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ABSTRACT

Context Awareness which is an area of Pervasive Computing that enables a person to 
accomplish his day-to-day tasks by seamlessly interacting with the “smart” devices that 
embedded in the environment (smart space). In contrast to how a user interacts with a desktop 
computer or a mobile device using various input/output devices, Pervasive Computing 
paradigm acquires user’s context using sensors embedded in the surrounding environment, 
and identifies the actions the user would need to perform in a specific context. The Pervasive 
Computing application would then perform the required action on behalf of the user or it would 
give recommendations on the action the user would need to perform.

are

Because the number of smart devices are being produced and increased rapidly the demand 
for context awareness applications also increase, software developers can exploit the new 
computing paradigm to provide more innovative user-centered software solutions. However, 
the biggest obstacle for Context Awareness application development is its high complexity 
due to its broad technical areas (i.e. handling sensor imperfections, modelling smart 
environments, inferencing context, integrating with heterogenous systems or sensors, etc.) 
Hence software developers fail to provide quality context awareness applications that meet 
end-user requirements or fail to accurately identify context. Additionally, such software 
development increases project schedules, and could increase its bug rate.

This research project addressed the above problems by developing a software framework that 
enables the software developers to develop their applications using the fundamental features 
of Context Awareness such as Context Acquisition, Context Processing and Context 
Presentation. Apart from its functionality this research project focused on enhancing the 
quality of the framework by introducing quality attributes such as extensibility (which enables 
the developers to address the problem of heterogeneity), portability (which enables toe 
developers to use the framework in various devices and platforms), and usability (which 
enables the framework more usable by the developers).

From the technical perspective, the framework is based on the architecture of Sentient Object 
which this project aims to implement the architecture using a JavaScript technology stack. 
JavaScript enables to mitigate the problem of heterogeneity because the technology stack that 
will be used to develop the framework consist of Apache Cordova which enables to implement 
sensing mechanisms in a broad range of smart devices, and Node.js which enables to execute 
the context server in multiple platforms.

One of the most prominent aspect of the framework is that when the framework is embedded 
in a JavaScript application, the framework can transform the application into a Sentient Object. 
A Sentient Object can acquire contextual information using sensors, model and processes the 
context using an inferencing engine, and to respond to context changes using actuators. 
Scalability can also be achieved through Sentient Objects which can separate contextual 
information capture from context processing using a context server approach.
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