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Abstract
Parts of Speech (POS) tagging is an important pre-requisite for various Natural Language Processing tasks. POS tagging is rather
challenging for morphologically rich languages such as Tamil. Being low-resourced, Tamil does not have a large POS annotated corpus
to build good quality POS taggers using supervised machine learning techniques. In order to gain the maximum out of the existing Tamil
POS tagged corpora, we have developed a graph-based semi-supervised learning approach to classify unlabelled data by exploiting a
small sized POS labelled data set. In this approach, both labelled and unlabelled data are converted to vectors using word embeddings
and a weighted graph is constructed using Mahalanobis distance. Then semi-supervised learning (SSL) algorithms are used to classify
the unlabelled data. We were able to gain an accuracy of 0.8743 over an accuracy of 0.7333 produced by a CRF tagger for the same
limited size corpus.
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1. Introduction
In the recent past, supervised learning methods have pro-
duced high accuracies for Parts-of-Speech (POS) tag-
ging (Gimenez and Marquez, 2004). In particular, sequence
models such as hidden Markov models (HMM) and condi-
tional random fields (CRF) have given good results (Huang
et al., 2015). However, these techniques rely on the avail-
ability of relatively large amounts of annotated data. Hence,
building an accurate domain insensitive POS tagger is chal-
lenging for low resourced languages.
Tamil is one such low resourced language, which is widely
used in South India and Sri Lanka. There have been sev-
eral POS taggers developed for Tamil language using super-
vised learning techniques (Dhanalakshmi et al., 2009)(Pan-
dian and Geetha, 2009). Since the annotated corpora used
in this research have been of small size and from a single
domain, these supervised techniques greatly suffer from ac-
curacy and domain adaptability (Rani et al., 2016). For ex-
ample, FIRE corpus (Forum for Information Retrieval Eval-
uation, 2014), a widely used freely available Tamil POS
annotated corpus contains only 80k words. In contrast, the
Wall Street corpus, which is an English POS-annotated cor-
pus has a word count of 1,173K words (Gimenez and Mar-
quez, 2004), meaning that the size of the FIRE corpus is
approximately 15 times smaller than the Wall Street cor-
pus. Thus, when using a small corpus such as FIRE, we
cannot expect similar accuracy to that of English when su-
pervised techniques are used. Moreover, these approaches
depend on language dependent features such as morpho-
logical tags (Dhanalakshmi et al., 2009) thus limiting the
scalability for adapting to other low resourced languages.
In contrast to supervised approaches, semi-supervised ap-
proaches such as graph based semi-supervised learning and
manifold regularization (Niyogi, 2013) use both labeled
and unlabelled data for their classification, and have proven
to work with a small data sets (Zhu et al., 2003). De-
spite having smaller sized POS-tagged data for Tamil, there
has been only two research leveraging the opportunity pre-
sented by semi-supervised learning. Ganesh et al. (2014)

have used segmentation patterns to implement a bootstrap-
ping approach for POS tagging. This approach relies on
language dependent data such as suffix context patterns.
Rani et al. (2016) use small annotated training data to build
a classifier model using context-based association rule min-
ing. This approach neither includes any language-specific
linguistic information nor requires a large corpus. How-
ever, they collect all possible words occurring in the same
context from the untagged data into a list called context-
based list, thus limiting it from scaling to large monolingual
corpus.
Graph based semi-supervised learning (SSL) has gained
traction in Natural Language Processing tasks such as ques-
tion answering (Celikyilmaz et al., 2009), structural tagging
(Subramanya et al., 2010), and speech language recogni-
tion (Liu et al., 2016). Graph based SSL builds a meaning-
ful graph using labelled and unlabelled instances. It then
employs an SSL algorithm such as harmonic functions (Zhu
et al., 2005) or label propagation (Zhu et al., 2003) to label
the unlabelled instances. Graph based SSL is easily paral-
lelizable and scalable to large data (Zhu et al., 2005).
In this paper, we present a novel graph-based semi-
supervised approach to produce an accurate POS tagger for
Tamil using a limited size corpus. Our idea is inspired by
Talukdar and Pereira (2010)’s case study on modified ab-
sorption, which is a label propagation algorithm. They have
implemented a Named Entity recognizer by building a con-
nected word graph. Similarity between words is measured
using WordNet. Then they employ label propagation to as-
sign labels to all the unlabelled nodes.
Since Tamil is a low resourced language with no proper
WordNet, we built a connected word graph using word
vectors and employed label propagation. Our method is
based on the clustering hypothesis that relative distance of
word vectors of similar categories is lower than those be-
tween different categories. We use neural word embed-
ding (Word2Vec (Mikolov et al., 2013), FastText (Joulin
et al., 2016)) to create word vectors. Mahalanobis dis-
tance is used for measuring the distance (metric learning)



between these vectors in order to construct the graph. Ma-
halanobis distance generalizes the standard Euclidean dis-
tance, and has proven to be more effective (Davis et al.,
2007). We empirically tested with four different metric
learning algorithms (Information Theoretic Metric Learn-
ing (ITML) (Davis et al., 2007), Sparse Determinant Met-
ric Learning (SDML) (Qi et al., 2009), Least Squares
Metric Learning (LSML) (Liu et al., 2012), and Local
Fisher Discriminant Analysis (LFDA) (Sugiyama, 2006))
to calculate Mahalanobis distance. Once the graph is con-
structed with labeled and unlabeled nodes, to assign la-
bels to unlabeled nodes, we experimented with three dif-
ferent SSL algorithms (LP-ZGL) (Zhu et al., 2003), Ab-
sorption (Talukdar et al., 2008) and Modified Absorption
(MAD) (Talukdar and Pereira, 2010)). Local Fisher Dis-
criminant Analysis (LFDA) metric learning coupled with
Label Propagation(LP-ZGL) yielded a maximum accuracy
of 0.8743 for the FIRE corpus against a baseline accuracy
of 0.7338 achieved by using a traditional CRF model. Un-
like supervised learning approaches, our approach does not
require a large high quality annotated data set, or language
dependent features.
Thus the contributions of this paper are: (1) converting
words to vectors using neural word embedding and build-
ing meaningful word graphs, (2) using Mahalanobis dis-
tance to measure relationships between word vectors, hence
measuring the correlation between variables, and (3) using
a language independent graph based semi-supervised ap-
proach for POS tagging in Tamil.
The rest of the paper is organized as follows. Section 2
discusses graph based semi supervised learning techniques
and previous attempts on Tamil POS tagging. Section 3
details the data set used in our experiment. Section 4 dis-
cusses the methodology and how we implemented the sys-
tem. Section 5 details the experiments carried out and the
relevant results. Section 6 and Section 7 document the con-
clusion and future work, respectively.

