
/,B /or h®O

C5 0^-/ 7?

PERCEPTION. JS - A FRAMEWORK FOR CONTEXT

ACQUISITION, PROCESSING AND PRESENTATION

Supun Dissanayake

(148210U)
library

UNIVERSITY OF MORATUWA, SRI LANKA
__

M.Sc. in Computer Science

Department of Computer Science and Engineering

7 P 310SUniversity of Moratuwa

Sri-Lanka -f
C - - fi 0 to

!
004"lS<!

00* COty 3)
TH3708

May 2018

AV\ 37081

PERCEPTION. JS - A FRAMEWORK FOR CONTEXT

ACQUISITION, PROCESSING AND PRESENTATION

Supun Dissanayake

(148210U)

Thesis/Dissertation submitted in partial fulfillment of the

requirements for the degree M.Sc. in Computer Science Specializing

in Software Architecture

Department of Computer Science and Engineering

University of Moratuwa

Sri-Lanka

May 2018

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without
acknowledgement any material previously submitted for degree or Diploma in any other
University or institute of higher learning and to the best of my knowledge and belief it does
not contain any material previously published or written by another person except where the
acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce
and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain
the right to use this content in whole or part in future works (such as articles or books).

Signature:

Name: Supun Dissanayake

<?.£./. .Qfeioo i eDate:

The supervisor/s should certify the thesis/dissertation with the following declaration.

I certify that the declaration above by the candidate is true to the best of my knowledge
and that this report is acceptable for evaluation for the CS6997 MSc Research Project.

Date: 0 **Signature of the supervisor:

Name: Dr. Malaka Walpola

ABSTRACT

Context Awareness which is an area of Pervasive Computing that enables a person to
accomplish his day-to-day tasks by seamlessly interacting with the “smart” devices that
embedded in the environment (smart space). In contrast to how a user interacts with a desktop
computer or a mobile device using various input/output devices, Pervasive Computing
paradigm acquires user’s context using sensors embedded in the surrounding environment,
and identifies the actions the user would need to perform in a specific context. The Pervasive
Computing application would then perform the required action on behalf of the user or it would
give recommendations on the action the user would need to perform.

are

Because the number of smart devices are being produced and increased rapidly the demand
for context awareness applications also increase, software developers can exploit the new
computing paradigm to provide more innovative user-centered software solutions. However,
the biggest obstacle for Context Awareness application development is its high complexity
due to its broad technical areas (i.e. handling sensor imperfections, modelling smart
environments, inferencing context, integrating with heterogenous systems or sensors, etc.)
Hence software developers fail to provide quality context awareness applications that meet
end-user requirements or fail to accurately identify context. Additionally, such software
development increases project schedules, and could increase its bug rate.

This research project addressed the above problems by developing a software framework that
enables the software developers to develop their applications using the fundamental features
of Context Awareness such as Context Acquisition, Context Processing and Context
Presentation. Apart from its functionality this research project focused on enhancing the
quality of the framework by introducing quality attributes such as extensibility (which enables
the developers to address the problem of heterogeneity), portability (which enables toe
developers to use the framework in various devices and platforms), and usability (which
enables the framework more usable by the developers).

From the technical perspective, the framework is based on the architecture of Sentient Object
which this project aims to implement the architecture using a JavaScript technology stack.
JavaScript enables to mitigate the problem of heterogeneity because the technology stack that
will be used to develop the framework consist of Apache Cordova which enables to implement
sensing mechanisms in a broad range of smart devices, and Node.js which enables to execute
the context server in multiple platforms.

One of the most prominent aspect of the framework is that when the framework is embedded
in a JavaScript application, the framework can transform the application into a Sentient Object.
A Sentient Object can acquire contextual information using sensors, model and processes the
context using an inferencing engine, and to respond to context changes using actuators.
Scalability can also be achieved through Sentient Objects which can separate contextual
information capture from context processing using a context server approach.

ii

ACKNOWLEDGEMENTS

I would like to express profound gratitude to my advisor, Dr. Malaka Walpola, for his

invaluable support by providing relevant knowledge, materials, advice, supervision and useful

suggestions throughout this research work. His expertise and continuous guidance enabled

to complete my work successfully.
me

Further I would like to thank all my colleagues for their help on finding relevant

research material, sharing knowledge and experience and for their encouragement. I

ever, especially indebted to my parents for their love and support throughout my life. Finally,

I wish to express my gratitude to all my colleagues at 99X Technology, for the support given

me to manage my MSc research work.

am as

iii

Table of Contents

DECLARATION..
ABSTRACT...

ACKNOWLEDGEMENTS...
LIST OF FIGURES...

LIST OF TABLES...

LIST OF ABBREVIATIONS......................................

INTRODUCTION...

1.1. Overview of Pervasive Computing...................
1.2. Overview of Context Awareness......................
1.3. Problem Background..
1.4. Problem Statement..
1.5. Research Objectives..
1.6. Solution Outline..
1.7. Outline of the Thesis...

LITERATURE REVIEW..

2.1. Pervasive Computing..
2.2. Context Awareness...

2.2.1. Introduction..
2.2.2. Context acquisition....................................

2.2.3. Context processing.....................................

2.2.4. Context presentation..................................

2.3. Related Work..
2.3.1. Context-aware frameworks........................
2.3.2. Context-aware systems..............................

2.4. Software Reusability and Software Frameworks
2.4.1. Usability of Frameworks............................

2.4.2. Architectural Pattern for the Framework....
2.5. JavaScript and its Related Technologies............

2.5.1. JavaScript programming paradigm.............

2.5.2. JavaScript design patterns..........................

2.5.3. JavaScript Development Stack...................

DESIGN AND IMPLEMENTATION.........................

3.1. Introduction...
3.2. Requirement Analysis.......................................

3.2.1. Requirements of the framework..................

i

li -

in

vi

viii

IX

1

2
3
,4

6
6
6
8
9

10
12
12

13

18
25

27
27

28

30
31

35

38
38

38

40

43

44

44

44

iv

i

3.2.2. Use case scenarios..

3.3. Architectural Design..
3.2.1. Architectural considerations...

3.2.2. Implementation of the architectural baseline.............................
3.4. Detailed Design and Implementation...

3.4.1. Portability..

3.4.2. Bootstrapping process...
3.4.3. Extensibility..

3.4.4. Context representation..
3.4.5. Context processing..

3.4.7. Context acquisition and presentation...

3.5. Integrating with Existing Technologies..
3.5.1. Integrating with technologies to acquire contextual information
3.5.2. Integrating with technologies to store contextual information....

3.5.3. Integrating with technologies to process contextual information
3.6. How to Use the Framework...

3.6.1. Getting Started..

3.6.2. Using Framework Features...
3.6.3 Best Practices...

TESTING AND ANALYSIS...

4.1. Introduction..
4.2. Unit Testing...
4.2. System Testing...

4.2.1. Testing of functionality, and extensibility.................................

4.2.2. Testing of context server approach, and portability...................
4.3. Usability Testing..

4.3.1. Test goals..

4.3.2. Test scenario...

4.3.3. Test process...
4.3.4. Test findings...

4.3.5. Analysis of usability...
CONCLUSION...

5.1. Summary of the Developed Framework...
5.2. Advantages of the Framework..
5.3. Limitations...
5.4. Future Enhancements...
5.5. Conclusion...

REFERENCES...

47i

48
48
52
53
53
54
55
58
59
65
66
66
70
71
72
72
77
80
83
84
84
93
93
97

100
100
100
101
106
108
111
112
112
113
113
114
116

v

LIST OF FIGURES

Page
Figure 1.1 Definition of context 3

Figure 2.1 Ubiquitous computing framework 10

Figure 2.2 Layered conceptual framework for context-aware systems 14

Figure 2.3 Use of aggregation to obtain more accurate contextual information 16

Figure 2.4 Implementation effort to handle uncertainty in various methods 17

Figure 2.5 CONON ontology for context awareness applications 22

Figure 2.6 Domain-Specific ontologies and upper ontologies in CONON 23

Figure 2.7 Learning barriers for APIs and how they relate each other 34

Figure 2.8 Sense compute control architectural pattern 36

Figure 2.9 Sentient object model architecture 36

Figure 2.10 Non-blocking I/O feature of Node.js 41

Figure 2.11 PhoneGap architecture 42

Platform support for Apache CordovaFigure 2.12 42

Use case diagram of Perception.jsFigure 3.1 47

Architecture of Perception.jsFigure 3.2 48

Internal representations of Perception.jsFigure 3.3 50

Class diagram of Perception.jsFigure 3.4 51

Integrating extensionsFigure 3.5 55

Default ontology in Perception.jsFigure 3.6 58

Internal representation of contexts using expression treesFigure 3.7 60

How actuators are triggeredFigure 3.8 61

Figure 3.9 How expression trees are created for sub classes 62

vi

Figure 3.10 Polling consumer integration pattern 67

Figure 3.11 How polling consumer integration pattern is used 67

Figure 3.12 Event driven consumer integration pattern 68

Figure 3.13 How event driven consumer integration pattern is used 68

Figure 3.14

Figure 3.15

Figure 4.1

How storage extensions can be used to integrate storage mechanisms 70

Integrating external context processing systems

Architecture of the first sample application

71

94

Figure 4.2 Ontology of the first sample application 94

Figure 4.3 Architecture of the second sample application 98

Figure 4.4 Architecture of the third sample application 102

Figure 4.5 Class diagram of the client application of the third sample application 103

Figure 4.6 Class diagram of the context server of the third sample 104

Figure 4.7 Work breakdown structure of the third sample application 105

vii

i

LIST OF TABLES
i

Page
Table 2.1 Appropriateness indications of context modelling approaches 21

Table 4.1 Unit testing results of the component: Helpers 84

Table 4.2 Unit testing results of the component: Asynclterator 85

Table 4.3 Unit testing results of the component: EventManager 86
■

Table 4.4 Unit testing results of the component: ConfigurationManager 86

Table 4.5 Unit testing results of the component: RuleManager 87

Table 4.6 Unit testing results of the component: TransportManager 88

Table 4.7 Unit testing results of the component: Ontology Manager 88i

Table 4.8 Unit testing results of the component: OntologyClass 89
!

Table 4.9 Unit testing results of the component: OntologyProperty 90

Table 4.10 Unit testing results of the component: Scheduler 90

Table 4.11 Unit testing results of the component: ExpressionTree 91

Table 4.12 Unit testing results of the component: BinaryExpression 91

Table 4.13 Unit testing results of the component: Unary Expression 92

Table 4.14 Test results of the first test scenario 96

Table 4.15 Test results of the second test scenario 99

Table 4.16 Developer feedback questionnaire 106

Table 4.17 Time taken complete each task 107

viii

LIST OF ABBREVIATIONS

API Application Programming Interface

Context Ontology

Global Positioning System

General Purpose Input/Output

Human Computer Interaction

Hidden Markov Model

Hyper Text Markup Language

Input Output

Internet of Things

JavaScript

JavaScript Object Notation

Message Queueing Telemetry Transport

Node Package Manager

Not Only Structured Query Language

Object Oriented

Ontology Web Language

Quality of Service

Representational State Transfer

Radio-Frequency Identification

Sense Compute Control

Software Development Kit

Service Oriented Architecture

Transmission Control Protocol

Software Development Kit

Service Oriented Context Awareness Middleware

Symantec Web Rule Language

Unified Modelling Language

Uniform Resource Locator

Worldwide Web Consortium

Work Breakdown Structure

Extensible Markup Language

CONON

GPS

GPIO

HCI

HMM

HTML

IO

IoT

JS

JSON

MQTT

NPM

NoSQL

OO

OWL

QOS

REST

RFID

see
SDK

SOA

TCP

SDK

SOCAM

SWRL

UML

URL

W3C

WBS

XML

ix

CHAPTER 1
INTRODUCTION

1

1.1. Overview of Pervasive Computing

As the number of “smart” devices such as smart watches and smart phones are being

produced and increase rapidly the world is moving towards a physical environment which will

be more saturated with computing and communication entities [1]. According to Mark Weiser

[2] this computing paradigm allows the computers themselves to immerse in the environment

and be part of the day-to-day life. From the user's perspective, this emerging trend introduces

new means of interacting with the computer via smart devices. The dictionary of engineering

[3] defines Pervasive Computing as “the presence of interconnected computing devices, such

as motes, smart appliances, and wearable computers, which permeate a given environment”

which is also known as ubiquitous computing. Pervasive Computing is a broad area which will

be described it the later chapters. The area of Pervasive Computing which is concerned in this

project is known as context awareness which enables the users of smart devices to accomplish

their day today tasks with a little or no interaction with any device. Following is an example

scenario of this technology;

I

Bhathiya is at the canteen of University of Moratuwa working on an assignment which

requires to be submitted in a few minutes of time. He also needs to attend to the next lecture

in a few minutes of time. He had worked on many documents and files which are to be

submitted to Moodle the wireless connection at the canteen. Unfortunately, the bandwidth is

miserable because many users are connected to the wireless network at the canteen. The

Pervasive Computing system installed in Bhathiya’s laptop discovers that with the existing

wireless connection he won’t be able to submit all the files to Moodle before the deadline and

it discovers that the wireless bandwidth is excellent at the university library. Then the

Pervasive Computing System displays a dialog box in Bhathiya's laptop screen suggesting him

to move to the canteen in order to submit the assignment files on time. Bhathiya accepts the

advice and walks to the library and while the files are being uploaded to Moodle he reads one

of the latest magazines until the assignment upload is complete. Once the submission is

completed on time he can also the next lecture.

From the technical perspective, to implement Pervasive Computing Mattem [3]

assumes that a collection of IT techniques such as mobile and heterogeneous technologies are

required [4] and the integrating such components and services are of the main importance. In

addition to that the interaction between software, hardware, concepts and processes must also

be taken place. Due to its broad area to practically implement in real world Pervasive

Computing applications many specialists for HCI, process engineers, and software developers

should be involved [5].

2

1.2. Overview of Context Awareness

The word ‘context’ can be described as related circumstances or background, whereas

the word ‘awareness’ as knowledge, self-consciousness, recognition, conscious, consideration

or the like [6]. Dey et al. [7] defines context as any information that can be used to characterize

the situation of an entity. An entity is a person, place, or object that is considered relevant to

the interaction between a user and an application, including the user and applications

themselves.

Mehra [8] defines context in a broader perspective which explains that “To work with

user context, systems and services must go beyond exploiting location data from GPS

coordinates or interpreting words in queries and documents. They must understand places.

They must understand what users know (such as their areas of interest), who they know, and

who or what they trust (their social network and the social context within which they

communicate and collaborate”. Mehra [8] presents the following as an illustration of the

context.

Emotions & \
outcome* f~ ”\

\ / Contracts A " '
./ Context

/. : v\«,of
v :people:

' VteboT \
‘ knowledge , • /

' Time*

WfeboT V
things J

Figure 1.1: Definition of context [8]

Context-aware computing was first discussed by Schilit and Theimer [9] in 1994 to

be software that “adapts according to its location of use, the collection of nearby people and

objects, as well as changes to those objects over time.” Providing a similar definition Dey et

al. [7] defines context awareness as a system is context-aware if it uses context to provide

relevant information and/or services to the user, where relevancy depends on the user’s task.

Therefore, it can be concluded that the context awareness is the process which uses contextual

information that will perform various processing to identify the situation of the user and to

adopt accordingly.

3

!

j
!

In contrast to mobile computing which reacts to discrete events related to location and

mobility management, pervasive computing is more proactive due to characteristic of

invisibility. Invisibility enables a user to seamlessly accomplish his day-to-day tasks [1].

Therefore, intelligent environments are a prerequisite to pervasive computing. In pervasive

computing two concepts exist in order to provide proactivity which are the Adaptation and

Context Awareness. The difference between adaptation and context awareness is that, an

adaptation system identifies a computational resource (i.e. wireless network bandwidth,

energy, computing cycles, or memory) scarcity and adjusts itself accordingly while a context

awareness system aims identifies the need of the user and adjusts itself accordingly. Both

concepts relate to the invisibility in pervasive computing [10].

