-2015 12-Feb-2015 

137 13-Feb-2015 19-Feb-2015 

138 20-Feb-2015 26-Feb-2015 
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APPENDIX C: Week No. Referring Period in Pooled Data Series 

Week No From To 

1 1-Jan-2010 7-Jan-2010 

2 8-Jan-2010 14-Jan-2010 

3 15-Jan-2010 21-Jan-2010 

4 22-Jan-2010 28-Jan-2010 

5 29-Jan-2010 4-Feb-2010 

6 5-Feb-2010 11-Feb-2010 

7 12-Feb-2010 18-Feb-2010 

8 19-Feb-2010 25-Feb-2010 

9 26-Feb-2010 4-Mar-2010 

10 5-Mar-2010 11-Mar-2010 

11 12-Mar-2010 18-Mar-2010 

12 19-Mar-2010 25-Mar-2010 

13 26-Mar-2010 1-Apr-2010 

14 2-Apr-2010 8-Apr-2010 

15 9-Apr-2010 15-Apr-2010 

16 16-Apr-2010 22-Apr-2010 

17 23-Apr-2010 29-Apr-2010 

18 30-Apr-2010 6-May-2010 

19 7-May-2010 13-May-2010 

20 14-May-2010 20-May-2010 

21 21-May-2010 27-May-2010 

22 28-May-2010 3-Jun-2010 

23 4-Jun-2010 10-Jun-2010 

24 11-Jun-2010 17-Jun-2010 

25 18-Jun-2010 24-Jun-2010 

26 25-Jun-2010 1-Jul-2010 

27 2-Jul-2010 8-Jul-2010 

28 9-Jul-2010 15-Jul-2010 

29 16-Jul-2010 22-Jul-2010 

30 23-Jul-2010 29-Jul-2010 

31 30-Jul-2010 5-Aug-2010 

32 6-Aug-2010 12-Aug-2010 

33 13-Aug-2010 19-Aug-2010 

34 20-Aug-2010 26-Aug-2010 

35 27-Aug-2010 2-Sep-2010 

36 3-Sep-2010 9-Sep-2010 

37 10-Sep-2010 16-Sep-2010 

38 17-Sep-2010 23-Sep-2010 

39 24-Sep-2010 30-Sep-2010 

40 1-Oct-2010 7-Oct-2010 
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APPENDIX C (Continued) 

Week No From To 

41 8-Oct-2010 14-Oct-2010 

42 15-Oct-2010 21-Oct-2010 

43 22-Oct-2010 28-Oct-2010 

44 29-Oct-2010 4-Nov-2010 

45 5-Nov-2010 11-Nov-2010 

46 12-Nov-2010 18-Nov-2010 

47 19-Nov-2010 25-Nov-2010 

48 26-Nov-2010 2-Dec-2010 

49 3-Dec-2010 9-Dec-2010 

50 10-Dec-2010 16-Dec-2010 

51 17-Dec-2010 23-Dec-2010 

52 24-Dec-2010 30-Dec-2010 

53 31-Dec-2010 6-Jan-2011 

54 7-Jan-2011 13-Jan-2011 

55 14-Jan-2011 20-Jan-2011 

56 21-Jan-2011 27-Jan-2011 

57 28-Jan-2011 3-Feb-2011 

58 4-Feb-2011 10-Feb-2011 

59 11-Feb-2011 17-Feb-2011 

60 18-Feb-2011 24-Feb-2011 

61 25-Feb-2011 3-Mar-2011 

62 4-Mar-2011 10-Mar-2011 

63 11-Mar-2011 17-Mar-2011 

64 18-Mar-2011 24-Mar-2011 

65 25-Mar-2011 31-Mar-2011 

66 1-Apr-2011 7-Apr-2011 

67 8-Apr-2011 14-Apr-2011 

68 15-Apr-2011 21-Apr-2011 

69 22-Apr-2011 28-Apr-2011 

70 29-Apr-2011 5-May-2011 

71 6-May-2011 12-May-2011 

72 13-May-2011 19-May-2011 

73 20-May-2011 26-May-2011 

74 27-May-2011 2-Jun-2011 

75 3-Jun-2011 9-Jun-2011 

76 10-Jun-2011 16-Jun-2011 

77 17-Jun-2011 23-Jun-2011 

78 24-Jun-2011 30-Jun-2011 

79 1-Jul-2011 7-Jul-2011 
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APPENDIX C (Continued) 