2. Related Work
2.1. Graph based Semi-supervised Learning
Graph theory and Natural Language Processing are well
studied disciplines, but are commonly perceived as dis-
tinct with different algorithms and with different applica-
tions. But recent research has shown that these disciplines
are connected and graph-theoretical approaches can be em-
ployed to find efficient solutions for NLP problems. En-
tities are connected by a range of relations in many NLP
problems and graph is a natural way to capture the re-
lationship between the entities. Graph based approaches
have been used in word sense disambiguation, entity dis-
ambiguation, thesaurus construction, textual entailment and
semantic classification (Mihalcea and Radev, 2011).
Graph based semi-supervised learning builds graphs con-
necting labeled and unlabeled data points, and perform
classification by propagating the labels. The graph is con-
structed to reflect our prior knowledge about the domain.
The intuition is that similar data points have similar labels.
We let the hidden/observed labels be random variables on
the nodes of this graph. Labels are injected to unlabeled

nodes from labeled nodes. Graphs provide a uniform rep-
resentation for heterogeneous data and are easily paralleliz-
able (Zhu et al., 2005).
One of the challenges of graph based approach is building
the graph that reflects the relationship between entities. De-
pending on the task, the nodes and edges may represent a
variety of language related units and links. Different NLP
tasks have approached this challenge in different ways. For
the task of opinion summarization, Zhu et al. (2013) con-
structed a graph of sentences linked by edges whose weight
combines the term similarity and objective orientation sim-
ilarity. And to perform discourse analysis in chat, Elsner
and Charniak (2010) predicted the probabilities for pair of
utterance as belonging the same conversation thread or not
based on lexical, timing and discourse-based features. Then
constructed a graph with each nodes representing the utter-
ances and the edges representing the probability score be-
tween the nodes. Although these approaches are evidences
for the versatility of graph based approaches, these cannot
be adopted to a word level problem like sequential tagging.
Using graph methods for sequential tagging relies on the
belief that similar words will have the same tag. Unlike the
aforementioned approaches, here the nodes in these graph
represents words or phrases and the the edges will indicate
the similarity between nodes. Talukdar and Pereira (2010)
tag words with NER information through a label propaga-
tion algorithm on a word similarity graph built using Word-
Net information. Words are represented are the graph ver-
tices and the edge denotes the WordNet relationship. This
approach cannot be adopted for a low resource language
which doesn’t have a proper WordNet. Subramanya et al.
(2010) POS tags on a similarity graph where local sequence
contexts (n-grams) are vertices. The similarity function be-
tween graphs is the cosine distance between the point-wise
mutual information vectors (PMI) representing each node.
The point-wise mutual information is calculated between
n-gram and set of context features. These context features
includes suffixes, left word and right word contexts. The
challenge of this approach is the scalability for a morpho-
logically complex language like Tamil.

2.2. Tamil POS tagging
Tamil is a low resourced, morphologically rich language
with many inflections and a complex grammatical struc-
ture. Thus, automatic POS tagging for Tamil is a challeng-
ing task. Supervised learning approaches have been heav-
ily undertaken in Tamil for POS tagging. These include
CRF models using morphological information (Pandian
and Geetha, 2009) and Support Vector Machines (SVM)
using semantic information (Dhanalakshmi et al., 2009).
These models had been trained using different corpora con-
taining approximately 200k annotated words. These anno-
tated corpora or taggers are not publicly available.
There have been very few attempts in using semi-
supervised approaches for Tamil language to develop POS
taggers. Ganesh et al. (2014) have used language fea-
tures with a bootstrapping approach to obtain a precision of
86.74%. They have presented a pattern based bootstrapping
approach using only a small set of POS labelled suffix con-
text patterns. The patterns consist of a stem and a sequence



of suffixes, obtained by segmentation using a manually cre-
ated suffix list. This bootstrapping technique generates new
patterns by iteratively masking suffixes with low probabil-
ity of occurrences in the suffix context, and replacing them
with other co-occurring suffixes. This approach relies on
language specific information.
Rani et al. (2016) have employed a semi-supervised rule
mining approach using morphological features for Hindi,
Tamil, and Telugu languages. They have used a combi-
nation of a small annotated and untagged training data to
build a classifier model using a concept of context-based
association rule mining. These association rules work as
context-based tagging rules.

3. Data set
For our experiment, we used the FIRE Tamil Corpus. The
FIRE Tamil corpus contains 80k POS tagged words with 21
different tags as shown in Table 1.

NN Noun
NNC Compound Noun
RB Adverb
VM Verb Main
SYM Symbol
PRP Personal Pronoun
JJ Adjective
NNP Pronoun
PSP Prepositions
QC Quantity Count
VAUX Verb Auxiliary
DEM Determiners
QF Quantifiers
NEG Negatives
QO Quantity Order
WQ Word Question
INTF Intensifier
NNPC Compound Pro Noun
CC Coordinating Conjunction
RBP Adverb Phrase

Table 1: POS tagsets for FIRE Tamil Corpus

4. Methodology
Our work is inspired by Talukdar and Pereira (2010)’s case
study on the performance of different algorithms for clas-
sification in graphs. In this work, words are represented
as nodes and the similarity between nodes are measured
using WordNet distance. Since Tamil is a low resourced
language, this approach was not viable for us. Another ap-
proach was to represent words by converting them to vec-
tors and computing the similarity. Subramanya et al. (2010)
had employed a point wise mutual information (PMI) based
approach to convert the word to vectors and compute the
similarity by measuring the cosine distance. His approach
used hand-crafted features that will not work with same ef-
ficiency across different languages.
Hence, an efficient way of representing a word in the vec-
tor space has to be determined. In addition, it is required

to identify mechanisms for (1) constructing a meaningful
graph based on the word vector, and (2) classifying unla-
belled words based on the constructed graph by measuring
the similarity.

