
/,B /or h®O

C5 0^-/ 7?

PERCEPTION. JS - A FRAMEWORK FOR CONTEXT

ACQUISITION, PROCESSING AND PRESENTATION

Supun Dissanayake

(148210U)
library

UNIVERSITY OF MORATUWA, SRI LANKA
__

M.Sc. in Computer Science

Department of Computer Science and Engineering

7 P 310SUniversity of Moratuwa

Sri-Lanka -f
C - - fi 0 to

!
004"lS<!

00* COty 3)
TH3708

May 2018

AV\ 37081

PERCEPTION. JS - A FRAMEWORK FOR CONTEXT

ACQUISITION, PROCESSING AND PRESENTATION

Supun Dissanayake

(148210U)

Thesis/Dissertation submitted in partial fulfillment of the

requirements for the degree M.Sc. in Computer Science Specializing

in Software Architecture

Department of Computer Science and Engineering

University of Moratuwa

Sri-Lanka

May 2018

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without
acknowledgement any material previously submitted for degree or Diploma in any other
University or institute of higher learning and to the best of my knowledge and belief it does
not contain any material previously published or written by another person except where the
acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce
and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain
the right to use this content in whole or part in future works (such as articles or books).

Signature:

Name: Supun Dissanayake

<?.£./. .Qfeioo i eDate:

The supervisor/s should certify the thesis/dissertation with the following declaration.

I certify that the declaration above by the candidate is true to the best of my knowledge
and that this report is acceptable for evaluation for the CS6997 MSc Research Project.

Date: 0 **Signature of the supervisor:

Name: Dr. Malaka Walpola

ABSTRACT

Context Awareness which is an area of Pervasive Computing that enables a person to
accomplish his day-to-day tasks by seamlessly interacting with the “smart” devices that
embedded in the environment (smart space). In contrast to how a user interacts with a desktop
computer or a mobile device using various input/output devices, Pervasive Computing
paradigm acquires user’s context using sensors embedded in the surrounding environment,
and identifies the actions the user would need to perform in a specific context. The Pervasive
Computing application would then perform the required action on behalf of the user or it would
give recommendations on the action the user would need to perform.

are

Because the number of smart devices are being produced and increased rapidly the demand
for context awareness applications also increase, software developers can exploit the new
computing paradigm to provide more innovative user-centered software solutions. However,
the biggest obstacle for Context Awareness application development is its high complexity
due to its broad technical areas (i.e. handling sensor imperfections, modelling smart
environments, inferencing context, integrating with heterogenous systems or sensors, etc.)
Hence software developers fail to provide quality context awareness applications that meet
end-user requirements or fail to accurately identify context. Additionally, such software
development increases project schedules, and could increase its bug rate.

This research project addressed the above problems by developing a software framework that
enables the software developers to develop their applications using the fundamental features
of Context Awareness such as Context Acquisition, Context Processing and Context
Presentation. Apart from its functionality this research project focused on enhancing the
quality of the framework by introducing quality attributes such as extensibility (which enables
the developers to address the problem of heterogeneity), portability (which enables toe
developers to use the framework in various devices and platforms), and usability (which
enables the framework more usable by the developers).

From the technical perspective, the framework is based on the architecture of Sentient Object
which this project aims to implement the architecture using a JavaScript technology stack.
JavaScript enables to mitigate the problem of heterogeneity because the technology stack that
will be used to develop the framework consist of Apache Cordova which enables to implement
sensing mechanisms in a broad range of smart devices, and Node.js which enables to execute
the context server in multiple platforms.

