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ABSTRACT 

An intelligent agent should possess the capability of solving problems related to the 

task of interest based on the perception of its virtual environment acquired from its 

past and present interactions. These agents should be able to extract the fundamental 

trait of being intelligent in order to possess human behavior. Learning and planning 

are the major modalities that contribute to this trait. Brown-UMBC Reinforcement 

Learning and Planning (BURLAP) is an existing library that comprises of algorithms 

that help the agent imitate the planning and learning behaviors of a human being. The 

algorithms in BURLAP can be used to implement intelligent agents in virtual worlds 

including Minecraft as it offers challenges that of a real-life platform. Minecraft allows 

the use of mods which are modifications to the environment based on the user’s 

preference. The mod, BurlapCraft can be used to deploy the algorithms present in 

BURLAP. It includes scenarios such as dungeons that are of different caliber to test 

these algorithms. In literature, the developers of BurlapCraft have tested Rmax, 

Breadth First Search (BFS) and A star (A*) but have not implemented algorithms, 

Iterative Deepening A star (IDA star), Depth First Search (DFS), Q learning and State 

Action Reward State Action (SARSA) in BURLAP which makes the potential benefits 

of these algorithms unknown. 

This research focuses on testing the efficiency and effectiveness of the reinforcement 

learning and planning algorithms, Q learning, SARSA, IDA star and DFS developed 

in BURLAP using the mod, BurlapCraft to make certain of their potential in solving a 

task oriented problem. It further analyses the potential of applying these algorithms in 

a pre-designed scenarios that are of different caliber which in turn would lead to the 

selection of the best fit and worse fit algorithms for the respective problems.  

The performance evaluation identified that IDA star and Q learning algorithms do 

make an impact in improving the efficiency of the agent in completing the specified 

task. It also identified the best fit and the worst fit algorithms for the respective 

scenarios that could be mapped to general Artificial Intelligence (AI) related problems 

such as decision making, traversal and search present in the real world.  

Keywords: BURLAP, BurlapCraft, Minecraft, Reinforcement Learning 
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CHAPTER 1 

INTRODUCTION 

Background 

Virtual Environment is an ingenious platform to explore the potential of intelligent 

agents. The versatility of the virtual environment and the human like nature of the 

intelligent agents create a replica of the real world which makes experimenting easier 

as performing robotics tests in the real world would be both expensive and unfeasible 

with respect to space and time. The intelligent agent in a virtual environment is based 

mainly on accepting percepts from the environment and generating actions that may 

or may not cater to the agent’s goal. Such behavior can be manipulated using Artificial 

Intelligence (AI) techniques to solve problems similar to the ones encountered in the 

real world.  

 

In literature [1][2][3] there exist countless aspects of what to expect from an intelligent 

agent. This report concentrates on two, learning and planning in a stochastic 

environment which play an important role in replicating the human behavior.  

Possessing such characteristics would enable the agent to be well equipped with 

diverse perceptual capabilities to face the challenges that are present in a complex 

environment. BURLAP, java code library assists in the development of single or multi-

agent planning and learning algorithms along with the domains to accompany them. 

The structure of BURLAP is flexible for defining states and actions that supports 

discrete continuous and relational domains [4]. It is a versatile library that possesses 

algorithms that cater to the learning and planning behavior that range from classic 

forward search planning to value function based stochastic planning and learning 

algorithms. These algorithms present in BURLAP help the agents to develop learning 

and planning behavior that is similar to that of the humans. 

 

Knowledge is consumed from nature by humans through interactions with each other, 

this in turn establishes a relationship in between them.  It is through this bond that a 

community of rules, goals and goal directed actions are born. The experience through 
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these consequences of actions is how humans become efficient and effective in time.   

This learning process obtained from nature is transformed to a scientific approach 

called Reinforcement Learning (RL) which is focused more towards goal- directed 

learning from interactions [5]. There are two methods in how RL problems are tackled, 

one is model based and the other is model-free based [5]. The model based involves in 

solving RL related problems that use models and plans whereas model free based 

simply uses trial and error methods. Usually a model-based learning is considered to 

be a planning method and model free as learning. 

The platform that is used to conduct the experiment is Minecraft [6], a java based 

virtual environment that also acts as a gaming platform.  It is composed of three 

categories such as Blocks, Items and Entities. The intrinsic characteristics of Minecraft 

offer challenges that are similar to that of the real world. The complexity of the 

environment provides a simulation of the real world which makes it an excellent 

platform to experiment these learning and planning algorithms in BURLAP.  

 

The complexity of Minecraft is tackled through organizing the raw data according to 

the relevance of the concept based on the situation. An agent’s level of perception 

deteriorates with the complexity of the environment’s state space, therefore this aspect 

compels the formation of a generalizing technique known as Object Oriented Markov 

Decision Process (OOMDP) [7].  OOMDP reflects the human cognition in interpreting 

the dynamic nature of the environment.  Diuk et al. [7] believe that this representation 

structure incorporates the progressive nature of the environment into finite set of 

objects limiting the explosion of state spaces [7].  

 Minecraft extends the use of mods which are modifications made to the environment 

based on the user’s preferences. The mod, BurlapCraft [8] is used to deploy the   

algorithms present in BURLAP. It includes scenarios such as dungeons that offer 

different levels of difficulty to test the learning and planning algorithms.  In order to 

validate BurlapCraft as a platform for AI development the developers have tested a 

few algorithms, Rmax, BFS, A*[8]. 
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1.1 Problem and Motivation 

Current research [8] includes experiments on Rmax, A star and BFS algorithms hence 

the potential of other algorithms existing in BURLAP remains unknown. The 

problems existing in the AI world are complex and solving these problems demand the 

knowledge of other algorithms.   This awareness would lead to selecting the best fit 

algorithms that are suitable for a given scenario that could be applied to the real-world 

problems. Even though it is difficult to find a tailor made fit for every algorithm, an 

estimated guess would still be a good start off to solve complex problems. Also, 

Minecraft caters to scenarios that are similar to that of the real-life problems hence it 

would be a feasible platform to test these algorithms.  

 

 

1.2 Objectives 

This research focuses on testing the efficiency of the reinforcement learning and 

planning algorithms, Q learning, State Action Reward State Action (SARSA), IDA* 

and DFS developed in BURLAP using the mod, BurlapCraft as the testing bed. It 

further analyses the potential of applying algorithms in pre-designed scenarios that are 

of different caliber which in turn would lead to the selection of the best fit algorithms 

that are suitable for a given scenario. These algorithms may later be applied to the 

problems in the real world that fall into the categories of such scenario to resolve the 

existing problem.   

 

1.3 Thesis Organization 

The remainder of this thesis is organized as follows. 

Chapter 2 discusses existing work related to Minecraft, OOMDP, generalizing 

technique, BURLAP, library that includes the learning and planning algorithms, 

BurlapCraft, the mod in which the learning and planning algorithms were deployed. 

Chapter 3 presents the algorithms that to be tested in BURLAP in the dungeon created 

in BurlapCraft mod designed in Minecraft and evaluating the efficiency of the 
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algorithms based on the time it takes to generate an optimal policy. 

Chapter 4 demonstrates the performance evaluation of the effectiveness of the work. 

Chapter 5 summarizes the work and suggest future works. 
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CHAPTER 2 

LITERATURE REVIEW 

Virtual Environment (VE) provides a scalable platform in performing robotics tasks 

which is difficult to carry out in real life. The flexibility of the VE makes it an amiable 

tool and the complexity of the environment offers challenges that are faced in a real-

life platform. Minecraft is a VE that comprise of a complex community, giving an 

opportunity to the researchers to test AI concepts with having the real-life scenarios in 

mind. These AI concepts are usually tested through intelligent agents that are present 

in the virtual environment and these agents usually possess human like qualities. 

Though there exist many qualities that researchers feel that is important for an agent 

to be intelligent, learning and planning are important traits that humans possess in 

order to be categorized as one. Similarly, these agents too must embed the learning 

and planning behavior in them in order to become or rather act intelligent. The 

compelling reasons to possess these qualities is for solving task oriented problems that 

are non-trivial especially when it is set in a complex environment. 

BURLAP [4] is an existing library that comprise of learning and planning algorithms 

that helps the agent in Minecraft make decisions that produce outcomes that maximizes 

the reward function. The complexity of the environment is handled through OOMDP 

that is supported in BURLAP. Minecraft extends the use of mods which enables the 

users to customize the environment according to his/her preference. The mod that was 

used as the test bed to deploy the learning and planning algorithms is BurlapCraft [8]. 

The algorithms that are to be tested in the research is Q Learning, SARSA which is 

categorized under model-free learning and IDA* and DFS, categorized under a model-

based learning approach.  

This chapter gives an overview of the problem domain and then expands through the 

literature of the current affairs related to this research. It emphasizes the details of 

Intelligent Virtual Agent which are characters deployed in a Virtual Environment that 

is used to manipulate and execute tasks in Minecraft. The latter part of this chapter 

states the importance of using BURLAP and the relationship between Markov 
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Decision Process and OOMDP. Finally goes into detail of the algorithms related 

Reinforcement Learning and the impact it has on the learning and planning behavior. 