For proactivity to be effective Satyanarayanan [10] describes that a pervasive system

must be capable of identifying user intent and the system surroundings in order to modify its

behavior which is known as context awareness. Additionally, such systems may also try to

make assumptions about the end-user’s current situation [11].

i

i

!

1.3. Problem Background

Complexity in developing context awareness applications is a common problem despite

of its opportunities. Complexity can be further described by taking the functionality that the

context awareness application developers are required to develop. Being a subset of Pervasive

Computing, a context awareness system may require the following functionality to be

implemented [10];
■

• Effective use of Smart Spaces: A space could be a room or any area which becomes

smart space when smart devices are embedded in the space. Pervasive computing focuses

on the effective use of the smart devices in smart spaces.

• Invisibility: Allows the mobile user to perform his tasks seamlessly in the environment

which is the core area of research of this project.

• Localized Scalability: As the number of smart devices increase in smart spaces the

interactions between the smart devices and the user’s personal computing space increase.

Localized scalability aims to achieve scalability in a way that would enable to reduce

interactions between distant entities.

• Masking Uneven Conditioning: The rate of penetration of pervasive computing will

introduce many heterogeneous infrastructures. Masking uneven conditioning means that

a

4

:

the user’s personal computing space must interact with the smart spaces transparently

without concerning about the underlying technology. If such interaction is impossible,
way to solve this issue is to compensate for “dumb” environments.

one

!

Taking the above areas into consideration, Context Awareness emphasizes in the

Invisibility characteristic of Pervasive Computing. To develop such systems with the above

functionality Saha and Mukherjee [1] describes the following issues and challenges in Context

Awareness application development which describe the non-functional requirements or
quality attributes that such an application should consist of;

!

• Scalability: As environmental smart-ness grows, so will the number of devices connect to

the environment and the intensity of human-machine interactions.

• Integration: Though pervasive computing components are already deployed in many

environments, integrating them into a single platform is still a research problem. The

problem is similar to what researchers in distributed computing face, but the scale is
bigger.

• Heterogeneity: Conversion from one domain to another is integral to computing and

communication. Assuming that uniform and compatible implementations of smart

environments are not achievable, pervasive computing must find ways to mask this

heterogeneity - or uneven conditioning

• Invisibility: A system that requires minimal human intervention offers a reasonable

approximation of invisibility

!

Taking the above context awareness application development challenges into

consideration that complexity is the major obstacle that application developers must cope with.

Not being able to address this issue may result in the following negative outcomes;

• From the developer’s perspective, the developers focus more on solving technical

problems (i.e. performance, scalability or programming problems) rather than focusing

more on solving the actual context awareness problem. As mentioned before to develop

context awareness applications an End-User centered design approach must be followed

in contrast to the actual approach which the developers are following which in System

Centered Design which violates the development paradigm of context
applications.

awareness

5

!

• From the end-user’s perspective, this could result in poorly constructed context awareness

which lacks performance, doesn’t meet his requirements, higher bug rate or provide

inaccurate results.

• From the development project manager’s perspective, this would result in increased

development schedules.i

!
!

1.4. Problem Statement

Developing a context awareness application is a difficult task because its technical

complexity. Specialists from various disciplines are required such as HCI specialists, software

developers, and process engineers [5] which adds more complexity into the software

development. When such applications are being developed in a team to achieve a business

objective, due to its complex nature the team would not be able to deliver the required

functionality. In addition, the application development time would increase, it would increase

in bugs, and it would not meet its quality criteria.

:

!

! 1.5. Research Objectives

The main objective of this research project is to research and develop a reusable and

extensible software framework that enables the software developers to develop context

awareness applications. Research was mainly conducted to identify on how to facilitate

effective context awareness application development which include context acquisition,

context modelling, context inferencing, and context presentation. The research was also

conducted on the existing approaches, and previous work that was used to solve such problems

related to context awareness application development. Such research had revealed information

on identify the requirements and to construct the architecture the framework.

1.6. Solution Outline

j

Research was conducted on the area of framework usability which enables the

developers to effectively and efficiently use the framework to build their domain-specific

context-aware applications. In addition to that, research was conducted on how to use various

6

JavaScript design patterns which provide non-functional requirements of the framework such

as extensibility, and portability.

Taking the problem background into consideration a context awareness framework

developed to address the problems. The framework enables the developers to architect

and develop context awareness applications that provides context acquisition using

context modelling using ontologies, context reasoning using rules, and context presentation

using actuators. The framework is also capable of building context servers that can be used for
context processing.

was

sensors,

Context awareness application development also requires integrating and interacting

with many heterogeneous devices. Therefore, extensibility quality factor was taken into

consideration to integrate with many heterogeneous technologies such as dissimilar

communication protocols (i.e.: web sockets, or TCP), and various sensing mechanisms (soft

sensing mechanisms such as social network integration, and various hard sensing

mechanisms). In addition to addressing the problem of heterogeneity through extensibility,

this quality attribute also enables advanced developers to extend the framework according to

their domain-specific requirements.

In addition to making the software framework reusable and to make the framework

usable by software developers API usability was taken into consideration which facilitates the

developers by enabling them to deliver less error prone and effective solutions in less time. To

achieve this objective usability features were added to the framework to eliminate counter­
productive areas in software projects and frameworks.

In addition to the above proposed solutions for heterogeneity and usability, and taking

the programming perspective into consideration, JavaScript was selected as the programming

language to implement the framework. The framework had implemented various design

patterns in the framework that can be used to easily use context awareness features with

JavaScript, to reduce the learning curve, and to provide extensibility in the framework. Since

JavaScript can be used to write cross-platform applications, the framework was written as a

portable library that can be included in applications in the web browser, mobile devices, and

node.js servers. JavaScript also uses non-blocking 10 to retrieve data from 10 devices which

7

makes the JavaScript applications more efficient at 10 bound tasks. This feature facilitates

context-aware applications to retrieve data from 10 devices such as sensors efficiently.

1.7. Outline of the Thesis

The second chapter of this thesis presents the literature review which aims to critically

evaluate the research and the subject area of context awareness. The chapter includes

related to context acquisition, context processing, context presentation, software frameworks,
usability of frameworks and JavaScript related design patterns.

The third chapter consists of the requirements, the architecture, the detailed design

and the implementation of the solution framework. The detailed design sections present the

internal implementations of various functionalities related to context awareness and internal

implementations of quality attributes such as extensibility, portability and usability.

The fourth chapter of this thesis consists of testing of the framework in order to verify

whether the solution framework solves the problems presented in the first chapter. For testing

few scenarios were presented to verify the functional and nonfunctional features of the

framework. For the final scenario, a real-world usability testing was performed with two

software developers to identify whether the solution framework meets the usability criteria.

Additionally, the chapter analyses the findings of the test results and critically evaluates the

findings against the solution outline presented in the first chapter.

areas

8

CHAPTER 2
LITERATURE REVIEW

9

2.1. Pervasive Computing

According to Mark Weiser [2] Pervasive Computing is not a consequence of technology

but of human psychology because it focuses more on end-user’s day-to-day tasks rather than

the technology being the main focus. This approach is known as User Centered Design which

focuses on creating environments and products that are usable by the end-users in contrast to

System Centered Design which focuses on the best use of technology. This enables the end

users to focus more on their end goals they would need to achieve from an application rather

than focusing on technical details on how to operate a device to achieve his end goals.

In order to get a holistic view on Pervasive Computing Holzinger et.al [11] had presented

the following Ubiquitous Computing Framework that describes the integrations and

interactions between entities involved in a Ubiquitous Computing environment.

Figure 2.1: Ubiquitous computing framework [11]

• Input and output: The environment produces different types of input and output, which

originates from users or from the natural environment. To interact with the environment,

sensors are used. To interact with the users’ various types of I/O devices are used.

10

• Devices: Under some circumstances it is important to interact with the network via I/O

devices. These devices mainly take over I/O tasks between the end-user and the network.

The device can be a PC, smart watch or mobile phone, or an electronic pencil, etc.

• Context: A context describes the object’s background and provides end-user services

depending on the context.

• Smart Objects: The core network consists of so-called smart objects, which can be smart

things as well. Smart objects are aware of their environment, can quasi perceive their

surroundings through sensors, can collaborate with peers using short-range wireless

communication technologies, and provide context-aware services to end-users in smart
environments [13].

• Ad-hoc Network: For some applications, smart objects can form ad-hoc networks.

Examples are Mobile ad-hoc networks, which are self-configuring and mainly work

autonomously.

• Internet: Web services, which are used by the components of the network, must be offered

(e.g. smart objects, servers).

• Remote Servers: Some functions that need high processing as well as high storage capacity

or large databases can be submitted to a remote server on the network.

• Communication: Communication is an integral part of our concept and is mainly handled

by wireless technologies, such as Bluetooth, RFID, GPS, and infrared

The above Ubiquitous Computing Framework relates to the Pervasive Computing goals

described by Saha and Mukherjee [1] which are Invisibility, Masking of Uneven Conditioning,

Localized Scalability and Effective use of Smart Spaces. This framework illustrates clearly

that pervasive computing uses sensors to acquire contextual data from the environment, smart

objects process contextual data, and actions perform a specific task that is required by the end

user. Taking the Pervasive computing paradigm that was initially introduced by Mark Weiser

[2] and taking this framework into consideration, it can be concluded that seamlessly

embedding sensors and smart devices in the environment will enable the user to accomplish

his goals by utilizing such devices to provide a new method of interaction with computers

which accomplishes their goals with little or no intervention with any device.

11

2.2. Context Awareness

2.2.1. Introduction

To identify the characteristics in Context Awareness this section of literature review

is separated into three subsections which are Context Acquisition, Context Processing and

Context Presentation. This approach will enable to critically evaluate the academia and adopt

the best methods in order implement the functional and non-functional requirements of the

framework.

From the technical perspectives of extensibility and reusability in context awareness

Ranganathan et al. [14] presented a layered architecture which augments layers for detecting

and using context by adding interpreting and reasoning functionality which be used to provide

the invisibility aspect of Pervasive Computing. The objective of presenting this layered

architecture is that it will serve as a solid foundation to conduct the research to address the

extensibility requirements of the framework.

Application

Storage/Man agement

Preprocessing

Raw data retrieval

Sensors

Figure 2.2: Layered conceptual framework for context-aware systems [14]

• Sensors: Consists of a collection of different sensors which includes hardware or software

entities which provide contextual information.

• Raw data retrieval: Makes use of appropriate drivers for physical sensors and APIs for

virtual and logical sensors. Often the query functionality is implemented in reusable

software components.

• Preprocessing: This layer is responsible for tasks such as information aggregation,

reasoning and interpreting contextual information. Context aware systems consists of

multiple context data sources therefore a single value may not provide important

12

information a process known as “aggregation” or composition is conducted to acquire

important information.

• Storage and Management: Organizes the gathered data and offers them via a public

interface to the client which enables to retrieve contextual information for machine

learning or analytical purposes.

• Client: The reaction on different events and context-instances are implemented in this

layer which is used to present the context changes.

2.2.2. Context acquisition

Initially, in the process of Context Awareness the relevant contextual information must be

acquired from the environment and from the user’s smart device. This section aims to evaluate

the context acquisition mechanisms, sensing types, imperfections of sensing information and

how to deal with imperfection of sensing information to adopt the best contest acquisition

mechanisms for the framework.

Context awareness requires contextual information to make assumptions about the current

state of the user. Holzinger et al. [11] describes the following types of contextual information.

• Situation:

o Demographic Data (age, language, education): authentication [15] can adapt the

viewable features.

o Optimization of Display View: optimized to the corresponding device (i.e. PC,
smart watch, mobile phone)

• Location: the end-user’s current location and surroundings, sent via RFID GPS or
infrared

• Activity: the end-user’s activity, e.g. recognition via wearable computing devices,
mobile phone

In addition to the above contextual information Mehra [8] describes the following additional
contextual information;

• What the users know (such as their areas of interest).

• Who the users know.

• Who or what they trust (social network and the social context within which they

communicate and collaborate)

13

To capture above described contextual information sensing mechanisms can be used. Chen

et al. [16] Presents three different approaches on how to capture contextual information.

Direct sensor access: This approach is used with devices which have inbuilt sensors which

has a drawback that it doesn’t consist of an additional layer for gaining and processing

sensor data. Therefore, this approach is not suited for distributed systems

2. Middleware infrastructure: This approach uses layered architecture encapsulates low level

sensing details. Hence it promotes reusability and extensibility because its client which is

accessing the sensor doesn’t required to change its code due to its strict encapsulati

3. Context Server: This approach enables multiple clients to access to remote data sources.

This extends middleware based architecture by introducing an access managing remote

component which is known as the Context Server which is responsible for gathering of

sensor data. This approach relieves clients from resource intensive operations which

makes this suitable for devices with limited resources such as computational power, or
disk space.

1.

on.

To simplify the context acquisition process by eliminating the previously mentioned issues

and challenges such as scalability, integration, heterogeneity and invisibility the best approach

is the context server. Even though a context server approach addresses these issues the focus

of this research project is a framework approach which follow two contrasting approaches to

solve the same problem. In order to resolve the conflict, the best approach to follow is to

combine the capabilities of a context server and a framework based approach. This approach

will enable the developers to transform their application into a context server by embedding

the solution framework of this project.

Since the context server is deployed in a server it requires contextual information

available in smart devices. Therefore, in our approach the process of context acquisition

involves integration and interaction with the smart devices and the context server. Hence the

framework should extend its scope further to support this feature.

14

To capture contextual information in smart devices sensors can be used which can be
classified into three groups as follows [17].

1. Physical sensors: Also known as hardware sensors which are the most frequently used

sensors which could capture almost any physical data.

2. Virtual sensors: Also known as software sensors which capture context data from software

applications or services. For example, it is possible to determine an employee’s location

not only by using tracking systems physical sensors but also by a virtual sensor, (i.e. by

browsing an electronic calendar, a travel-booking system, emails etc.) for location

information.

3. Logical sensors: A combination of physical and virtual sensors with additional information

from databases of various other sources. For example, a logical sensor can be constructed

to detect an employee’s current position by analyzing logins at desktop PCs and a database

mapping of devices to location information.

!

i

Taking the extensibility factor into consideration the solution framework should allow the

developers to extend by developing extensions for sensing mechanisms.

15

2.2.2.1 Handling sensor imperfections

Although sensors can be used to obtain low level sensor data, to make such data

meaningful for the context aware system for reasoning, low level contextual data should be

abstracted to a higher-level context [18]. However, when sensors provide data, the sensors

could provide uncertain data which causes inaccuracy ambiguity, and incompleteness of

sensed context. [18]. According to [19] such uncertainties in sensing can be caused by the

following reasons;

1. Lack of knowledge: Caused by incomplete information both at the model level or if the

information is not provided by the sensors.

Lack of semantic precision: Caused by semantic mismatches in the notion of the

information.

Lack of machine precision: Caused by machine sensors that provide data that are imprecise

and ambiguous.

.

2.

3.

