FEATURE ORIENTED SOFTWARE DEVELOPMENT
METHODOLOGY FOR STOCK EXCHANGE SYSTEMS

Lasitha Harinda Konara

(168235T)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

June 2018

FEATURE ORIENTED SOFTWARE DEVELOPMENT
METHODOLOGY FOR STOCK EXCHANGE SYSTEMS

Lasitha Harinda Konara

(168235T)

Thesis submitted in partial fulfillment of the requirements for the

degree Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering

University of Moratuwa

Sr1 Lanka

June 208

DECLARATION

I declare that this is my own work and this thesis does not incorporate without
acknowledgement any material previously submitted for a Degree or Diploma in any other
University or institute of higher learning and to the best of my knowledge and belief it does
not contain any material previously published or written by another person except where the

acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and
distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the

right to use this content in whole or part in future works (such as articles or books).

Signature: Date:ooeenvnnnin

Name: K.M.G.L.H. Konara (168235T)

The above candidate has carried out research for the Masters Dissertation under my

supervision.

Name of the supervisor: Dr. Indika Perera

Signature of the supervisor:c.ccevvvvviniennn... Date: ...

Abstract

Many organizations that develop software use the traditional method of layered methodologies to
develop their end software product or solution. In doing so, the code will be a more general one and
there will be a lot of unnecessary elements included which make the system heavy and dirty. This
would result in a lot of issues .Also there is a requirement to implement a system with a concept of
features. The end system will be delivered as a set of features and the feature set could be decoupled

at any time, according to the current requirement without harming any existing functionality.

This research has been narrowed down to a particular domain which is the stock exchange or trading
domain. By narrowing down the domain, the end software product could be delivered in a tailor made
manner so that its effectiveness will be very high. The final software product would be a feature

oriented domain specific language (DSL).

The objective of the feature oriented DSL is to make it very effective even for business analysts to
introduce new features without getting help from core software developers. The feature layer will be
purely decoupled and presented in an independent way so that the end users will have full flexibility
to introduce changes very easily. There is a clear separation between core code segments and auto
generated code segments. Auto generated files serve the different features and core code segments
will enable those features to function on top of them. Auto generated code should not be changed

manually under any circumstance as per this design.

A code generator and the core controller is developed throughout this research exhibiting the above

mentioned feature oriented software development principles and domain specific language principles.

Keywords : FOSD, DSL,FOP, AOP, ANTLR,Entity, Instance

ii

ACKNOWLEDGEMENT

My heartfelt gratitude is given first and foremost to the academic supervisor of this research
Dr.Indika Perera for his immense help, support and advice given throughout the course of this
research. His encouragement and contribution in the form of alternative methods, ideas and

concepts provided motivation for us to move forward with this research.

My special thanks goes out to my external research supervisors/advisors, Mr.Manoj Bandara,
Mr.Sujith Gunawardhane, Mr.Surith Pinto and Mr.Sampath Thilakumara for giving me the
opportunity to work on this research, providing the guidance .Also I would like to thank all

the staff members in MillenniumIT Software (Pvt) Ltd.

Academic staff members' valuable guidance and advice since the very beginning of this
research seminar series is also highly appreciated. Specially I should appreciate the support

and advice given by Dr. Malaka Walpola for encouraging us to do research.

My gratitude is also extended to all the staff members of the Computer Science and
Engineering Department who provided us with numerous advice and feedback, especially at

reviews, feasibility study. I appreciate your guidance.

iii

TABLE OF CONTENTS

Declaration i
Abstract i
Acknowledgement iii
List of Figures viii
List of Tables ix
List of Abbreviations X

1 Introduction 1
1.1 Background 2

1.2 Problem Statement 2

1.3 Objectives 4

1.4 Feature Oriented Software Development (FOSD) 4
1.4.1 What is Feature Oriented Software Development? 4

1.4.2 How FOSD could be used to provide a solution 5

1.5 Outline 5

2 Literrature Review 6
2.1 Overview 7
2.2 What s a feature ? 7
2.3 Different phases of feature oriented software development 8
2.3.1 Feature Modeling 11

2.3.2 Feature Interaction 11

v

2.3.3 Feature Implementation
2.4 Related Implementations
2.4.1 FeatureC++
2.4.2 Feature Implementation
2.4.3 Algebraic Hierarchical Equations for Application Design
(AHEAD)
2.4.4 Model Concepts
2.5 Access Control in Feature Oriented Programming
2.6 Domain Specific Languages (DSL)