 

2.1 Virtual Worlds 

The evolution of Virtual World which was once within the boundaries of interactive 

games has branched over to various areas such as education, research, business and 

military. Virtual world is a 2– dimensional (2D) or 3–dimensional (3D) interactive 

computer simulated replica of the real world. It provides the user with an illusion in 

which the user is able to experience and manipulate the entities present in the modeled 

world. The user could take the form of an avatar and be able to interact with the fellow 

participants experiencing the virtual reality through sense and sound. These virtual 

worlds are designed to include a variety of functions such as exquisite visuals, role 

playing opportunities and animations that entice a wide range of target 

audience.  Virtual worlds include, Disney’s Virtual Magic Kingdom (VMK.com), 

General Mill’s Millsberry, and Sulake Labs’ Habbo Hotel [9], each of which are 

targeted to a specific age, demographics and functional applications while others such 

as Second Life, There, Active World and Minecraft [9] are targeted to a more general 

purposed audience. 

Virtual World has been long since adopted in domains of massive multiplayer online 

games (MMOG).  MMOGs have been further tagged under the terms, Multi-user 

Dungeon, domain or dimension (MUD), Collaborative Virtual Environment (CVE), 

Multi-user Virtual Environment (MUVE) and Massively Multi-User Online Role-

Playing Games (MMORPGs). An exploratory factor analysis revealed a five factor 

model of user motivations - Achievement, Relationship, Immersion, Escapism and 

Manipulation - illustrating the multi-faceted appeal of these online environments [10]. 

MMORPGs are not only profitable platform for the entertainment sector but also a 

valuable research venue, hence virtual world offers an active economy that is designed 

around the ownership of virtual property and other forms of intellectual property as 

well [9]. Virtual Worlds like Second Life allow the user to indulge in their rich 

simulation and provides broader, network-based infrastructures, which allows the 
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researchers to examine the variety of economic organizational and social issues that 

extend beyond the domain of the individual user [9]. Though most of the virtual worlds 

are proprietary, there exists a few open source toolkits such as Open Simulators 

(OpenSim) which is similar to Second Life. The Linden Labs, owner and distributors 

of Second Life made the internals of the code belonging to the client software available 

to a broad array of users and developers, where a set of developers produced an 

alternate backend server that serviced this client which was possible since the client’s 

functioning was made evident as part of the open source disclosure, this in turn resulted 

in the project called Open Simulator [11]. 

Although current virtual worlds have incorporated significant resemblance to the 

physical environment and communities, the human computer interaction has been 

improvised in the field of multimedia known as virtual reality where the humans can 

empathize with the communities through their senses. Technologies such as head-

mounted display (HMD) and interaction device such as DataGloveTM aid in 

enhancing such interaction between the user and the virtual environment [12]. Thus, 

the combination of intelligent techniques and tools in the advanced computing and 

research communities are embodied in autonomous creatures and agents providing an 

effective means for graphical representation and interaction that has given rise to a 

new area known as intelligent virtual environments [13]. 

 

2.2 Minecraft 

Minecraft is an indie game which was created in 2009 by Swedish programmer Markus 

“Notch” Persson and later published by the Swedish company Mojang. The game took 

a surprising leap in the gaming industry within a short period of time and currently 

having over 18 million registered users as of January 2015 [14].  The intent of the 

game is for the players to build constructions out of a textured cube in a 3D 

procedurally generated world. It also includes other functionalities such as exploration, 

gathering resources, crafting and combatting. It supports multiple gameplay modes 

including survival modes where the player must be able to acquire resources and to 

maintain health, creative modes where the player has unlimited resources to build and 
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to fly and adventure mode where the players play custom maps created by other 

participants [14]. 

The virtual environment of Minecraft is composed of three categories such as Blocks, 

Items and Entities. The block is composed of cubes, positioned in a fix grid pattern, 

representing various structures like water, dirt and stone. The entity is of anything that 

is capable of moving and that is affected by the gravitational force. This includes 

creatures, dropped items, arrows in midair, mine-carts, falling sand, players and more 

[6]. The player represents the user who interacts with the environment through survival 

and creation. The default physical appearance of this character is generally 1.79 meters 

tall, has indigo eyes, light brown skin, and dark brown hair.  The final layer comprises 

of items that is usually handled by the player in order to manipulate the environment 

such as building a house, gather materials from the surrounding, chopping the trees 

down for wood, chipping away the cave wall for stone or digging the ground for dirt 

or sand. Minecraft is a sandbox game and hence the players are not required to 

accomplish specific goals as such and therefore promoting the user to be independent 

of choosing his own actions 

 Minecraft is a java based game that is not an open source. The users can make external 

modifications to the source code of Minecraft as long as no charges are made for their 

modifications. Mojang has not released an official API for Minecraft and hence 

unofficial APIs such as Forge and Sponge are available that enables the user to create 

mod files without making changes to the Minecraft source code itself [6].     

The intrinsic characteristics of Minecraft make it a very suitable challenge for the state-

of –the-art artificial intelligence techniques and hence broaden the horizon for goals 

that an intelligent agent could pursue which in turn helps in providing an excellent tool 

to test AI and MAS theories, applications and intelligent agent technologies in 

particular. In other words, experiments conducted in Minecraft are fairly inexpensive 

when compared to experimenting them in the actual scenario (real world) as trial and 

error testing and reconstructing the domain would not be feasible. The complex 

community of Minecraft gives an opportunity to the researchers to test the artificial 

intelligence concepts with having the real-world scenarios in mind. So that later these 
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algorithms could be fed into the actual robots to solve problems in the real world. 

 

2.3  Intelligent Virtual Agents 

 

The intelligent agents that are present in the virtual environment, which possess human 

like qualities and interact with humans, each other and their virtual environment is 

known as Intelligent Virtual Agent (IVA). IVA is a promising area of research that has 

emerged [15]. The notion of non-human agencies has been fascinating ever since 

history has been recorded [1]. The term agent in IVA necessitates the understanding 

of the context in which it is being used as Nwana [1] [16] and Ndumu [16] states that 

agents show a variety of appearances, perform a multitude of tasks and their abilities 

vary significantly which makes it challenging to produce a universally accepted 

definition. Shoham [17] defines an agent to be a software entity which functions 

continuously and autonomously in a particular environment, often inhabited by other 

agents and processes. Detlor [17] describes agents as a newer class of software that 

acts on behalf of users to find and filter information, negotiate for services, automate 

complex tasks and collaborate with other agents to solve complex 

problems.  Wooldridge and Jennings [18] on the other hand have introduced the weak 

notion of an agent in which it requires the agent to exhibit at least four of the following 

types of behavior: Autonomous behavior, Responsive behavior, Pro-active behavior 

and Social behavior. Although not stated explicitly, the communal notion of an agent 

that resonates in the above definitions is autonomy, though other characters such as, 

collaboration, solving complex problems, continuity are also included. Agents in 

general abide by concepts that emanate from an intelligent mortal. The challenges do 

arise in translating these psychophysiological expressions and mental states to a 

computational entity.    

It is quite necessary to at least graze on the fields of AI and Multi Agent System (MAS) 

to compensate for the abstract notion of the term agent. The researchers Bates Maes, 

Shoham [2] working on AI conceptualize agent to be a computer system that in 

addition to the properties mentioned above implement theories that are quite applicable 
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to humans. These researchers embed the traits present in humans into the agents. For 

example, Shoham [15] characterize agents using mentalist notions such as capabilities, 

belief, choices, and commitment. Maes [19] on the other hand use the physical 

attributes present in humans to give a graphical representation of the agents. AI has 

largely contributed to the creation of intelligence such the ability to learn, comprehend, 

plan and so on. The trends to socialize integrated intelligence in computer systems has 

led to the emergence of the new field known as Multi Agent Systems (MAS). The idea 

behind MAS is the employment of multiple agents that would interact and perform 

independent actions in order to accomplish the design objectives on behalf of the 

manoeuvre (user or system). Such candidates should possess the ability to coordinate, 

cooperate and negotiate with the other fellow agents in order to fulfil the tasks of a 

MAS. The similarity in theories of both AI and MAS may force one to dissolve the 

boundaries each hold as there exists a time where the field of MAS was considered to 

be a subfield of AI or vice a versa [20]. Despite the similarities, AI and MAS include 

distinguishable traits that cause each of it to be defined on its own. The study of 

intelligence in AI fails to provide a system that is capable of making independent 

decisions, it is the integration of the entities that is related to intelligence that aid in 

doing so. The ignition of agent technology may require the concepts of AI but the 

major composition of it includes standard computer science and software engineering. 