1

To address such situations Kramer et.al [20] suggests that aggregation can be used which

combine multiple sources of sensors and aggregate such sensors to provide more accurate

contextual information. When uncertainties described above is taken into consideration,

aggregation enables to overcome those issues. The following table shows some examples on

how aggregation is used to get more accurate contextual information;

can

Class | Description | Sensor I DescriptionClass I Sensor
Context of Muffin Context of a user

State Moving Accelerometer,
Ultrasonic range finder

Activity Standing or sitting Accelerometer.
Ultrasonic range finder,
Compass

Top side Walking or running
Direction Compass,

Accoleromotcr
Going up/down stairs

Geographical
information

Location GPS
Held by a user Skin resistance sensor,

Grip sensor
Orientation Compass

Physical
condition

Level of stress Skin resistance sensor.
Skin temperature scusor.
Pulse sensor. Grip sensor

Context of a environment
Air temperature sensorAir Air temperature
Relative humidity sensorAir humidity Alcoholic breath Alcohol sensor
BarometerAir pressure Emotion Exciting Skin resistance sensor. Grip sensor

Skin temperature sensor.
Pulse sensor. Accelerometer

Sound Ambient noise M icrophono Surprising
Talking voice Fearing

Figure 2.3: Use of aggregation to obtain more accurate contextual information [20]

16

The following methods can also be used for handle uncertainty of sensor data;

• Bayesian reasoning: can be used to dealing with uncertainty which is commonly used for

location tracking [18]. Bayesian probability model can also be used to extend an ontology

based model to reason about uncertainty [18]. This method can be used to effectively

handle machine precision and lack of knowledge. This is well suited for handling

mechanisms caused by vague information in terms of probability [19].

• Dempster-Shafer theory: A weighted Dempster-Shafer evidence combining rule is

introduced based on the historically estimated correctness rate of sensors [18]. This

method can be used to effectively handle imprecise sensor information and lack of

semantic precision.

• Fuzzy Logic: Is used to model uncertainty in understandable form. But they mainly cope

with uncertainty caused by the lack of human precision [18].

• Machine Learning: Uses data-driven rather than model driven approach for reasoning.

They allow for handling both uncertainties due to lack of knowledge and lack of precision

!

i!

[19].

• Certainty Factors: are used to describe uncertainties related to lack of knowledge and

related to lack of machine precision. One of the main advantages of certainty factors

other uncertainty handling mechanisms is that they can be easily incorporated into existing

rule-based system without the necessity of redesigning or remodeling knowledge base.
They also require a very low implementation effort [18].

over

Uncertainty source
Lack of
knowledge

Semantic Machine
imprecision

Implementation
effortimprecision

Probabilistic I O High
OFuzzy Logic I I Medium

Certainty Factors » O Low
Machine learning O High

Figure 2.4: Implementation effort to handle uncertainty in various methods [19]

In perception.js to handle sensor imperfections, a callback method can optionally be

provided to add preprocessing to sensed data. Preprocessing feature can be used to handle

uncertainties in sensed data. Extensions were not used for perception.js because such different

mechanisms for handling uncertainties are more domain-specific. Therefore, applying

extensibility to handle uncertainties would not provide any value in the framework.

17

2.2.3. Context processing
2.2.3.1. Context modelling

In addition to using a context server for context acquisition a context server can also

be used for context processing to reduce complexity in the context-aware application because

integration between the physical environment and the technology [21].
Additionally, it consists of functionality related to context aggregation, and analysis operations

and provide mechanisms for context notification to applications [21].

When taking the term “model” in to consideration which can be defined as an

abstraction of the system which provides its problems in a concise fashion [22]. Models aims

to focus on the most important elements of interest.

According to Henricksen et al. [23] contextual information has the following characteristics;

awareness is an

1. Context information exhibits a range of temporal characteristics: Context information can

be characterized as static or dynamic. Static context information describes those aspects

of a pervasive system that are invariant, such as a person’s date of birth. As pervasive

systems are typically characterized by frequent change, the majority of information is

dynamic.

2. Context information is imperfect: Information may be incorrect if it fails to reflect the true

state of the world it models, inconsistent if it contains contradictory information, or

incomplete if some aspects of the context are not known. First, pervasive computing

environments are highly dynamic, which means that information describing them can

quickly become out of date. These factors can lead to large delays between the production

and use of context information. Second, context producers, such as sensors, derivation

algorithms and users, may provide faulty information.

3. Context has many alternative representations: Much of the context information involved

in pervasive systems is derived from sensors. There is usually a significant gap between

sensor output and the level of information that is useful to applications, and this gap must

be bridged by various kinds of processing of context information.

4. Context information is highly interrelated: Several relationships are evident between

people, their devices and their communication channels (for example, ownership of

devices and channels and proximity between users and their devices).

To overcome the problems of imperfections of sensor readings data preprocessing can be used.

Taking the above mentioned layered architecture into consideration, the preprocessing layer

is responsible for reasoning and interpreting contextual information [24]. In order to store

18

context data in a machine process able form a context model is needed [24]. According to Da
et al. [21] context model is the format used by the context middleware to provide

information for the upper layer which is structured, consistent, decomposable, assemblage

and extensible. Context modelling solves the problem of representing context internally in this

scenario inside the context server. Ubiquitous computing systems make high demands on any

context modeling approach in terms of [25]:

context

1. Distributed composition: Ubiquitous computing system is a derivative of a distributed

system which lacks centralized maintenance of data and services. Instead, composition

and administration of a context model and its data varies with notably high dynamics in

terms of time, network topology and source.

2. Partial validation: Since information is available in many nodes, it is necessary to validate

information on one node. This is particularly important because of the complexity of

contextual interrelationships, which make any modeling intention error-prone.

3. Richness and quality of information: The quality of information captured by sensors varies

overtime and information provided by different kinds of sensors characterize information

delivered by a sensor varies over time, as well as the richness of information provided by

different kinds of sensors characterizing an entity in a ubiquitous computing environment

may differ. Thus, a context model appropriate for usage in ubiquitous computing should

inherently support quality and richness indication.

4. Incompleteness and ambiguity: The context model enable to deal with incompleteness

and ambiguity in the contextual information. This should be covered by the model, for

instance by interpolation of incomplete data on the instance level.

5. Level of formality: It is highly desirable that each participating party in ubiquitous

computing interaction shares the same interpretation of data exchanged and the meaning

behind it. For example, to perform the task “print documents on printer near me” means

to me.

6. Applicability to existing environments: From the implementation perspective, it is

important that a context model must be applicable within existing the infrastructure of

ubiquitous computing environments, e.g. a service framework such as Web Services.

19

•XV' 3708(

In [26], in the point of view of data structure, context modelling can be divided into the

following categories.

Key-value models: This approach is the simplest approach of context modelling which is

easier to manage and less error risk prone. However, it has a drawback if quality meta­

information or ambiguity is considered. Frequently used in distributed service frameworks

which the services itself are usually described with a list of simple attributes in a key-value

manner [27].

2. Markup scheme models: Taking the partial validation requirement into consideration

markup scheme models are the best which suit the requirement. There usually exists a

scheme definition and a set of validation tools which can be used for type checking,

for complex types. Its drawback is that incompleteness and ambiguity should be handled

proprietary on the application level.

3. Graphical models: This kind of approach is particularly applicable to derive an ER-model

[28]. UML is one example of a graphical model which can be used due to its generic

structure from it, which is very useful as structuring instrument for a relational database

in an information system based context management architecture [25].

4. Object oriented models: Common to object oriented context modeling approaches is the

intention to employ the main benefits of any object-oriented approach - namely

encapsulation and reusability to cover parts of the problems arising from the dynamics of

the context in ubiquitous environments. Applicability to existing object oriented

ubiquitous computing runtime environments is given, but has usually strong additional

requirements on the resources of the computing devices - requirements which often cannot
be fulfilled in ubiquitous computing systems [25].

5. Logic based models: A logic defines the conditions on which a concluding expression or

fact may be derived (a process known as reasoning or inference) from a set of other

expressions or facts. Logic based context models may be composed distributed, but partial

validation is difficult to maintain. Their level of formality is extremely high, but without

partial validation the specification of contextual knowledge within a logic based context
model is very error-prone [25].

6. Ontology based models: Ontologies enable the developer to specify concepts and

interrelations [29]. They are particularly suitable to project parts of the information

describing and being used in our daily life onto a data structure utilizable by computers.

Using ontologies provides a uniform way for specifying the model’s core concepts as well

as an arbitrary number of sub-concepts and facts, altogether enabling contextual

knowledge sharing and reuse in a ubiquitous computing system [28]. This contextual
knowledge is evaluated using ontology reasons.

1.

even

20

Table 2.1: Appropriateness indications of context modelling approaches [25]

Approach Distributed
Composition

Partial
Validation

Quality of
Information

Incompleteness Level of
Formality

Applicability

Key-Value
Models +
Markup
Scheme
Models

+ -H*

Graphical
Models

+ + ++
Object
Oriented
Models

+ + + + +

Logic
Based
Models
Ontology
Based
Models

+ + ++ +

Even though each modelling approach has its strengths and weaknesses, taking the

above evaluation into consideration it can be concluded that ontology based models provide

many features required for context awareness.

Taking the extensibility requirement of the solution framework into consideration,

although the framework can be extended for the developer to develop extensions for various

modelling approaches it would not enable the developers to overcome the above-mentioned

issues and challenges in pervasive computing which are invisibility, heterogeneity, scalability

and integration. For example, key-value models are poor in handling incompleteness and

ambiguity while graphical models are poor meeting the distributed composition requirement.

Hence as a context modelling approach for this framework ontology based models would meet
the requirement.

Data storage is another area in context process which extensibility can be adopted. To

store data according to Ruijn [30] there are three possible ways which are the file system,

database and cloud storage. Depending on the use case the architecture must focus on how to

guarantee fast access to the data anytime and anywhere. Databases are the best solution for

different purposes because they include access and privacy mechanisms. On the contrary

Cloud storage needs Internet access and data privacy is always a problem. However, Cloud

storage can suit to self-adaptive platforms.

fs°F\
§ libra, , _21
*

Wang et.al [31] has presented an ontology for context known as CONON for
awareness applications.

Movie QPevfce^>^y
-<dbeducedActivitv~I>Dinner

PPlayeT~CTScheduledActlvltyTl>ZT"-------------- ~—
1—k~~

XAnniverea^>

^Cookln^—*

' ' ' U
^Activity

"Cel I Phone"
mode

SL" vnli irm^
ntlli7e C^CompEntityJ^)

COutdoorSpacelocatedln ^M/eatherConri■g
[^LocationS

(^Person

Building Garden
longtifi »dry
latitude - Dooryard^>Room

temperature.
altitude winriowStattis

dorir^tati .
Corridorname noise! eve^

situation
oiidainStatu^h o me Art li re <«l

----age---- Z
CJndOOrSpace lighting

humidity

Upper Class Specific Class owLProperty rdfsrsubClassOf

CD CDLegend:

Figure 2.5: CONON ontology for context-aware applications [31]

According to Wand et.al [31] the entities Location, Person, Activity, and

Computational Entity are the most fundamental context for capturing the information about

the executing situation. In addition to that, this approach enables the developer to easily model

sub domains for different intelligent environments [31]. The upper ontology on CONON

consists of a more generic set of entities that can be used in any domain whereas the lower

ontology consists of a more domain specific entities which are inherited from the upper generic

ontology [31].

22

ContextEntitv

CompEntity Location <^PersofF"^> Activity
A "AC^Service^?

<XpplicatioiT>
>»

fc g>aS
=5 C

|—OndoorSpace> CPeducedAcivi^>-

<2 che dutedActivig>-DeviceO
Network

-CT Agent

Ih
IS?I 2S S i* >

Home-Domain Ontology

Office-Domain Ontology

owkClass rdfssubCIassOf —owliProperty

Figure 2.6: Domain-specific ontologies and upper ontologies in CONON [31]

Due to its ability to model intelligent environments in any domain to the framework

this ontology is selected for context modelling in perception.js.

2.2.3.2. Context reasoning

Although context can be represented using a context model while providing extra benefits

presented in the previous chapter, context models alone doesn’t have the ability to provide

reasoning features for context-aware systems. To address that issue different methods of

reasoning can be implemented in context-aware applications. According to B.Y Lim [32] The

following methods of reasoning can be implemented in a context-aware application;

• Rules: Rules are popular in domains such as activity recondition, adaptation, awareness,

monitoring, and location guides. It is the most popular approach used in context-aware

applications [32].

• Decision Trees: Which is a machine learning approach that learns a tree from a dataset

which decides on its output by deciding on a specific input feature at each node as it

traverses down and returns once it reaches a leaf node. This approach is popular in use

cases such as recognizing identity/ability, interruptibility, and mobility.

• Naive Bayes: Which is a probabilistic approach that applies Bayes theorem to model the

probability of the output of a system given the inputs which applies a naive assumption

23

that features are conditionally independent of one another. Although it has a low level of

accuracy training and runtime performance are fast. This can be used in domains such as

recognizing physical activity, domestic activity, and interruptibility.

• Hidden Markov Models (HMM): Which is a Bayesian probabilistic classifier that model

the probability of a sequence of hidden states given a sequence of observations (input

features with respect to time). First order Markov models assume that only the previous

state affects the next, and only the current state influences the current observation. This

method is used to model physical, domestic activity and several applications also combine

rules for higher level logic with classifiers for lower level recognition.

Taking the above methods into consideration and taking the ontology modeling approach

presented previously, the best suited approach for the solution framework is a rule based

approach. Rules can also be implemented using any programming language compared to other

methods. In addition, taking the performance factor of the framework into consideration, rules

are the best option. Other advantage of using rules is that, since ontologies are good at defining

the domain model of a given context, using rules with ontologies enable the developers to

easily separate the behavior from the domain model [33]. Hence this approach also provides

more maintainability in source code.

I

!
S

l

Hamadache et.al. [34] has presented a middleware known as SOCAM (Service-

Oriented Context-Aware Middleware) which uses OWL (Web Ontology Language)

ontologies to model the context, and SWRL (Semantic Web Rule Language) for context
processing. The rules fire a specific action according to the context change.

SOCAM also uses OWL to define our context ontologies for the following reasons [34]:

• much expressive compared to other ontology languages.

• has the capability to exchange and share context knowledge between different systems.
• OWL is a W3C standard.

Since Ontologies and rules are effective for reasoning, the for the solution framework

these methods can be adopted. In addition to that ontologies and rules are also works well with

the extensibility mechanisms that are implemented in the solution framework.

24

2.2.4. Context presentation

Context presentation is required after the context has been identified and required the

application to modify its behavior accordingly. Da et al. [21] presents three

features that context-aware applications may support which are;

1. Presentation of information and services to

2. Automatic execution of a service.

3- Tagging of context to information for later retrieval.

context aware

a user.

As mentioned in introduction to make proactivity or invisibility to be effective Adaptation

strategies can be implemented [1]. According to Satyanarayanan [10] there are three

alternative strategies for adaptation in Pervasive Computing;

1. A client can guide applications in changing their behavior so that they use less of a scarce

resource.

2. A client can ask the environment to guarantee a certain level of a resource.

3. A client can suggest a corrective action to the user.

According to Chefrour [35] there are three types of adaptations which are;

1. Reactive adaptation changes the behavior of the application according to the environment
changes due to due to context or user preference change.

2. Evaluative adaptation aims to extend the functionality of the application such as correcting

its errors, to increase its performance, and to provide QOS changes.

3. Adaptation for integration addresses the problem of integration incompatible services or

components such as different hardware or software interfaces, or different protocols. This

type of adaptation is done after any previously defined adaptation has been done for

example due to the execution of this adaptation, a component can no more communicate

with another one because they have different security protocol. In this case, the system

will launch an adaptation for integration.

25

Since the solution framework follows a context server approach, the context presenting

client will require to access the context that is in the context server. Baldauf [24] presents two

different ways which the client can access the information which are synchronous and

asynchronous. In the synchronous manner, the client is polling the server for changes via

remote method calls. In synchronous mode, the client pulls messages from the server. The

asynchronous mode works via subscriptions. In asynchronous mode whenever a change

the server pushes messages to the client.
occurs

Taking the synchronous and asynchronous paradigm further, Da et al. [21] presents three

methods which client can communicate with the context server which are;

1. Event based: Communicates through events which can be filtrated, set up timeouts

and can be classified by topics. Event-based mechanism decouples the communication

from the time-space and the control flow [21].

2. Tuple Space: allows communicating with shared memory similar to a black board

which clients poll the Tuple Space in intervals.

3. Connector based: allows communication with connectors which provide unified I/O

interfaces for components so applications components are not concerned by remote

communications.