4.1. Representing a word in the vector space
We adopted the Word2Vec model proposed by Mikolov et
al. (2013) and convert the word into the vector space to con-
struct the graph. To the best of our knowledge, Word2Vec
has never been used to construct weighted word graphs to
be used in SSL. Similarly we also experimented with Fast
Text skipgram (Bojanowski et al., 2016) and bag of words
models (Joulin et al., 2016). The key difference between
Word2Vec and FastText is that Word2Vec treats each word
in corpus as an atomic entity and generates a vector for each
word. In contrast, FastText treats each word as composed
of ngrams and the vector word is made of the sum of these
vectors.

4.2. Constructing a meaningful graph based on
the word vector

Each word is converted to a d dimensional vector space.
Out of the n words in the list, nl are labelled(n >>>
nl). We employ 32 different tags to denote each POS en-
tity (Dhanalakshmi et al., 2009). G = (V,E,W ) is the
graph we are interested in constructing; where V is the set
of vertices with |V | = n, E is the set of edges. W is the
symmetric n× n matrix of edge weights we want to learn.
Usually we could choose a standard distance metric (Eu-
clidean, City-Block, Cosine, etc.). Instead, Mahalanobis
distance has proven to be effective with clustering problems
over the standard metrics (De Maesschalck et al., 2000).
We use a supervised method for learning the Mahalanobis
distance. For this purpose, we need to calculate the positive
definite matrix A of size d × n that parametrizes the Ma-
halanobis distance, dA(xi, xj) (Dhillon et al., 2010; Davis
et al., 2007; Sugiyama, 2006) between words xi and xj as
shown in Equation (1).

dA(xi, xj) = (xi − xj)TA(xi − xj) (1)

Since A is positive definite, it can be decomposed into
PTP , where P is another matrix of size d× d

dA(xi, xj) = (xi − xj)TPTP (xi − xj)
= (Pxi − Pxj)T (Pxi − Pxj)
= dI(Pxi, Pxj)

(2)

There are many proposed methods for calculating the
transformation matrix P . We empirically experimented
with different metric learning algorithms, including Infor-
mation Theoretic Metric Learning (ITML) (Davis et al.,
2007), Sparse Determinant Metric Learning (SDML) (Qi
et al., 2009), Least Squares Metric Learning (LSML) (Liu
et al., 2012), and Local Fisher Discriminant Analysis
(LFDA) (Sugiyama, 2006).Researches in link prediction
in networks (Shaw et al., 2011), music recommenda-
tion (McFee et al., 2011) and bio metrics verification (Ben
et al., 2012) has shown that metric learning plays a vital
role increasing accuracy of the system.



ITML minimizes the differential entropy between multi-
variate Gaussian under constraints on the distance function.
Davis et al. (2007) have expressed the problem as that of
minimizing the LogDet divergence subject to linear con-
straints. SDML uses l1-penalized log-determinant regular-
ization to calculate the metric. This algorithm exploits the
sparsity nature underlying the intrinsic high dimensional
feature space. LSML uses an algorithm that minimizes
a convex objective function corresponding to the sum of
squared residuals of constraints. Finally LFDA, is a linear
supervised dimensionality reduction method which is par-
ticularly useful when dealing with cases where one or more
core classes consist of separate clusters in input space.
We calculate P using each of these metric learning algo-
rithms and project the words into a new space to calculate
Pxi. Based on Equation 2, we compute the Euclidean dis-
tance in the linearly transformed matrix. Gaussian kernel
[2, 16] was used to compute the similarity between words
as shown in Equation 3 (Dhillon et al., 2010). We then
sparsify the graph by selecting k neighbors for each node
and set the weights to zero for all others (Zhu et al., 2003).

Wij = exp(
−dA(xi, xj)

2σ2
) (3)

The culmination of all these steps results in a meaningful
graph where relative distances of word vectors of similar
categories will be lower than those between different cate-
gories.

4.3. Classifying Unlabelled Nodes based on the
Constructed Graph

Once the graph is constructed, unlabelled words in the
graph should be classified. For this, we experimented with
Label Propagation(LP-ZGL), and Absorption and Modi-
fied Absorption (MAD) techniques. LP-ZGL (Zhu et
al., 2003) was one of the first graph based SSL methods.
LP-ZGL propagates the labels over the graph by penaliz-
ing any label assignment where two nodes connected by
a highly weighted edge are assigned different labels. LP-
ZGL prefers smooth labeling over the graph. This prop-
erty is also shared by the other two algorithms. Absorp-
tion (Talukdar et al., 2008) has been used for open domain
class-instance acquisition. Absorption is an iterative algo-
rithm where label estimates depend on the previous itera-
tion. Modified Absorption (MAD) (Talukdar and Pereira,
2010) shares the same properties of the Absorption algo-
rithm but can be expressed as an unconstrained optimiza-
tion problem. We experimented with all these algorithms
to estimate the labels of the untagged words.

5. Experiments and Results
5.1. Experiments
We split the data into 60k words for training and 20k words
for testing. To the best of our knowledge, there has been
only Named Entity Recognition research (Abinaya et al.,
2014) done in Tamil using FIRE corpus and no POS tagging
research done.
We trained both Word2Vec and FastText models with a
word window of three (the commonly used window size)
using the Tamil Wikipedia corpus (Wikipedia, 2016) (about

1M words) after removing only the punctuation marks. We
used these models to convert word to vector form. Each
vector is of 300 dimensions. For graph construction, a sub-
set of 3000 sentences with approximately 50k unlabelled
words from the Tamil Wikipedia corpus were added to the
set. We constructed the word graphs using the aforemen-
tioned four metric learning approaches and employed three
labeled propagation approaches to identify the best combi-
nation.
Since most of the successful approaches related to Tamil
POS tagging have been carried out using Conditional Ran-
dom Fields (CRF) (Pandian and Geetha, 2009), we used
the same approach with word trigram feature as our base-
line method. Here, trigrams were selected because for
Word2Vec and FastText models also, a word window of
three was used.