As Etzioni [20] states intelligent agents are ninety-nine percent computer science and 

one percent AI.  The other aspect that AI lacks is the ability of being social which is 

one of the major factor that contributes to the existence of MAS. It is important for a 

human to be intelligent but holding on to that trait only doesn’t complete the human 

representation. There is a reason for humans to be called social creatures, it is through 

this ability that we build communities, beliefs and so on.   Hence the goal of multi 

agent systems’ research is to find methods that allow to build complex systems 

composed of autonomous agents who while operating in local knowledge and 

possessing only on limited abilities are nonetheless capable of enacting the desired 

global behavior [21]. 

As the terms intelligence and agent have been analyzed, it is time to consider pairing 

these two terms and evaluating its definition. So how does intelligence relate to 
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agents?  On which benchmark is the intelligence of an agent tested? There is no 

definite answer to any of these questions. Hence Wooldridge and Jennings [2] have 

drawn a list of capabilities that an intelligent agent may showcase. The first includes 

relativity in which an agent should be able to perceive the environment and react to 

the changes in the environment appropriately satisfying the design objectives. Though 

a balance in reactive behaviour and goal oriented behaviour may be hard to achieve. 

The other is the social ability of an agent. In order for an agent to be social it should 

acquire characters such as cooperation, negotiation and sharing. It is necessary for an 

agent to be social in order to accomplish a goal. An agent must be intelligent to be able 

to cope up with environments which are dynamic, volatile and uncertain. Hence an 

intelligent agent system is a computer system that is capable of flexible (responsive, 

proactive and social) autonomous action in order to meet its design objectives [19]. 

Hereafter the term agent denotes as an abbreviation for “intelligent agents”. 

In literature the term IVA is referred to as virtual agents [22], bots [20] [23], or avatars 

[24]. As for setting out a consensus boundary on IVA, the definition provided by the 

international conference on Intelligent Virtual Agents (2015) is used: 

“Intelligent virtual agents (IVAs) are interactive characters that exhibit human-like 

qualities and communicate with humans or with each other using natural human 

modalities such as facial expressions, speech and gesture. They are capable of real-

time perception, cognition and action that allows them to participate in dynamic social 

environments.” 

 The autonomous control in IVA is facilitated once it adorns a realistic character. The 

control depends on the physical accuracy and structural complexity of the body which 

could be computationally expensive [25].  

The underlying concept of an intelligent agent is that it should possess the capability 

of making decisions based on the perception of its virtual environment acquired from 

its past and present interactions. The perception and the interactions of the 

environment are usually achieved through sensors and effectors. The sensors can be of 

any element from eyes, ears and other organs and effectors too can range from hands, 

legs, mouth and other body parts [3]. 
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Russel and Norvig [3] gives an overview on what should be expected from an 

intelligent agent. They perform an analysis on agents based on their designs, of which 

includes rational agents that is expected to be righteous which is later evaluated as the 

success rate of an agent. 

An agent program is based mainly on accepting percept from the environment and 

generating actions that may or may not cater to the agent’s goal. The percepts are 

stored in an internal data structure which will be updated each time a new percept 

arrives. However, it depends on the agent to build the percept sequence in the memory. 

It is not all precepts that are recorded as it may not be necessary or even feasible in a 

complex environment. An important point that must be taken into account is that the 

goal or the performance measure is not programmed into the agent, it would be 

factored externally in a way to judge the behaviour of the agent and also not having an 

explicit knowledge of the performance measure may produce a higher one. 

In order to build a real-world program, the concept of percept to action mapping must 

be clearly illustrated, it requires the involvement of different types of agent. One of 

which includes simple reflex agents which uses condition action rules or situation 

action rules to perform an action that matches the current state. For example, if an 

agent is maneuvering a vehicle it should follow a set of road rules, for instance when 

the traffic signal turns red, the agent should stop the car, likewise when it turns green 

it should continue to drive. Therefore, an agent should maintain an internal state that 

includes a systematic update on the world around it along with the impact it might 

have on the state of the world. 

The current state or the internal state would be of no use if the agent does not have a 

goal. The agent based on the percept should decide on the actions that has to be 

executed in order to achieve the desirable state or goal. This concept is known as 

searching and planning in the subfields of AI [3]. It is important to note a fundamental 

difference between the goal designed agent and the reflex agent, the former involves 

consideration of the future, the actions based on the precepts are fine tuned to cater 

towards the agent’s goal. The latter includes a set of pre-programmed rules for every 

possible scenario thus no decision making is involved. In other words, the goal based 
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agents will automatically alter its actions to the change in a goal or condition but on a 

reflexive agent that same change must be reprogrammed to suit the new condition or 

goal. 

The success rate or the performance measure is a major component that evaluates the 

happiness of an agent. According to the authors, an agent achieving the goal may not 

be scoring a higher degree of happiness as it involves rational decision making in 

choosing the suitable states that could achieve it. The decision also includes choosing 

of a reasonable goal when there are several or conflicting ones. These tasks are 

managed by the utility agent. This agent makes rational decisions through comparing 

the utilities achieved by different courses of actions in contrast to the goal based which 

chooses an action as soon as it satisfies the goal.   

 

2.3.1 Environment Perception 

 

In agent technology perception is the ingestion of raw data from environment that 

needs to be processed in order to have a stratospheric view of the situations that is 

occurring in a virtual environment. The major challenge lies in interpreting these raw 

data and making sense of the actual array of incidents. These may range from 

complex situations such as assessing the opponent’s strength to simply detecting and 

labelling objects present in the virtual environment. Hence the agent has to be well 

equipped with diverse perceptual capabilities in order to face the challenges present 

in the environment. Though recent research [26] has focused on achieving these 

capabilities there still exists a gap in accomplishing human like manipulation in the 

context of perception [26]. Hence this compels the notion of perception to be clearly 

defined. 

Immanuel Kant divided the human mind into two basic cognitive faculties, the faculty 

of understanding and sensibility [27]. In the context of agent technology, it is possible 

to assume faculty of sensibility to be categorized as low level perception and faculty 

of understanding as high level perception. According to Kant’s [27] theory the faculty 

of sensibility gears towards accumulation of raw data from the various sensory 

modalities and faculty of understanding organizes these raw data into concepts 
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providing a panoramic view of the environment. This report mainly focuses on high 

level perception of an environment, making sense of the raw data into a more 

comprehensive view of the environment encompassing concepts and situations at a 

non-representational level [28]. 

 

According to Chalmers et al. [28], high level perception includes levels of processing 

that involves concepts which play an important role and these levels range from 

concrete to abstract. Concrete level comprises of recognition of objects, for example 

being able to distinguish between a wall and a door, abstract on the other hand is the 

ability to assess complex situations such as politics or righteousness in imposing 

death penalty. Perceptions may have been influenced by belief where one reacts to an 

incident based on prior knowledge, influenced by goal where one object can be 

perceived as an obstacle or an useful entity based on their goal, influenced by 

external context, deciding on an attire based on situations and there might be other 

scenarios where perception can be influenced [28]. High level perception involves in 

extracting the meaning out of a given scenario and through this influence the 

formation of a concept which later leads to a conceptually driven process [28].  

 

The concept that is produced through the process lies heavily on the state of the 

perceiver and the situation hence it is impossible for a concept to have a definite 

representation of the situation [28]. The representation of a situation is considered as 

a process according to Clayton T. Morrison and Eric Dietrich [29], as the interaction 

in between high-level concepts and low level processes, high level concept is 

influenced by low level processes and the level of perception at the low level affects 

the high level concepts, through which the process of representation at a conceptual 

level is constructed [29]. 

 

 

2.3.2 Representation of Environment 

 

Traditionally the researcher's hand coded their best possible representation structure 

based on the knowledge they have of the problem and later the data that is assumed to 
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be relevant is organized by a programmer and fed into the constructed representation 

structure. Therefore, this structure ignores the problem of high level perception [27].  

Building representations of an environment is not a trivial task as it requires a level of 

human cognitive abilities. Especially when it comes to interpreting a scenario and 

extracting the appropriate meaning out of it.  

The complexity of forming a representation lies in organizing the raw data according 

to the relevance of the concept based on the situation. An agent’s level of perception 

deteriorates with the complexity of the environment’s state space. According to Sýkora 

[30], in order for an agent to be sensitive and react efficiently it should be able to 

explore every possible state and calculate the possible outcomes in these states and 

then choose appropriate actions and states that would produce the best reward [30]. In 

order to solve the exponential growth of states, in mathematics there exists a 

framework known as Markov Decision Process (MDP) which is suitable for virtual 

environments that are stochastic in nature and hence this could be modelled into 

stochastic decision-making problem [31]. 

 

2.3.3  Markov Decision Process 

 

Markov Decision Process is defined by (S, A, T, R,) for a state space S, the decision 

maker can choose an action in action space A that is available in state s, this process 

leads to the transition probability T(s1 |s, a) of state s1 , reward function R(s). The 

assumption of the Markov Decision Process is that the transition and the cost depend 

on the current state itself and not the states preceding it as the actions will be chosen 

only from that particular attained state itself.  