In the solution framework when efficiency is taken into consideration event based

communication is the best suited method which can be adopted due to its asynchronous nature.

Synchronous communication imposes more overhead and it doesn’t provide real-time context

presentation features. Therefore, approaches of tuple space and connector based are the most
effective solutions for the solution framework.

Taking the communication application layer protocol into consideration different clients

may use different protocols a web based client may use a web socket based communication

mechanism, a mobile client may use a TCP based communication. Therefore, extensibility

must be focused on extending the framework with multiple application layer protocols.

26

2.3. Related Work

2.3.1. Context-aware frameworks

Currently most of the context-aware frameworks are built using the Java platform. In

the current implementations of Java frameworks do not use non-blocking I/O library such as

netty, the current frameworks built using Java would have a limitation of handling a higher

concurrency because integrating multiple sensors would require an application to be optimized

for 10 bound tasks which is not available as a built-in feature of Java. JavaScript on the other
hand has built in support for non-blocking 10.

Aware framework is one such framework written using Java which has its core feature

for data gathering, abstracting out higher-level context, and explain context [36]. This

framework also has extensibility features which allows the application to be extended using

plugins. The framework has built in data mining and machine learning techniques to abstract

out lower level sensor data to higher level context information [36]. Although it has good

context acquisition capabilities it doesn't have built in context modeling capabilities. However,
it has a support for multiple mobile platforms, and context server approach.

Ambient Dynamix is another context-aware framework written in Java which supports

developing web and mobile applications [37]. This framework also doesn't support the context

server approach. Ambient Dynamix also support plugins, and supports installing plugins on

demand. The plugins enable the developer to integrate various sensing mechanisms, and to

provide access to rich contextual information [37]. This framework also allows the developer

to express context data using Java instead of using XML format [37]. However, this framework

also doesn't provide built in context reasoning capabilities, and preprocessing capabilities.

Java Context Awareness Framework is another Java based service oriented,

distributed, event based system used for context awareness [38]. This framework also supports

plugins for context acquisition, and functionality for reasoning [38]. This framework provides

the developer to model the context using an object-oriented approach, also it enables the

developers to specify actuators to respond to contextual changes [38]. This framework doesn't

have any built-in machine learning capabilities; however, it provides the developer to

transform lower level context into higher level context.

27

Hydra introduces a middleware based approach for context-aware application which

consists of a SO A based framework for the application developers [39]. Hydra also consists

of a rule engine for inferencing context, a context acquisition component for acquiring

contextual data, and a component to create actuators [39]. Hydra is also extensible and

supports rule based configurations for collection, processing and combining contextual
information [39]. However, the only limitation is that it doesn't have any capabilities to be

ported to mobile and web browsers.

Currently, Hubiquitous is the only a JavaScript framework available for context

awareness. This framework is based on the actor model, and operates through passing

messages among actors [40]. This framework is can be scaled to bigger sizes, which an actor

group runs on containers. Each container runs as a separate node process [40]. When a sensor

is required to be integrated, the application developer should create a separate actor for each

sensor [40]. The advantage of this approach is that sensors can also be in a distributed

environment which makes the application more scalable. However, since it lacks context

modeling capabilities, and data transformation capabilities, later the application built using the

framework could face maintainability problems.

2.3.2. Context-aware systems

[41] Aura focuses on running a set of personal applications used by humans known as the

personal aura in different computation devices. It is a task oriented system which manages

user's tasks across all the devices smoothly in a context-aware fashion. Aura enables a user to

preserver continuity in his work when moving between different environments, and to adapt

to on-going computation of a environment. Aura consists of four major components: context

observer (collects context and send it to task and environment managers), task manager (also

called prism, four different kinds of changes: user moves to another environment,

environment, task, and context), environment manager (handles context suppliers and related

service), and context suppliers (provides context information).

Gaia [42] is a distributed context infrastructure uncertainty based reasoning. Ontologies are

used to represented context information. Gaia has employed a Prolog based probabilistic

reasoning framework. The architecture of Gaia consists of six key components: context

28

provider (data acquisition from or other data sources), context consumer (different
parties who are interest in context), context synthesizer (generate high-level context

information using raw low-level context), context provider lookup service (maintains a

detailed registry of context providers so the appropriate context providers can be found based

their capabilities when required), context history service (stores histoiy of context), and

ontology server (maintains different ontologies).

sensors

on

e-SENSE [43] enables ambient intelligence using wireless multi-sensor networks for making

context-rich information available to applications and services. e-SENSE combines body

sensor networks, object sensor networks, and environment sensor networks to capture context

in the IoT paradigm. The features required by context-aware IoT middleware solutions

identified as sensor data capturing, data pre-filtering, context abstraction data

integration, context extraction, rule engine, and adaptation.

are

source

COSMOS [44] is middleware that enables the processing of context information in ubiquitous

environments. COSMOS consists of three layers: context collector (collects information from

the sensors), context processing (derives high level information from raw sensor data), and

context adaptation (provides access to the processed context for the applications). In contrast

to the other context solutions, the components of COSMOS are context nodes. In COSMOS,

each piece of context information is defined as a context node. COSMOS can support any

number of context nodes which are organized into hierarchies. Context node is an

independently operated module that consists of its own activity manager, context processor,

context reasoner, context configurator, and message managers. Therefore, COSMOS follows

distributed architecture which increases the scalability of the middleware

Octopus [45] is an open-source, dynamically extensible system that supports data management

and fusion for IoT applications. Octopus develops middleware abstractions and programming

models for the IoT. It enables non-specialized developers to deploy sensors and applications

without detailed knowledge of the underlying technologies and network. Octopus is focused

on the smart home/office domain and its main component is solver. Solver is a module that

performs sensor data fusion operations. Solvers can be added and removed from the system at

any time based on requirements. Further solvers can be combined dynamically to build

complex operations.

29

DMS-CA [46] (Data Management System-Context Architecture) is based on smart building

domain. XML is used to define rules, contexts, and services. Further, an event driven rule

checking technique is used to reason context. Rules can be configured by mobile devices and

push them to the server to be used by the rule checking engine. Providing a mobile interface

to build rules and queries is important in a dynamic and mobile environment such as the IoT.

2.4. Software Reusability and Software Frameworks

The main quality attribute of a software framework is reusability which is a software

development strategy where the development process is geared to reusing existing software

[136 p-440]. Software reusability demands for lower software production and maintenance

cost, faster delivery of systems and increases software quality. Framework reusability

leverages the domain knowledge and prior effort of experienced developers to avoid re­

creating and re-validating common solutions to recurring application requirements and

software design challenges. Reuse of framework components can yield substantial

improvements in programmer productivity, as well as enhance the quality, performance,

reliability and interoperability of software. In addition to that it provides the following benefits

[136 p-441];

1. Increased dependability:

2. Reduced process risk

3. Effective use of specialists

4. Standards Compliance

5. Accelerated Development

According to Sommerville [136 p-450], object oriented development suggested that

objects were the most appropriate abstraction of reuse. However, since objects are more fine­

grained and too specialized for a particular application, software frameworks were introduced

by creating a higher level of abstraction in order to handle more coarse grained scenarios.

Sommerville [136 p-451] discusses three classes of framework.

30

1. System infrastructure framework - Support the development of system infrastructures

such as communications, user interfaces, and compilers.

2. Middleware integration frameworks - Consists of a set of standards and associated

object classes that support component communication and information exchange.

3. Enterprise application frameworks - Concerned with specific application domains

such as telecommunications or financial systems. These embed application domain

knowledge and support the development of end user applications.

The primary benefits of 00 application frameworks stem from the modularity, reusability,

extensibility, and inversion of control they provide to developers, as described below:

!

• Modularity: Frameworks enhance modularity by encapsulating volatile

implementation details behind stable interfaces.

• Reusability: The interfaces provided by the framework enables the reuse of generic

components that can be reapplied when creating new applications by avoiding re­

creating and re-validating common solutions.

• Extensibility: A framework enhances extensibility by providing explicit hook methods

that allow applications to extend its stable interfaces.

• Inversion of control: This architecture enables canonical application processing steps

to be customized by event handler objects that are invoked via the framework's

reactive dispatching mechanism. Inversion of control allows the framework (rather

than each application) to determine which set of application-specific methods to

invoke in response to external events.

i

j

2.4.1. Usability of frameworks

Taking the developer’s perspective into consideration, API usability will enable the

developers to effectively and efficiently use the solution framework in their context-aware

applications. As mentioned in the problem statement developers face issues due the

complexity of context-aware applications, increased development time and bug rate due to the

complexity. Therefore, simplicity is another area that must be taken into consideration. Even

though the solution framework simplifies the process of context-aware application

development by hiding the complexities of heterogeneity, performance, and its encapsulated

context awareness functionality, if the solution is not usable the developers would not yield

i

31

the best results of it. This section of the report aims to identify problematic areas that the

developers face when using APIs, and tactics that aims to solve such issues.

Pane et al. [48] had constructed a programming language known as HANDS that will
enable children to develop software which provides good points for usability which can be

adopted for the solution framework. Pane et al. [48] Further mentions that the von- Neumann

computation model which is the most commonly used computation model is an obstacle for

beginners because it is unfamiliar and has no real-world counterpart [49]. Therefore, usability

could be improved by providing a different model for the computation that is concrete and

familiar [50]. Taking that into consideration the solution framework should not expose much

technical details for the developer and should enable him to easily specify the context
acquisition, context processing and context presentation logic.

;

:
;

Cwalina and Abrams [51] describes the qualities of a well-designed framework from a

software engineering perspective and states that frameworks must adhere to quality attributes

such as performance, security reliability and dependency management. Because framework

provide reusable APIs which enables the developers to develop their applications absence of

quality attributes will result in poor quality software. Cwalina and Abrams [51] describes the

following quality attributes of a framework;

!

i

i
1;

Well-designed frameworks are simple: Frameworks should define its scope to avoid

pressure, feature creep, or to satisfy every little comer case scenario in the development

process.
Well-designed frameworks are expensive to design: Best framework designs are done by

the people who are solely responsible for its construction which require a special skill.

Well-designed frameworks are full of tradeoffs: Tradeoffs must be made focusing more

the problem the framework aims to solve as well as to understand the alternative

options, their benefits and drawbacks.

Well-designed frameworks borrow from the past: Appropriate research must be conducted

to identify proven designs and best practices in order to construct a solid design.

Well-designed frameworks are designed to evolve: Careful consideration can save from

degrading overtime, and not being able to preserve backward compatibility. When making

tradeoffs focus should be made to determine how the decision will affect the ability to

further evolve.
Well-designed frameworks are integrated: Integrates well with a large eco-system of

different development tools, programming languages, application models.

:
■

i
2.

3.i

on

4.

5.

6.

32

7. Well-designed frameworks are consistent: Most important factors affecting productivity.

Allows for transfer of knowledge between the parts developer is trying to learn. Enables

to quickly recognize which parts are truly unique and need special attention.

When designing the solution framework, the above factors must be taken as a guideline to

create a framework that is simple, robust, and effective.

s
;
i

When learning and using a framework Ko et al. [52] describes six barriers as follows.
Eliminating these barriers would increase the usability of the solution framework.;

!

i 1. Design barriers: Defined as cognitive difficulties of a programming problem, separate

from the notation used to represent a solution. This barrier occurs if the framework is

designed in a way that is too complicated or requires dealing with too much of technical

aspects. To overcome this barrier, the solution framework should be designed in a way

that enables the developer to focus more on context awareness logic rather than focusing

on technology.

2. Election barriers: Prevents a developer from finding the best suited interface to achieve a

particular behavior. These emerged when learners could not determine which

programming interfaces were capable of a particular behavior. To overcome this barrier,

the programming interfaces should be given meaningful names and should be well
documented.

3. Coordination Barriers: Prevents a developer from combining a programming interface

with a programming system to achieve complex behaviors. This barrier can be overcome

by the extensibility because it enables the developer to extend the solution framework by

using the programming systems’ language constructs.

4. Understanding barriers: are properties of a program’s external behavior (including

compile and run-time errors) that obscure what a program did or did not do at compile or

runtime. These emerged when learners could not evaluate their program’s behavior

relative to their expectations.

5. Use barriers: Are properties of a programming interface that obscure in what ways it can

be used, how to use it, and what effect such uses will have. To solve this issue proper

documentation should be available for the developer.

6. Information barriers: Prevents a developer form acquiring information about a program’s

internal behavior. In contrast to the approach of the solution framework which uses

JavaScript which is an interpreted language, compiled languages face this barrier. Because

:

i

i

!
i

.1

i

{
;
'

:
1
!

■

>

33

i

JavaScript is being used to develop the framework it enables the developer to acquire

information about the framework’s internal behavior.

Even though each barrier is presented individually those barriers interrelate with each other.

The following graph shows common path of failures learning Visual Basic [52];

38%(Selection } Use Information/ /

1 47°/ 24%.!

[Design Coordination } 60% r Understanding
i

Figure 2.7: Learning barriers for APIs and how they relate each other [52]

i

i

!

!
i

i

i
*

:

i
!

|
I

!

34

■

:

2.4.2. Architectural pattern for the framework

To provide the context acquisition, processing and presentation logic in the framework

which should be built with an architecture that supports the functionality, as well as its quality

attributes such as extensibility and usability which is relevant. The architectural pattern that is

selected to construct the framework is Sense/Compute/Control. According to Taylor et al. [53]

SCC application is one that interacts with the physical environment which is suited for

pervasive domains which makes this pattern applicable for the solution framework.

According to Cassou et al. [54] The SCC application pattern involves four layers;

:

5

i

• Sensors: Entities that retrieve information from the environment such as probes and

entities that store previously collected information from the environment (i.e. databases).

Sensors send information sensed from the environment to the context operator layer

through data sources. Sensors can both push data to context operators and respond to

context operator requests.

• Context operators: Refine (aggregate and interpret) the information given by the sensors.

Context operators can push data to other context operators and to control operators.

Context operators can also respond to requests from parent context operators.

• Control operators: Transform the information given by the context operators into orders

for the actuators.

• Actuators: Trigger actions on the environment. Sensors are proactive or reactive

components whereas context operators, control operators and actuators are always

reactive. These properties ensure that SCC applications are reactive to the environment

state that is, all computation is initiated by a publish/subscribe interaction with a sensor

.

i

i

i
i
:

;
i

;

!

■J

'

j
:

!
j

!

35

'

,

Sensor Sensor Sensor
1 2 3 4

Logic:
loop

Computer wad a*
compute control outputs
•endcomrotetosl

endloop

Actuator Actuator Actuator
A B C

Figure 2.8: Sense compute control architectural pattern [54]

!
Fitzpatrick et al. [55] present Sentient Object Model which shares similar

characteristics to SCC architectural pattern which is defined as a mobile, intelligent software

component that can sense its environment via sensors and react to sensed information via

actuators. Sentient objects are context-aware, aware of both their internal state and the state of

their surrounding local environment. Following figure illustrates a sentient object.
!

?tiQ»er\jtc Ce^r Jir.it 1&=

dDCO »tlOD

^Vntlvnt

Figure 2.9: Sentient object model architecture [55]

36

The sentient object model consists of the following components;

1* Sensor: an entity that produces software events in reaction to a real-world stimulus

detected by some world hardware device

2. Actuator: an entity that consumes software events, and reacts by attempting to change the

state of the real world in some way via some hardware device

3. Sentient object: an entity that can both consume and produce software events, and lies in

some control path between at least one sensor and one actuator

4. Inference: The knowledge base of an inference engine contains the knowledge required to

solve a certain problem, encoded as a set of production rules. The knowledge encoded in

such rules is generally captured from a human expert who can express his expertise in the

form of such rules.

!

