

AN AUTOMATED TOOL FOR DETECTION AND

ENFORCEMENT OF SECURITY IN MOBILE

APPLICATION DEVELOPMENT

P. A. I. U. Amarasekera

148202X

Degree of Master of Computer Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2018

AN AUTOMATED TOOL FOR DETECTION AND

ENFORCEMENT OF SECURITY IN MOBILE

APPLICATION DEVELOPMENT

P. A. I. U. Amarasekera

148202X

This dissertation submitted in partial fulfillment of the requirements for the Degree

of Master of Computer Science specializing in Mobile Computing

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2018

i

DECLARATION

I declare that this is my own work and this MSc. project report does not incorporate

without acknowledgement any material previously submitted for a degree or diploma in

any other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another person

except where the acknowledgement and declaration are made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and

distribute my thesis, in whole or in part in print, electronic or other medium. I retain the

right to use this content in whole or part in future works.

---------------------------------- ----------------------------------

 P.A. I. U Amarasekera Date

I certify that the declaration above by the candidate is true to the best of my knowledge

and that this project report is acceptable for evaluation for the MSc. research project.

---------------------------------- ----------------------------------

 Dr. Malaka Walpola Date

ii

ABSTRACT

With the large number of mobile applications being developed and used, the mobile

application security has become a key concern to the mobile application users as well as

to the mobile application designers, developers and testers. Numbers of security

guidelines and prevention mechanisms have been introduced through previous research

work and considerable amount of mobile security frameworks, testing tools and source

code analyzers have been implemented upon those research outcomes. However it was

identified that these tools and instruments majorly support the testing phase of secure

software development life cycle and there is a research gap open for developing a

technically supportive program for the developers to build secure mobile applications.

The intention of this project is to come up with a concept where the developer is

enforced to build a secure mobile application based on a predefined set of security

criteria during the application development phase. These security criteria are defined

based on security requirements of the mobile application project. The source code will

be validated against these security criteria and if any issue is found, it will be fixed

automatically during the source code compilation. This system is implemented in java

platform with the help of java annotation processor and xml parser. The source code is

written as s a set of reusable jar file which is published as “buildsec” library. This library

is tested and evaluated in android mobile platform by injecting vulnerable codes snippets

into the android mobile source code and “buildsec” library was able to find and fix those

security issues in the source code. The automatic fixing of security issues during

compile time will help the development team to ensure that the mobile application is

security compliance in advance. This will reduce the testing effort as well as

development re-work that takes to fix the security issues originated from the

development phase.

iii

ACKNOWLEDGEMENTS

I would like to start off by expressing my deepest love and affection to my parents and

family for their love and immense support, which has been a constant source of strength

throughout this journey.

My deepest gratitude and admiration goes to my supervisor, my mentor; Dr. Malaka

Walpola, for his invaluable guidance by providing extensive knowledge, materials,

advice and supervision throughout this research work. His expertise and continuous

guidance enabled me to accomplish my research. Furthermore my appreciation goes to

Mr. Amodth Jayawardena and Mr. Prasad Sooriyaarachchi for providing valuable

resources, technical support and advice in the area of this research.

Last but not the least; I express my profound love and admiration to all my colleagues

for their invaluable help on finding relevant research material, sharing knowledge and

experience and for their generous encouragement.

iv

TABLE OF CONTENTS

DECLARATION .. i

ABSTRACT .. ii

ACKNOWLEDGEMENTS ... iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES .. vi

LIST OF TABLES .. vii

LIST OF ABBREVIATIONS .. viii

INTRODUCTION ... 1

1.1 Background .. 2

1.2 Problem Statement ... 6

1.3 Objectives .. 7

LITERATURE REVIEW... 9

2.1 Secure Software Life Cycle (SSLC) Model ... 10

2.2 Software Security Checklist (SSC) .. 12

2.3 Mobile Application Security Risks .. 15

2.4 Security Assessment Tools and Instruments Used in SDLC 24

2.5 Causes and Elimination of Source Code Vulnerability .. 27

2.6 Similar Work .. 33

METHODOLOGY ... 38

3.1 System Architecture and Design .. 39

3.2 Functionality of the “Buildsec” Library ... 42

3.3 Deployment .. 45

TESTING AND EVALUATION .. 47

4.1 Test Approach .. 48

4.2 Test Report ... 49

CONCLUSION .. 55

5.1 Summary .. 56

v

5.2 Contribution ... 56

5.3 Limitations and Future Work ... 57

REFERENCES .. 58

vi

LIST OF FIGURES

Page

Figure 1.1 Objectives of the research project 7

Figure 2.1 Iterative life cycle for secure software 10

Figure 2.2 Hierarchical framework model of mobile security 33

Figure 2.3 Invoice approval system in TFA/MDM/VPN infrastructure 35

Figure 3.1 Design diagram of buildsec architecture 39

Figure 3.2 Sample security compliance status report 42

Figure 3.3

Figure 3.4

Functionality of the Buildsec library

Sample build.gradle file

43

46

vii

LIST OF TABLES

Page

Table 2.1 Common vulnerability areas and types 11

Table 2.2 Items for potential consideration and inclusion in a SSC 13

Table 2.3
Example of a security checklist for the external release of

Software
14

Table 2.4 Existing security assessment tools 26

Table 2.5 Areas of security vulnerabilities and proposed resolutions 36

viii

LIST OF ABBREVIATIONS

Abbreviation Description

API Application Program Interface

APK Android Package Kit

APN Access Point Name

CIA Confidentiality, Integrity, Availability

DEX Dalvik EXecutable

DHS Department of Homeland Security

DNS Domain Name System

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hyper Text Transfer Protocol with Secure Sockets Layer

IP Internet Protocol

IPA IPhone Application Archive

IPC Inter Process Communication

JAR Java ARchive

MAM Mobile Application Management

MDM Mobile Device Management

MFA Multi-Factor Authentication

NIST National Institute of Standards and Technology

OS Operating System

OWASP Open Web Application Security Project

PIN Personal Identification Number

QA Quality Assurance

QARK Quick Android Review Kit

SAST Static Application Security Testing

SD Secure Digital

SDK Software Development Kit

SDLC Software Development Life Cycle

SFR Security Functional Requirements

SMS Short Message Service

SQL Structured Query Language

SSC Software Security Checklist

SSL Secure Sockets Layer

SSLC Secure Software Life Cycle

TFA Two-Factor Authentication

ix

TLS Transport Layer Security

UAT User Acceptance Testing

UDP User Datagram Protocol

UI User Interface

URL Universal Resource Locator

UUID Universal Unique Identifier

WiFi Wireless Fidelity

1

CHAPTER 1

INTRODUCTION

2

1.1 Background

With the rapid movement of computing towards mobile platforms the security attacks

and malware have also moved their targets to mobile computing platforms [1]. As

concluded by Sophos [2] in 2013 devices that run Android is the prime target for

security attacks, and as reported by F-secure [3], mobile malware samples indicates a

growth over 50,000 starting from few hundreds, within just two years. Furthermore, the

report says that the ubiquity and the vast usage of mobile devices are the main two

factors which have lead the mobile application security to be a persistent issue up until

now. As users store large amounts of sensitive and personal information in the mobile

devices such as personal and credit card details; mobile devices have now become the

most potential and easy targets for attackers who seek financial gain. According to

Symantec [4] 57% of the adults who use mobile devices are not even aware that security

solutions are available for security issues in mobile applications or devices. Reports also

show that around half of the security attacks are triggered to track users to steal their

personal information. The limited computational power and the restricted user interface

of mobile phones also create a fragile environment for attackers to hide their malicious

activities during security attacks.

A security environment in mobile application is composed of three main components

i.e., mobile device security, operational level security and usage environment security.

Device security is where securing the mobile device in access level. Many users attempt

to root their mobile devices and obtain super user access rights for full control and

customization without having a proper knowledge on the negative security effects that

they bring to their own devices. Most of the users do not bother to protect their devices

by PIN code or biometric authentication mechanism such as fingerprint in device or

application level, leaving easy access to anyone who has stolen their mobile device.

Operational level security focuses on malicious behavior in mobile operating systems

and applications running on the mobile OS. Currently, there are lots of tools available to

3

identify these malicious applications by testing the application package or analyzing the

flaws in the source code (APK in Android and IPA in iOS etc.,) Any vulnerability

caused during this security level will lead to lots of data losses and other issues [5].