The four parameters of MDP could be mapped with the environment the decision 

maker (agent) navigates. The states are either finite or infinite and they play a key role 

in stochastic decision-making problem.  They are basically the platform in which the 

states the agent navigates. For example, in Minecraft, the infrastructure of the 

environment is constructed by blocks, each block or a room in a building could be 

considered as a state. The next is the action, these are finite set of built-in methods that 
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the agent get to choose in each state. The transition probability is what depicts the 

dynamic nature of the world. It is here where the next state of possible consequence is 

realized. Therefore, each state st and for each possible action at, the probability of the 

next state will be st+1. 

In a dynamic environment where there is an exponential growth of the states, the 

process of learning becomes extremely challenging. In order to shrink the states, a 

form of generalizing technique must be deduced. Diuk, Carlos, Andre Cohen, and 

Michael L. Littman [7] have proposed Object Oriented Markov Decision Process 

(OOMDP), a representation structure that generalizes objects and its interaction into 

general categories that help model the environment in large spaces [7]. 

 

2.3.4  Extension of MDP: Object Oriented Markov Decision Processes 

(Generalization) 

 

OOMDP reflects the human cognition in interpreting the dynamic nature of the 

environment. The researchers, Diuk et al. [7] believe that this representation structure 

incorporates the progressive nature of the environment into finite set of objects limiting 

the explosion of state spaces [7]. 

The OOMDP represents the state of the MDP through objects and predicates. An 

OOMDP comprises of a set of objects, O = {o1 . . . oo}, class cj ε {o1 . . . oo}, and 

attributes Att(c) = {c.a1 . . . c.aa}. Each of the objects belong to the class and these 

class in turn have a set of attributes. Each of these attributes have a value domain, 

Dom(c,a) of possible values. It also has the option of using set of predicates P over 

classes in order to provide a high-level information about the MDP state.  

A real-life example such as a Taxi domain that is defined by Dietterich [7], will be 

used to clearly map the OOMDP concepts [7].   

The scenario of the Taxi domain that is stated by Diuk et al. [7] includes a taxi that has 

a task of picking up a passenger and dropping it off in the pre-designated set of 

locations (Y, G, R and B). The dropping off location is the goal of this scenario. The 
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set of action that the agent can choose from includes North, South, West, East, Pickup 

and Drop-off. The obstacle in this grid world is the wall and this is what that limits the 

taxi’s traversal. The objects in the Taxi domain that maps with the representation of 

OOMDP are the Taxi, Passenger, Destination and Wall. The Taxi, Passenger and 

Destination have attributes x and y that defines the location in the grid.  Passenger has 

a Boolean attribute of in-taxi which states if the passenger is in or not. Walls have 

attributes that state the position it is located in the grid.  

In a regular MDP, a wall would be considered as an object of a particular location and 

when an agent encounters one of each in different locations it would assume it as a 

different object regardless of its alikeness but in OOMDP, a wall would be considered 

as an object of the same category regardless of the location. For example, a wall 

encountered in location (4, 5) and a wall encountered in location (3, 8) would be 

assumed as two different objects in MDP but in OOMDP it would be assumed as the 

same object and would label it the same as the other. The latter would basically have 

a similar assumption of a human being. This reduces the strain on the agent as well.  

 Transition dynamics is induced through the interactions of objects and the effect that 

is produced. This interaction of the two objects plus the internal states of the two 

objects creates an effect. An effect for every pair of objects o1 ∈ Ci and o2 ∈ Cj that 

participate in the interaction is determined by the internal states o1.state and o2.state, 

the action, the boolean function from the set of relation r (o1, o2). It is basically the 

change of values of object’s attributes. 

When considering the taxi scenario, it includes the following relations: touchN (o1, o2), 

touchS (o1, o2), touchE (o1, o2), touchW (o1, o2), and on (o1, o2), which defines if each 

of the object o2 ∈ Cj is one cell North, South, East or West of object o1 ∈ Ci or if both 

the objects are on the same cell.  

When the taxii ∈ Taxi observes the current state s which is being on the northern edge 

and tries to move North. From the current state s, the taxi extracts all the relation in 

between two objects and observes the value of the attribute that is assigned. If the 

established relation touchN (taxii, wallj) is true then the effect of this particular relation 

would be no change, if the relation ¬touchN (taxii, wallj) is true then it performs an 
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action North and the effect of this will be taxii.y ← taxii.y + 1 which is moving forward 

to the square of the grid. Then the environment chooses the reward r from the 

transitioned state R(s,a) after which the agent is notified with the reward that is 

received. 

Another domain that uses the OOMDP representation is Minecraft which is described 

in detail above. The environment includes room and block objects.   These objects can 

be defined by their positions in the world. These too like the taxi domain uses 

propositional function that is used on the block and room objects. Propositions such as 

“blockInRoom” would return true if the block is in the room and false if the block is 

not in the room. In Minecraft, agents, block, special room and inventory are considered 

as objects Oi. These could include even wider range of objects by categorizing them 

into classes C depending on the scenario such as farm animals, university system and 

so on.  An example state representation from a Minecraft dungeon includes a sub 

object roomorange in Object that has attributes roomxMax, roomxMin, roomZMax, 

roomZMin and roomColor. Likewise, a similar sub object with it attributes is included 

for other objects such as block, inventoryblock and agent [8]. Similar to the taxi 

domain, these too have effects for every action performed and if the effect produced is 

a duplicate of the observed effect then the current effect is eliminated from the 

demonstration sequence. Since the actions performed in Minecraft are performed 

through keyboard and mouse clicks, each of these must be mapped to the actions in 

the Minecraft and then later the transition of the state relevant to this particular action 

is observed.  

2.4 Reinforcement Learning 

Knowledge is consumed from nature by humans through interactions with each other, 

this in turn establishes a relationship in between them. It is through this bond that a 

community of rules, goals and goal directed actions are born. There is no doubt in 

stating that such interactions are crucial to human’s upbringing and understanding of 

the environment. The experience through these consequences of actions is how 

humans becomes efficient and effective in time.   This learning process obtained from 

nature is transformed to a scientific approach called Reinforcement Learning (RL) 
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which is focused more towards goal- directed learning from interactions. 

This is a third machine learning paradigm along with supervised learning and 

unsupervised learning where the former involves in training of data based on 

supervised predefined labels and the latter through identifying the hidden similarities 

of the data and clustering them based on it. RL is trapped in between exploration and 

exploitation, in order for the agent to produce maximum reward it has to choose an 

action that it has tested and proved to be effective but on the other hand in order to 

discover the most profitable action it has to try out actions that was not tested before 

[5].  

The reinforcement learning paradigm includes four other sub elements besides an 

agent and the environment, it includes a policy, a reward signal, value function and a 

model [5]. A policy is basically a set of predefined rules that are established in order 

for the agent to follow, in other words it’s a mapping from a state that an agent has 

attained to the action it should precede with respect to the state it is in. It could be 

implemented using a function, lookup table or in some cases a set of solid 

computations.  The reward signal is the goal the agent should achieve in a RL problem. 

For each state achieved the agent receives an immediate feedback in terms of a 

numerical value that determines an agent’s progress in achieving the goals.  The main 

aim for the agent is to maximize the reward function as this could be either positive or 

negative. An agent will not be able to change the process in which the reward function 

is computed, that is it can only affect the output by change of its actions and not the 

problem itself. For example, if an agent meets up with an obstacle and receives a 

negative reward function, it could change the reward function simply by taking another 

action and not by tampering the reward signal itself.  The next element is the value 

function, it basically is the estimation of the sum of the rewards to be accomplished. 

The reward is an immediate output of the action taken by the agent, but the value 

function is the expected accumulation of these rewards that later contributes in 

achieving the goal. The value in fact is the observation of the states that is likely to be 

followed and the rewards produced in the respective states. For example, in comparing 

to real life scenario, consumption of sweet treats could be pleasurable in the short term 

but in the long run it would affect your health. Same principle could be applied to this 
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concept as well. Rewards are important as values don’t exists if there are no rewards, 

but it is values that contribute to making and evaluating a decision. The actions are 

chosen based on the judgment of the values itself and not the rewards. Predicting these 

values is the most non-trivial process as this includes a series of observation and 

estimation over the agent’s existence in the environment until the estimates are 

efficiently calculated. The fourth is the model of the environment which gives an 

overview of the surrounding itself.  

There are two methods in how RL problems are tackled, one is model based and the 

other is model free based. The model based involves in solving RL related problems 

that use models and plans whereas model free based simply uses trial and error 

methods. Usually a model based is considered to be a planning method and model free 

as learning. 

 

2.4.1 Model Based vs Model Free 

The problems that revolve around RL systems include a model of the environment 

which is a comprehensive view of how the environment behaves for a respective state 

and action. The model of the environment is used for planning, which means for a 

respective state, a calculated decision is made on what actions to be taken considering 

the possible future situations before the actions are summoned. Models that use models 

and planning are called model based methods and on the contrary, there exists model 

free methods which uses trial and error learners.  