5.2. Results
The following Tables 2-5 document the results obtained for
each graph construction algorithm in combination with the
classification methods.

Word To Vector Algorithm MAD Abs LP-
ZGL

Word2Vec (SkipGram) 0.7534 0.7531 0.7201
Word2Vec (Bag of words) 0.6945 0.6967 0.6754
Fasttext (SkipGram) 0.8146 0.814 0.822
Fasttext (Bag of Words) 0.795 0.7952 0.801

Table 2: Accuracy of Information Theoretic Metric Learn-
ing

Word To Vector Algorithm MAD Abs LP-
ZGL

Word2Vec (SkipGram) 0.7012 0.701 0.721
Word2Vec (Bag of words) 0.6641 0.6542 0.665
Fasttext (SkipGram) 0.7886 0.7935 0.7988
Fasttext (Bag of Words) 0.7712 0.775 0.7767

Table 3: Accuracy of Sparse Determinant Metric Learning

Word To Vector Algorithm MAD Abs LP-
ZGL

Word2Vec (SkipGram) 0.734 0.733 0.732
Word2Vec (Bag of words) 0.701 0.71 0.711
Fasttext (SkipGram) 0.8547 0.861 0.8634
Fasttext (Bag of Words) 0.823 0.834 0.845

Table 4: Accuracy of Least Squares Metric Learning



Word To Vector Algorithm MAD Abs LP-
ZGL

Word2Vec (SkipGram) 0.7678 0.7775 0.7757
Word2Vec (Bag of words) 0.7664 0.7567 0.7456
Fasttext (SkipGram) 0.8673 0.8573 0.8743
Fasttext (Bag of Words) 0.85 0.853 0.86

Table 5: Accuracy of Local Fisher Discriminant Analysis

As illustrated above, Local Fisher Discriminant Analy-
sis(LFDA) combined with Label propagation yields the
best accuracy of 0.8743. LFDA is a linear supervised di-
mensionality reduction method. It proved effective in our
case since each of our words had a size of 300 dimensions.
FastText(skipgram) in combination with label propagation
consistently performed better than other algorithms in all
graph construction methodologies.
To test the robustness of the approach, we trained the best
performing combination (LFDA and LP-ZGL) with 20k
words and tested with 60k words. It yielded an accuracy
of 0.753. Meanwhile, the baseline CRF model only gave
an accuracy score of 0.633. This proves that our approach
is more robust even when the labelled data set is compara-
tively small.

6. Conclusion
Our research establishes the fact that graph based semi-
supervised approaches are more robust than supervised
classification algorithms for POS tagging when the data set
is relatively small. Thus graph based semi supervised data
can be employed in the early stages of creating POS tagged
data sets. Human annotators can correct the automatically
annotated corpus with less effort, and the corrected anno-
tated data set can be used in an iterative manner to re-train
the tagger. Thus, graph based semi-supervised approaches
are particularly useful for POS tagging of low-resourced
languages such as Tamil. We used neural word embedding
to create a vector representation of words, and Mahanalo-
bis distance to measure distance between word vectors in
order to build the graph. This shows that word embedding
provides an excellent alternative for WordNet in measuring
similarity between words, especially for languages that do
not have a WordNet. This is useful not only for graph build-
ing, but for any task that requires measuring the similarity
of words.

7. Future work
Our language independent work has shown promise with
low resources. We have only done the research for one lan-
guage, and this research should be extended to other lan-
guages to verify the general applicability of the presented
methodology. We hope to extend this idea for other low re-
sourced sequential tagging problems such as Named Entity
Recognition. This research can also be extended to improve
and incorporate other word embedding techniques such as
VarEmbed that uses morphological priors for probabilistic
neural word embedding (Bhatia et al., 2016). We can also
experiment with other graph construction algorithms such

as b-matching (Jebara et al., 2009). The main limitation
of this technique is the amount of time taken to build the
graph. Thus we intend to look into different code optimiza-
tion methods. While we have compared our approach with
the pure CRF implementation, Lample et al. (2016) has
shown that CRF in combination with LSTM can provide a
higher accuracy for Named entity recognition but that ap-
proach has not been tried for POS tagging in morphologi-
cally complex languages such as Tamil. We are eager to see
how our approach stacks up with them.
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Appendix B: Configuration File Used to Build CRF Tagger with Al-

lenNLP

1 {

2 "dataset_reader":{

3 "type":"sequence_tagging",

4 "word_tag_delimiter":"\t",

5 "token_delimiter":"\n",

6 "token_indexers":{

7 "tokens":{

8 "type":"single_id"

9 },

10 "elmo":{

11 "type":"elmo_characters"

12 },

13 "token_characters":{

14 "type":"characters"

15 }

16 }

17 },

18 "train_data_path":"/src/data/Tamil_NER_Clean/train.txt

",

19 "validation_data_path":"/src/data/Tamil_NER_Clean/dev.

txt",

20 "test_data_path":"/src/data/Tamil_NER_Clean/test.txt",

21 "evaluate_on_test":true,

22 "model":{

23 "type":"crf_tagger",

24 "text_field_embedder":{
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25 "tokens":{

26 "type":"embedding",

27 "embedding_dim":300,

28 "pretrained_file":"/src/vectors/Wang_Tamil.

txt.gz"

29 },

30 "elmo":{

31 "type":"elmo_token_embedder",

32 "options_file":"/src/options.json",

33 "weight_file":"/src/vectors/tamil_elmo.hdf5",

34 "do_layer_norm":false,

35 "dropout":0.5

36 },

37 "token_characters":{

38 "type":"character_encoding",

39 "embedding":{

40 "embedding_dim":25

41 },

42 "encoder":{

43 "type":"gru",

44 "input_size":25,

45 "hidden_size":80,

46 "num_layers":2,

47 "dropout":0.25,

48 "bidirectional":true

49 }

50 }

51 },

52 "encoder":{

53 "type":"gru",
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54 "input_size":1484,

55 "hidden_size":300,

56 "num_layers":2,

57 "dropout":0.25,

58 "bidirectional":true

59 },

60 "regularizer":[

61 [

62 "transitions",

63 {

64 "type":"l2",

65 "alpha":0.01

66 }

67 ]

68 ]

69 },

70 "iterator":{

71 "type":"basic",

72 "batch_size":32

73 },

74 "trainer":{

75 "optimizer":"adam",

76 "num_epochs":20,

77 "patience":10,

78 "cuda_device":-1

79 }

80 }

Listing 1: CRF tagger configuration
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Appendix C: Graph based semi-supervised sequence tagging for low
resourced languages

Anonymous EMNLP submission

Abstract
We present a novel Graph-based Semi-
Supervised Learning (GSSL) approach for se-
quence tagging tasks. Performance gains over
traditional GSSL techniques are achieved by
capturing local context information in graph
representation, as well as by producing a low-
dimensional graph representation that sepa-
rates nodes belonging to distinct categories.
This GSSL approach far outperforms the other
state-of-the-art techniques in low-resourced
settings, thus proving to a viable solution
for sequence tagging for low-resourced lan-
guages.