These security issues can be prevented by securing the software application development

process [6, 7]. The level of security provides in smart apps stores where the applications

are distributed to the end users is discussed under the environment security [5]. Even

though Apple has taken a number of steps to ensure the quality and safety of the

applications developed for iPhones and tabs, Google still seem to struggle with

malicious application being uploaded to “Play Store”. According to Google‟s statistics

claim that 0.16 % of the apps that users attempted to install from the “Play Store” in

2015 were found to be malicious. However in cooperate world, most of the companies

and organizations now leverage mobile management services such as Mobile Device

Management (MDM) and Mobile Application Management (MAM) tools to provision

the enrollment of mobile devices with secure settings and centrally manage both

personal and business mobile application security in order to minimize the threat of

security in mobile environment [14].

The core topic of this research is mobile application security and is discussed under

operational level security. The highest percentage of the security threats and

vulnerabilities are caused by malicious mobile applications. As shown by several recent

studies, the risk which is caused by not integrating security into the software

development life cycle will badly impact the company reputation. On the other hand,

“Citigal” and “Stake” who have conducted studies in this area have proved that a

company is guaranteed to be benefited in both cost and reputation if they put effort to

integrate security into the software development life cycle [9, 10, 11].

There are different tools and mechanisms available to identify security vulnerabilities

during the testing phase. Most of these tools and instruments which are used in the life

cycle are intended to focus on ensuring the reliability and safety of the application.

4

These tools make use of well-known testing techniques such as modeling, code auditing,

testing through fault/attack trees, investigating fault injection, property-based testing and

boundary testing [7]. In high-level, those testing tools can be categorized into three main

categories as given below.

1. Static testing tools that analyze the application binary or the source code to identify

vulnerabilities in the code usually associated with dataflow and buffer handling [17].

2. Dynamic testing tools that allow testing the behavior of a running system to identify

the potential issues [17]. Usually these tools enable to simulate the actual

environment in which the application is deployed. The most common type of such

tools are proxies that support web services while allowing to observe the

communications between mobile application clients and potentially change them

during testing [17].

3. Forensic testing tools that allow examining the artifacts such as source code, external

files and third party plugins which are left behind once the application is compiled

and run [17]. These source code scanners/analyzers check for potential issues in the

source code that would cause security risks.

Having to fix application post attack is not only financially expensive but also damages

the company reputation. The proven solution is to prevent revenue loss by integrating

security into the development life cycle [8]. Therefore if an organization takes

appropriate steps to document their security requirements, security policies, security

guidelines and procedures as well to educate and train the development and application

support teams, it would be a more cost effective approach than having to fix the security

issues later.

5

The mobile software development life cycle consists of the following phases. These

phases are performed repeatedly during the application development process.

 Requirements

 Design

 Implementation

 User Acceptance Testing (UAT) / Quality Assurance (QA)

 Production

Security testing is typically performed at the QA or UAT phase closer to the end of the

development life cycle. Limiting security testing to one or two phases of the SDLC also

limits coverage of security. Hence, development teams which follow this approach often

end up not identifying security defects in the source code until the end of development

life cycle or until the code is compiled and deploy as a functional application. When

security defects are discovered at later stages of the development life cycle the entire

process become highly inefficient and fixing these issues will also be quite expensive

[16].

However, so far there is no effective tool or mechanism available for developers to

support through development process to ensure that all identified vulnerabilities are

addressed in the code they develop and release to the testing team. Even though that

developing robust and vulnerability free software is a challenging job [6], it is purely the

individual developer‟s responsibility to manually incorporate the security guidelines

while developing the app which is not clearly reliable.

Hence this research is to come up with a concept where the developer is ensured to build

a secure application based on a predefined set of security guidelines before it is shipped

for testing. This will reduce the testing effort as well as development re-work that take to

fix the security issues find out during the testing phase.

6

1.2 Problem Statement

As a strategic initiative to develop secure mobile applications, it is essential to

incorporate security into every phase of the mobile Software Development Life Cycle

(SDLC). However, with the large number of mobile applications being used in the

constantly changing threat landscape, it is critical for an organization to utilize different

means of test approaches for security analysis to ensure complete security coverage for

SDLC. Usually, there are security gaps between application design and the approved

corporate policies which would be exposed during security assessments. These security

gaps are typically evolved during application development or integration of different

modules [18]. A static application security testing on the mobile source code throughout

the development stage will be an effective approach to assist developers to ensure secure

application development [16].

Therefore, the main research problem trying to address through this research study is to

develop an open source build tool in which one part of it can work as a static analyzer to

find the vulnerabilities in the source code and another part of it can work on

automatically fixing all security issue tracked by the analyzer, based on secure coding

guidelines and pre-defined set of vulnerability criteria based on the security

requirements of the project. Currently there are several commercial and open source

tools which are capable of validating and assessing the security of a mobile application

during different phases of SDLC. There are few source code analyzers which are

capable of finding security vulnerabilities in the source code but not able to

automatically fix them. Most of the other tools are used in testing phase when the

application has already been built and released for testing. No matter how many tools are

available for security testing as long as the developers inject security vulnerabilities to

the code, the security of the application cannot be guaranteed and there will always be

more iterations running between the testing and development phases which will

ultimately cost to the project in effort and time. Hence, the proposed tool will be

7

integrated into the development phase or the environment of the SDLC to find and

automatically fix the security vulnerabilities in the source code during development.

1.3 Objectives

As shown in Figure 1.1, the main objective of this research project is divided into two

parts as research component and implementation work. One of the main objectives of

this project is to explore the existing research work to understand the risks that are

associated with mobile application development, developer issues that cause the mobile

application source code vulnerable to security threats and for how far the existing

assessment tools are capable of eliminating security threats within the development

phase.

Figure 1.1: Objectives of the research project

8

The other main objective is to implement a build tool that is cable of analyzing the

source code for a predefined set of security vulnerabilities and help the developers to fix

them during the implementation stage before the application is built into an executable

file. The specific objectives that are expected to accomplish in order to achieve the main

objective are stated in Figure 1.1.

General Objectives

 To explore the existing research to understand source code vulnerabilities and

ability to eliminate them during development phase

 To implement a tool that helps the mobile application developers to detect and

fix the security vulnerabilities during development phase

Specific Objectives

 To perform a comprehensive study on mobile application security risks and how

they can be handled within the SDLC model

 To conduct a study on existing security assessment tools available for developers

and the inadequacy of them

 To identify the developer flaws and errors which cause security vulnerabilities in

the mobile source code and a possible mechanism to avoid them

 To propose an approach and design a system to inspect and fix the security

vulnerabilities in the source code during development

 To implement the approach to track source codes that violates a given security

specification and display a summary of security compliance during compile time

 To improve the implementation to leverage the ability to extend the existing

modules and add new modules with security measures identified during research

work

9

CHAPTER 2

LITERATURE REVIEW

10

2.1 Secure Software Life Cycle (SSLC) Model

Secure software development model is a research outcome where an iterative lifecycle

for secure software development is introduced to mitigate security issues. SSLC consists

of the phases of the traditional waterfall model with enhanced security features. This

approach, as it is or with little amendments is being utilized in most of the enterprise

level software and mobile application development companies. Figure 2.1 shown below

illustrates the iterative life cycle for secure software development [6].

In the first phase of the given SSLC model which is the requirement phase, security

requirements are elicited and derived using different methods. The security engineers

will make use of user stories, functional and non-functional security requirements and -

abuse cases to perform these tasks. In analysis phase, these security requirements are

refined by a security functional requirements (SFR) module. All the requirements are

mapped into functionalities during the design phase. The application architect has to

develop a threat model to identify the potential threats, security vulnerabilities and their

countermeasures. The two main activities of this phase are analyzing vulnerabilities and

Figure 2.1: Iterative life cycle for secure software [6]

11

identifying entry and exit points of all potential threats. As per the research outcome,

below (in Table 2.1) are the common vulnerability areas that need to be addressed [6].

Vulnerability areas listed in Table 2.1 can be considered as security use cases for a given

project. The countermeasures of these use cases have to be figured out afterwards. The

system should be ready for implementation only after all the security attacks and

vulnerabilities are identified. The implementation phase is the most challenging phase

where security vulnerabilities and their countermeasures [7] are need to be addressed

while coding and software configurations. However, in SSLC there was no attention

paid to introduce a proactive mechanism to prevent vulnerabilities or security issues

during the development phase. Hence, this model operates in a way where the identified

vulnerabilities are manually addressed by developers and send them for testing. This

does not guarantee that all the vulnerabilities which are identified during previous

phases are addressed during the development phase. Consequently, this model will have

several iterations between development and testing phases which will increase the

Table 2.1: Common vulnerability areas and types

Source: [6]

12

project cost due to repeated development and testing efforts. The next phase, i.e. security

testing plays an important role in identifying security issues before the application is

released to the end users. Hence, apart from the usual functional testing, the testers need

to carry out “risk based testing” to ensure security vulnerability free software is

delivered to the customer. “Penetration” and “fuzz” testing are the two main testing

approaches used during “risk testing”. If any security flows are identified, this model is

performed iteratively to get rid of them. Once all possible software security

vulnerabilities are addressed the software will be ready for deployment [6].