 In a model based problem, the agent should be able to predict the response from 

the environment for its actions. In other words, for a given state and actions, a model 

produces the prediction of the resultant next state and next reward, if the model is 

stochastic there will be a series of predictions for the resultant state and reward [5]. 

The model free method does not necessarily require a model of the environment, the 

model free systems cannot make calculative guess to predict the response of the 

environment for each action. In order to deal with a model based problem, the model 
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must be accurate hence acquiring an accurate model for a complex system is difficult 

which make model free methods more approachable.  

 

2.5 BURLAP 

BURLAP is a java code library, licensed under Apache 2.0 that is used for the 

development of single or multi agent planning and learning algorithms along with the 

domains to accompany them. It’s a very versatile framework that caters to OMDP 

formalized problems such as defining states, actions and supporting discrete 

continuous and relational domains. It also supports planning and learning algorithms 

ranging from classic forward searching to value function based stochastic planning and 

learning algorithm [4]. A java documentation is provided for all the classes with a 

detailed description of their use in a domain. 

 

2.6 BurlapCraft 

Minecraft extends the use of mods which are modifications made to the environment 

based on the user’s preferences. The mod, BurlapCraft [8] was used to deploy the   

algorithms present in Burlap. It includes scenarios such as dungeons that offers 

different levels of difficulty to test the learning and planning algorithms.  In order to 

validate BurlapCraft as a platform for AI development the developers have tested 

Rmax, BFS, A*[8] algorithms. In concluding their research, the authors have stated 

that new techniques or new algorithms should be developed in order to cope up with 

the challenges that was put forward in the scenarios created in the BurlapCraft [8]. 

 

 

2.7 Learning & planning algorithms 

The proposed algorithms that is to be tested for efficiency of the reinforcement 

learning and planning algorithms are Q learning, State Action Reward State 

Action(SARSA), IDA* and DFS developed in BURLAP. 
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2.7.1 Learning algorithms 

 

2.7.1.1 Q Learning 

It is an approach that allows the agent to learn how to act in an optimal way in a 

Markovian controlled domain. It is an incremental approach for dynamic programming 

and provides the agent to improve the quality of the particular action at the particular 

state by experiencing through consequences of actions without requiring the details of 

the domain [32]. 

Q Learning is derived from the model free approach which learns a policy or value 

function directly from experience. As mentioned before it learns the estimated Q 

values of an MDP in which the behavior can be dictated by taking the actions greedily 

with respect to the learned Q values.  

The following pseudocode [33] summarizes the Q learning algorithm: 

1. Initialize Q-values (Q(s, a)) arbitrarily for all state-action 
pairs. 

2. For life or until learning is stopped... 
3.     Choose an action (a) in the current world state (s) based 

on current Q-value estimates (Q(s,⋅) 
4.     Take the action (aa) and observe the outcome state (s′) and 

reward (r) 

5.     Update Q(s, a):=Q(s, a)+α[r+ γ maxa′ Q(s′, a′) − Q(s, a)] 

 

The key steps in the above pseudocode are steps 3 and 5. There are many ways to 

choose the actions based on the estimates from step 3, but usually the policy that is 

used is ϵ-greedy policy. Generally, the policy that is used should have some 

randomness to it so that it promotes the exploration of the state space.  

2.7.1.2 SARSA 

State Action Reward State Action, (SARSA) is also a learning algorithm that is similar 

to Q learning. The difference between the two is that in SARSA is that the Q values 

are updated with respect to the immediate Q value that is acquired in the next action 
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unlike in Q learning which updates the Q values based on maximum Q-values obtained 

in the next state. The other difference is that difference is that at every time step, Sarsa 

will also update the Q-values for state-action pairs experienced previously in an 

episode with respect to the amount specified by λ and how long ago the experiences 

occurred. Define the below method to solve our task with Sarsa [33]. 

 

2.7.2 Planning algorithms 

 

2.7.2.1 Iterative deepening A star (IDA star) 

One of the most optimal search based planning algorithms is IDA* that uses a 

predefined model but incorporates a reward function. It also uses an admissible 

heuristic that is provided in BURLAP [33]. IDA* is a graph traversal algorithm and a 

path search algorithm in which the shortest path can be deduced between the 

designated start node and the goal nodes.  There is a slight variation of the iterative 

deepening depth first search in which it uses the concept of applying heuristic function 

to evaluate the cost to get to the goal from the A star algorithm. Since it is a depth first 

search algorithm, the memory consumption is less than that of A star [34]. 

 

2.7.2.2 Depth First Search 

Most common search-based planning algorithm is DFS, it uses the concept of 

backtracking which searches all the nodes by going ahead. In other words, the 

algorithm visits each nodes that is on its way and where there are no other nodes in its 

current path it back tracks and visits all the nodes until all the unvisited nodes have 

been traversed [34].  

Summary 

Performing human like behavior does require capabilities such as planning and 

learning. These abilities are transformed into algorithms in BURLAP library, ranging 

from classic forward searching to value function based stochastic planning and 
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learning algorithm. These algorithms are deployed in Minecraft, a game that provides 

the simulation and complexity that of a real world. 

The mod, BurlapCraft [8] is used to deploy the   algorithms present in Burlap. It 

includes scenarios such as dungeons that offer different levels of difficulty to test the 

learning and planning algorithms.  In order to validate BurlapCraft as a platform for 

AI development the developers have tested Rmax, BFS, A star algorithms. 

In concluding their research, the authors have stated that new techniques or new 

algorithms should be developed to cope up with the challenges that was put forward 

in the scenarios created in the BurlapCraft [8].  

Despite these experiments there exist areas for development especially in minimizing 

the time the agent takes to learn and plan in Minecraft. The researchers [8] also 

recommend developing additional algorithms to solve the task oriented problems in 

Minecraft efficiently and effectively. But developing algorithms without exploring the 

existing ones in BURLAP with respect to virtual worlds such as Minecraft would be 

in vain and hence there should be further experiments conducted on other algorithms 

in BURLAP that may lead to a discovery of algorithms that are more effective and 

efficient in generating an optimal policy 
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CHAPTER 3 

3 EMBEDDING ALGORITHMS IN BURLAPCRAFT 

This research focuses on testing the algorithms in BURLAP on a scenario that is 

designed in Minecraft and evaluating the efficiency of the algorithms based on the time 

it takes to generate an optimal plan to complete the task.  

BurlapCraft, the mod that is used as a test bed [8] for artificial intelligence is integrated 

with the BURLAP library. It is modelled in a way to perform various tasks within the 

game. BurlapCraft uses the Minecraft Forge API, which contains hooks into Minecraft 

to transport information between the Minecraft world and BURLAP. In order to 

validate BurlapCraft as an AI platform, the learning and planning algorithms are 

deployed and tested for their efficiency.  

In this research, we test the efficiency of the reinforcement learning and planning 

algorithms. The algorithms that are tested are Q learning, State Action Reward State 

Action (SARSA), IDA* and DFS developed in BURLAP using the mod, BurlapCraft. 

We also analyze the effects of applying a model-free reinforcement learning algorithm 

such as Q learning in order to test its efficiency compared to that of model based 

planning algorithms.  

This chapter provides an overview of the details of how the information is channeled 

and processed by the agent in Minecraft. The Section 3.1 describes the architecture 

and the internal details of the BurlapCraft mod along with the algorithms that was 

tested. Section 3.2 discusses how the agents are manipulated in BurlapCraft. Section 

3.3 will discuss the algorithms used along with the implementation details.  
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3.1 Architecture of BurlapCraft 

In order to understand the implementation details of the algorithms Burlap, it is 

important to understand the internal details of the BurlapCraft [7] which is shown in 

Figure 1. 

 

Figure 3.1: Overview of the BurlapCraft System Design [7] 

The system shown in Figure 1 uses the standard game Minecraft server. The system 

observes the environment at any given time and converts it into an OOMDP state 

representation. This state is then passed to the agent that uses one of the 

planning/learning algorithms which enables the agent to choose an action. The action 

that is selected is then passed to the action controller for the executing the action in the 

environment. This process repeats until the expected reward function is reached. These 

rewards are user -defined as there is no intrinsic rewards or goals in Minecraft [7]. 

3.2 Manipulation of agents 

The agents present in Minecraft are manipulated through the learning and planning 

algorithms. The environment’s states are parsed into an OOMDP state and later passed 

to the agent. This gives a high-level information of the situation present in the 

environment to the agent. Based on this information is how the agent decides on what 

action is to be taken. The chosen action is passed to a low-level action controller which 

executes the respective action in the Minecraft server.  
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The agents are usually implemented by either learning or planning algorithms. If the 

agent uses learning algorithms, it will either learn their own model of the world and 

choose actions accordingly also known as model based reinforcement learning 

technique or directly learn the responses it gets when it chooses a particular action and 

based on the reward function it decides on which action to select, also known as model 

free reinforcement learning approach. 