1 Introduction

When supervised data is scarce, it has been
common to employ semi-supervised learning
(SSL) techniques for many different Natural Lan-
guage Processing (NLP) tasks (Garrette et al.,
2013; Cheng et al., 2016). In general, graph-
based semi-supervised learning (GSSL) tech-
niques have shown even better performance than
other SSL techniques (Subramanya and Bilmes,
2008). Graphs of words capture term depen-
dence, encode the strength of the dependence as
edge weights, and capture term order (via directed
edges) (Rousseau and Vazirgiannis, 2013; Skia-
nis et al., 2016; Rousseau et al., 2015). Hence,
GSSL shows greater potential for NLP tasks. They
have been used in word sense disambiguation, en-
tity disambiguation, thesaurus construction, tex-
tual entailment, and semantic classification (Mi-
halcea and Radev, 2011), which suggests that se-
mantic relationships between words have been ex-
ploited in graph construction.

As for sequence tagging, there are two key fac-
tors in constructing a meaningful graph. First, it
is important to be able to represent each word oc-
currence (token) as a vertex because the label as-
signment for the same word type may differ based

on the context it is used. Second it is important to
link vertices that are likely to have the same label,
where edge weights govern how strongly the la-
bels of the nodes linked by the edge should agree.
Given such a graph, a label propagation algorithm
could label the unlabeled vertices based on the in-
formation of their nearest neighbours.

Related literature suggests that types have been
the common choice for representing vertices in the
graph (Mihalcea and Tarau, 2004). Early work on
using GSSL for sequence tagging problems also
relied on this word-based representation (Taluk-
dar and Pereira, 2010), thus missing out context
information in their vertex representation. These
approaches mostly rely on word based similarity
measures to determine edge weights.

The alternative way to represent vertices is us-
ing local sequence contexts (n-gram). A notable
work along this line was reported by Subramanya
et al. (2010), which exploited the empirical obser-
vation that the Parts of Speech (POS) of a word
occurrence is mostly determined by its local con-
text. They represent each vertex using a vector of
pointwise mutual information (PMI) values, com-
puted using the n-gram and each of the features
that occur with tokens of that n-gram. The co-
sine distance between these PMI vectors of a pair
of vertices is used as edge weights between those
vertices.

Instead of these PMI-based count models, much
recent GSSL work for sequence tagging reported
the use of traditional neural word embeddings
such as WORD2VEC (predict models) for repre-
senting vertices of the graph (Mokanarangan et al.,
2018; Demirel, 2017). These predict models are
much more concise than PMI vectors. However,
these traditional WORD2VEC approaches are less
sensitive to word order (the local context of a word
occurrence), which makes them sub-optimal for
sequential learning problems (Ling et al., 2015).
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There is another limitation of these approaches,
which is not necessarily limited to GSSL meth-
ods that use predict models, but applicable for
any GSSL method. The foundation assumption in
GSSL is that the similar nodes will carry same la-
bels. Even though this assumption is effective in
many cases, this is not completely true for many
sequence labeling problem instances. For exam-
ple, the word ‘amazed’ and the word ‘fantastic’
are semantically very similar but they should be
labeled with different POS tags.

We present a novel graph building approach to
tackle the above limitation of count models used
in GSSL techniques for sequential tagging. We
adopt the graph building methodology mentioned
in Mokanarangan et al. (2018), but leverage the
structured embedding models presented by Ling
et al. (2015) and Peters et al. (2017), which are
more sensitive to word order. We empirically
evaluate some compelling choices for aggregating
these n-gram token vectors to represent n-grams
effectively.

In order to tackle the second limitation, a graph
constructed using this n-gram representation is
transformed into a lower dimensional vector space
in such a way that vertices belonging to different
classes are well-separated. This helps to reduce
overall computational complexity as well.

We evaluate our approach for three different
sequence tasks (POS, Named Entity Recogni-
tion (NER), and Chunking) for English using the
CoNLL 2003 data set (Tjong Kim Sang and Buch-
holz, 2000), and for POS for Sinhala and Tamil.
For each experiment, we use 1 million unlabeled
tokens. We vary the amount of labelled tokens in a
step-wise manner until up to 100,000 tokens, to re-
semble a low-resourced setting. Results show that
our solution outperforms the state-of-the-art tech-
niques for sequence tagging when the amount of
training data is less than 80,000 tokens.

2 Related Work

Early work on using GSSL for sequence tagging
problems relied on word-based graph representa-
tions. Talukdar and Pereira (2010) had constructed
a word graph using WordNet to perform NER. In
this approach, vertices are noted as surface level
word forms and each relationship in WordNet is
represented as an edge. Although simple and
straightforward, this approach fails to capture the
syntactic information essential for sequence clas-

sification tasks.

In contrast, Subramanya et al. (2010) represent
each vertex using a vector of point-wise mutual
information (PMI) values, computed using the n-
gram and each of the features that occur with to-
kens of that n-gram. The cosine distance between
these PMI vectors of a pair of vertices are used as
edge weights between those vertices. These PMI
vectors are capable of capturing local context in-
formation. However, they note that the vectors
used in this approach are sparse and high dimen-
sional.