2.2 Software Security Checklist (SSC)

As security assurances are integrated to the software development life cycle process to

improve the software security, a security checklist (SSC) which is an instrumental guide

that helps the software development teams to integrate security into the software

development life cycle was presented. Integrating security is a critical task. Therefore it

should be carried out as a formal approach within the software development life cycle.

This can be done by incorporating software security checklists and security assessment

tools into the software development life cycle process [7].

The steps to implement a good SSC process are as below [7]

1. Analyze security risks

2. Identify requirements and risks attached to them

3. Use a SSC instrument/tool in all phases of the development life cycle

4. Derive traceable and also verifiable security requirements for each phase

5. Asses security in each phase using the SSC

In Section 2.4, these tools and instruments are discussed in detail.

13

The most critical areas of all phases of the software development life cycle can be

handled using a properly designed SSC. There are two main types of SSCs used in the

software development phase.

 Type 1 – SSC for application development and maintenance

 Type 2 – SSC to verify external releases of the application

Maintaining both these checklists is highly important to the developers as it is them who

are responsible for application development and maintenance as well as application

releases.

Table 2.2 lists down several critical items that can be considered in generating a SSC for

software development life cycle. This is just one example. It can be modified, extended

or replaced to cover any security risk or vulnerability identified in the requirement

analysis or the design phase [7]. The mobile security risks and vulnerabilities in mobile

applications are further discussed in the Section 2.3.

Table 2.2: Items for potential consideration and inclusion in a SSC

Source: [7]

14

Table 2.3 provides an example of an initial start of a security checklist for the software

that is developed for release external to the organizational environment.

Given below is another set of security vulnerability diagnostic items presented by a joint

effort of Computer Science Departments of Konkuk and Shamyook Universities. These

security vulnerability diagnostic items are generated based on a mobile application

security review in order to prevent security accidents that can occur in a mobile service

environment. These checklists are based on analyzed data collected from Android

applications [14].

1. Permission Management – Access permissions and privileges of other

applications such as data sharing and management

2. Input data validation - Validation of input data through the users

3. Important file management – Safety check of important file checks

Table 2.3: Example of a security checklist for the external release of Software

Source: [7]

15

4. External data transfer management – Important data encryption communicating

with external data

5. Component management – Abuse check of the used components

6. Security program check – Data explore and safety check in the program code

7. Data use policy management – Use of personal information and violation of the

mobile platform, the security model and user authentication

8. Safety management for the open module – The public availability of the safety

check for the open module

9. DB data management – Maintaining the safety of the database data verification

Following all the aforementioned checklist items is not a sole responsibility of the

developers as the functions of these phases are performed by the other roles as well.

However the developers need to ensure the items belong to development process are

attended and checked. In the Section 2.5, the developer responsibility to handle security

vulnerabilities in the source code is further discussed.

2.3 Mobile Application Security Risks

To move on to “mobile application security” which is the core topic of this research

project, it is necessary to understand what are the security risks associated with mobile

application development.

As identified by different authorities and organizations that has performed continuous

research and conducted studies on this topic, there are several security risks and

vulnerabilities in mobile applications that expose the mobile application users to extreme

security threats. OWASP and Veracode are two such organizations that had conducted

research on this area for a quite a long time. Below are their latest findings.

16

The top 10 mobile risks published by OWASP in Mobile Security Project

The Open Web Application Security Project (OWASP) is a combined group of

resources formed to provide support and assist developers and software security

professionals to build and maintain secure mobile applications. The “Top 10 Mobile

Application Risks” is a descriptive list of mobile application behaviors that would

impact application user‟s security. This is published by OWASP to educate mobile

application developers and security professionals [12].

1. Insecure data storage

Allowing data to be unprotected on cloud based data storage or storing sensitive data

in device storage. The technical reasons behind this would be, not encrypting stored

sensitive data, caching user information which is not intended to store, not setting

correct file access permissions or not applying the best practices recommended for

the application platform. Insecure data storage will drive applications to be security

noncompliance and lead to privacy violations by exposing sensitive information.

2. Weak server side controls

Data confidentiality and integrity can be compromised by failing to maintain a

proper security mechanism during application updates/patches, changing security

configurations or default setting/accounts, disabling or enabling backend services.

3. Insufficient transport layer protection

The most common client-server communication protocol used in mobile applications

is HTTP which transfers all the information in plain text. Even if HTTPS provides

transport layer security, in case of a certificate validation error is ignored or plain

text communication is reverted after a failure, it will lead to revealing data to man-

in-the middle attacks.

17

4. Client side injection

Web based and hybrid mobile applications which use lot of web technologies are

highly exposed to HTML, XSS and SQL injection attacks. Apart from that, client

side injection attacks are executed through phone dialer, SMS application and in-app

payment modules.

5. Poor authentication and authorization

Mobile applications without strong authentication and authorization mechanisms are

highly unsafe to use. For the ease of development it is not recommended to rely on

device identifiers or Universally Unique ID (UUID) for security. Using them may

lead to broken authentication and unauthorized access issues.

6. Improper session handling

It is not recommended to use device identifiers such as session ID or set a long

expiration time for sessions in mobile applications. These could lead to unauthorized

access as well as privilege escalation.

7. Security decisions based on untrusted inputs

Applications that make security decisions based on user inputs are easy targets for

malware and client side injection attacks. The possible attacks would be privilege

escalation, data exfiltration and paid resources consumption. Abuse URL schemes in

iOS and abuse intents in Android applications are examples for possible security

manipulations.

8. Side channel data leakage

Flaws in the source code or not disabling insecure OS features lead to sensitive data

to be stored in web cache or temp directories and traceable in global OS logs. These

flaws open doors to malware and attackers to easily access sensitive data.

18

9. Broken cryptography

This originates from not following secure development practices and lack of

knowledge. Bad development practices such as using custom cryptographic

algorithms instead of standard ones, misunderstanding obfuscation and encoding and

use encryption instead, keeping hardcoded cryptographic keys in the source code

will impact confidentiality of data and result in privilege escalation.

10. Sensitive information disclosure

The most common way of sensitive data disclosure is developer mistakes.

Developers tend to hardcode sensitive data in the source code with the intention of

debugging or for temporary use but forget to remove them. There are instances

where developers do this due to lack of knowledge and best practices. These

sensitive data are typically login credentials, access tokens, shared keys and sensitive

business logics targeted to acquire by attackers.

The top 10 mobile security risks in mobile app published by Veracode

Veracode breaks down mobile application security risks into two main categories. The

first category “Malicious Functionality”, lists down behavioral security issues of mobile

applications which are unsafe and not recommended for mobile application users. The

second category “Code Vulnerabilities”, lists down security vulnerabilities caused by

errors in mobile application design and implementation which expose sensitive data to

outside world allowing unauthorized access [13].

19

A. Malicious Functionality

1. Activity monitoring and data retrieval

The ability gained by the attackers to intercept information and data by monitoring

them in real time while they are being generated in the device.

Example:

 Generate emails to a 3rd party address when an email is sent from the device

 Enable microphone recording through a malware to listen to phone calls

 Retrieve emails, contact list or any other data stored in the device

2. Unauthorized dialing, SMS and payments

The ability the attackers gain to use a compromised device for unauthorized

monetize usage.

Examples:

 Install a Trojan app which executes premium dialing functionality to runs up

a mobile user‟s phone bill and make the carriers to distribute the collected

money to attackers.

 Install a malware in a mobile device to use it to purchase real or virtual items

and include that cost to the mobile user‟s phone bill.

 Gain access to unauthorized SMS text messaging and spread worms to user‟s

contact list by including a link to download and install the worm.

3. Unauthorized network access

Mobile device communication can be compromised using malicious applications

designed to intercept, retrieve and send data to attackers. A well designed malicious

program can obtain direct commands to instantly turn on device microphone or

access a data file at a given time. Bluetooth, SMS, Email, TCP/UDP sockets, HTTP

20

GET/POST and DNS exfiltration are examples for communication channels that can

be compromised for exfiltration and command control.