 

3.3 Planning and learning algorithms in Minecraft 

The major part of this research focused on embedding the planning and learning 

algorithms, Q learning implemented in two approaches, SARSA, DFS and IDA star in 

BURLAP through BurlapCraft. These algorithms were tested for their efficiency in the 

predefined dungeons. Each of the algorithms was tested through the agents to solve 

the tasks given in Minecraft.  

The reason for choosing Q learning and SARSA in the learning algorithm category is 

that both belong to the model free approach and does not require an accurate model 

which is suitable for the real world scenario. The difference between Q learning and 

SARSA is that Q learning is an off policy algorithm and SARSA is an on policy 

algorithm. The IDA star and DFS belong to the planning algorithms in which these 

two are preferred as these are low on memory consumption and unlike A star, IDA star 

only visits the potential nodes and not the all the surrounding nodes. The same applies 

to DFS as well. The only difference is that IDA star uses a heuristic function. 

This chapter presents the implementation of the algorithms that were used on the 

agents to increase the efficiency in solving the task. It discusses about the initializing 

BurlapCraft in order to use it as a test bed for the algorithms and the following Section 

discusses about the initializing of BurlapCraft and deployment of the algorithms in 

BurlapCraft. Each of the algorithms along with the implementation is shown below.  
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3.3.1 Initializing BurlapCraft 

The mod is run through Minecraft in the “creative” mode where there exist dungeons 

of different levels of difficulty. Invoking features of BurlapCraft is done through 

Minecraft’s chat/command system [33].  

3.3.2 Deploying Algorithms in BurlapCraft  

The algorithms developed in the BURLAP library is tested in the BurlapCraft mod in 

which the algorithms, Astar, Rmax and BFS have already been tested. This research 

focuses on testing algorithms, IDA star, Q Learning, SARSA and DFS in BurlapCraft. 

The algorithms, IDA star and DFS are categorized as the planning algorithms and Q 

Learning and SARSA as learning.  

3.3.2.1 Testing of Q learning  

Testing of Q learning algorithm uses two approaches. Approach 1 includes QLearning 

that is an instance of the LearningAgent interface which uses a predefined set of 

parameters unlike Approach 2, in which the Q learning algorithm is implemented with 

respect to updating the Q values and implementing the learning algorithm itself 

without only using the predefined LearningAgent interface.  

 Approach 1 

The pseudocode for the algorithm for testing Q learning algorithm in Minecraft is as 

follows: 

agent = new QLearning(lastDomain, 0.99, new     

SimpleHashableStateFactory(), 0., 1.); 

List<Episode> episodes = new ArrayList<Episode>(1000); 

for (int i = 0; i < 1000; i++){ 

episodes.add (agent.runLearningEpisode (me)); 

} 

Algorithm1: Testing Q learning Algorithm in Approach 1 

In Algorithm 1, the LearningAgent instance provides methods for learning with the 

environment. QLearning is an instance of the LearningAgent interface and takes 

parameters for domain, discount factor, SimpleHashtableStateFactory, an initial value 
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for the Q values and a learning rate. The constructor uses a default policy of 0.1 epsilon 

greedy policy.  

To run a learning episode, the method runLearningEpisode on the LearningAgent 

instance is called and passes it to the Minecraft Environment in which the learning will 

be performed. In order to examine the record of interactions the Episode object is 

returned which is similar to the policies.  

Approach 2 

In this approach the algorithm actually implements the Q learning unlike the previous 

approach. It is crucial in getting and storing Q-values in the Q learning algorithm. The 

primary date that needs to be stored is the estimated Q value for each state and action 

pair. Once the Q value function is initialized and the learning rate parameter is set a 

learning policy will be followed in which the policy dictates how the agent chooses 

actions at each step. 

The pseudocode for updating the Q values is as follows. 

check if Q value is already stored 

if(Q value == null){ 

 for(Actions a: actions){ 

 create a Q-value for each action 

 add q with the initialized action 

}store the Q values for the next state 

Algorithm 2: Updating of Q values in Q Learning in Approach 2 

The two approaches show the different ways to implement Q learning. In Algorithm 

2, the Q learning algorithm is run through the agents in Minecraft for each of the 1000 

episodes of learning. For each learning progress the agent should be able to get better 

at solving the task. Also, the agent’s actions will be random as it follows an epsilon 

greedy policy.  

 

3.3.2.2 Testing of SARSA 

As stated in the previous section 3.3.2.1, SARSA is similar to Q learning but in 
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SARSA the Q values are updated based on the next action taken rather than the 

maximum value. The SarsaLam instance is constructed and the parameters of learning 

rate is 0.5, and the λ value is 0.3. 

The pseudocode for the algorithm for testing SARSA algorithm in Minecraft is as 

follows: 

agent = new SarsaLam(lastDomain, 0.99, new 

SimpleHashableStateFactory(), 0.,0.5,0.3); 

      for(int i = 0; i < 1000; i++){ 

   Episode e = agent.runLearningEpisode(me); 

} 

Algorithm 3: SARSA Algorithm 

3.3.2.3 Testing of IDA star 

The IDA star algorithm uses admissible heuristic that estimates the cost to the goal 

from any state similar to the A star algorithm.  The heuristic is implemented using the 

Manhattan distance to goal heuristic. The deterministic planner is instantiated to IDA 

star. 

The pseudocode for testing IDA star algorithm in Minecraft is as follows: 

Heuristic mdistHeuristic = new Heuristic() { 

     

double mdist = Math.abs(a.x-gx) + Math.abs(a.y-gy) +     

Math.abs(a.z-gz); 

return -mdist; 

    } 

planner = new IDAStar(domain, gc, new 

SimpleHashableStateFactory(),mdistHeuristic);       

Algorithm 4: IDA star Algorithm 

3.3.2.4 Testing of DFS 

An instance of the DFS planning algorithm is created which is a subclass of 

DeterminsiticPlanner class.  
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The pseudocode for testing DFS algorithm in Minecraft is as follows: 

DeterministicPlanner planner = new DFS(domain, goalcondition, 

                           new SimpleHashableStateFactory());    

Algorithm 5: DFS Algorithm 

In order to instantiate DFS, it requires a reference to the domain, the goal condition for 

which it should search and the SimpleHashableStateFactory object that 

specifies how to hash and check state equality for states. 

 

3.4  Summary 

The learning and planning algorithms, Q learning, SARSA, IDA star and DFS present 

in the BURLAP library are tested using BurlapCraft. An overview of the BURLAP 

architecture is discussed. The algorithms are applied to the agents and then later 

deployed in Minecraft. An introduction of the algorithms to be tested are also given. 

The learning algorithm is  similar to that of the planning algorithms except that in 

learning algorithms, the agent has to interact with the environment which causing 

multiple episodes of learning to be run. The Q learning algorithm is tested using two 

approaches. The SARSA algorithm is similar to Q learning but in SARSA the Q values 

are updated based on the next action taken rather than the maximum value. The IDA 

star uses admissible heuristic to estimate the cost to the goal from any state. DFS 

algorithm is created through an instance of the DFS planning algorithm which is a 

subclass of DeterminsiticPlanner class.  
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CHAPTER 4 

4 EVALUATION 

To demonstrate the effectiveness of the work, an experiment was performed in 

Minecraft through the agent that utilized the planning and learning algorithms.  

The main goal of this research is to find the possibility of extracting efficient 

algorithms that is better than the algorithms that are presented in the literature. This 

research uses two aspects to quantify the efficiency of the algorithm. The first one is 

the completion of task by the agent. The agent deployed in the respective dungeon 

must complete the task in order to be considered as efficient. The other factor is the 

time the agent takes to complete the task.  In this research the learning and planning 

algorithms are applied through the agents to complete the task assigned in the specified 

dungeon. The dungeons are of different caliber that are later mapped to problems 

present in the real world. The dungeons include, grid dungeon, maze dungeons, bridge 

dungeon and finder dungeon. 

The performance evaluation is based on the following. The first is the comparison of 

the Rmax, A star and BFS algorithms that were tested in the existing experiments using 

BurlapCraft. The second analyses the impact the algorithms made on the performance 

of the agent in completing the assigned task. Based on the evaluation, the algorithms 

that are best fit and worst fit for the respective dungeons will be identified. 

This chapter presents the comparison of both the existing algorithms and the work 

conducted in this research. The planning algorithms, IDA star and DFS will be tested 

along with the previously tested planning algorithms, A star and BFS. The learning 

algorithms, Q learning and SARSA will be tested along with the previously tested 

learning algorithm, Rmax.   

4.1 Experiment Setup and Methodology 

In this section multiple learning and planning algorithms are explored within the 

Minecraft through BurlapCraft. Through the agent the planning and learning 

algorithms are deployed in the predesigned dungeons.  
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The planning algorithms, IDA star and DFS are applied to the agents in Minecraft to 

solve the tasks associated in each of the dungeons. There exist three dungeons, each 

of which is on different levels of difficulty in BurlapCraft [8].  