Extending on Subramanya et al. (2010)’s
work, Das and Petrov (2011) designed unsuper-
vised POS taggers for languages that have no la-
beled training data. They constructed a graph
based on the same PMI features introduced by
Subramanya et al. (2010), and used graph-based
label propagation for cross-lingual knowledge
transfer. This solution was based on the observa-
tion that despite the language differences, words
in different languages share similar relationships
in local context.

In their research on graph-based posterior reg-
ularization for semi-supervised structured predic-
tion, He et al. (2013) claimed that using Subra-
manya et al. (2010)’s features to build graphs leads
to unrelated trigrams to match. Instead they pro-
posed a different set of features to build PMI based
graphs which also suffers from sparsity.

Recently, Demirel (2017) had proposed an ap-
proach to solve POS tagging where every word
in a corpus is connected into a graph where each
node is denoted by a word embedding vector.
They capture the word ordering information by
connecting each word to next and previous word
in the corpus. This graph is then directly fed into a
neural network model called graph convolutional
network (GCN) for classification.

Exploiting the cluster assumption of word em-
bedding, Mokanarangan et al. (2018) had pro-
posed an approach where each node is repre-
sented by a word embedding vector, and edges be-
tween nodes are calculated using supervised met-
ric learning. Though this approach has shown
promise in low resourced settings, it fails to cap-
ture different context information for the same
word.
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3 Graph Construction and Label
Propagation

3.1 Representing Nodes of the Graph
In sequence tagging problems, label of a word is
predominantly determined by its context. Thus,
syntactic relationships between word tokens play
a major role. For example, the word present may
appear as a noun or a verb, depending on the con-
text. Thus, without referring to the context, the ex-
act POS tag of the word cannot be determined. As
an example with respect to Named Entities (NEs),
consider the NEs “Central Bank spokesman” and
“The Central African Republic”. Here, the word
‘Central’ is used as part of both an Organization
and Location (Peters et al., 2017).

As opposed to using lexical units or simple
word vector representations to create nodes, we
experiment with different types of vector represen-
tations.

Related literature presents contradicting argu-
ments with respect to the performance of count
models and predict models. Baroni et al. (2014)
and Mikolov et al. (2013) claim that predict mod-
els such as WORD2VEC and FASTTEXT capture
more syntactic and semantic information com-
pared to traditional count based distributional
models such as PMI vectors. However, much re-
cently Levy et al. (2015) have claimed that with
proper system choices and hyper parameters, tra-
ditional count models can yield similar gains.
However, in count models, increasing the unla-
beled data produces extremely spares vectors that
leads to computationally demanding graph build-
ing. Thus we experimented with the following
predict models that have claimed to capture syn-
tactic information.

WANG2VEC (Ling et al., 2015): WANG2VEC

is presented as a model that captures more
syntactic-oriented embedding than WORD2VEC.
Though this still produces same vector representa-
tions for words in different contexts, experiments
have shown that vectors produced are syntactically
close.

FASTTEXT (Bojanowski et al., 2016): While
WORD2VEC treats each word in corpus as an
atomic entity and generates a vector for each word,
FASTTEXT treats each word as comprised of n-
grams and the vector is made of sum of these
vectors. Previous research (Mokanarangan et al.,
2018) has shown that FASTTEXT performs well
when compared with WORD2VEC in GSSL set-

tings.
ELMO (Peters et al., 2017): This semi-

supervised bidirectional language model com-
putes an encoding of the context at each position
in the sequence. It has been proved that ELMO

surpasses the state of the art approaches in captur-
ing semantic and syntactic models. Although rich
with information, it is computationally exhaustive
to create these vectors. Unlike other word embed-
ding models used, this model produces vectors for
a word based on the contextual information of the
word.

As mentioned earlier, we base our work on one
assumption that words with same local sequence
context will have the same sequence tags. In or-
der to capture the local context information in our
graph, we experimented with one solution: con-
catenation of vector n-grams.

3.2 Creating Edges of the Graph
Similar to the approach proposed by Subramanya
et al. (2010), once the nodes in the graph are fixed,
the edge weights wij between them between two
vector n-grams i and j are defined as shown in
Equation 1.

wij =

{
sim(i, j), if i ∈ K(j) or j ∈ K(i).

0, otherwise.
(1)

Here K(i) in the set of k-nearest neighbors of
vector n-gram i. The similarity function was de-
fined using the Gaussian kernel denoted in Equa-
tion 2 (Dhillon et al., 2010). Here d(xi, xj) is the
euclidean distance between vectors i and j.

sim(i, j) = exp(
−d(xi, xj)

2σ2
) (2)

Theoretically, there can be an edge between
each pair of nodes in the graph. However, one can
safely disregard edges that have very low weights,
because the relationship between such nodes is
very weak. Such weak edges can add noise to la-
bel propagation.

The identification of the set of vertices that
should be connected to a given vertex can be mod-
elled in the form of k-nearest neighbour problem,
where the objective is to determine the set of ver-
tices that have the strongest relationship with the
given node (i.e., we determine the set of edges
with the highest weight for a given node). Deter-
mining the set of edges using k-nn is more effec-
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tive if the vertices belonging to different classes
are well-separated. Thus we transform the vector
space into a lower dimension while preserving the
separation of classes.

This dimensionality reduction serves another
purpose. The performance of nearest neighbor
algorithms degrades when the size of the vector
increases. Since we used word embedding mod-
els result in 300 dimensions. When concatenat-
ing vector n-grams, this dimension reaches 900.
Thus the dimensionality reduction makes graph
construction extremely efficient.

Algorithm 1 presents the graph construction
procedure.

Algorithm 1: GSSL using word embedding
Data: Corpus with n number of words where

nl are labeled (n >>> nl)
for each wi in corpus do

veci = ConvertWordToV ector(wi);
vi = Concatenate(veci−1, veci, veci+1);

end
Vr = BuildV ectorList(v);
Vs = SupervisedReduction(Vr);
for each vi in V do

ei = NearestKV ectors(vi,
distance =′ euclidean′);
wi = CalculateWeight(ei)

end
E = BuildEdgeMatrix(e);
W = BuildWeightMatrix(w);
Build graph G = (V,E,W );
Predict(G,n)

3.3 Label Propagation

Label propagation refers to the process of assign-
ing labels to unlabeled nodes using the labelled
nodes. The prior assumption of semi-supervised
learning is that nearby points and points on the
same structure are likely to have the same la-
bels (Zhu et al., 2003). This is a simple and
straightforward approach that have been the sta-
ple of semi-supervised learning and have yielded
encouraging results.