Week No From To 

80 8-Jul-2011 14-Jul-2011 

81 15-Jul-2011 21-Jul-2011 

82 22-Jul-2011 28-Jul-2011 

83 29-Jul-2011 4-Aug-2011 

84 5-Aug-2011 11-Aug-2011 

85 12-Aug-2011 18-Aug-2011 

86 19-Aug-2011 25-Aug-2011 

87 26-Aug-2011 1-Sep-2011 

88 2-Sep-2011 8-Sep-2011 

89 9-Sep-2011 15-Sep-2011 

90 16-Sep-2011 22-Sep-2011 

91 23-Sep-2011 29-Sep-2011 

92 30-Sep-2011 6-Oct-2011 

93 7-Oct-2011 13-Oct-2011 

94 14-Oct-2011 20-Oct-2011 

95 21-Oct-2011 27-Oct-2011 

96 28-Oct-2011 3-Nov-2011 

97 4-Nov-2011 10-Nov-2011 

98 11-Nov-2011 17-Nov-2011 

99 18-Nov-2011 24-Nov-2011 

100 25-Nov-2011 1-Dec-2011 

101 2-Dec-2011 8-Dec-2011 

102 9-Dec-2011 15-Dec-2011 

103 16-Dec-2011 22-Dec-2011 

104 23-Dec-2011 29-Dec-2011 

105 30-Dec-2011 5-Jan-2012 

106 6-Jan-2012 12-Jan-2012 

107 13-Jan-2012 19-Jan-2012 

108 20-Jan-2012 26-Jan-2012 

109 27-Jan-2012 2-Feb-2012 

110 3-Feb-2012 9-Feb-2012 

111 10-Feb-2012 16-Feb-2012 

112 17-Feb-2012 23-Feb-2012 

113 24-Feb-2012 1-Mar-2012 

114 2-Mar-2012 8-Mar-2012 

115 9-Mar-2012 15-Mar-2012 

116 16-Mar-2012 22-Mar-2012 

117 23-Mar-2012 29-Mar-2012 

118 30-Mar-2012 5-Apr-2012 
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APPENDIX C (Continued) 

Week No From To 

119 6-Apr-2012 12-Apr-2012 

120 13-Apr-2012 19-Apr-2012 

121 20-Apr-2012 26-Apr-2012 

122 27-Apr-2012 3-May-2012 

123 4-May-2012 10-May-2012 

124 11-May-2012 17-May-2012 

125 18-May-2012 24-May-2012 

126 25-May-2012 31-May-2012 

127 1-Jun-2012 7-Jun-2012 

128 8-Jun-2012 14-Jun-2012 

129 15-Jun-2012 21-Jun-2012 

130 22-Jun-2012 28-Jun-2012 

131 29-Jun-2012 5-Jul-2012 

132 6-Jul-2012 12-Jul-2012 

133 13-Jul-2012 19-Jul-2012 

134 20-Jul-2012 26-Jul-2012 

135 27-Jul-2012 2-Aug-2012 

136 3-Aug-2012 9-Aug-2012 

137 10-Aug-2012 16-Aug-2012 

138 17-Aug-2012 23-Aug-2012 

139 24-Aug-2012 30-Aug-2012 

140 31-Aug-2012 6-Sep-2012 

141 7-Sep-2012 13-Sep-2012 

142 14-Sep-2012 20-Sep-2012 

143 21-Sep-2012 27-Sep-2012 

144 28-Sep-2012 4-Oct-2012 

145 5-Oct-2012 11-Oct-2012 

146 12-Oct-2012 18-Oct-2012 

147 19-Oct-2012 25-Oct-2012 

148 26-Oct-2012 1-Nov-2012 

149 2-Nov-2012 8-Nov-2012 

150 9-Nov-2012 15-Nov-2012 

151 16-Nov-2012 22-Nov-2012 

152 23-Nov-2012 29-Nov-2012 

153 30-Nov-2012 6-Dec-2012 

154 7-Dec-2012 13-Dec-2012 

155 14-Dec-2012 20-Dec-2012 

156 21-Dec-2012 27-Dec-2012 

157 28-Dec-2012 3-Jan-2013 
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APPENDIX C (Continued) 