One of the most prominent aspect of the framework is that when the framework is embedded
in a JavaScript application, the framework can transform the application into a Sentient Object.
A Sentient Object can acquire contextual information using sensors, model and processes the
context using an inferencing engine, and to respond to context changes using actuators.
Scalability can also be achieved through Sentient Objects which can separate contextual
information capture from context processing using a context server approach.

ii

ACKNOWLEDGEMENTS

I would like to express profound gratitude to my advisor, Dr. Malaka Walpola, for his

invaluable support by providing relevant knowledge, materials, advice, supervision and useful

suggestions throughout this research work. His expertise and continuous guidance enabled

to complete my work successfully.
me

Further I would like to thank all my colleagues for their help on finding relevant

research material, sharing knowledge and experience and for their encouragement. I

ever, especially indebted to my parents for their love and support throughout my life. Finally,

I wish to express my gratitude to all my colleagues at 99X Technology, for the support given

me to manage my MSc research work.

am as

iii

Table of Contents

DECLARATION..
ABSTRACT...

ACKNOWLEDGEMENTS...
LIST OF FIGURES...

LIST OF TABLES...

LIST OF ABBREVIATIONS......................................

INTRODUCTION...

1.1. Overview of Pervasive Computing...................
1.2. Overview of Context Awareness......................
1.3. Problem Background..
1.4. Problem Statement..
1.5. Research Objectives..
1.6. Solution Outline..
1.7. Outline of the Thesis...

LITERATURE REVIEW..

2.1. Pervasive Computing..
2.2. Context Awareness...

2.2.1. Introduction..
2.2.2. Context acquisition....................................

2.2.3. Context processing.....................................

2.2.4. Context presentation..................................

2.3. Related Work..
2.3.1. Context-aware frameworks........................
2.3.2. Context-aware systems..............................

2.4. Software Reusability and Software Frameworks
2.4.1. Usability of Frameworks............................

2.4.2. Architectural Pattern for the Framework....
2.5. JavaScript and its Related Technologies............

2.5.1. JavaScript programming paradigm.............

2.5.2. JavaScript design patterns..........................

2.5.3. JavaScript Development Stack...................

DESIGN AND IMPLEMENTATION.........................

3.1. Introduction...
3.2. Requirement Analysis.......................................

3.2.1. Requirements of the framework..................

i

li -

in

vi

viii

IX

1

2
3
,4

6
6
6
8
9

10
12
12

13

18
25

27
27

28

30
31

35

38
38

38

40

43

44

44

44

iv

i

3.2.2. Use case scenarios..

3.3. Architectural Design..
3.2.1. Architectural considerations...

3.2.2. Implementation of the architectural baseline.............................
3.4. Detailed Design and Implementation...

3.4.1. Portability..

3.4.2. Bootstrapping process...
3.4.3. Extensibility..

3.4.4. Context representation..
3.4.5. Context processing..

3.4.7. Context acquisition and presentation...

3.5. Integrating with Existing Technologies..
3.5.1. Integrating with technologies to acquire contextual information
3.5.2. Integrating with technologies to store contextual information....

3.5.3. Integrating with technologies to process contextual information
3.6. How to Use the Framework...

3.6.1. Getting Started..

3.6.2. Using Framework Features...
3.6.3 Best Practices...

TESTING AND ANALYSIS...

4.1. Introduction..
4.2. Unit Testing...
4.2. System Testing...

4.2.1. Testing of functionality, and extensibility.................................

4.2.2. Testing of context server approach, and portability...................
4.3. Usability Testing..

4.3.1. Test goals..

4.3.2. Test scenario...

4.3.3. Test process...
4.3.4. Test findings...

4.3.5. Analysis of usability...
CONCLUSION...

5.1. Summary of the Developed Framework...
5.2. Advantages of the Framework..
5.3. Limitations...
5.4. Future Enhancements...
5.5. Conclusion...

REFERENCES...