4 Implementation

As mentioned above, high dimensionality of the
vectors and the large size of the sample space
severely affect the performance of k-nn algorithm.
Thus we resorted to approximate nearest neighbor

algorithms(ANN). We use Annoy (Bernhardsson,
2018), which has been empirically shown to work
better with large data-sets (Aumüller et al., 2017).
k was set to an arbitrary value of 20. It should
be noted this ANN’s accuracy drops when dimen-
sions of the vector is greater than 100. This at-
tribute played an important role in choosing to re-
duce dimensions.

To achieve a discriminant feature set in a lower
dimension, two dimensionality reduction tech-
niques were experimented with Linear discrim-
inant analysis (LDA) and Fisher linear discrim-
inant analysis (LFDA). Both LDA and LFDA
are supervised methods that are useful in find-
ing dimensions which aim at separating the clus-
ters (Sugiyama, 2006).

For label propagation, Harmonic Function
(HMN) (Zhu et al., 2003) and Local and Global
Consistency (LGC) (Zhou et al., 2003) were
experimented with. These are two of the
well-established label propagation algorithms that
have proven their effectiveness in different con-
texts (Zhu, 2005).

5 Experiments and Results

5.1 Data set

English. We evaluated our approach on
CoNLL2003 NER task (Sang and Meulder, 2003)
for POS, NER and Chunking task. We emulated
a low resource setting for English by using only
20K, 40K, 60K and 100K data as our training set-
ting as opposed to using the full training data.

Tamil. Tamil belongs to the Dravidian language
family, which is used in some parts of South Asia.
For Tamil we used the dataset from the Forum
for Information Retrieval (FIRE) (Majumder et al.,
2008). The dataset has nearly 80K labeled data
with 32 POS classes.

Sinhala. Sinhala is an Indo Aryan language pre-
dominantly used in Sri Lanka. It has evolved
from the same language family as Hindi, but be-
ing a language limited to an island nation, it has
evolved to have its own characteristics. Sinhala
is an ideal example of a low-resourced language.
For our experiments, we used the University of
Moratuwa (UOM) Sinhala POS corpus (Fernando
et al., 2016), which currently has 260K tagged to-
kens labeled using 32 tags.
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5.2 Experiment Setup

Experiments are designed to determine the impact
of local context information in graph construction
for sequence tagging tasks, and the impact of di-
mensionality reduction on the same. For English,
we test the performance of our solution with re-
spect to POS tagging, NER, and Chunking tasks
of the CoNLL 2003 dataset. With respect to Tamil
and Sinhala, we experiment only with POS tag-
ging, due to the unavailability of data for other
tasks.

The current implementation employs the Con-
tinuous Bag of Words (skip-gram) model of FAST-
TEXT (Bojanowski et al., 2016) to generate word
embeddings for English, where the vector dimen-
sion is 300.

WANG2VEC models are generated using a part
of the wiki dump for all the three languages. Di-
mension of these vectors is also set to 300.

ELMO model (Peters et al., 2017) of 1024 di-
mensions was reused. ELMO model was not
used for Sinhala and Tamil, since we do not have
enough computer capacity required to generate the
model.

We have experimented with n = 3, when gener-
ating vector n-grams. For example when n = 3, in
the example given in Section 3, the word “Central”
will be represented by concatenating the word vec-
tors of “The”, “Central”, “African”, thus adding
the context information. Thus we end up with a
feature vector of 900 dimensions for FASTTEXT

and WANG2VEC, and 3072 for ELMO.
For each language, the graph is constructed us-

ing 1 million tokens from an unlabeled corpus, and
the labeled text size is varied from 20k to 100k in
a step-wise manner.

To show that our GSSL solution works in low-
resourced settings better than the state-of-the-art
reported in the context of high-resourced settings,
we compare our results with the work of Peters
et al. (2017). We sampled the same amount of
training samples from the CoNLL 2003 Shared
Task (Sang and Meulder, 2003). For this experi-
ment, according to the discussion by Peters et al.
(2017), we used two bidirectional GRUs with 80
hidden units and 25 dimensional character embed-
dings for the token character encoder. The se-
quence layer uses two bidirectional GRUs with
300 hidden units each. For regularization, we add
25% dropout to the input of each GRU, but not to
the recurrent connections to setup the model. We

also embed the ELMO model to represent each
word in this bidirectional model and tested it.

5.3 Results

For POS we report the accuracy, while for Chunk-
ing and NER we report the official evaluation met-
ric (micro-averaged F1 score).

Both LDA and LFDA showed near equal perfor-
mance, and so did HMN and LGC. Thus the fol-
lowing results only showcase the experiment se-
tups that used LDA and HMN.

Table 1 shows the impact of different word em-
bedding models in vertex representation, with and
without dimensionality reduction on POS, NER,
and Chunking tasks in the CoNLL 2003 data set.
It also shows the impact of n-gram concatena-
tion, and dimensionality reduction . Results are
reported for different labeled data set sizes, which
demonstrate a low-resourced setting.

Since there were no pre-trained embeddings
available for WANG2VEC, we trained from the
first billion characters from Wikipedia for English.
This lead to an sub optimal results across all tasks,
hence we have omitted from reporting it.

As indicated by the results in Table 1, it is evi-
dent that ELMO performs much better than FAST-
TEXT for all the tasks and all the data set sizes.
While n-gram concatenation or dimensionality re-
duction did not show compelling results when
used in isolation, when combined they contributed
to a significant performance gain for both FAST-
TEXT and ELMO.

In this experiment, we used Annoy approxi-
mate nearest neighbor algorithm to quickly cal-
culate the nearest neighbors. Benchmarks done
on ANN (Aumüller et al., 2017) have shown ac-
curacy drops when the dimension increases above
100. This can be seen in our results - with con-
catenated vectors or high dimension vectors like
ELMO the accuracy is considerably lower. Since
our approach was transductive, we were wary of
the efficiency and timing. Traditional k-NN algo-
rithms gave better scores but lead to high time and
memory consumption.