;

i

i
I Taking the issues and challenges mentioned in pervasive computing which was mentioned

previously which are invisibility, integration, heterogeneity, and scalability sentient object

model effectively addresses this problem. Invisibility is implemented inside the sentient object

using the inference engine, integration occurs in producer and consumer end by

communicating with various sensors and actuators, and scalability is achieved by being able

to use one sentient object as a producer or consumer to another sentient object. With this

architecture extensibility can also be introduced that will enable to extend previously

mentioned areas such as extending sensors, communication protocols, data storage, and data

preprocessing mechanisms. In addition to that it supports asynchronous, event based

communication required for context presentation, and also can be used with ontologies in the

inference engine. Therefore, sentient object model meets the requirements for the solution

framework architecture.

|
;

■

i

\
■

.!
i
i

37

■

!

2.5. JavaScript and its Related Technologies

2.5.1. JavaScript programming paradigm

To develop the solution framework its implementation language which is
JavaScript must be evaluated to make the best use of its language features to meet its

requirements. Taking the programming paradigm into consideration JavaScript is an

imperative, dynamic and object-oriented language [56].

In contrast to other object-oriented languages like Java, CM, or C++ JavaScript
consists of a prototype-based object system which each object has a prototype field which

refers to another object. If a new object is to be created it clones its prototype by calling its

function as the constructor. Property lookup involves searching the current object, then its

parent, and its parent until the property is found. This contrast with a class-based object

orientation of the above mentioned languages. In addition to that in JavaScript and object can

be represented in JSON literal.

i

The JavaScript object system is extremely flexible. As a result, it is difficult to

constrain the behavior of any given object. For example, it is possible to modify the contents

of any prototype at any time or to replace a prototype field altogether. This characteristic

makes JavaScript a dynamic language.
i

Taking the imperative characteristic into consideration JavaScript shares the

same control structures such as if, for, while that are in the above mentioned programming

languages. JavaScript consists of only 5 data types which are String, Number, Boolean, Array

and Object.
!

2.5.2. JavaScript design patterns

To provide the functionality of the framework in terms of functionality,

reusability, extensibility and API usability design patterns can be adopted. However, since

JavaScript follows a prototype based object orientation paradigm design patterns that are

designed for class based object orientation must be implemented by taking that into

consideration. The following JavaScript design patterns can be adopted in order to meet the

above mentioned criteria of the framework;

38

2.5.2.1. Closure

The objective of a closure is to define private variables in order provide encapsulation property

of object-orientation. Since JavaScript defines objects as functions, a function can return an

object which exposes public members while private members can be kept within the function

[57]. This pattern is known as a closure. In our solution framework closures can be used to

create various components that encapsulates various functionality and connectors can be

defined as public methods. In addition to that this approach will enable to structure the code

in the solution framework.

2.5.2.2. Callback

This pattern enables to deal with discontinuous events. Since asynchronous communication is

used intensively for scenarios such as responding to contextual changes, and to collect sensor

data [57]. This approach enables to implement the sentient object architecture in JavaScript.

2.5.2.3. Cascade

If a method returns the same object which the method is being called, the cascade pattern can

be implemented. In a cascade many methods on the same object is being called in a sequence

in a single statement [57]. Cascade pattern enables to increase API usability by making it easier

to use the framework by enabling them to specify the context acquisition logic, define

ontologies, and to define context presentation logic. This approach also eliminates some of the

previously mentioned API usability barriers such as design and election. In addition to that the

developers could focus on simplicity and in the meantime, they could focus more on the

context awareness logic. An example of the cascade pattern is as follows;

getElement('myBoxDiv').move(350,150).width(100).height(100).color('red').border(T0p

x outset').padding('4px').appendText("Please stand by").

2.5.2.4. Observer

This pattern is used to handle events which is also known as the subscriber/publish pattern

which the subscriber is known as the observer while the object which is being observed for the

event is called publisher or the subject [58]. This pattern can be used for context presentation

39

because the client or the publisher
accordingly.

subscribe to a particular context change and respondcan

2.5.2.5. Mediator

This pattern enables to loosely couple many objects as well as to improve the maintenance of

the code by defining a mediator object that prevents objects from communicating with each

other directly [58]. When one of the object change its state, it notifies the mediator. Taking the

solution framework into consideration this pattern can be used to construct the sentient object
which will consist of the context model, which will be used for reasoning by responding to

events which occur from the environment.

2.5.3. JavaScript Development Stack
2.5.3.1. Node.js

Node.js is a platform that is built on Chrome's V8 JavaScript runtime for

building scalable network applications [59]. Node.js uses an event-driven, non-blocking I/O

model that makes it lightweight and efficient, which makes it perfect for distributed and real­

time applications which meets our criteria of the solution framework.

The advantage of non-blocking I/O in Node.js is that it enables to handle large

amounts of concurrency [60]. In traditional model of concurrency, a new thread is created to

address the issue of blocking one thread when it waits for I/O, the drawback of this approach

is that due to the resource constraint threads cannot be created for every connection. Node.JS

addresses this problem by providing an asynchronous model to prevent blocking I/O

operations.

Although high equipped servers with high-end hardware are available with the

traditional model of concurrency the system would not meet the real-time performance

requirements [59]. In addition to that Node.JS provides following benefits;

• Asynchronous - JavaScript is naturally asynchronous with event model well suited for

building highly scalable web applications through callbacks.

• Less Learning curve - A huge base of developers is already familiar with both JavaScript

and asynchronous programming from years, developing JavaScript in web browsers

40

because the client or the publisher can subscribe to a particular context change and respond

accordingly.

2.5.2.5. Mediator

This pattern enables to loosely couple many objects as well as to improve the maintenance of

the code by defining a mediator object that prevents objects from communicating with each

other directly [58]. When one of the object change its state, it notifies the mediator. Taking the

solution framework into consideration this pattern can be used to construct the sentient object

which will consist of the context model, which will be used for reasoning by responding to

events which occur from the environment.

:

!

:

2.5.3. JavaScript Development Stack
2.5.3.1. Node.jsi

I

Node.js is a platform that is built on Chrome's V8 JavaScript runtime for

building scalable network applications [59]. Node.js uses an event-driven, non-blocking I/O

model that makes it lightweight and efficient, which makes it perfect for distributed and real­

time applications which meets our criteria of the solution framework.

I

The advantage of non-blocking I/O in Node.js is that it enables to handle large

amounts of concurrency [60]. In traditional model of concurrency, a new thread is created to

address the issue of blocking one thread when it waits for I/O, the drawback of this approach

is that due to the resource constraint threads cannot be created for every connection. Node.JS

addresses this problem by providing an asynchronous model to prevent blocking I/O

operations.

Although high equipped servers with high-end hardware are available with the

traditional model of concurrency the system would not meet the real-time performance

requirements [59]. In addition to that Node.JS provides following benefits;

• Asynchronous - JavaScript is naturally asynchronous with event model well suited for

building highly scalable web applications through callbacks.

• Less Learning curve - A huge base of developers is already familiar with both JavaScript

and asynchronous programming from years, developing JavaScript in web browsers

40

Fast Script engine - Huge advances in execution speed has made it practical to write

server-side software entirely in JavaScript.

Code Transformation - JavaScript is a compilation target and there

that have compiled to it already.

Support for NoSQL - JavaScript is the language used in various NoSQL databases (i.e.

CouchDB, MongoDB) so interfacing with them is a natural fit.

are many languages

Node.js Server

Request

Request

Requestsm
Requests

I
*

Thread Processing Thread Waiting

Figure 2.10: Non-blocking I/O feature of Node.JS [59]

2.53.2. Apache Cordova

Apache Cordova enables a developer to develop his mobile applications using HTML

and JavaScript and cross-compile to any mobile platform such as Android, or Windows

Mobile. Apache Cordova is also known as PhoneGap. Apache Cordova consists of interfaces

that allows the mobile app developer to access native device function such as the camera or

accelerometer from JavaScript [61]. Apps built using Cordova are still packaged as apps using

the platform SDKs, and can be made available for installation from each device's app store.

The following figure illustrates the architecture of Apache Cordova;

41

PhoneGap Application

MHj

r - : PhoneGap PfcuHn* \
I | Geotocation [4JavaScript :
H[Resources }Camera Meda

1 Compa, [[*
A?m j-i NotMcaiton 1Contacts

}.[Storage [Fite
i,-')

Custom Ptop-tos |

wyW
•̂ r—
\:
§

Services Sensors

Input Graphics

Figure 2.11: PhoneGap architecture [61]

Following figure illustrates the platform support for Apache Cordova;

»p8FIrefoxamazon-
android blackberry10 los Obuntn (Windows (S.0,8.1, tixen

Phone 8) Phone S.1)
fireos OS

Platform APIs

Accelerometer-'j ” /

c^wmwmmsammmwmtwanm
mHUUHKI X viBHi

Compass,: -J

Connection‘s •/ V J K . / _ V V

contacts-:' ;y - £.'v. ' ./> . ✓

* < < *
✓ ' Do not ✓ *0onot

support
MiuvuiVis nor

abort

Capture V V 1: x
X /(3GS+-) V ;

/am
P*rtu9y X

Even.1 v:i!;;y::;i! /mnFile' ✓ . :
✓ 'Do not

support
onprogrssa nor

abort

support
onpogross not

j V XX XFile Transfer'
•. !-!L.------

abort

••V ’’ jv. :i V y . ;; v ✓ vGeolocution

^ X

V X

/v ; *✓ xGlobalization"

InAppBiowsor

Media-

Notification*

V / ^■i ✓
V ✓

/ 'Tvv i
>:;;;;y;-jypag|x

? V

USES -j
.:I ✓Splasliscrocn

>-J ✓Storage ;
iifl / XVibration

Figure 2.12: Platform support for Apache Cordova [61]

42

i

1:

CHAPTER 3
DESIGN AND IMPLEMENTATION

t

I!

t

!

I

43

i

3.1. Introduction

The objectives of this chapter
detailed design of the framework. The requirements are based on the concepts of context

awareness, extensibility, portability and usability of the framework as presented in the
literature review.

to present the requirements, architecture, andare

!

The first section of the chapter presents the requirements that are identified in the

framework which includes functional and nun functional requirements such as portability,

extensibility and usability. In addition, it presents the functionalities that are implemented in

the framework.

i

!
i

Next section focuses on the architectural design based on the requirements presented

in the previous section. The section also presents the design decisions behind the architecture.

In addition to that it also presents an implementation of the architectural baseline which

consists of various components that facilitates the development of the framework. The detailed

design is also presented in the following section which includes more fine-grained components

that are available in the framework. The section also presents various mechanisms that are

implemented to achieve the functional and non-functional requirements of the framework.

;
!
i

I

Finally, this chapter presents the coding syntaxes that are available for the developer

that provides the functionality presented in the beginning of the chapter.i

i

i 3.2. Requirement Analysis
3.2.1. Requirements of the framework

Taking the problem background of this research into consideration the framework should

consists of the following scope;

!
• The solution framework should consist a framework with a mechanism for the

developers to easily map real world entities into the framework, define rules for

inferencing context, and to integrate technical components such as sensors, transport

mechanisms, and storage mechanisms as extension.

• The framework should not include of any pre-built extension.

44

i

1

The framework should not implement any domain specific logic.

The framework should implement the ‘invisibility’ characteristic of pervasive

computing.

In addition to that to make the framework usable it should implement the characteristic

effective use of smart spaces’ in context awareness, and to make the framework

capable of integrating with various sensing mechanisms the characteristic

‘heterogeneity’ should be implemented.

i

i
3
i

i

:
i

In order to implement the framework within the above scope, the framework should

consist of the following functional and non-functional requirements;
!
;

;
I

Functional Requirements!

:
0 • The framework should enable the developers to model real world entities using

ontologies.

• The framework should enable the developers to specify rules to inference context.

• The framework should enable the developers to map sensors to ontologies.

• The framework should enable the developers to respond to contextual changes.

• The framework should enable the developers to preprocess raw sensing information
in to higher level contextual information.

• The framework should allow the developers to integrate various technologies (i.e.
sensors, transport mechanisms, and storage mechanisms) through extensions.

:
;!

i
‘

i

\

S
i

! Non-Functional Requirements

i

Portability

• The framework should be portable among heterogeneous platforms such as node.js,
apache Cordova, and the web browser.

Usability

• The interfaces provided by the framework should be consistent, and meaningful.

• The framework should be easy to learn by the developers.

45

:
i

The framework should reduce the effort

acquisition, context
applications.

for the developers to develop context
process, and context presentation mechanisms for their

Performance

• The framework should be optimized for I/O bound tasks to make it capable of

integrating with multiple sensors.

• The framework should be able to handle a higher concurrency for multiple users and

sensors.
I

I

!
i Maintainability
i

• The developers should be able to monitor the internal workings of the framework.

• The developers should be able to apply industry standard patterns and practices such

as SOLID principles with the framework.
!

i Extensibility

The framework should enable the developer to develop extensions for sensors,
transport mechanisms, and storage mechanisms.

The framework should enable the developers to integrate extensions developed by

other developers.

The framework should enable the developers to loosely couple business logic and
technical components.

i

::

;

46

3.2.2. Use case scenarios

Since the end of perception.js
applications the functionality that the framework should provide features for the deveiope

address the previously described factors,

functionality of the framework;

user developers who develop context-aware

rs to
The following use case diagram describes the

are

i

!

m -
—lel ^

j

I

.

':

|
;
1

; Developer
{

:
I

£■£
!

C;
i

I
i

Figure 3.1: Use case diagram of Perception.js::

i

Define context model: Enables the developers to define and model the context using

ontologies.
Define Rules: Enables the developers to define rules for the ontologies in order to deduce

contexts which can be used for context presentation.
Map Sensors: Enables the developer to integrate sensors to the framework as extensions

and map such extensions to the ontology.
Map Actuators: Enables the developer to integrate actuators and map such actuators to

the ontology.
i

47

:

1

• Map Transform Protocols: Enables the developer to integrate transport protocols to
communicate between client and context servers and map such extensions to ontologies.
Map Storage Extensions: Enables the developer to integrate storage mechanisms to

store contextual information and map such extensions to ontologies.
• Preprocess Information: Enables the developer to preprocess the information obtained

from the sensors in order to handle sensor imperfections.

i

3.3. Architectural Design

3.2.1. Architectural considerations

In order to fulfill the previously mentioned functionalities and goals, this chapter is
focused on creating a comprehensive architecture that satisfies the core concepts of context

awareness. As mentioned in literature review the reference architecture selected for this

framework is the sentient object model which can address requirements related to the core

functionalities of context awareness. Since the sentient object model can interact with sensors,

process with its internal inferencing engine, and respond to contextual changes using actuators

this suits well for the perception.js framework. In addition to that this architecture can be used

to communicate between more sentient objects and distribute the context acquisition logic and

processing logics. However, to handle the extensibility mechanisms of the framework the

layered architecture is also used to enhance the sentient object model because it aims to

identify the areas which can be extended using plug ins. The resulting architecture is a hybrid

of sentient object model and the layered architecture which is illustrated in the following

diagram.

i

i

t
;

■

1

!

;

O'
Actuator 1

!

Actuator 2m hRules

Ontology

rextension Manager H,;» _

Figure 3.2: Architecture of Perception.js

48

;

:

i
I

1 A single hybrid sentient object in perception.js consist of the following components;

• Actuator Manager which will trigger related events based on contextual changes.

Ontology Manager which enables the developer to model the context and repr
ontology

• Rule Manager which will define rules for various entities in the context model which

enables to deduce a context when a set of rules are satisfied.

• Extension Manager which enables integrating and bootstrapping of extensions.

• Sensor Manager which instantiates sensors of a specific sensor plug-in type and map such

instances to ontologies.

• Transport Manager which enables to communicate between sentient objects and map such

transport extensions to ontologies.

• Storage Manager which will store contextual information in every value update of a

particular ontology property.

;;

esent as an;

;

.

1

i
When a developer develops an application using perception.js he could transform his

application to a sentient object. First the framework enables the developer to define and model

the context as an ontology which can be done using the Ontology Manager, and define the

rules using the Rule Manager which determines the rules on how to respond to various contexts.