4. UI Impersonation

These are more like phishing attacks where the user is tricked to submit sensitive

data such as credentials by clicking a link in the browser. In mobile devices this

could be presented as a native mobile UI which is a proxy to a native web

application or a malicious application with UI pops ups which impersonate a native

UI of a genuine mobile application.

5. System modification

This is often referred to as rootkit behavior where the system or device

configurations are modified or changed by malicious applications to hide their

existence compromising the devices to more attacks. Applications that attempt to

modify device‟s proxy configuration and Access Point Name (APN) belong to this

category of threats.

6. Logic or time bomb

This is a backdoor technique used by the malicious applications to trigger activities

at a given time or at a specific event. For an example, executing a malicious activity

during certain hours of the day or on a specific day of the week or when making a

phone call or on receiving an email or a SMS from a specific person.

21

B. Code Vulnerabilities

1. Sensitive data leakage

Sensitive data leakages can be caused either by side channels or developer mistakes.

An erroneous source code may expose user‟s personal and sensitive data to

unauthorized third patties causing data privacy issues.

2. Unsafe sensitive data storage

Sensitive data such as PIN numbers, credit card details and passwords for online

accounts are often stored inside mobile applications. In order to avoid unauthorized

retrieval of these sensitive data, it is highly recommended to use a strong

cryptography to keep them encrypted. The security risk is even higher if such data

are stored in removal Secure Digital (SD) cards without encrypting them.

3. Unsafe sensitive data transmission

Sensitive data needs to be encrypted during transmission. As mobile devices often

use public Wi-Fi for communication, the data in transit is at high risk of being

retrieved by third party attackers. SSL is one proven mechanism to secure sensitive

data during transmission.

4. Hardcoded passwords/keys

Developers often keep keys and passwords hardcoded in the source code for easier

implementation, debugging and maintenance purposes. Access to these hardcoded

values can be easily obtained through reverse engineering of the package file or

other methods. This will lead to data privacy issues and impact the security

compliance status of the application.

22

Mobile application vulnerabilities identified by DHS

According to a study conducted by DHS (The Department of Homeland Security) on

Mobile Device Security in 2017 [15], the vulnerabilities identified in mobile

applications are as listed below.

1. Third party applications running in jail-broken or rooted devices

There are certain applications which cannot be run unless the mobile device is rooted

or jailbroken. Users without much knowledge root their devices with the intention to

install and run such applications not knowing they compromise their devices to

security threats by degrading the security state of the device. In such state, it is quite

easy for a malicious application to perform unauthorized activities within the device.

2. Insecure network communication

An unencrypted network communication between the mobile applications and the

remote servers let attackers to eavesdrop on the network connection and obtain

sensitive data in transit. Attackers can also modify the data in transit to deliver

compromised information to the other end. When the identity of the server is not

correctly authenticate during connection establishment that will also open space for

man-in-the-middle attacks.

3. Sharing data with untrusted apps

There can be applications running in the device that will sync user‟s sensitive data to

external applications or sources (for an example “Dropbox”) without the knowledge

of the user. Such activities not only lead to data loses but also violates user‟s data

privacy by letting attackers to get access to users sensitive data and put him at risk.

23

4. Files stored with insecure file permissions or in an unprotected location

When files are stored, it is required to set the file permission with correct access

privileges and store them in a protected location. Failing to follow these guidelines

when storing files which include unencrypted sensitive data will lead to data

leakages and unauthorized data access.

5. Sensitive data and logs written to files

It has been discovered that logs written to plain text files through mobile applications

built using Android and iOS platforms can be accessed by the attackers. Apart from

the system logs, the console logs maintain during coding for debugging and

documentation purpose should also be removed before application is released as the

content written to the logs may contain sensitive data.

6. Web browser vulnerabilities

Applications that run on web browsers are used as entry points to obtain access to

mobile devices by the attackers. Latest versions of mobile application development

platforms such as Android and iOS have made improvements to their security

architecture designs to discourage this kind of attacks. Mobile device users are

recommended to use stable and secure browsers. In case of web browser

vulnerability it is advised to back up their data to external sources and reset the

devices to default factory settings.

7. Vulnerabilities in third-party libraries

Reusable third party libraries, plugins and other software components are often

utilized during mobile application development as reusable components and modules

usually make the development process more efficient. If any third party component

used is security compromised or flawed with vulnerabilities that will impact the

24

security status of the entire application as it open doors to security threats putting

many users at risk.

8. Cryptographic Vulnerabilities

Failing to protect sensitive data with proper use of cryptography leads to this kind of

vulnerabilities. There are many cases where cryptographic algorithms are used to

protect data but either with wrong implementations or the algorithms are customized

and not up to the standard of industry recommended cryptography. Therefore both

failing to use and using incorrect cryptographic algorithms make the applications

security vulnerable and allow unauthorized access to data.

2.4 Security Assessment Tools and Instruments Used in SDLC

Security assessment tools are valuable and useful in producing secure software. There

are number of tools currently available for security assessment and testing of mobile

applications throughout the software development life cycle. Security testing is usually

performed either in QA or UAT phase of the SDLC. In mobile app security testing, the

security assessment tools are categorized into three major types of testing tools as: static,

dynamic and forensic.

1. Static testing tools

Static testing tools are typically used to test security vulnerabilities in the source

code, application package or binary files. These tools track the security

vulnerabilities that could arise when the source code is running on the device. For an

example, a static testing tool would trace an invalid buffer handling or an issue with

the dataflow in the mobile application source code.

25

2. Dynamic testing tools

Dynamic testing tools are used to observe the behaviors of an application running in

a simulated environment similar to the actual environment and track security

vulnerabilities in the system. Proxies are the most commonly used dynamic analysis

tools used for mobile application security testing. Proxies can be used to monitor the

communication between the application and the remote servers. Using proxy tools,

the communication protocols can be reverse engineered to craft malicious messages

which are not possibly generated by a genuine mobile client. Therefore, using such

dynamic testing tools, potential server side attacks can be simulated and tested.

3. Forensic testing tools

Forensic testing tools are used to examine the artifacts such as source code, external

files and third party plugins which are left behind once the application is compiled

and run. These tools typically trace hardcoded keys and passwords in the source

code, sensitive data stored in configuration files, databases and web browser cache.

Sophisticated forensic tools are even able to check if the access controls of the

operating system in which the mobile application is deployed are correctly enabled

on the components of the mobile application under testing.

Mobile applications usually have complicated threat models which need to be examined

from different aspects during security testing. A comprehensive testing process should

ideally use set of tools from combination of all 3 categories [17]. Therefore, most of the

existing security assessment tools consist of components that cover static, dynamic and

forensic testing to ensure that mobile applications are tested in every security aspect.

Table 2.4 contains a list of freely available, open source and inbuilt security assessments

tools available for mobile platforms. Even though these tools cover most aspect of

security testing, none of them has the ability to automatically fix the security

26

vulnerabilities that are found in the source code. Most of them do not have a flexible

report generation mechanism as well.

Table 2.4: Existing security assessment tools

Tool/Instrument Type
Supported Mobile

Platform
Usage

Clang Static Analyzer Static iOS

A static analysis tool for C, C++ and Objective-C programs. This is used to test for certain quality

and security errors in iOS-based applications. This can be run from both command line and inside

Apple's XCode development environment.

„otool‟ command by

Xcode
Static iOS

This XCode-provided "otool" command can be used to extract information from iOS application

binaries that can be used in support of security analysis.

FindBugs along with

DeDexer and dex2jar
Static Android

DeDexer can be used to generate DEX assembly code from an Android DEX application binary.

dex2jar can be used to convert DEX application binaries to standard Java JAR files.

FindBugs is a Standard Java analysis tools that can be used to analyze these JARs.

JD-GUI Static Android
A Java decompiler that converts the Java byte code back into Java source code which helps to

review or scan the code for vulnerabilities.

OWASP Zed Attack

Proxy.
Dynamic Android and iOS

A framework that provides a real environment for mobile testing infrastructure and mobile devices.

It supports the installation of additional tools and platform for penetration testing.

The detection of system vulnerabilities can be performed automatically.

Android Debug

Bridge
Forensic Android

This is a command line tool that comes with Android development KIT and is provides some

commands that helps to explore the android file system and system data.

iPad File Explorer Forensic iOS

This allows browsing files structure on iOS device. iPad file explorer can list out application data

and media files in different views. It can also access storage and file system of rooted or jail-broke

devices.

The SQLite database

engine
Forensic Android

SQLite 3 command line program allows to query the databases created by the android application

and stored in the device memory. This can be used to reveal sensitive information such as

password, PINs hashed or stored in clear text.