Tables 2 and 3 show the results of similar ex-
periments carried out for Sinhala and Tamil POS
tagging tasks, respectively. While FASTTEXT per-
forms better than WANG2VEC for Tamil, the op-
posite was noted for Sinhala. We attribute this dif-
ference to the differences in the models created
for the two languages - WANG2VEC and FAST-
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POS Chunking NER
20K 40K 60K 80K 100K 20K 40K 60K 80K 100K 20K 40K 60K 80K 100K

FASTTEXT

A 0.75 0.79 0.83 0.839 0.81 0.66 0.70 0.73 0.73 0.71 0.35 0.30 0.46 0.46 0.34
B 0.69 0.72 0.74 0.77 0.74 0.66 0.69 0.67 0.72 0.74 0.31 0.25 0.44 0.43 0.35
C 0.60 0.64 0.68 0.70 0.66 0.53 0.57 0.57 0.69 0.60 0.38 0.30 0.44 0.46 0.39
D 0.85 0.88 0.87 0.88 0.86 0.79 0.83 0.85 0.83 0.83 0.61 0.53 0.69 0.66 0.50

ELMO

A 0.84 0.84 0.88 0.88 0.86 0.82 0.85 0.85 0.82 0.84 0.70 0.67 0.84 0.81 0.65
B 0.90 0.91 0.92 0.92 0.91 0.82 0.83 0.84 0.83 0.84 0.69 0.65 0.76 0.79 0.70
C 0.74 0.76 0.83 0.81 0.77 0.76 0.80 0.79 0.78 0.78 0.62 0.56 0.81 0.77 0.57
D 0.928 0.934 0.941 0.942 0.93 0.90 0.91 0.92 0.88 0.90 0.79 0.76 0.86 0.89 0.70

Table 1: Comparison of different methods to represent nodes and their respective accuracy for different tasks in
English. A - Single Vector, B - Dimension reduced Single Vector, C - Concatenated n-gram vectors, D - Dimension
reduced concatenated n-gram vectors.

Tamil POS Sinhala POS
20K 40K 60K 20K 40K 60K 80K 100K

FASTTEXT

A 0.77 0.81 0.73 0.80 0.76 0.83 0.82 0.77
B 0.62 0.79 0.77 0.80 0.77 0.83 0.82 0.79
C 0.54 0.58 0.58 0.66 0.60 0.67 0.66 0.59
D 0.87 0.88 0.89 0.901 0.88 0.88 0.85 0.84

WANG2VEC

A 0.72 0.74 0.70 0.815 0.775 0.84 0.81 0.77
B 0.59 0.71 0.54 0.78 0.76 0.81 0.79 0.77
C 0.58 0.82 0.57 0.714 0.66 0.70 0.70 0.63
D 0.70 0.71 0.72 0.801 0.76 0.84 0.85 0.81

Table 2: Comparison of different methods to represent
nodes and their respective accuracy for Tamil and Sin-
hala POS tagging. A - Single Vector, B - Dimension re-
duced Single Vector, C - Concatenated n-gram vectors,
D - Dimension reduced concatenated n-gram vectors.

TEXT models for Sinhala were created using a
much larger corpus than that for Tamil. More-
over, domain-similarity was much higher between
the Sinhala test data and the data used to build the
models. In line with the observation for English,
for both the languages, FastText performs better
when concatenated and dimensionality is reduced.
However, contrary to our expectations, the same is
not clearly observed with respect to WANG2VEC.

We then compared the performance of our
GSSL approach against Peters et al. (2017) us-
ing the best result reported in Table 1. As shown
in Figures 1, 2 and 3, when the ELMo model with
n-gram concatenation and dimensionality reduc-
tion is used, our GSSL approach outperforms Pe-
ters et al. (2017)’s bidirectional LSTM CRF.

According to these Figures, when increasing
training data, opposed to our expectations there
are some drops in scores. One of the glaring one
was with NER. For dimension reduced concate-

Figure 1: POS accuracy for GSSL Vs LSTM-CRF

Figure 2: Chunking F1-Score for GSSL Vs LSTM-
CRF

Figure 3: NER F1-Score for GSSL Vs LSTM-CRF

nated ELMO vector with 80K training data re-
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sulted an 0.89 F1 score, and it drops to 0.7 for
100K training data. Further analysis revealed that
when training data set was increased, it had lead
to over-fitting. For example our training data had
Germany as LOC and the test data had German
which was supposed to be classified as MISC was
classified as LOC due to the close proximity of
vectors.

Fernando et al. (2016) had presented POS tag-
ger for Sinhala using hand crafted language de-
pendent features. This research reported the best
accuracy for the University of Moratuw corpus.
We sampled out a 20K dataset form this corpus
as training data for both ours and Fernando et al.
(2016)’s approach. The SVM Tagger reported an
accuray of 87.11% while we were able to achieve
an accuracy of 90.1%. Mokanarangan et al. (2018)
had reported for GSSL based approach for FIRE
POS tagging with an accuracy of 87.43% for 60K
data. For the same training data we were able to
achieve an accuracy of 89%.

6 Conclusion

The aim of this research was to develop an effi-
cient GSSL solution for sequence tagging. Our so-
lution is based on identifying neural word embed-
ding models that better capture local context infor-
mation in graph vertices, and producing a graph
in a low-dimensional space that has vertices be-
longing to different classes well-separated. While
some of the word embedding models employed
did not generate the expected result, in general,
our hypothesis of capturing context information
by concatenating vectors is validated. In partic-
ular, n-gram concatenation and dimensionality re-
duction resulted in significant performance gains.
Given the fact that our best result outperforms
the existing state-of-the-art (for high resource set-
tings), when the labeled data set size is small, our
GSSL solution can be presented as a promising
alternative for sequence tagging in low-resourced
languages.

In the current implementation, LDA calcula-
tions are done mostly in memory. Thus when we
attempt to use larger annotated training sets with
each vector having over 900 dimensions leads to
memory overflows. Since our target was towards
addressing low resource settings, we did not at-
tempt to address this issue. Thus scalability of
our approach for high resource settings should be
explored with more optimal dimensionality reduc-

tion approaches.
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