Bridge dungeon: This is an area that encloses dimensions of 10x10x5 including a 

mineable block, a gold block that is separated by a lava. The task that the agent has to 

solve is to reach the goal that is on the other side of the lava and in order to do so the 

block needs to be mined and placed on top of the lava [8]. Testing the agent in this 

dungeon compensates for solving tasks in a complex situation.  

Easy maze dungeon: This is an area that encloses an area of 14x14x4 with a task that 

includes an agent to reach the goal which is a gold block from the furthest point. The 

finder dungeon is similar to that of the easy maze but comprises of a smaller area that 

is suitable for testing learning algorithms, Q learning, SARSA and Rmax that 

consumes more time.  

Grid dungeon: This is an area that encloses an area of 5x5x3 grid modeled dungeon 

that includes a task of reaching the gold block from the initial point.   

The efficiency of the planning and learning algorithms are measured through 

deploying the agent in Minecraft and extracting the time the agent takes to complete 

the task. The agent depending on the algorithm it possesses would complete the 

respective task in period of time for the given dungeon.  

For example, if the IDA star algorithm is applied to the agent present in the maze 

dungeon, then the agent will be expected to complete the task of reaching the gold 

block from the furthest point. The time taken for the agent to complete this respective 

task is recorded. This process is repeated for ten trials for accuracy and then the 

average is calculated. The average time is evaluated for the efficiency of each 

algorithm. This procedure is repeated for planning algorithms, IDA star, A star, BFS, 

DFS and learning algorithms, Q learning, SARSA and Rmax.   

Through the results the average time(s) is deduced and the efficient algorithm will be 

designated based on the minimum average time consumed to complete the task by the 

agent possessing the respective algorithm. 
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4.2 Performance 

Planning Algorithms: Performance of the agent in the respective dungeon 

4.2.1 Agent deployed in Bridge Dungeon 

Table 4.1 represents the results of the agent that is deployed in the Bridge dungeon. 

The agent should complete the task of reaching the goal that is on the other side of the 

lava and to do so the agent should mine the block and place the mined block on the 

surface of the lava. Since the mined block acts as a bridge, the agent will now be able 

to go to the other side of the dungeon. Once the agent is on the other side of the bridge 

the task is assumed to be complete. 

4.2.1.1 Results 

Table 4.1: Time taken to complete the task in Bridge Dungeon 

 

 

 

 

 

 

 

 

 

  
Trial  

1 

Trial  

2 

Trial  

3 

Trial  

4 

Trial  

5 

Trial  

6 

Trial  

7 

Trial  

8 

Trial   

9 

Trial 

10 
Average(s) 

IDA 

Star 
16.534 16.541 16.548 16.538 16.539 16.535 16.536 16.541 16.537 16.540 16.539 

A 

Star 
16.539 16.540 16.556 18.059 18.097 16.554 18.056 16.560 16.537 16.542 17.004 

BFS 16.540 16.544 16.569 16.547 16.543 16.543 16.551 16.540 16.567 16.548 16.549 

DFS 16.541 16.545 16.541 16.541 16.544 16.534 16.569 16.545 16.563 16.543 16.547 
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        Figure 4.1: Time taken to complete the task in Bridge Dungeon 

 

According to Figure 4.1 the algorithms can be ranked as follows: IDA star has the 

minimum average time of 16.539 and hence it is ranked as the first, the second to 

follow would be DFS, average time of 16.547, third is BFS, average time of 16.549 

and the last would be A star having a time of 17.004.  

 

4.2.2 Agent deployed in Easy Maze Dungeon 

 

Table 4.2 represents the results of the agent that is deployed in the Easy Maze 

Dungeon. The agent should complete the task of reaching the gold block placed in the 

modelled maze. The agent should traverse the network of paths and hedges of the maze 

in order to reach the gold block. The task will be assumed as complete once the agent 

reaches the gold block.  
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4.2.2.1 Results 

Table 4.2: Time taken to complete the task in Easy Maze Dungeon 

 

 

 

         Figure 4.2: Time taken to complete the task in Easy Maze Dungeon 

 

According to Figure 4.2 the algorithms can be ranked as follows: IDA star has the 

minimum average time of 58.479 and hence it is ranked as the first, the second to 

follow would be Astar, average time of 58.600, third is DFS, average time of 58.609 

and the last would be BFS having an average time of 58.653. 
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Trial 

10 
Average(s) 

IDA 

Star 
58.593 58.596 58.601 58.625 58.614 58.651 58.668 57.105 58.647 58.686 58.479 

A 

Star 
58.685 58.605 58.586 58.591 58.592 58.582 58.593 58.592 58.591 58.586 58.600 

BFS 58.595 58.630 58.620 58.641 58.982 58.593 58.614 58.604 58.635 58.614 58.653 

DFS 58.585 58.597 58.595 58.610 58.628 58.628 58.628 58.589 58.610 58.622 58.609 
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4.2.3 Agent deployed in Grid Dungeon 

Table 4.3 represents the results of the agent that is deployed in the Grid Dungeon. The 

agent should complete the task of reaching the gold block placed in the grid. The agent 

should traverse along the wall to reach the gold block. The task will be assumed as 

complete once the agent reaches the gold block. 

 

4.2.3.1 Results 

Table 4.3: Time taken to complete the task in Grid Dungeon 

 

 

         Figure 4.3: Time taken to complete the task in Grid Dungeon 
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IDA 

Star 
22.569 22.539 22.544 24.059 22.545 22.542 22.572 22.543 22.539 22.540 22.699 

A 

Star 
22.552 22.540 22.570 22.539 22.548 25.591 22.453 22.553 25.591 22.586 23.152 

BFS 22.540 24.039 22.540 18.303 22.543 22.602 22.586 22.539 22.566 22.540 22.280 

DFS 22.553 22.562 22.539 22.540 22.542 22.555 22.551 22.545 22.541 22.543 22.547 



 

 

38 

 

According to Figure 4.3 the algorithms can be ranked as follows: BFS has the 

minimum average time of 22.280 and hence it is ranked as the first, the second to 

follow would be DFS, average time of 22.547, third is IDA star, average time of 22.699 

and the last would be A star having an average time of 23.152. 

 

4.2.4 Agent deployed in Finder Dungeon 

Table 4.4 represents the results of the agent that is deployed in the Finder Dungeon. 

The Finder dungeon is used to test the learning algorithms such Q learning: Approach 

1 and Approach 2. Rmax and SARSA. The finder dungeon is similar to that of the easy 

maze but comprises of a smaller area that is suitable for testing learning algorithms as 

unlike planning algorithms, these consumes more time. The task is also similar to that 

of the easy maze dungeon in which the agent has to traverse the network of paths and 

hedges of the maze in order to reach the gold block. The task will be assumed as 

complete once the agent reaches the gold block. 

 

4.2.4.1 Results 

Table 4.4: Time taken to complete the task in Finder Dungeon 
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Learning: 

Approach 
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135.339 215.367 277.488 55.219 77.788 121.49 169.625 120.135 120.135 81.123 137.371 

SARSA 137.409 105.663 38.128 118.944 106.317 70.38 160.037 116.985 164.83 153.712 117.241 

Rmax 54.236 61.757 156.71 25.624 43.696 87.492 69.251 57.222 99.422 94.967 75.038 
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         Figure 4.4: Time taken to complete the task in Finder Dungeon 

 

According to the results shown in Figure 4.4 the algorithms can be ranked as follows: 

Rmax has the minimum average time of 75.038 and hence it is ranked as the first, the 

second to follow would be Q learning: Approach 1, average time of 105.288, third is 

SARSA, average time of 117.241 and the last would be Q learning: Approach 2 having 

an average time of 137.371. 

 

4.3 Discrepancies 

While the algorithms were deployed in Minecraft through the agent there were few 

complications. When the IDA star algorithm was deployed in the Bridge Dungeon, in-

between trial 4 and 5, the agent got stuck when it got to the block that was to be mined. 

Therefore, the program was resumed, and the other results of the trials were recorded 

with no issue. This issue occurred only once.  In the case of BFS, A star and DFS the 

inconsistencies were serious compared to that of the IDA star. The agent possessing 

algorithms such as A star was not able to calculate the distance it should place the 

block on. The block was thrown to the other end of the lava which is a serious issue 

compared to that of the agent possessing IDA star.  
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There weren’t any issues regarding the other Dungeons, the agent completed the task 

of the respective dungeons without any discrepancies.  

Though the algorithms did have a few inconsistencies, overall the agent did complete 

the assigned task for the respective dungeon. Therefore, knowing the strength and 

weakness for the scenario is important to produce efficient results through the 

algorithms.  

 

4.4 Discussion 

A dungeon in Minecraft represents a problem in real life. Each dungeon includes tasks 

that are of different caliber. The task assigned to Bridge dungeon could be compared 

to a complex decision-making problem as the agent should make a calculative decision 

in mining the block and placing it on the lava itself. This scenario can be applied to 

different situations in the real world, it need not be the exact scenario of mining and 

placing it on the lava, it could be any scenarios that involves complex decision making. 