47i

48
48
52
53
53
54
55
58
59
65
66
66
70
71
72
72
77
80
83
84
84
93
93
97

100
100
100
101
106
108
111
112
112
113
113
114
116

v

LIST OF FIGURES

Page
Figure 1.1 Definition of context 3

Figure 2.1 Ubiquitous computing framework 10

Figure 2.2 Layered conceptual framework for context-aware systems 14

Figure 2.3 Use of aggregation to obtain more accurate contextual information 16

Figure 2.4 Implementation effort to handle uncertainty in various methods 17

Figure 2.5 CONON ontology for context awareness applications 22

Figure 2.6 Domain-Specific ontologies and upper ontologies in CONON 23

Figure 2.7 Learning barriers for APIs and how they relate each other 34

Figure 2.8 Sense compute control architectural pattern 36

Figure 2.9 Sentient object model architecture 36

Figure 2.10 Non-blocking I/O feature of Node.js 41

Figure 2.11 PhoneGap architecture 42

Platform support for Apache CordovaFigure 2.12 42

Use case diagram of Perception.jsFigure 3.1 47

Architecture of Perception.jsFigure 3.2 48

Internal representations of Perception.jsFigure 3.3 50

Class diagram of Perception.jsFigure 3.4 51

Integrating extensionsFigure 3.5 55

Default ontology in Perception.jsFigure 3.6 58

Internal representation of contexts using expression treesFigure 3.7 60

How actuators are triggeredFigure 3.8 61

Figure 3.9 How expression trees are created for sub classes 62

vi

Figure 3.10 Polling consumer integration pattern 67

Figure 3.11 How polling consumer integration pattern is used 67

Figure 3.12 Event driven consumer integration pattern 68

Figure 3.13 How event driven consumer integration pattern is used 68

Figure 3.14

Figure 3.15

Figure 4.1

How storage extensions can be used to integrate storage mechanisms 70

Integrating external context processing systems

Architecture of the first sample application

71

94

Figure 4.2 Ontology of the first sample application 94

Figure 4.3 Architecture of the second sample application 98

Figure 4.4 Architecture of the third sample application 102

Figure 4.5 Class diagram of the client application of the third sample application 103

Figure 4.6 Class diagram of the context server of the third sample 104

Figure 4.7 Work breakdown structure of the third sample application 105

vii

i

LIST OF TABLES
i

Page
Table 2.1 Appropriateness indications of context modelling approaches 21

Table 4.1 Unit testing results of the component: Helpers 84

Table 4.2 Unit testing results of the component: Asynclterator 85

Table 4.3 Unit testing results of the component: EventManager 86
■

Table 4.4 Unit testing results of the component: ConfigurationManager 86

Table 4.5 Unit testing results of the component: RuleManager 87

Table 4.6 Unit testing results of the component: TransportManager 88

Table 4.7 Unit testing results of the component: Ontology Manager 88i

Table 4.8 Unit testing results of the component: OntologyClass 89
!

Table 4.9 Unit testing results of the component: OntologyProperty 90

Table 4.10 Unit testing results of the component: Scheduler 90

Table 4.11 Unit testing results of the component: ExpressionTree 91

Table 4.12 Unit testing results of the component: BinaryExpression 91

Table 4.13 Unit testing results of the component: Unary Expression 92

Table 4.14 Test results of the first test scenario 96

Table 4.15 Test results of the second test scenario 99

Table 4.16 Developer feedback questionnaire 106

Table 4.17 Time taken complete each task 107

viii

LIST OF ABBREVIATIONS

API Application Programming Interface

Context Ontology

Global Positioning System

General Purpose Input/Output

Human Computer Interaction

Hidden Markov Model

Hyper Text Markup Language

Input Output

Internet of Things

JavaScript

JavaScript Object Notation

Message Queueing Telemetry Transport

Node Package Manager

Not Only Structured Query Language

Object Oriented

Ontology Web Language

Quality of Service

Representational State Transfer

Radio-Frequency Identification

Sense Compute Control

Software Development Kit

Service Oriented Architecture

Transmission Control Protocol

Software Development Kit

Service Oriented Context Awareness Middleware

Symantec Web Rule Language

Unified Modelling Language

Uniform Resource Locator

Worldwide Web Consortium

Work Breakdown Structure

Extensible Markup Language

CONON

GPS

GPIO

HCI

HMM

HTML

IO

IoT

JS

JSON

MQTT

NPM

NoSQL

OO

OWL

QOS

REST

RFID

see
SDK

SOA

TCP

SDK

SOCAM

SWRL

UML

URL

W3C

WBS

XML

ix