Next the developer could integrate sensors using the Sensor Manager and map those sensors

to various properties in the ontology class. Finally, the developer could specify how to respond

to contextual changes. If the developer prefers to use a context server approach he could

integrate another sentient object using the Transport Manager.

i

I
;;

i

1

i
i
;

When the developer uses the above components to develop his application,

perception.js represents its internal information to the following object-oriented model. This

represents a conceptual model when a developer models his context for the application,

perception.js uses the following internal representation to keep his application logic.

49

:
;

: Expression Tree

Ontology
Model

o o..* o..»Ontology Class

1i
l

Rule

Ontology
Property

:

0..* Sensori

o..*

hoExtension Transport

.

Storage

■

1

Figure 3.3: Internal representations of Perception.js!
?

1 Once the ontology, its classes and its properties are defined using the Ontology

Manager, it will create an instance of Ontology Model. When the rules are defined using the

Rule Manager it will map properties of ontologies to Expression Trees. In addition to that each

extension can be mapped to a property of an ontology. Sensors extensions update the values

of properties of ontologies, whereas storage extensions stores data when a value of a mapped

property changes, and the transport extension can be configured to transport data if a value of

an ontology property changes or update an ontology property of it receives values.

i

i
i
!
:

:

:
1

50

:

i

The following diagram illustrates the detailed d

and the
esign combining the internal representation

i components of the architecture;

Ontology
Model

I 1

i 0..*

Ontology
Class

1i
0..*

0..*Actuator
Manager

0..*0 Ontology
Property

!

0

0..* 0 0 0

Extension
Manager

0..*o Sensor
Manager

Transport
Manager

Storage
Manager

Extensioni

A o 0 0

0..* 0..* 0..*

Sensor
Extension

!■

Transport
Extension

Storage
Extension

!

j Figure 3.4: Class diagram of Perception.js
;

I

i

i

!

!

:
i

!

51

!

3.2.2. Implementation of the helper functions

itate the development of the core functionalities of the framework a collection

of helper functions was developed for the framework

were implemented
. As a result, the following components

as JavaScript objects. Since JavaScript uses prototype based object
orientation which doesn’t provide classes for the developers, as an alternative a function can

used as class, its body is treated as a constructor, and its returning object is used to represent
public properties [58].

Helper

The helper JavaScript object consists of reusable libraiy functions that manipulates JavaScript

programming features to make the development more convenient. This object consists of the

following methods;
:

i
i

■ FindByField: given a key and value, returns the first object in an array that satisfies

the condition key=value

■ DefaultByField: given a key, a value, and a default value, returns the first object in

an array that satisfies the condition key=value, or return the default value if no

objects are found.

■ NewAsyncIterator: creates a new instance of async iterator class

:

!

:
'

Async Iterator

This JavaScript object enables the developer to iterate through an array and perform a custom

defined operation in each iteration which is similar to an asynchronous version of the foreach

loop.

ii

i

Logger

Enables the developer to add debugging logs for the application which enables the developer

to keep log traces of internal working of perception.js.

52

i

;
;

i
SM

Event Manager

As mentioned in Literature review, perception.js uses event driven architecture to coordinate
between sensors and actuators, the EventManager object implements handles all the

p eption.js framework. EventManager object implements the observer pattern which

uses a pub/sub style event management.

I
; events in

:

Configuration Manager

Configuration Manager enables the framework to store configurations for each component, or

extension (i.e. sensors, transport protocols, or storage mechanisms). The application developer
could use this class to manage the configuration in the application level.

■

!

I

|

3.4. Detailed Design and Implementation
3.4.1. PortabilityM

iII
j

Perception.js is capable of being embedding in multiple execution environments such

as a web browser, a mobile application, or a node.js server. Since a context-aware application

would require running in multiple platforms coding in different languages or platforms is a

counterproductive approach when developer’s perspective is taken into consideration. For

example, web and mobile platforms would provide good sensing capabilities while node.js

provide good context processing capabilities in the backend. Taking this fact into

consideration perception.js framework was written as a single JavaScript file that can be ported

among different platforms which eliminates the need to using multiple technologies for

development. As a result, the development complexity is reduced.

I

!

!

i

!
:
;

Since the framework codebase is written in a single JavaScript file, in runtime the

framework requires to identify its execution environment when initializing. The execution

environment is identified in the following ways,

:
t

1 In node.js the variable 'module' is available in runtime, if it's available perception.js

identifies the execution environment as node.js.

2. In web browser, the variable ‘document.URL’ is available.

3. If any of the above conditions

environment as Apache Cordova.

are not satisfied perception.js identifies its execution

53

i

3.4.2. Bootstrapping process

The bootstrapping
framework and its extensions when the application completes loading. In perceptions each

implemented in a separate file. In addition to that perception.js can be deployed

ifferent platforms such as node.js, apache Cordova, and in the web browser, for different

platform, different types of bootstrapping mechanisms are required.

process in perception.js framework is used to initialize the

i

i

;

:
i

I In the web browser, perception.js is imported through the script tag in a particular web

page. Similarly, the extensions of perception.js are required to be imported using the script

tags. When perception.js is loaded in a web page it creates a top-level variable in DOM (in

window object) known as perception. When each plug in is imported through the script tag it

will use the top level ‘perception’ object’s register method to integrate with perception.js. The

same bootstrapping approach is used in when perception.js is used by a mobile application that
runs on Apache Cordova.

;

;

i

:
I
:
I
! In node.js the framework uses a different approach, node.js has the ability to keep

modules a separate file which can be imported using a method known as 'require'. This

approach is known as CommonJs module format. In the bootstrap process for node.js the

framework uses that feature to import the module, once it's imported it will register in

perception.js framework.

:

:
:
i!
I

:

:

54

.

i

3.4.3. Extensibility

;!
As mentioned in literature review, perception.js uses extensibility to address the

pervasive computing which benefits a context-aware application because it
enables the developer to extend the framework with

heterogeneity in
i

multiple technologies. In addition to that

can be extended usingthe layered architecture model was selected to identify the areas that;
extensions, which are sensors, storage, and transport protocols.

i

i

i ..f- I
Sensor

Extension1)
I sensor.js
;

■■

raa — - •• c -1■'-T4:
Transport
Extension

i Transport
Extension j - . -i .i

1
! ■i.'.

transport.js ..•-—a;

Storage
Extension

storage.js

i
j
i Figure 3.5: Integrating extensions:

when each extension calls the register method in the Extension Manager JavaScript

object which handles the lifecycle of each extension. Once each extension is registered, each

extension is allocated to its relevant JavaScript controller object. This way sensor extensions

are allocated to the SensorManager object, storage extensions are allocated to StorageManager

object, and transport extensions are allocated to TransportManager object.

55

3.4.2.1. Writing custom extensions

o write a custom extension for Perceptions framework, first the developer must

de to register the extension in perceptions. As mentioned previously in node.js

the developer can use the ‘perception’ object that is available in the ‘global’ object whereas in

web/mobile the developer could use the ‘perception’ object in available in the ‘

For the registration process the developer must specify the following fields in the input object

required for the register Q method;

m
i
i
i

window’ object.i

!
!

• category: transport/sensor/or storage which is based on the type of the extension.

• class, represents a unique name that can be used to instantiate extensions based on the

class name. For example, a sensor instance named ‘OutdoorTemperatureSensor’ can be

instantiated using the ‘TempratureSensor’ class.

• create (): This function should handle the creation logic of the extension. Every time

when an extension is instantiated, this function is called.

• name, description, author: these fields consists of additional information which doesn't
contribute to the functionality but to keep information about the extension.

1
!
|

iI!
1

•: i
! As mentioned previously, the create 0 method is used to instantiate extensions. When

an extension is instantiated as an object, the extension instance should consist of the following

functions;

im
'
■

i

• play (): Activates an instance of the extension. For example, sensor extensions will start

getting inputs, transport extensions would open a port or establish connections, whereas

storage sensors would create a connection to a database.

• pause 0: Temporarily stop the activity of the extension.

• stop 0: Destroys the instance of the extension.
• onPlay (): An event listener that enables the outside object to track if the sensor has

been started.
• onPause (): An event listener that enables the outside object to track if the sensor has

been paused:
• onStop (): An event listener that enables the outside object to track if the sensor has

been stopped.

i
;
I

j

56

■

;

For sensor extensions, the instance should
consist of the following callback method;

'

nResult(). An event listener that enables the outside objects to obtain inputs from the

sensor extension.

For transport extensions, the instance should consist of the following fields;
li

:
• onRecieve Q. An event listener that is used to obtain the received data for the transport

extension.

• send (): Used to send information for the client or the
• type: server/or client

server

!1
H 3.4.2.2. Messaging format for transport extensions

I
■ ;

To communicate between different sentient objects, perception.js uses a specific

messaging format in transport extensions. This approach is useful when the sensor information

is gathered from the client side and being sent to the context server for processing, the message

format is JSON and consists of the following fields;:m
fiillname: consists of the full name of the ontology class or the property

value: value that is required to be set in an ontology property

timeout: If the information requires to be expired after a particular value, timeout field

can be used.
revert: Optionally this field is used to once the timeout is reached, and requires the value

of the ontology property to be changed back to a specific value

57

:

3.4.4. Context representation

rception.js enables the developer to model the context through the framework. As

identified in literature review the most effective approach is to

t because ontologies also make it easier for the developer to map real world to the

framework. Therefore, ontologies

Wang et. al [31] has presented an ontology that can be used for context-aware applications

known as CONON.

use ontologies to model the

selected to model the context using the framework.were

In addition to that this approach also enables the developer to easily map extension

instances to elements of the ontology model (i.e. a temperature sensor instance can be mapped

to update the temperature field of the room class).

Movie QDevice^-51*^
^volnm^

t5VDPlayer>

5.
~<ZTDeducedActivitv^Z>C3>inner^>-

Shower -<TScheduledAct1vit7^>
(^Cooking^— II Phone

-CPartQ
nni vers ary

mode
2 vnlumf^

^ Activity^ C_C°mpEntttyJ>irtlllyp

^tartTime
^nriTime c

latherCond

LocationTO
O ~~C^Building2> Gardencneai 01 Inngtiturif^X

latitude ^ \
temperature^

altitude |
nolsel eve^

DooryarriJ^Room
Person^ windows tatus ^

rtferStatiK w
eurtalnStatn*^

Corridor

•situation ^

age ^ 2
C3ndoorSpaceZ!> lighting

humidity

Specific Class owi: Property rdfsisubClassOfUpper Class
Legend:

Figure 3.6: Default ontology in Perception.js [31]

58

3.4.5. Context processing
!

When a context model is available as an ontology to deduce the context, a mechanism

should be available in the framework for the developer to specify rules. From the coding

p rspective, the RuleManager JavaScript object serves this purpose. In the code, a single rule

can be specified in a method chaining mechanism, which the last method should consist of the

action that must be taken if all the rules in the chain are satisfied.

!

:

;:
i Once the rules are defined by the developer internally perception.js

expression trees based on the context model. The following example illustrates such a

scenario. In the following ontology, the TV is located in a particular indoor location and the

volume of the TV is obtained by Sensor A (assuming that the TV is a smart TV that could

provide its volume through an API), and the outdoor flame measured by Sensor B, and

temperature by Sensor A. Suppose a fire has occurred outdoor while the volume of the TV is

high the TV can be turned off to avoid the distraction of the person watching the TV. Once

that rule is set using the RuleManager perception.js internally creates the following expression

tree. The sensor instance is mapped to the expression trees relevant node when the sensor

updates its information, the relevant node (The letters A,B,C in the expression tree represent

the sensors mapped to the ontology) in the expression tree is notified and the whole expression

tree is evaluated to check if the context logic is satisfied.

creates one or
more

:

i
;

i

!

i

{

;
j

i

59

Located In
v'i

Volume <- Sensor A

NeededAction <- Actuator A
Outdoer^

Flame <- Sensor B

Temperature <- Sensor C

(Outdoor Temperature High) A (Outdoor Flame High) A (TV Volume High) -> (TV NeededAction TumOff)

.v (TV Volume ?)

.

(Outdoor Temperature ?) (Outdoor Flame ?)

i

!

Figure 3.7: Internal representation of contexts using expression trees

When the expression tree is evaluated to true (all the nodes are evaluated to true), a

value of an ontology property is updated. In perception.js an actuator can be set to monitor the

value of an ontology property. In the above example, the Actuator A monitors the

‘NeededAction’ property of the TV class. When its value is set to off, the relevant actuator is

triggered which will turn off the TV. This mechanism is illustrated in the following figure;

i
j

i
;

60

i

(TV Volume High)

.
;

(Outdoor Temperature High) (Outdoor Flame High)
!

Update the Ontology Property,
(TV NeededAction Off)

I

i

♦ Volume <-Sensor A

I NeededAction = Off

Trigger Actuator Df if
(TV NeededAction Off)im

j

Figure 3.8: How actuators are triggered

i

Since ontologies consist of subclasses, and if a rule is created for a parent class which

has two sub classes it will spawn two expression trees for each sub class. This approach enables

two sensor instances to be mapped for each expression tree. When sensors provide information,

the expression tree will evaluate once the mapped ontology is changed, and once the

expression tree is evaluated to true it will trigger the required action.

i

The above mechanism is illustrated in the following example which modifies the

previous example by replacing the TV ontology class by a more generic ‘device’ class which

is located in the indoor space. Its subclasses TV, and Radio are monitored for their statuses

using sensors (assuming the devices are smart devices). In the situation of an outdoor fire when

i

:

61

*

? :

:

the temperature is high and flame is high and when all the indoor devices

devtces will turn off (Actuator A and B will be triggered).

■

are turned on, the

H ;

1
In the following example since the rule is applied for the generic ‘device’ class,

create two expression trees for each sub class. In the left
expression tree which checks for the status of the TV uses Sensor C to obtain the status of the

In the right expression tree which checks for the status of the Radio

obtain the status of the Radio. When the left expression tree is evaluated it will trigger the

Actuator A which will turn off the TV whereas when the right expression tree

will trigger the Actuator B which will turn off the Radio.

■

;
perception.js framework willi

i.
TV. uses Sensor D to

’

is evaluated it

i: Located In

;
Flame <- Sensor B Status <- Sensor C Status <- Sensor D

NeededAction NeededActionTemperature <- Sensor A

(Outdoor Temperature High) A (Outdoor Flame High) A (Device Status On) -> (Device NeededAction TumOff)

i

(TV Status?) W fP

(Outdoor Temperature ?) (Outdoor Flame ?)

;

(Radio Status ?)

(Outdoor Flame ?)(Outdoor Temperature ?)

Figure 3.9: How expression trees are created for subclasses

62

i

i
■;

;
!

3.4.5.1. Internal Implementation of Context Processing

Internal Representation of the context

:

3.4.5.I.I. model■m

;

:

i
' ' |

:

To represent the context internally the following three JavaScript objects are used in
perception.js;

i
j Ontology Manager

The ontology Manager enables the developer to model the context based on the CONON

ontology and enables the developer to lookup for any class available in the ontology. Since

CONON ontology includes default classes, the Ontology Manager class will create a default

ontology when the framework initializes. This object keeps its ontology classes in an object

known as classes which makes it easier to look up for any class available in the ontology.

ii
I;
i
!
;

"i
i1
i

Ii
i OntologyClass'
!

This object represents an ontology class that is available in the ontology. This object consists

of methods to create subclasses or create properties of an ontology class. When a subclass is

created using its subclass () method, it creates a new instance of Ontology class and adds it to

the 'classes' object in Ontology Manager class and returns the new instance. In addition to that

for the developers to easily use the created subclasses a new field is created in the ontology

class. Similarly, when a property is created a new instance of OntologyProperty is created and

appended. The naming convention for

!
!
1;

!
;

!