Santoku
Combination

of all 3
Android and iOS

This is a virtual machine consists of a set of open source security testing tools for mobile

applications. It also has malware analysis, data recovery and forensic testing tools.

MobSF - Mobile

Security Framework

Static

and

 Dynamic

Android and iOS
This is an automated framework designed for penetration testing. This can be used in both Android

and iOS mobile platforms for static analysis, dynamic analysis and web API testing.

Mitmproxy Dynamic Android and iOS

This is a proxy which interacts as a man-in-the middle attacker for HTTP and HTTPS connections

between mobile applications and remote servers. It has a console interface that allows intercepting

and modifying network requests and responses.

Drozer Dynamic Android

This is capable of identifying security vulnerabilities in Android applications and devices by

discovering and interacting with the attack surfaces exposed to outside parties by the applications.

This tool removes the need to install test scripts on the device by running a dynamic java code on

the device for security testing.

Frida Dynamic Android and iOS
This is a toolkit that injects JavaScript code snippets to native mobile applications to trace security

vulnerabilities in the application without the source code.

Radare
Combination

of all 3
Android and iOS

This is a framework that reverse engineers mobile application binary files to inspect and analyze

security vulnerabilities. This also has capability to debug application code with local and remote

debuggers and perform forensic testing on data flow and file system.

QARK Static Android
This testing tool traces security vulnerabilities in Android application source code and its package

(APK) file.

Kiuwan Static Android

This is an end-to-end analytical platform for static source code analysis and automated code

review. It can detect defects in the source code, trace security issues and manage security risks

with its inbuilt application governance feature and enhanced life cycle.

Amandroid Static Android
This is designed to inspect and analyze security vulnerabilities in the data flow between the internal

components of Android applications.

27

2.5 Causes and Elimination of Source Code Vulnerability

The main reasons that cause security vulnerabilities in mobile applications are identified

to be the mistakes or the errors in the source code and not following secure coding

practices when applications are being developed. The security risks are caused when

these security vulnerabilities are exploited to compromise privacy and integrity of user‟s

data. Security risks associated with application source code can be avoided if the source

code is properly and thoroughly reviewed during application development prior to

production release. Even though the risks caused by erroneous coding can be diminished

up to a certain level by the mobile device architecture, some security vulnerabilities

which are injected during coding or application development may still be unrecognized

or unnoticed before the application is released to the end users. Even if such security

vulnerabilities are identified, the application will remain to be a risk to the end users

unless the application is updated with the security fixes or removed from the

marketplace. As identified by the studies, the key reasons the security vulnerabilities are

introduced during coding or software development phase are as below [7].

 Developer mistakes and carelessness that result defective source codes left to be

handled by the compilers to diagnose errors

 Low reliability of the mobile applications due to constant demand to incorporate

new tentative features even when they are at the edge of the production phase

 Lack of proper software engineer training and skilled developers

 Lack of developer supportive resources such as source code analyzers that help

developers to trace security vulnerabilities during development

Following secure development guidelines and best practices recommended by mobile

application development platforms during coding ideally helps to reduce or completely

eliminate the known security vulnerabilities. There is a set of best practices

recommended for mobile application developers that should be applied during coding

and there is another set which should be followed during the application maintenance.

28

Developer training and awareness of secure coding guidelines

In order to build secure mobile applications, it is highly important to train developers

and make them aware of secure coding guidelines and best practices. It is recommended

to conduct a developer training on secure application development and common

programming mistakes and errors that could impose security vulnerabilities in the source

code prior to development phase. It is a must for a mobile application development team

to be aware of secure coding guidelines and best practices published by Apple for iOS

development [22] and Google for Android development [20]. Knowledge on mobile

application risks and vulnerabilities presented by OWASP would also be an advantage

[12]. It is highly recommended for mobile application developers to be aware of the

following secure development guidelines at minimum to ensure secure coding [19].

1. Perform secure logging and error handling

During development, developers usually maintain commented codes and write logs

for different purposes. The activities stated below which are related to maintaining

logs in mobile applications can expose sensitive information to external parties.

Therefore it is recommended to avoid following activities during coding [19].

o Keeping logs in the global log

o Keeping logs as commented codes for debugging purposes

o Handling exceptions badly in the source code

2. Follow the principle of least privilege

To ensure security, it is recommended to sandbox and isolate the mobile application.

To accomplish this, the developers have to implement the permission model of the

mobile operating system correctly by following “the principle of least privilege”

[19]. When requesting for user‟s permissions, the best would be to request the least

amount of permissions required to run the application. It helps restricting the access

to unwanted sensitive permissions and thereby avoids misusing them. Simply, a

29

mobile application should not request for any permission which is not needed for

application functionality [21].

3. Validate input data

Not performing proper input validations is identified as one of the common reasons

for security issues in mobile applications. Android mobile application development

platform provides a set of countermeasures that helps mitigating the security issues

involved with input validations. Developers are recommended to use this as s secure

coding practice [21]. Another important practice that should be enforced in mobile

application development is to ensure that all client side input validations are

duplicated at the server end as well. Implementing “OWASP‟s Enterprise Security

API” which is a security control for input validations is also a recommend method to

avoid input validation security issues [19].

Input validations need to be done when data is being retrieved from any external

storage as these external sources cannot be trusted. It is recommended not to store

class files or executables on an external storage or not to retrieve any executable

from an external source without signing them or verifying cryptographically before

dynamic loading [21]. Any data travelled through an external network or retrieved

through an inter process communication (IPC) is potentially harmful. The most

commonly expected security issues are buffer overflow, off-by-one error (OBOE)

and use after free error. The best ways to prevent these issues are to handle pointers

and manage buffers appropriately [21].

SQL and JavaScript injections are also associated with input validation issues. SQL

injections could cause security issues when mobile applications use SQL queries to

submit data to databases or content providers. Most of the issues related to SQL

injections can be avoided by using parameterized queries and restricting permissions

to write-only or read-only [21].

30

4. Implement secure data storage.

As a best practice, sensitive data is not recommended to be stored in SD cards or

other external storage. The files stored in SD cards can be accessed globally to read

and write data hence, other applications can easily modify data stored in SD cards.

External storage can also be physically detached by the users causing data loses. On

the other hand, files stored on internal storage can only be accessed by the

applications with controlled access permissions. This is a platform specific

implementation provided by Android to secure application data [21]. When

encrypting sensitive data, it is not recommended to use custom encryption

algorithms but standard ones with strong key values [19].

5. Avoid insecure mobile OS features

There are some features provided by mobile operating systems by default which are

identified to be insecure in certain application contexts. Given below are few such

features which can affect mobile application security. They should be disabled in

mobile applications which hold lots of sensitive information [19].

 cut-copy-paste

 auto-completion

 baking up application data

 installation on rooted devices

6. Encrypt data in transit

It is a must to take appropriate actions to protect data being transferred from mobile

applications to the backend servers. A special attention should be given to protect

data that carry authentications tokens, sessions IDs and sensitive user details.

Unsecure connections such as public Wi-Fi networks can easily be interfered using

latest hacking techniques. To avoid this security issue, it is recommended to use

31

SSL/TSL connections for communication between mobile applications and remote

servers [23].

7. Encrypt sensitive user data

Developers must ensure to encrypt application data which contain users‟ sensitive

information such as login credentials, contact details, passwords and PIN numbers.

Neglecting to encrypt sensitive data used in mobile applications not only put the

users but also the developers at risk by exposing data to unauthorized access and

data breaches [23].

8. Protect user sensitive data

There are some mobile applications that require to access lot of sensitive user data

such as login credentials, PIN numbers and credit card details. The best approach to

protect these data is to avoid storing them in any persistent storage and minimize the

occurrences of transmitting them to remote servers using API calls. As a best

practice, it is recommended to use hash maps or nonreversible form of data during

application logic implementation [21].

9. Protect user‟s application data

When a client side session is expired or logged out, the same session should be

simultaneously invalidate from the back-end as well. As mobile applications that

retrieve, collect and store sensitive data are targets for phishing attacks, it is

recommended to use one-time application specific password or two-factor

authentication (2FA) via SMS, phone call or email [23].

32

10. Handle authentication with care

In order to make phishing attacks ineffective it is recommended to minimize the

number of times a mobile application requests for user credentials. Best practice is to

use a token for authorization and refresh it as requires. Mobile application should

request for user credentials only once at the initial authentication. Afterwards, a

service specific short-lived authentication token should be used to access different

services until the user logs out of the application. This method avoids having to keep

the user credentials saved on the device and mitigates phishing attacks [21].