Week No From To 

158 4-Jan-2013 10-Jan-2013 

159 11-Jan-2013 17-Jan-2013 

160 18-Jan-2013 24-Jan-2013 

161 25-Jan-2013 31-Jan-2013 

162 1-Feb-2013 7-Feb-2013 

163 8-Feb-2013 14-Feb-2013 

164 15-Feb-2013 21-Feb-2013 

165 22-Feb-2013 28-Feb-2013 

166 1-Mar-2013 7-Mar-2013 

167 8-Mar-2013 14-Mar-2013 

168 15-Mar-2013 21-Mar-2013 

169 22-Mar-2013 28-Mar-2013 

170 29-Mar-2013 4-Apr-2013 

171 5-Apr-2013 11-Apr-2013 

172 12-Apr-2013 18-Apr-2013 

173 19-Apr-2013 25-Apr-2013 

174 26-Apr-2013 2-May-2013 

175 3-May-2013 9-May-2013 

176 10-May-2013 16-May-2013 

177 17-May-2013 23-May-2013 

178 24-May-2013 30-May-2013 

179 31-May-2013 6-Jun-2013 

180 7-Jun-2013 13-Jun-2013 

181 14-Jun-2013 20-Jun-2013 

182 21-Jun-2013 27-Jun-2013 

183 28-Jun-2013 4-Jul-2013 

184 5-Jul-2013 11-Jul-2013 

185 12-Jul-2013 18-Jul-2013 

186 19-Jul-2013 25-Jul-2013 

187 26-Jul-2013 1-Aug-2013 

188 2-Aug-2013 8-Aug-2013 

189 9-Aug-2013 15-Aug-2013 

190 16-Aug-2013 22-Aug-2013 

191 23-Aug-2013 29-Aug-2013 

192 30-Aug-2013 5-Sep-2013 

193 6-Sep-2013 12-Sep-2013 

194 13-Sep-2013 19-Sep-2013 

195 20-Sep-2013 26-Sep-2013 

196 27-Sep-2013 3-Oct-2013 
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APPENDIX C (Continued) 

Week No From To 

197 4-Oct-2013 10-Oct-2013 

198 11-Oct-2013 17-Oct-2013 

199 18-Oct-2013 24-Oct-2013 

200 25-Oct-2013 31-Oct-2013 

201 1-Nov-2013 7-Nov-2013 

202 8-Nov-2013 14-Nov-2013 

203 15-Nov-2013 21-Nov-2013 

204 22-Nov-2013 28-Nov-2013 

205 29-Nov-2013 5-Dec-2013 

206 6-Dec-2013 12-Dec-2013 

207 13-Dec-2013 19-Dec-2013 

208 20-Dec-2013 26-Dec-2013 

209 27-Dec-2013 2-Jan-2014 

210 3-Jan-2014 9-Jan-2014 

211 10-Jan-2014 16-Jan-2014 

212 17-Jan-2014 23-Jan-2014 

213 24-Jan-2014 30-Jan-2014 

214 31-Jan-2014 6-Feb-2014 

215 7-Feb-2014 13-Feb-2014 

216 14-Feb-2014 20-Feb-2014 

217 21-Feb-2014 27-Feb-2014 

218 28-Feb-2014 6-Mar-2014 

219 7-Mar-2014 13-Mar-2014 

220 14-Mar-2014 20-Mar-2014 

221 21-Mar-2014 27-Mar-2014 

222 28-Mar-2014 3-Apr-2014 

223 4-Apr-2014 10-Apr-2014 

224 11-Apr-2014 17-Apr-2014 

225 18-Apr-2014 24-Apr-2014 

226 25-Apr-2014 1-May-2014 

227 2-May-2014 8-May-2014 

228 9-May-2014 15-May-2014 

229 16-May-2014 22-May-2014 

230 23-May-2014 29-May-2014 

231 30-May-2014 5-Jun-2014 

232 6-Jun-2014 12-Jun-2014 

233 13-Jun-2014 19-Jun-2014 

234 20-Jun-2014 26-Jun-2014 

235 27-Jun-2014 3-Jul-2014 



 

119 

 

APPENDIX C (Continued) 

Week No From To 
236 4-Jul-2014 10-Jul-2014 
237 11-Jul-2014 17-Jul-2014 
238 18-Jul-2014 24-Jul-2014 
239 25-Jul-2014 31-Jul-2014 
240 1-Aug-2014 7-Aug-2014 
241 8-Aug-2014 14-Aug-2014 
242 15-Aug-2014 21-Aug-2014 
243 22-Aug-2014 28-Aug-2014 
244 29-Aug-2014 4-Sep-2014 
245 5-Sep-2014 11-Sep-2014 
246 12-Sep-2014 18-Sep-2014 
247 19-Sep-2014 25-Sep-2014 
248 26-Sep-2014 2-Oct-2014 
249 3-Oct-2014 9-Oct-2014 
250 10-Oct-2014 16-Oct-2014 
251 17-Oct-2014 23-Oct-2014 
252 24-Oct-2014 30-Oct-2014 
253 31-Oct-2014 6-Nov-2014 
254 7-Nov-2014 13-Nov-2014 
255 14-Nov-2014 20-Nov-2014 
256 21-Nov-2014 27-Nov-2014 
257 28-Nov-2014 4-Dec-2014 
258 5-Dec-2014 11-Dec-2014 
259 12-Dec-2014 18-Dec-2014 
260 19-Dec-2014 25-Dec-2014 
261 26-Dec-2014 1-Jan-2015 
262 2-Jan-2015 8-Jan-2015 
263 9-Jan-2015 15-Jan-2015 
264 16-Jan-2015 22-Jan-2015 
265 23-Jan-2015 29-Jan-2015 
266 30-Jan-2015 5-Feb-2015 
267 6-Feb-2015 12-Feb-2015 
268 13-Feb-2015 19-Feb-2015 
269 20-Feb-2015 26-Feb-2015 
270 27-Feb-2015 5-Mar-2015 
271 6-Mar-2015 12-Mar-2015 
272 13-Mar-2015 19-Mar-2015 
273 20-Mar-2015 26-Mar-2015 
274 27-Mar-2015 2-Apr-2015 
275 3-Apr-2015 9-Apr-2015 
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