;
i
i

OntologyProperty

Ontology property class represents the properties an ontology class consist of. This class

consists of methods that enable the developer to retrieve, or change the value of an ontology

property. In addition to that this consists of a callback method which is used by expression

trees to identify whether the value of the property has been changed by a sensor input.

§§

Scheduler

Since contextual information has a timeliness property which ensures that contextual

information is valid only for a particular amount of time, when setting a value for an ontology

property an expiry time could be set in order to ensure that information is valid for a particular

63

1
'

ount of time, the Scheduler class provides fe

property and expire its value and

am
atures to set a value of a particular ontology

revert to a defined value after a specific amount of time.
5

I

3.4.5.I.2. Internal Representation of context processing

'
)

RuleManager

This JavaScript object enables the developer to specify rules that can be used for inferencing

purposes to identify the required action to be taken for a particular context, this class consists

of methods to use logical operators such as 'and', and ‘of. The rules can be specified in a

method chain in JavaScript. When the developer creates a single rule set, initially an

expression tree is created, and as the developer keeps on adding rules the expression tree will

get expanded or cloned depending on the ontology classes a developer would use. The last

method in the method chain should consist of a 'then' method which will consist of the required

action a use should take in order to respond to the contextual change if all the rules in the chain

are satisfied.

i

■

i

|
■

i
,!

i; ExpressionTreeI

This class is used to represent an instance of an expression tree. This class consists of methods

that enables to add binary expressions, to clone the same expression tree to an identical one,

and callback methods that will enable the developer to identity whether the expression tree

has been evaluated to true.

!

i

\

i BinaryExpression

The BinaryExpression object consists of a binary node in an expression tree which has a logical

operator (i.e. andJor/not), and left and right child nodes. Each child node could consist of either

a unary operator or a binary operator. This consists of methods to evaluate a binary expression,

clone the same expression object, and to evaluate whether the binary expression is set to true.

When the binary expression is being evaluated, it will evaluate all its child nodes to check

whether the condition satisfies to true. In addition to that each expression tree has its root node

as a binary expression.

!
!

t

!

64

:
i

!

i

UnaryExpression

This object represents a unary expression which consi

This has callback method to trigger if its value has been changed. The
lue of a unary expression object is always gets its input from an ontology property object.

sts of a single value. This is often a child
node of a binary tree.3

i
i

i

3.4.7. Context acquisition and presentation!
;

As mentioned previously the sensor extensions are responsible of acquiring contextual
information. Once the context is modelled using an ontology, sensor extensions can be

mapped to a relevant ontology class's property. SensorManager class in perception.js is

responsible for this feature. Sensor manager enables the developer to create an instance from

extension and map its inputs to an ontology property. Since sensors provide raw data

mapping such data into higher level contextual data would require preprocessing. Perception.js

framework enables the developer to provide a transformation function that maps low level
sensor data into high level contextual information.

:
i

I
!

a sensori

J;
i
i
i;
l
i

The create 0 method is responsible for creating an instance of a sensor, the mapO

method is responsible for mapping the created instance to an ontology property, whereas the

preprocess function is responsible for preprocessing raw sensor data. These methods can be

used as a method chain.

■...
!

)
!

j
i
I Context presentation in perception.js can be handled using actuators. Actuators in

perception.js always listen to changes for an ontology property. When a developer specifies a

rule, he would typically change the ontology property ‘needed action' of a person class. When

a developer requires to track whether the 'needed action' property has been changed, he could

create an actuator to listen changes of that ontology property. The class ActuatorMapper

enables serves this purpose, it consists of two methods when 0 which will listen for a particular

condition, and then() when will have a callback function to respond to any contextual changes.

!
;

65

;
i

! 3.5. Integrating with Existing Technologies

Perception.]s enables the developers to integral
and technologies to the

e with existing and widely used tools

context-aware application. Existing tools and technologies can be used
for acquiring, storing, and processing contextual information.

!

;

3.5.1. Integrating with technologies to acquire contextual information
11

In a context-aware application contextual information is required to be collected from

multiple sources. As mentioned previously Perception.js

contextual information from various mechanisms such
uses sensors to capture

as hard sensing (i.e.
temperature sensors, humidity sensors, or GPS) or from soft sensing (i.e. which gather
data from Systems, Databases, or Log Files).

I
i
I1;!1!

,'j
I
!
i 3.5.1.1. Integrating technologies as soft sensors\

1;
i A soft sensor in a context-aware application is a software based sensor which

acquire contextual information from a system, a database or a file. In Perception.js a

sensor should be developed by encapsulating the logic that acquires contextual

information from the source.

! can

i
. !

!
!1
i

I To receive messages from systems databases or files, Enterprise Integration patterns

recommend two integration patterns which are Polling Consumer [62] and Event

Driven, Consumer [63].

i

;

In a Polling Consumer the receiver polls for the message processes it and polls for the

next message which can occur periodically [62]. In this pattern the system or the

application could not notify the consumer about any changes in data. Instead the

consumer periodically polls for the information from the system which is also known

pull based communication [62], Usually enterprise or cloud systems expose their
SOAP or REST endpoints. Also, most database systems

as a
functionality and data as
implement a request/reply communication mechanism to query data from the

66

.

base. Therefore, in Perception.js this pattern can be used to create sensors for such
scenarios.

%

Polling
Consumer

Sender Message

Receiver

Figure 3.10: Polling consumer integration pattern [62]

i The following architectural diagram illustrates how external systems can be connected

using polling consumer approach;
i

!

Perception.js Context Server

SOAP/HTTP Time Tracking System
Sensor

Time TrackingSystem

REST/HTTP Call Center System
Sensor

Context
Model

Call Center System

TCPi Inventory System
Sensor

Inventory Management
System

i

Figure 3.11: How polling consumer integration pattern can be used

In the above example three systems are integrated to Perception.js as three different

extensions which uses three different communication protocols to poll the

system. When the data is received it can be used to update the context model.
sensor

An event driven consumer can react to the messages or events that are sent by the

the client which the client has been subscribed to [63], One approach to

is that client must establish a long-lived connection to the server
server to
implement this pattern is

should listen for incoming events. The disadvantage compared to the pollingand
is that the application should handle connection losses,approachconsumer

reconnection mechanisms, and reliable message delivery mechanisms.

67

i

1

Event-Driven
Consumer

Sender Message

Receiver

Figure 3.12: Event driiven consumer integration pattern [63]
i

Another approach to implement this pattern is to use a message broker such as

RabbitMQ, Kafka, or ActiveMQ which addresses the previously mentioned problems

m the first approach. In this approach IoT devices such as ESP8266 or Arduino can

use a

i

MQTT message broker such as ActiveMQ that sends messages sent by IoT

devices to the Perception.js context-aware application.
!
\

However, the major disadvantage of both approaches is that the sending application

should either implement a mechanism to send data to a message broker or to maintain

a connection pool which is an expensive approach. The major advantage is that
data becomes immediately available upon the changes.

new

i

The following architectural diagram illustrates how external system can be connected using

an event driven consumer with multiple communication paradigms;
i

!

Perception.js Context Server

\
SubscribePublish Time Tracking System

SensorIbRabbitMQTime Tracking System
Protocol: AMQP

i Temperature
Sensor Temperature in Gal'e

Sensor
Subscribe
(Topic: Temperature)

Publish
.(Topic : Temperature)ESP8266l-

Context
ModelHIVEMQ

anww «on khii

Protocol: MQTT6 Humidity in Kandy
Sensor

Arduino Subscribe
(Topic: Humidity)

Publish
(Topic: Humidity)

Humidity
Sensor

Monitoring System
SensorMonitoring

System Protocol: TCP

Figure 3.13: How event driven consumer integration pattern can be used

68

i
1

In the above diagram the time tracking system publishes information about employee finger

print readings to RabbitMQ, and the time tracki
to the relevant mess

ng system sensor in Perceptions which listens
age queue in RabbitMQ. The ESP8266 device located in Chile gets sensor

readings and sends to HiveMQ MQTT Broker. Also, the Arduino device located in Kandy gets

readings from the humiditysensor
and sends to HiveMQ. In perception.js two

nsions can be created for the temperate and humidity sensors by subscribing to the
topics m HiveMQ. Also, the Monitoring System that monitors employee activity which has

two-way TCP connection is also integrated as a sensor extension.

sensor sensor
relevant

a
2

i
■

i

$
i

Modem NoSQL databases such as Firebase [64] and RethinkDB [65] consist of this feature

which enables the context-aware application to respond to any data changes that occur in the
database system.!

1
!i
!
|

’•T! 3.5.1.2. Integrating technologies as hard sensorsi

i To integrate physical sensors to Perception.js context-aware application the platform

which the contex-aware application is developed should be taken into consideration.

As mentioned in the thesis Perception.js is portable which can be used to develop

applications in platforms such as the web browser, apache Cordova, and node.js. In a

Perception.js physical sensors can be integrated when the application or a component

is built using Cordova or Node.js platforms. Cordova also uses plug-ins to integrate

sensors available in a mobile device. However, such plug-ins cannot be

directly used by Perception.JS. Therefore, a sensor extension should be developed by

encapsulating a Cordova plug-in. Some available Cordova plug-ins include

Geolocation, Battery Status, and Temperature sensor which are available in their

official website [66].

:

!

s
I
I
I various

;
:
!

P

Context-aware applications for IoT devices can be written using Perception.js can be

Raspberry Pi. In Raspberry Pi can use NPM to download libraries that enable

I

run on
the developers to manipulate GPIO pins or to read data from various sensors [67]. A

well-known library to use Raspberry PI sensors with Node.JS is known as raspi-
sensors integrated to devices such as Arduino[67]. As mentioned previouslysensors

or ESP8266 can use protocols such as MQTT to transport messages to a context server

written in node.js.

69

s
)

.

3.5.2. Integrating with technologies to storeI contextual information

Perceptions uses storage extensions to store contextual information gathered from a sensor,

en a sensor updates a value of an ontology property the value is stored in a database or can

message queue for further processing. Storage plugins can be developed to support
various storage mechanisms such

information

'

;

as NoSQL or relational databases to store contextual
or RabbitMQ or Kafka to send the information for the

i

server for further
processing. When contextual information is streamed to a remote location using RabbitMQ or
Kafka real time machine learning for classification can be integrated with the

application.

&!

context-aware
|

The following diagram illustrates how various storage mechanisms can be encapsulated using

storage extensions in Perception.] s;
!

ifj
Perception.js Context Se've-

! MySql Storage
ExtensionMySQC

j *3 CouchDb Storage
Extension

Context
Model

:
CouchDB

PublishSubscribe RabbitMQStorage
ExtensionIfaRabbitMQQueue

Listener
Protocol: AMQP

l
Local File Storage I1

: Figure 3.14: How storage extensions can be used to integrate different storage mechanisms;

!

70

i

!!

!;
i

3.5.3. Integrating with technologies to pro1

cess contextual information

In the current implementation of Perception.js one limitation is that when rules for context

processmg has been specified by the developer, the framework cannot dynamically update its

context model. For example, in a context-aware

context-aware system identifies the

;

:
smart home when a person comes home the

current mood based on the person’s context and plays a
genre (i.e. Jazz, Rock). Even though the system identifies person’s context and

plays a music track, the person would change the

i

i
music track manually to suit his mood.

Therefore, the context-aware system should learn from the context that makes him trigger the

context-aware functionality manually and update the context model accordingly. As a result,
the system could identify his context more accurately and play the correct music track next

! time. However, in Perception.]s such features are not available, instead it could use existing

machine learning tools such as TensorFlow to incrementally learn from the user’s context.
:
I

!

i

AA.MEMSQL Perception.js Context Server.1
MemSQL Pipelinesi Publish TrainingData

kafka
Manual Activity
Detector Sensor

Extension
^TensorFlow Current Context

i

Context
ModelSave Model:

m Classification Data|l Context Checker Sensor
Extension

Current Contextredis
i

RedisML
NeuralRedis:

Figure 3.15: Integrating external context processing systems

j
When the above example is implemented using Perception.js, the context-aware application

should have two sensor extensions. First sensor extension detects the person’s manual activity

in this example, changing the music track. Once the activity has been done the sensor extension

should publish the data which includes the current context (his heart rate) and the genre of the

k (which is the label that is required the classification algorithm) to Apache Kafkamusic trac
topic to train the machine learning model. MemSQL Pipelines is used to subscribe forthe topic

71

|
i

mZTl'a'““‘1!f" "*** ““ " b'"e
the model with

new entry in MemSQL (if it is required to train
algorithm later), and train the machine learning model incrementally

sing ensorFlow. For the above example, a classification algorithm available in TensorFlow

such as Deep Neural Networks or Logistic Regressio

been updated the model

a new

n can be used [69]. When the model has
can be stored in Redis. In Redis extensions are available such as

RedisML or Neural Redis to store machine learning models as data types [70] [71].

The second sensor extension is used to classify listen to context changes in the Perception.] -

context model. When a context change has been detected, the sensor will send a relevant
machine learning command to Redis and will attempt to classify which music genre the pe

would like to listen to.
rson

3.6. How to Use the Framework
3.6.1. Getting Started
3.6.1.1. Developing a client-side application

To develop any context-aware application using Perception.js the context model should be

modelled using an ontology. As mentioned in literature review, the framework uses an

ontology known as CONON as its default ontology. Developers can extend the default

ontology or they could optionally override the ontology.

i
i

To create an ontology perception.modelQ method can be used,

perception.model(function(context) {
context.activity.deduced.subclasses (,,eatingM) ;

i

:
}>;I
The method accepts a function with a single parameter which gives the developer the context

model which can be extended using domain-specific ontologies.

model has been developed, rules can be added to the ontology
can be used to create

•; When the context
programmatically using the framework. The method perception.rules

rules for the ontology;

72

i

perception.rules(function(rules<context)(

^S'i0^(C°nteXt-per8on-1°«teclIn,
context, sleeping l'* ''6ngagedIn'

P g)-then(context,person.neededaction ,
}) ;

,,TURN_OFF_TVn)

The methods logicO, andO are used to specify conditions to a rule. The thenO function is used

to update a property of an ontology to a specific value.

Next the sensors should be mapped to relevant ontology classes and their properties. To do the

task perception.sensorsO method

which are sensorManager, and context.
be used which accpers a function with two argumentscan

perception, sensors (function (sensorManager, context) {

sensorManager.create("activityDetector",
"fakeActivityDetector",
{}) .map (context. supun. engagedln) .preprocess (function (mapping, data) {

context.supun.engagedln.setValue(context.sleeping);

});
})

sensorManaager object can be used to create an instance of the sensor and map it to a property

of an ontology class. Once the data is received by the sensor instance the data can be optionally

preprocessed using the preprocess() function which is used to handle sensor imperfections.

Once the data is being preprocessed the value of the ontology property can be updated.

To respond to contextual changes the framework enables the developers to create

Actuators listen to changes in context model. When the context change has been detected it

will trigger a particular callback function. The method perception.actuators() can be used to

which has two arguments which are actuatorManager, and context. An

actuators.

create an actuator

example is as follows;

, context){
actuatorManager ^henlcontex^person. neededaction,

.then(function (>(
("Turning oft lv),

perception

"TURN OFF TV")
console.log

73

});
}) ;

!
y art the context-aware application the framework should be initialized using the

mi. tzeO method and the framework activity should be started using the playQ method.
i

perception.initialize() ;
perception.play(); i

i
i

(
3.6.1.2. Developing a context server application

In a context server context processing takes place in the server, and contextual information is

passed to the context server from the connected devices. To accomplish that there should be a

transport mechanism to transport context from a client to a context server. Perception.js

enables the developers to use transport extensions to facilitate the communication between

client and a context server.
a

For the server side which runs on node.js the ontology model should be created and rules must

be specified to identify a context. To identify contextual changes a transport extension should

be created. When the transport extension receives contextual information from the clients it

will update the values of relevant ontology properties accordingly. The sensor extension

should be mapped to a client-side actuator to notify the client about the context changes. The

following example shows how an instance of WebSockets server is started in port 4000, and

updates an ontology property in the client side.

perception. transport (function (transportManager, context) {

transportManager
{port: 4000}) .map (context .person

.create("WebSockets","wsServer",
.neededaction);

}) ;

ontology model that is defined in the server should be created.In the client-side same
the client side shouldn’t contain any rules instead it should transport the contextual

information gathered by sensors to the context server. To accomplish the task an instance of a

which has the client should be created and mapped to ontology properties.