11. Use explicit intents over implicit intents

In Android development, activities and broadcast receivers mostly use intents for

asynchronous inter-process communication (IPC). Based on the requirements,

developers have to use one of the two methods from “sendBroadcast()” and

“sendOrderedBroadcast()” or an explicit intent. For security-intensive mobile

applications it is recommended to use explicit intents. Implicit intents should be

avoided in such applications as the user is unaware of the services started and also it

is not certain which services would respond to the intent. Such situations might lead

to security hazards [21].

Use of security assessments tools that can assess application for vulnerabilities

There are free security assessment capabilities and features bundled into the mobile

application development platforms. For an example, Android Studio comes with

“Android Software Development Kit” (SDK) and “Android Lint” which helps

developers to impose security best practices and assess security vulnerabilities during

implementation. There are more sophisticated security tools which are integrated with

intelligence and contain information about more up-to-date source code vulnerabilities

[15].

33

2.6 Similar Work

The outcomes of several other research projects which have influenced on the idea of the

presented approach are discussed in this section. These studies have influenced on

shaping up the presented approach in several ways but they are more focused on

securing overall mobile application design, architecture and the infrastructure and less

focused on securing mobile application implementation.

A hierarchical framework model of mobile security

This research study presents a framework that guides investigation of security

vulnerabilities in mobile applications using a systematic approach. It is presented as a

hierarchical model with three security layers. The three layers are “Property Theory”,

“Limited Targets” and “Classified Applications”.

Figure 2.2: Hierarchical framework model of mobile security [24]

34

Property Theory focuses more on the technical area of security by categorizing the

security into objective, attack, mechanism, management and evaluation. According the

study, security objective should be to emphasis more on the Confidentiality, Integrity

and Availability (CIA) triad in protecting data. Security attack discusses the possible

intrusion orientations, source, target and methods. Security mechanisms presented by the

study are encryption algorithms, access control, barring and filtering firewalls, security

protocols, intrusion detection, scanning etc. Limited Targets Layer is focusing on the

mobile network security in IP networks, 3G wireless networks and mobile software

agents where host and agent protection is taken into discussion. Classified application

layer is the other layer where application domain specific issues are discussed. There is

always an additional set of security threats coming up based on the domain in which the

application is operating in [24].

In conclusion, this study provides a set of guidelines to secure overall mobile system

architecture whereas the presented approach is focused on eliminating source code

vulnerabilities and enforce secure mobile application development phase.

An approach to secure mobile enterprise architectures

This study is conducted to demonstrate concepts that can be applied to provide overall

security to the enterprise mobile application architecture. It presents a conceptual

security solution constructed with the help of several technologies, security standards

and system components. It proves that security measures associated with individual

mobile application components do not cover the security of the entire application.

However, this presents an approach targeting the developers to reduce security issues

occur in development phase. The research has also identified that, the lack of time

allocated for development phase and the pressure put on developers to release

applications with novelty features during a short time frame have pushed the developers

to neglect addressing security issues in mobile application source code. Also, developers

35

tend to rely on security testing performed during testing phase to identify security

vulnerabilities and fix them. Hence, this approach provides a security infrastructure,

combining Two-Factor or Multi Factor Authentication (TFA, MFA) and Mobile Virtual

Private Network (Mobile VPN) to securely authenticate users to the system and protect

cooperate data in transit and device storage. This approach is helpful to developers in

frequent secure application publishing. The Figure 2.3 illustrates how this infrastructure

is applied to invoice approval architecture [25].

This study has paid some attention on secure mobile application development phase yet,

it has been worked towards an infrastructure that helps developer to publish secure

mobile application rapidly and not discussed any mechanism to secure mobile

application source code.

Figure 2.3: Invoice approval system in TFA/MDM/VPN infrastructure [25]

36

Application security framework for mobile application development in enterprise

setup

This paper introduces a security approach that can be imposed on mobile application

layer which consequently reduces the risks in the enterprise. This framework is a result

of an effort taken to come up with a set of mobile security standards in enterprise space.

Enterprise or commercial mobile applications must be aligned with a fine set of security

standards as such applications deal with lot of customer data and important business

logics unlike the consumer or gaming applications [26]. The idea presented in this paper

fairly influenced on the presented implementation as well. This research presents

resolutions for the security vulnerabilities that could take place in the areas listed in

Table 2.5.

Table 2.5: Areas of security vulnerabilities and proposed resolutions

Areas of focus
Security threats/

vulnerabilities
How the vulnerabilities are handle in the framework

Conduct data audit to check the criticality of the data that remains in the

device even for a short span of time

Encrypt data stored in the local storage

Perform application level granular check to ensure that local device

database modification can only happen through the application code

Cache usage Ensure cache doesn‟t contain any critical information

Data sharing Applications should clearly partition the data within its boundary

Authentication mechanism must be put in place to restrict movement of

data from secure area to unsecure area

Application should encrypt the message to be sent over the air

Data communication channel should be secured via HTTPS instead of

plain HTTP

Data exchange that happens over SMS channel must also be encrypted and

should happen over secure SMS protocol

Session management

Maintain a session ID appended with additional unique information that

identifies the device or user so that any unauthorized device cannot use

the same password as pose as an authentic user to the application server

Include TFA

Use algorithms to ensure user set secure passwords

Reverse engineering

Perform obfuscation to remove the debugging information as well as to

mangled or replaced the object names within the byte code by

meaningless entities, without hampering the way the application works

Hardcoded critical

information

Ensure that no critical information is getting hard-coded within the

application code, including but not limited to crypto keys, user

credentials, and other sensitive user information

Validation Perform front and server end validation for source code with scripting

Capture the stack trace and make it available to the development team for

analysis of possible issues in the application

Avoid showing the stack trace to the end user

Handle exception with customized messaging to reduces the security

exposure

Enlist the deprecated APIs when any source library, is used.

Use processor based approach for other platforms where the deprecated

APIs are not marked clearly.

Data protection

Secure authentication

Exception handling

Using 3
rd

 party libraries

Code vulnerability

Intellectual property

protection

Data store in local

storage

Password management

Data on transit

Source: [26]

37

This paper does not present an architecture or implementation of how the system verifies

these security vulnerabilities in the framework. Hence, it is not clear how these

components collaborate or connect in the framework to ensure mobile application source

code is secure. However, the resolutions presented in this research influenced on

implementing verification methods for code vulnerabilities in the presented project (i.e.

“buildsec”).

38

CHAPTER 3

METHODOLOGY

39

Based on the outcome of the research study, it is understood that the best instance where

a practical resolution to the research problem can be applied at compile time of the

mobile application. It is identified that manifest file and the java source code are the two

main areas where developers introduce code vulnerabilities android mobile platform.

Hence, the “buildsec” library is implemented to inspect the manifest and the source

code, track the source code vulnerabilities and fix them based on a given set of security

criteria to ensure the mobile application is security compliance.

3.1 System Architecture and Design

The Figure 3.1 illustrates how the “buildsec” library interacts with other components in

android mobile platform.

Figure 3.1: Design diagram of buildsec system architecture

40

Config File

This is the property file where the code level security criteria based on the project‟s

security requirements are defined as key-value pairs. The compliance status of the

application that is output form the “buildsec” library is based on the values assign for

each security criterion defined in the “config file”. This file also includes configuration

settings to disable security verification of the mobile application at different levels.

The “buildsec” library consists of two individual java archives “Annotation Library”

(buildSec.jar) and “Annotation Processor” (buildSecProcessor.jar).

Annotation Library

This is where the “buildsec” annotation is declared. This annotation needs to be used in

the source code where security compliance needs to be verified.

Annotation Processor

This sub-library contains all the modules belong to “buildsec” where the logic for each

security verification is written. Security verification logics can be written in multiple

classes and methods within this jar. Hence, this library can be enhanced to support more

security criteria verifications by adding more methods or enhancing the existing

modules. Currently, “buildSecProcessor.jar” provides security verification for below

security criteria.

 Uses permission

 Debug logs

 Auto backup

41

This jar reads the “config file” to retrieve the security standard and settings declared in it

and verify the source code based on that.

Compiler

Compiler invokes the “Annotation Processor” when the mobile application is being

compiled. “Buildsec” library executes the following tasks during compilation.

 Reads “AndroidManifest.xml” file and creates a list of XML tags explicitly

specified in it (e.g., uses permission).

 Looks for android class files (java source code) and inspects them for code

vulnerabilities (e.g., methods which are using API functions with special

permissions which are not declared in the manifest).