The other dungeon, easy maze includes the task of reaching the gold block placed in 

the modelled maze. This again could be applied to a search problem in the real world, 

for example bomb diffusing scenario, the agent should traverse the area to locate the 

bomb that is to be detonated. Similar concept can be applied to the finder dungeon that 

includes the same task enclosed in a smaller area. The final dungeon is the grid 

dungeon which could be applied to a general scenario or rather any scenario. There are 

many problems that include traversal for example a mundane task of travelling from 

point A to point B could be represented by the dungeon hence the grid dungeon 

represents both major and minor issues. 

The results shown in Table 4.1, 4.2, 4.3, and 4.4 indicate the performance of the 

algorithms and it could be further analyzed to indicate which of the algorithms work 

best for a scenario and these algorithms could be further applied to resolve the real-

life problem of the respective category.  
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Since solving a complex task is represented by the Bridge Dungeon. It is possible to 

analyze the algorithms and select the best fit algorithms for solving complex tasks. The 

Figure 4.1 shows the most efficient algorithm in solving complex tasks is IDA star 

which also has been consistent compared to the other algorithms, BFS, DFS and A 

star. Though the agent got stuck in the middle of the program, it may be due to the 

system and not due to the algorithm itself. Also throughout the trials the agent made 

the correct estimate to place the block on the lava completing the assigned task 

successfully. The algorithms DFS could also be a satisfactory since the difference in 

time is only 0.10s. Also, there were inconsistencies in DFS which makes IDA star the 

best algorithm and the worst algorithm to handle complex task would be A star as it 

has consumed the maximum amount of time.  

The Easy maze bridge dungeon represented the scenario of a search problem. It is 

possible to do the same procedure of analyzing the algorithms that was carried to these 

as well. Again, Figure 4.2 shows the most efficient algorithms in solving a search 

problem is IDA star compared to the other algorithms tested. Problems that include 

both these scenarios could be resolved through the IDA star algorithm. Figure 4.2 also 

indicates the worst algorithm for using for a search problem is BFS.  

The Grid dungeon represents a general type of scenario in which the agent should 

traverse the dungeon which is an open area and find the goal. This is applicant to any 

traversal problem, and Figure 4.3 shows the efficient algorithm to do perform such 

task includes BFS and the worst algorithm is A star. The results shown in Table 4.3 

indicate that the efficient is indeed BFS when compared to other algorithms as the 

extracted time is relatively low.  

The Finder dungeon is a minor version of the Easy Maze dungeon, in which in this 

dungeon the learning algorithms are tested. The learning algorithms include Rmax, the 

two approaches in the two Q learning algorithms and then the SARSA algorithms. 

Figure 4.4 depicts the most efficient algorithm to be is Rmax and the worst is Q 

learning algorithm implemented in approach 2. The results do indicate that Rmax is 

best fit to solve such scenarios, but it is important to note that Rmax is categorized 

under model based learning algorithm [35] hence it explores the environment, then 
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learn the model and use the model to plan the policy. This approach is efficient and 

hence the results shown in Table 4 indicate as such. But the second most efficient 

algorithm is Q learning implemented in approach 2, this algorithm is categorized under 

model free algorithm[35] hence it does not learn the model, it learns the value function 

or policy directly and thus leading to weaker results compared to that of Rmax. But 

the model based learning is effective only when the state space is manageable in other 

words it may not be well suited for complex task in the real world. However, the model 

free approach, is efficient when it comes to a larger state space. Therefore, the results 

depicted in Table 4 is extracted from the Finder dungeon that is as mentioned before 

is a smaller area. In other words, the finder dungeon comprises of a manageable state 

space. Since the second-best algorithm indicated in the Figure 4.4 is Q learning 

(approach 1) algorithm it is   safe to state that this algorithm may indeed work better 

than that of the Rmax algorithms.  

Complexity analysis of algorithms is the cost, measured in running time or storage or 

the units that are relevant of using the algorithm to solve a problem [36]. Since this 

research focuses on evaluating the performance it is important to discuss the 

complexities for each of the algorithm that were tested.  

DFS is a well renowned recursive algorithm that uses the idea of backtracking for a 

problem that involves traversing or searching. When we apply this concept to the states 

present in Minecraft, the states are traversed exactly once and therefore the complexity 

of it is O(n), where n is the number of states. If an action that leads to the state is 

already traversed then that particular state is skipped and the next state is traversed. 

IDA star provides a low space complexity but completeness and optimality is the key 

idea of it. It is implemented using DFS to look for the goal at each layer of states. In 

other words it is a depth bounded DFS search. Also in this scenario it uses a heuristic 

based IDA star in which if you cannot find the goal the depth bound will be increased. 

The time complexity of IDA star is O (bn), where b is the branching factor [34].  

 

The complexity for learning algorithms differs with that of the planning algorithms as 

complexity deducing in learning algorithm is based off a model free technique in 
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which the model is unknown in order to deduce the complexities. Q learning and 

SARSA are algorithms that follow a procedure in which an agent finds its way to one 

of the set of goal locations through actions that would take the agent from one state to 

another. The algorithm is such that in the initial stage the agent is not aware of the 

topology of the state space and it only discovers about it through exploration. In 

literature it is stated that reaching a goal state through reinforcement learning 

techniques may require number of action executions and therefore the state space is 

exponential in size [37]. In order to deduce the worst case complexity of reaching the 

goal of an uninformed algorithm such as Q learning and SARSA the agent must learn 

something about the consequences of the action it takes in order to have a complexity 

that is less than infinity. For example assume Q learning is initialized to zero and 

operates on a goal-reward representation. For each action the agent takes, the Q values 

that lead to the goal state only changes. The other Q values remain zero and since the 

action selection step does not provide any information on the undirected exploration 

the agent has to choose actions based on the random walk and hence the average 

number of steps required for the agent to reach the goal is exponential in n, the number 

of states [38]. This complexity can be applied to the SARSA algorithm as well as it 

also follows the similar execution of the Q values with respect to updating it based on 

the executed action values only and hence the complexity could be exponential in n, 

the number of states.  
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CHAPTER 5 

5 CONCLUSION 

This research is focused on applying the reinforcement learning and planning 

algorithms developed in BURLAP on a pre-designed scenario that is modelled using 

OOMDP in Minecraft. It investigated the potential of learning and planning algorithms 

present in BURLAP which lead to the discovery of algorithms that are more effective 

and efficient in generating an optimal policy. The proposed algorithms that were tested 

for efficiency are Q learning, SARSA, IDA* and DFS.  

The main goal of this research is to find the possibility of identifying efficient 

algorithms that is better than the algorithms that is present in the literature. This 

research uses two aspects to quantify the efficiency of the algorithm. The first one is 

the completion of task by the agent. The other factor is the time the agent takes to 

complete the task.  In this research the learning and planning algorithms are applied 

through the agents to complete the task assigned to the respective dungeon. The 

dungeons are of different caliber that are later mapped to problems present in the real 

world. The dungeons include, grid dungeon, maze dungeons, bridge dungeon and 

finder dungeon.  

In conclusion this work proves that the algorithms, IDA star and Q learning (approach 

1) that were not tested in the existing literature do make an impact in improving the 

efficiency of the agent in completing specified task. The dungeons where the 

algorithms were tested are mapped to similar problems present in the real word which 

gives an understanding of the potential of the algorithm. This work also identifies the 

best fit and the worst fit algorithms for the respective dungeons. Each of these 

dungeons could be mapped to general problems such as decision making, search and 

traversal (from point A to point B) and based on these the best fit algorithm that worked 

for these scenarios could be chosen, likewise the worst fit could be avoided to resolve 

similar problems existing in the real world.                  
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5.1 Future Work: 

We plan to extend our study on following directions: 

5.1.1 Evaluating the potential of Q learning algorithm in a decision-making 

problem 

This work proposed the testing of the Q learning algorithms in the Finder dungeon 

which comprised a menial task unlike the task assigned to the bridge dungeon. In 

future the dungeon should be assigned a task similar to that of the Bridge dungeon so 

that Q learning algorithm could be tested for its efficiency in a decision making 

problem. Therefore the performance evaluation would state if the agent is efficient to 

make a decision in resolving the problem. 

5.1.2 Evaluating the potential of Q learning algorithm in a larger state space 

This work proposed the testing of the Q learning algorithms in the Finder dungeon 

which is a smaller area and hence the potential of its performance in a larger state space 

remains unknown. It is stated that the Q learning algorithms work better in a larger 

state space than that of the model based learning algorithm, Rmax. Therefore a 

scenario comprising of a larger state space must be designed in order to test both Q 

learning and Rmax. The performance evaluation would confirm that Q learning in fact 

would be better at solving tasks that are similar to that of the real world. 
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