2.7 Summary of the Literature Review

Research Methodology

3.1 High Level Architecture
3.2 Progress

3.3 Evaluation Methodology

3.4 Time line

System Architecture and Implementation
4.1 System Overview
4.2 System Architecture
4.2.1 Architecture of Code Generator & Controller
4.2.2 Class Diagram of Code Generator
4.2.3 Class Diagram of Controller
4.3 System Implementation
4.3.1 Implementation of Code Generator
4.3.2 Introduction of Domain Specific Language (DSL)
4.3.3 Use of Antlr to define the grammar
4.3.4 Sample DSL Code
4.3.5 Auto generated C++ code
4.3.6 Auto generated C++ header

4.3.7 Use of StringTemplates to generate the code

12
13
13
13

14
14
16
18
19

20
21
22
22
24

25
26
26
26
28
29
30
30
30
31
35
36
38
38

4.3.8 Challenges faced
4.3.9 Key assumptions made
4.3.10 Implementation of Controller

4.3.11 Summary of implementation

5 System Evaluation
5.1 Overview
5.2 Evaluation of Code Generator
5.3 How to provide inputs
5.4 Evaluating the outputs
5.4.1 How to evaluate the outputs
5.4.2 Automated validator
5.4.3 Comparison between manually calculated results,automated
test results and actual results

5.4.4 Evaluation of results

6 Conclution
6.1 Contribution
6.2 Study limitations

6.3 Future work
BIBILOGRAPHY
APPENDIX

A Detailed Test Results

vi

39
39
39
50

51
52
52
52
55
55
55

56
57

59
60
60
61

62

67

68

LIST OF FIGURES

Figure 1.1

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 2.10
Figure 2.11

Figure 3.1
Figure 3.2

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9

Layered product architecture

Problem space and solution space [8]
Domain analysis [3]

Domain design and specification [3]
Domain implementation [3]

Product configuration and generation [3]
Feature Modeling [3]

Feature Implementation [3]
Convergence of each step in FOSD [3]
Stack of Mixin Layers [9]

Organization of AHEAD generators. [12]
Energy Aware Feature Model [26]

Code generation based on selected features [3]

Research Time-line

Architecture of Code Generator

Code Generator

Controller

Entity

Features

Feature Container

Order,Instrument, Trading Parameter Instances
Reference Data Container

Order Book

vii

10
10
11
12
12
13
15
19

21
24

27
28
29
40
41
42
43
44
45

Figure 4.10 Order Book Side
Figure 4.11 Directional Map
Figure 4.12 Order Handler
Figure 4.13 Order Injector
Figure 4.14 Logger

Figure 5.1 Evaluation methodology

Figure 5.2 Summary of test results

Figure A.1 Automated test result for test case in Table 5.1

Figure A.2 Actual result extracted from log file for test case in Table 5.1
Figure A.3 Automated test result for test case in Table 5.2

Figure A.4 Actual result extracted from log file for test case in Table 5.2
Figure A.5 Automated test result for test case in Table 5.3

Figure A.6 Actual result extracted from log file for test case in Table 5.3
Figure A.7 Automated test result for test case in Table 5.4

Figure A.8 Actual result extracted from log file for test case in Table 5.4
Figure A.9 Automated test result for test case in Table 5.5

Figure A.10 Actual result extracted from log file for test case in Table 5.5
Figure A.11 Automated test result for test case in Table 5.6

Figure A.12 Actual result extracted from log file for test case in Table 5.6
Figure A.13 Automated test result for test case in Table 5.7

Figure A.14 Actual result extracted from log file for test case in Table 5.7
Figure A.15 Automated test result for test case in Table 5.8

Figure A.16 Actual result extracted from log file for test case in Table 5.8
Figure A.17 Automated test result for test case in Table 5.9

Figure A.18 Actual result extracted from log file for test case in Table 5.9
Figure A.19 Automated test result for test case in Table 5.10

Figure A.20 Actual result extracted from log file for test case in Table 5.10

viii

45
47
49
49
50

55
56

68
68
69
69
70
70
71
71
72
72
73
73
74
74
75
75
76
76
77
77

LIST OF TABLES

Table 2.1 Problems and Solutions given by FeatureC++ [9]
Table 2.2 Which members of class could be accessed by a refinement in

each language[10]

Table A.1 Putting a limit new order

Table A.2 Putting limit new order with higher priority

Table A.3 Putting sell order for partial match

Table A.4 Putting a sell order for full match

Table A.5 Putting a sell order for full match and adding remaining quantity
to order book

Table A.6 Putting a sell order with a higher priority

Table A.7 Order amend without losing priority

Table A.8 Order amend while losing priority

Table A.9 Market order with expiry

Table A.10 Order cancellation

X

14

17

68
69
70
71

72
73
74
75
76
77

LIST OF ABBREVIATIONS

Abbreviations Description

FOSD Feature Oriented Software Development

FOP Feature Oriented programming

AQOP Aspect Oriented Programming

AHEAD Algebraic Hierarchical Equations for
Application Design

DSL Domain Specific Language

VPL Visual Programming Language