 Reads the “config file” and retrieves the security criteria that need to be verified

in the source code.

 Fixes the source code vulnerabilities if any security violation is found and

recompiles the source code until it becomes security compliance.

 Generates the report file in HTML to display the detected security vulnerabilities

and compliance status of the source code.

Report File

This could be a HTML, txt, JSON or XML file which include the following information.

 A list of detected security vulnerabilities

42

 Security compliance status of the mobile application

Figure 3.2 shows the “Report file” that is currently generated from the “buildsec” library

in HTML format.

3.2 Functionality of the “Buildsec” Library

The core component of the system architecture shown in Figure 3.1 is the buildsec

library which will be further described in this section. Buildsec library has two main

components namely; “Annotation Library” and “Annotation Processor”. Both these

components are jar files.

As mentioned previously, “buildsec” annotation is declared inside the “Annotation

Library” and used in the mobile application source code where the vulnerabilities need

to be verified. During the compile time, when the compiler invokes the “Annotation

Processor” the “buildsec” annotation helps the “Annotation Processor” to retrieve the

source code in class level.

“Annotation Processor” consists of the five components namely; “Source code Reader,

“Manifest Parser”, “Configurator”, “Verification Module” and “Report Generator”. As

illustrated in Figure 3.3 these components interact with each other to verify and fix

source code vulnerabilities in the mobile application source code.

Figure 3.2: Sample security compliance status report

43

Source Code Reader

Source code reader reads the mobile application source code annotated with @buildsec

annotation and extracts the statements required for security verifications.

Figure 3.3: Functionality of the Buildsec library

44

Manifest Parser

Manifest parser retrieves the whole content of the android manifest file and converts it to

a java code.

Configurator

Configurator reads the configuration file which is in key-value pairs and converts it to a

java code.

Verification Module

Verification module is a set of java classes which contain the verification logics for

security vulnerabilities. This module retrieves the annotated source code from the source

code reader, android manifest converted to a java code from manifest parser,

configuration details converted to a java code from the configurator and input them to

verification logic functions to verify and fix source code vulnerabilities.

Report Generator

Report generator retrieves the details of the vulnerabilities from the verification module

and output the compliance status report in HTML/XML/text/JSON format.

45

3.3 Deployment

The minimum system requirements required to utilize the “buildsec” library in the

android platform are listed below.

 Android Studio 3.0

 Android SDK

 JDK 1.7

To import “buildsec” library into “Android Studio” and build mobile application, the

following steps can be followed.

1. Open your project in Android Studio.

2. Download the buildSec.jar and buildSecProcessor.jar, from the following github

location using git or as a zip archive and unzip it.

https://github.com/iamarasekera/build-secure

3. Copy the jar files in to the lib folder in the ‘app’ module of your android project.

4. Go to File -> Import Module and import the library as a module.

5. Right click your app in project view and select "Open Module Settings".

6. Click the "Dependencies" tab and then the '+' button.

7. Select "Module Dependency".

8. Select "buildSec.jar Library".

9. Select “buildSecProcessor.jar”.

10. Edit your project's “build.gradle” file to add the following lines in the

"defaultConfig" section:

 javaCompileOptions{

 annotationProcessorOptions{

 includeCompileClasspath true

 }

 }

46

android {

 signingConfigs {

 }

 compileSdkVersion 26

 defaultConfig {

 applicationId "com.example.ishara.buildsec_demoapp"

 minSdkVersion 19

 targetSdkVersion 26

 versionCode 1

 versionName "1.0"

 javaCompileOptions {

 annotationProcessorOptions {

 includeCompileClasspath true

 }

 }

 }

Note: The other settings given in “build.gradle” file can differ from what is shown in

Figure 3.4.

11. Clean and build the android project.

Figure 3.4: Sample build.gradle file

47

CHAPTER 4

TESTING AND EVALUATION

48

4.1 Test Approach

The following approach was followed in order to evaluate the implemented system

against manual testing.

1. Derive test cases

A set of test cases are derived out of few use cases that can be used to test the

accuracy of the existing security verification modules.

2. Set security compliance level

As “buildsec” currently supports a limited number of verification methods, only

two levels of security compliance are set. If any of the defined security criteria

are not met, the entire application will be marked as security noncompliance.

3. Define test case pass rate

The expected result of each test case is required to be aligned with the result

expected in manual testing (i.e. code review) when the same test cases are

executed.

49

4.2 Test Report

The test cases executed and the test result obtained in each case is given below. The

“buildsec” exhibited 100% pass rate for all the test scenarios.

Test Case Id 1

Use case Unauthorized request to access uses permission

Description Uses permission is declared in the manifest file but no relevant code in the java source code

Sample Code

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.ishara.buildsec_demoapp">

 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

 <application

 android:allowBackup="false"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity

 android:name=".MainActivity"

 android:label="@string/app_name"

 android:theme="@style/AppTheme.NoActionBar">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Expected Result Security status : non-compliance

Actual Result

Security status : non-compliance

Remove unnecessary ACCESS_FINE_LOCATION permission from the manifest file and

recompile the source code

Test Status Pass

50

Test Case Id 2

Use case Missing request to access uses permission

Description
The relevant uses permission is not declared in the manifest file but the source code contains

methods that requires the missing permission

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.ishara.buildsec_demoapp">

 <application

 android:allowBackup="false"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity

 android:name=".MainActivity"

 android:label="@string/app_name"

 android:theme="@style/AppTheme.NoActionBar">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

MainActivity.java

public static Camera getCameraInstance(){

 Camera c = null;

 try {

 c = Camera.open(); // attempt to get a Camera instance

 }

 catch (Exception e){

 // Camera is not available (in use or does not exist)

 }

 return c; // returns null if camera is unavailable

}
Expected Result Security status : non-compliance

Actual Result
Security status : non-compliance

Inject the required CAMERA permission to the manifest file and recompile the source code

Test Status Pass

Sample Code

51

Test Case Id 3

Use case Proper access to uses permission

Description As per the source code, the relevant uses permission declared in the manifest file

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.ishara.buildsec_demoapp">

 <uses-permission android:name="android.permission.CAMERA" />

 <application

 android:allowBackup="false"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity

 android:name=".MainActivity"

 android:label="@string/app_name"

 android:theme="@style/AppTheme.NoActionBar">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

MainActivity.java

public static Camera getCameraInstance(){

 Camera c = null;

 try {

 c = Camera.open(); // attempt to get a Camera instance

 }

 catch (Exception e){

 // Camera is not available (in use or does not exist)

 }

 return c; // returns null if camera is unavailable

}

Expected Result Security status : compliance

Actual Result Security status : compliance

Test Status Pass

Sample Code

52

Test Case Id 4

Use case Enable Auto-Backup in the application

Description
The auto backup is enabled in the application but the security compliance criteria is to disable

it.

Sample Code

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.ishara.buildsec_demoapp">

 <uses-permission android:name="android.permission.CAMERA" />

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity

 android:name=".MainActivity"

 android:label="@string/app_name"

 android:theme="@style/AppTheme.NoActionBar">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Expected Result Security status : non-compliance

Actual Result
Security status : non-compliance

Set the value of the "allowBackup" tag to false

Test Status Pass

53

Test Case Id 5

Use case Disable Auto-Backup in the application

Description The auto backup is disabled in the application as per the security compliance criteria.

Sample Code

AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.example.ishara.buildsec_demoapp">

 <uses-permission android:name="android.permission.CAMERA" />

 <application

 android:allowBackup="false"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/AppTheme">

 <activity

 android:name=".MainActivity"

 android:label="@string/app_name"

 android:theme="@style/AppTheme.NoActionBar">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

Expected Result Security status : compliance

Actual Result Security status : compliance

Test Status Pass

54

Test Case Id 7

Use case No debugging logs entries are in the source code

Description All log entries used for debugging and error handling purpose are removed in the source code

Sample Code

MainActivity.Java

@Override

public void onBackPressed() {

 DrawerLayout drawer = (DrawerLayout) findViewById(R.id.drawer_layout);

 if (drawer.isDrawerOpen(GravityCompat.START)) {

 drawer.closeDrawer(GravityCompat.START);

 } else {

 super.onBackPressed();

 }

}

Expected Result Security status : compliance

Actual Result Security status : compliance

Test Status Pass

Test Case Id 6

Use case Keep debugging logs entries in the source code

Description Log entries used for debugging and error handling purpose are left in the source code

Sample Code

MainActivity.Java

@Override

public void onBackPressed() {

 DrawerLayout drawer = (DrawerLayout) findViewById(R.id.drawer_layout);

 if (drawer.isDrawerOpen(GravityCompat.START)) {

 drawer.closeDrawer(GravityCompat.START);

 Log.d("onBackPressed", "if block for closeDrawer is executed");

 } else {

 super.onBackPressed();

 Log.d("onBackPressed", "else block is executed");

 }

}

Expected Result Security status : non-compliance

Actual Result
Security status : non-compliance

Remove all log entries and recompile

Test Status Pass

55

CHAPTER 5

CONCLUSION

56

5.1 Summary

This research project had two main objectives to be accomplished via reach component

and implementation. A comprehensive research study has been conducted under the

research component to identify the security risks, how they are injected to the mobile

source code and what actions can be taken to eliminate them. An evaluation of the

existing testing approaches, tools and instruments was done to understand to which

extend these tools can be helpful to fix source code vulnerabilities. Similar research

conducted towards designing frameworks, architecture and infrastructure for secure

mobile application development were also studied to understand the research gaps. The

aforementioned research findings were helpful in designing the architecture of

“buildsec” library. Learnings on SSC were helpful to understand how SSCs are used in

SDLC model to overcome the security threats and risks. The causes and elimination

methods of source code vulnerabilities were identified as another research outcome and

applied that knowledge to implement the modules of “buildsec” library.

5.2 Contribution

As per the research findings, it is clear that the developer mistakes and insecure

development practices cause source code vulnerabilities and there is no proven

mechanism to halt it. Most of the security violations are discovered after the application

is released for testing. Hence, there are excessive iterations running between the

development and testing phase increasing the cost of the project due to the increased

effort, time and re-work. The “buildsec” library, which is the outcome of this research

project, enforces secure mobile application development. It ensures that a security non-

compliance build is not released to the testing team and thereby reduces the project cost

caused due to repeated development and testing efforts. “buildsec” is available as an

open source project in the github location, https://github.com/iamarasekera/build-secure

and can be integrated to the mobile platform without much effort.

57

5.3 Limitations and Future Work

The implementation of the “buildsec” library is currently limited to android platform.

Android platform is chosen for development as it is open source and is most feasible for

the implementation. However the same approach or the architecture can be implemented

in iOS and web based mobile platforms as well as a future development.

“Buildsec” currently supports a limited number of security verification methods. As

mentioned in Section 3.1 this library can easily be extended to add new modules as well

as to enhance the existing modules.

There is also a possibility to support offline compilation using the same library to verify

already compiled source code if the “Annotation Processor” is invoked by a testing

module (e.g., automated testing) instead of the compiler. This can also be suggested as a

future development for the “buildsec” library.

58

REFERENCES

[1] R. Van Der Meulen and J. Rivera, “Gartner Says Worldwide Traditional PC,

Tablet, Ultramobile and Mobile Phone Shipments On Pace to Grow 7.6 Percent in

2014,” Gartner.com, 2014. [Online]. Available:

https://www.gartner.com/newsroom/id/2645115. [Accessed: 19-Nov- 2017].

[2] Sophos, “Security Threat Report 2013: New Platforms and Changing Threats,”

Sophos, 2013. [Online]. Available: https://www.sophos.com/en-

us/medialibrary/PDFs/other/sophossecuritythreatreport2013.pdf. [Accessed: 19-Nov-

2017].

[3] F-Secure, “Mobile Threat Report 2013,” F-Secure, 2013. [Online]. Available:

https://www.fsecure.com/static/doc/labs_global/Research/Mobile_Threat_Report_Q3_2

013.pdf. [Accessed: 19-Nov- 2017].

[4] Symantec, “Internet Security Thread Report 2014,” Symantec, 2014. [Online].

Available: https://www.symantec.com/security_response/publications/threatreport.jsp.

[Accessed: 19-Nov- 2017].

[5] Y. Lin, C. Huang, M. Wright, and G. Kambourakis, “Mobile Application Security,”

Computer, vol. 47, no. 6, pp. 21–23, 2014.

[6] M. Daud, “Secure Software Development Model: A Guide for Secure Software Life

Cycle,” in The International MultiConference of Engineers and Computer Scientists,

Hong Kong, March 2010, pp. 1-5.

59

[7] D. Gilliam, T. Wolfe, J. Sherif, and M. Bishop, “Software Security Checklist for the

Software Life Cycle,” In Proc. 12
th

 IEEE International Workshop on Enabling

Technologies: Infrastructure for Collaborative Enterprise, June 2003, pp. 243–248.

[8] D. Gilliam and J. Powell, “Integrating a Flexible Modeling Framework (FMF) with

the Network Security Assessment Instrument to Reduce Software Security Risk,” in

Proc. 11
th

 IEEE International Workshops on Enabling Technologies: Infrastructure for

Collaborative Enterprises, June 2002, pp. 153-160.

[9] G. McGraw, “Software Risk Management for Security,” IEEE Computer, 32(4),

April, pp. 103-105, 1999.

[10] A. Jaquith, “The Security of Applications: Not All Are Created Equal,” Research

Report, @Stake.Inc., February 2002. [Online]. Available:

http://www.atstake.com/research/reports/acrobat/atstake_app_unequal.pdf. [Accessed: 19-

Nov-2017].

[11] K. S. Hoo, A. W. Saudbury and A. Jaquith, “Tangible ROI through Secure Software

Engineering,” Secure Business Quarterly, Q4, vol. 1, no. 2, 2001.

[12] Open Web Application Security Project, “OWASP Mobile Security Project Top 10

Mobile Risks,” owasp.org, 2014. [Online]. Available:

https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Top_Ten_M

obile_Risks. [Accessed: 19-Nov- 2017].

[13] C. Wysopal, “Mobile App Top 10 List,” Veracode, 2010. [Online]. Available:

http://www.veracode.com/blog/2010/12/mobile-app-top-10-list. [Accessed: 19-Nov-

2017].

60

[14] J. Shin, D. Kim, K. Han and H. Kim, “A Study on the Security Checklist

Improvements to improve the Security in the Mobile Applications Development,”

Journal of Digital Convergence, vol. 12, issue 8, pp.113-127, 2014.

[15] United States Department of Homeland Security, Study on Mobile Device Security.

USA Department of Homeland Security, 2017.

[16] WhiteHat Security, “Integrating Application Security into the Mobile Software

Development Lifecycle,” WhiteHat Security, Santa Clara, 2015.

[17] B. N. Harsha, “Mobile Application Security Testing - Launch Secure Applications,”

idexcel, 2017. [Online]. Available: http://www.idexcel.com/resources/whitepapers.

[Accessed: 19-Nov- 2017].

[18] A. K. Jain, D. Shanbhag, "Addressing security and privacy risks in mobile

Applications", IT Professional, vol. 14, no. 5, pp. 28-33, 2012.

[19] J. Burns, “Developing secure mobile applications for android - an introduction to

making secure android applications,” iSEC, Oct. 2008. [Online]. Available:

https://www.nccgroup.trust/globalassets/our-

research/us/whitepapers/isec_securing_android_apps.pdf. [Accessed: 19-Nov- 2017].

[20] Android Developers, “App Security Best Practices,” developer.android.com, 2017.

[Online]. Available: https://developer.android.com/topic/security/best-practices.html.

[Accessed: 19- Nov- 2017].

[21] Android Developers “Security Tips”, developer.android.com, 2017. [Online].

Available: https://developer.android.com/training/articles/security-tips.html. [Accessed:

19- Nov- 2017].

61

[22] Apple Developer, “Introduction to Secure Coding Guide,” developer.apple.com,

2017. [Online]. Available:

https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodi

ngGuide/Introduction.html. [Accessed: 19- Nov- 2017].

[23] Center for Democracy & Technology, “Best Practices for Mobile Applications

Developers,” cdt.org, 2011. [Online]. Available: https://cdt.org/blog/best-practices-for-

mobile-applications-developers/. [Accessed: 19-Nov- 2017].

[24] J. Sun, D. Howie, A. Koivisto and J. Sauvola, “A Hierarchical Framework Model of

Mobile Security,” In Proc.12th IEEE International Symposium on Personal, Indoor and

Mobile Radio Communications, Cat. No.01TH8598, vol. 1, 2011.

[25] G. Florian and Furtmüller, “An Approach to Secure Mobile Enterprise

Architectures,” International Journal of Computer Science, vol. 10, no. 1, 2013.

[26] S. Chakraborti, D. Acharjya and S. Sanyal, “Application Security framework for

Mobile App Development in Enterprise setup,” International Journal of Advanced

Networking and Applications, vol.1, 2015.