However,

transport extension
erties which has their values changed will send the updated values to the server using

The prop

74

:

!

?!the transport client

to the context server;
nsion. The following example shows how to send the updated values

!

;perception. transport(function(transportManager,

context.supun.engagedln ,

context){ :

tv.status,
context.supun.locatedln); ;

}) ;

I
■!

3.6.1.3. Developing extensions

To developer an extension for Perception.js it is recommended to use the closure design pattern

in JavaScript because it enables to keep the extension scope in JavaScript isolated from the

rest of the source code. First a JavaScript file should be created which has the sensor logic.
Next, in the JavaScript file a closure should be created as follows;

(function(base){

})(window)

Extensions can also be created for multiple platforms such as Cordova, web browser, or

Node.js. The above example works only for the web browser and Cordova. To make the

extension work in Node.js ‘window’ object should be replaced by the ‘global’ object in

Node.js.

:

Next the extension should be registered to make it available for the context-aware application.

To accomplish that perception.registerO method should be called with the relevant parameters.

It should pass the mandatory parameters class to enable the context-aware application to create

of the extension class, category to indicate the type of the extension which couldan instance
be sensor, transport or storage, and the create() method which handles the create logic of the

extension. The following code example shows the structure of a Perception.js extension.

.

•i

:
.

•"Fake Activity Sensor ,
"Fake Activity Sensor",

:

class:
name:
description:
author:"Supun",

75

i

i!

:icreate: function(){return}); {}}
})(window)

:Extension logic can be added within the closure.

5

“e“,he “tt0 *“*» return a set of callback

create: function(){
return {

play: function(){},
pause: function(){},
stop: function(){},
onPlay: function(func){},
onPause:
onStop: function(func){},
onResult: function(func){}

function(func){},

}

Similarly for transport extensions the create() method should return the following object with
following parameters;

create: function(){
return {

play: function(){},
pause: function(){},
stop: function(){},
onPlay: function(){},
onPause: function(){},
onStop: function(){},
onRecieve: function(f)},
send: function(obj){},
type: "server"

}

For storage extensions the method should return the following object with following

parameters;

create: function() {
return {

play: function(){} /
function () O >

: function(){} /
8pause

onPlay: function()O,
onPause: function()U /
onStop: function(){ j
store: function(obj) U ,

.
(•

}
} :

’

76
i

;

Detailed descriptions of the above

extensibility in detailed design section.
methods for each extension type can be found under ;

3.6.2. Using Framework Features

Taking the usability requirements of the framework int

consistency in code, reduce the learning curve, and to efficiently
code the context awareness logic. Also, the programming paradigm of JavaScript
into consideration.

o consideration, the syntaxes
were designed to maintain

was taken

3.6.2.1. Creating a context model

In order to create a context model using the framework, the developers can use the

modelO function available in the framework. The method accepts a function which has

parameter called ‘context’. Using the ‘context’ parameter the developer can define the context
model as follows;

a

perception .model (function (context) {
context.<MAINCLASS>.subclasses ("subclassl", "subclass2");
context.subclassl.property("locatedln", context.location);

}) ;

3.6.2.2. Defining rules to infer a context

To define rules for the ontology which was already modelled, the developer can use

the rules () function which has two parameters ‘rues’ and ‘context’. Using the ‘rules’ parameter

the developer can create rules to deduce a context. The ‘context’ parameter can be used to map

the ontology defined by the developer to the rules.

I

/

perception.rules(function(rules,context) 1
rules. logic (context.person;

context.bedroom) .and(cont®£ ' dIn
"ON ") . and(context.person.engaged ,
context. sleeping) . then (context .person "TURN OFF TV");.neededaction ,

}) ;
!
:77 :
I

;

1
i 3'6-2-3- Mapping sensors to the

context model
■

In order to map sensors to
.1* «„=,*<> method, „ inJ If ”'”ri0 m"h0d

method the created i

\:
.extension can be created. Using the mapO

method can be used tomp ZeHeT^ '0 “ ^ ““ ^ prepr0CeSS°
.

!

contextual data into higher level contextual data.

perception. sensors (function (sensor,..
sensor.create("activityDetector",

{}) .map(context.supun.engagedln) .
context.supun.engagedln.

I context){
"fakeActivityDetector",

preprocess(function(mapping,data){
setValue(context.sleeping);});

}) ;

! 3.6.2.4. Mapping actuators to the context model

\ In order to create actuators for the context model the actuatorsO method can be used

which accepts a function consists of two parameters. The ‘actuator’ parameter can be used to

respond to a change in any entity of the context model. If the value of an entity in the context

model is updated for a particular value, thenO method can be used by the developers to write

the context presentation logic.

;

;

;
i

: perception. actuators (function (actuator, context) {
actuator. when (context. person. neededaction,

"TURN_OFF_TV") . then (function () {
alert ("Turning OFF TV");
context.tv.status.setValue("OFF");!

});!
}) ;

!
3.6.2.5. Mapping transport extensions to the context model

i

In order to integrate transport protocol extensions to the framework the transport()

method can be used which accepts a function with two parameters ‘protocol’, and ‘context’.

Using the ‘protocol’ parameter an instance of a transport plugin can be created, and using the

pO method the a list of ontology entities using the ‘context’ parameter can be specified to

be updated through the transport extension.

petc.ptio».t™.p«r0fan«io^protocoljcont.;tlj^t

context .supun. engagedln .
.locatedln);

ma

;:

context.supun
}) ;

78

■

i.5.2.5. Mappingstorage extensions to th
e context model

In order to inte— which accepts “

‘storage’ p„»Mer „ initmc, rf ° “> '»>««'■ Using the

method the , list „f onto, ' S" ™ b' C",W’ "d ““E «* “PO

updated through ,h. elItelon. P™'' “ “ ^ “ te

e storageQ function can be

perception. storage(function(storage,context) (

database:"test"}).map(context.
context.supun.locatedln) ;
}) ;

tv.status / context.supun.engagedln ,

3.6.2.7. Listening to internal events of the framework

\
Using the on() method in perception.js internal events of the framework

monitored. The onQ method has two overload functions;
can be

i
The first function accepts a string which should be the event the developer should

listen to and a function which the developer should include his logic to respond to the event.

perception, on ("perception.plugin.output", function (data) {
log (data.text);

) ;

If there are multiple events a developer needs to listen to, the developer could pass an

object to the onO function with a key value pair which the key is the event name and the value

is a function. This enables the developers to keep their code clean.

var eventMap = { l(
"perception.plugin.output

log (data.text);

"perception.core.output"
log (data.text)/

: function(data){

: function(data){

}
}perception.on(eventMap) /

79

3.6.3 Best Practices

3-63L Best Practices for developing
context-aware applications

Always Use Method Chaining

Perception.js supports method chaining to in,

and increase readability of code. Meth

which is more human friendly. Following is

prove productivity and speed up development,
od chaining also promotes a declarative style of coding

an example of method chaining.

"ON") ' and! r ‘n' PerS°n'locatedIn' °■-bedroom) .and (c. tv.
ON) .and(c.person.engagedln,c.sleepinq) thenfc "TtJRN_OFF_TV") ; p -tnenic.

status,
person.neededaction.

an alternative counterproductive way of writing the above code is as follows; l
5var si = rules, logic (c. person, locatedln, c.bedroom);

var s2 = si.and(c.tv.status, "ON");
var s3 = s2 .and(c.person.engagedln, c.sleeping)
s3 . then (c.person.neededaction , "TURN_OFF TV"); l

>

Always Listen to Framework Events to Monitor Internal Workings

Perception.js enables the developer to identity internal workings of the framework

using events. This can be used for debugging purposes and to identify errors in

runtime. Perception.js also allows the developers to specify an event map which is an

object of a key-value pair which has an event name as the key and a callback function

as a value. This approach also reduces the number of lines required for coding.

var eventMap = { n
"perception.plugin.output

log (data.text),

"perception.core.output
log (data.text);

: function(data){

: function(data){

}
perception.on(eventMap) >

80

km

Always Create Multiple Classes

Perception.js enables the d

ontologies consist of classe,

subclasses and properties, usi

properties can be created using a single method

subclasses is as follows;

eveloper to specify the
context model as an ontology. Since

s and properties and a si
a since class can have multiple

USmB “* “,h°d approach multiple classes
and

call. An example of creating multiple

context. activity. subclasses
"sleeping"); ("eating", "reading". "cooking",

I. the Web Browser Always Import Erte.sl.., Before Importlog .he AppUeati.o

r
When using Perception.js to develop a component or a context-aware application, extensions

should be loaded manually. When loading extensions manually the correspoinding script file

should be imported before loading script file which has the application logic.

i.

I
i
i

<script type="text/javascript"
src= "plugins /sensor s /f akeActi vityDetector. js"x/script>
<script type="text/javascript"
src= "plugins/sensor s/fakeLocationDetector. js"x/script>
<script type="text/javascript"
src= "plugins/sensors/ fakeTvSensor. j s"></script>
<! — Always load plugins first before loading the application logic
—>
<script type="text/javascript"
src=" context server. client. js"></script>

:
&

E*:

81

3.6.3.2. Best practices for develo
Ping Perception.]s

extensions

Always Create a New Inst
ance of the Sensors in the cr

eate0 method
In Perception.js it is. requi^d t° register a plugin for the
For the perception.registerQ method it is required to

every time when a new instance of a particular

recommended to create

context-aware application to use it.
Pass a callback function which is called

extension is created. As a good practice it is
return. An alternative approach would

a new instance ofan object and
be to always return singleton object. However, th
developers to keep the state of each instance

a
e creating a new object enables the

or the plugin isolated from one another. Following
is an example of using this best practice;

function Sensor(){
return {

} l
window.perception, register ({

create: function(){return new Sensor()}

I}) /

fAlways Start Extension Activity Inside the playO method

To start a Perception.js application the playO method must be called. When the method is

being called, the framework calls the playO method in every plugin instance. Starting the

extension activity outside of the playQ method would make the application unstable.

Don' t Leave the Controller Methods Blank

It is not recommended to keep

onPause(),etc. as a
application unstable because the plugin doesn't glow the taewotk to «*« control ove, IB

functions.

controller methods such as pauseO, stopO, onPlayO,
cause context-aware

;

blank function. Keeping it in such a way could

82

CHAPTER 5
TESTING AND ANALYSIS

83

A

4.1. Introduction

^ objective of this chapter!

framework which includes the

mentioned in the previous chapter. T

to test the functionality from the

verify the requirements usi

IS to present th6 testing strategy, and test results

- non-functional testing which
comn , reqUiferaents- ^it testing was performance

of theresults of functional and
was0 verify the

r_„^rrr.-—
context featotes,. well„ „ Mb|% ^ of ^ J js ^

I he next scenario is focused on creati

the framework supports context

an application
and

amework.
mg a context server with the framework to verify whether

server approach. In the last scenario, a usability test was
performed with actual developers within a given timeframe to verify whether the framework

solves the problems presented in the solution outline section.
i

!

t4.2. Unit Testing

This chapter focuses on presenting the test results of the unit test cases of each component and

their methods. The previous chapter consists of detailed descriptions about each method.

Component: Helpers

Table 4.1: Unit testing results of the component: Helpers

StatusActual
Result

Expected
Result__Method Name Test Case

undefined PassundefinedCheck when the specified
field is not available in the
JSON object the method
should return undefined^.

Check when the specified
field is available in the
JSON object the method
should return the value of

thefiel<L---- -------- -----

fmdByFieldQ

Passvaluevalue
findByFieldO

84

r
defaultByFieldQ Check when the field is

available in the JSON object
the method should return the
value of the field.

value value Pass

defaultByFieldQ Check when the field is
unavailable in the JSON
object the method should
return the default, value
specified as a method
parameter.

Returns
default value

Returns
default value

Pass

concatArrayQ Check when two arrays are
specified the method should
return a concatenated array
consisting of the arrays
passed as method
parameters.

Returns
concatenated
array

Returns
concatenated
array

Pass

Component: Asynclterator

?
Table 4.2: Unit testing results of the component: Asynclterator

StatusActual
Result

Expected
Result__

Test CaseMethod Name

PassThe function
invoked upon
completion.

The function
should be
invoked upon
completion.

When the iterator completes
processing all the elements
in an array asynchronously,
the function passed as a
parameter shouldmyoke.—

When a single item
completes processing
asynchronously, the
function passed as a
parameter should invoke.

onCompleteAHQ

PassThe function
triggered
upon

The function
should be
invoked upon
completion of comp etion

of a Single

onCompleteQ

a single item.
item.

PassThe function
invoked
when an
error
occurred^.

The function
should be
invoked when
an error

_occurs1____—

The function
should be
invoked in
eachiteratiom

When an error occurs when
an item is being processed,

th'toc,ionh5te
onErrorQ

a

parameter s
invoked.. PassThe function

invoked in
each
iteration.__

each iteration, the
UponmethodQ a

param
invoked. !

85

r

Component: EventManager

Table 4.3: Unit testing results of the component: EventManager

Method Name Test Case Expected
Result

Actual
Result

Status

Upon registering for an
event, a function should be
returned to unregister an
event.

onO A function
should be
returns to
unregister an
event.

A function
returned to
unhandled
the registered
event

Pass

Multiple handlers should be
able to register for a single
event.

All the
handler
functions
called.

PassWhen
triggering an
event, all the
handler
functions
should call

onQ

PassThe callback
method
didn’t call
after
unregistering
an event.

When an
event is being
triggered, the
callback
method
should not

The event should be
unregistered upon calling
this function.

removeO

call.

Component: ConfigurationManager

fthe component: ConfigurationManager

" Expected
Result__

Table 4.4: Unit testing results o

Test Case

StatusActual
Result

Method Name
PassTheThe configuration

included the
newly
created key
value pair. _

thod should be able
figuration with a

configuration
should include
the newly
created key
value pain__

The me
to set a con
key value pair.

set()

86

getO The method should retu:
configuration value if its
available.

rna The value of
the key should
hereturned.

The value of
the key was
returned.

Pass

getPluginQ The method should return a
plugin specific
configuration value given
key and a plugin name

The method
should return
a value.

The method
returned a
value.

Pass

a

setPluginQ The method should be able
to set a plugin specific
configuration key and a
value.

The plugin
configuration
should include
the newly
created key
value pair.

The plugin
configuration
included the
newly
created key
value pair

Pass

Component: RuleManager

Table 4.5: Unit testing results of the component: RuleManager

StatusActual
Result

Expected
Result

Test CaseMethod Name

PassTheTheThe method should be able
to add an ‘and’ rule to the
expression tree.

andQ expression
tree included
the newly
created ‘and’
rule.______.

expression
tree should
include the
new ‘and’
rule.

PassTheTheThe method should be able
to add an‘or rule to the
expression tree.

expression
tree included
the newly
created ‘or’
rule. _____

orQ expression
tree should
include the
new ‘or rule.

PassThe specified
ontology
property
changed
when rule
chain was
satisfied. __

The specified
ontology
property
changed
whenmte_

The specified
ontology
property
should change
when the rule
chain satisfies.

The method should be able
to specify a property'that
should be changed when th
rule chain is satisfied.

thenQ

Pass
«i The specified

The method shoul^A ontology

should be changed when
rule chain is not satisf • whemtherule.

elseQ
to s

87

chain does not
satisfy.

chain was not
satisfied.

Component: TransportManager

Table 4.6: Unit testing results of the component: TransportManager
Method Name Test Case Expected Result Actual Result Status

setlnstanceQ ability to register an
instance of a plugin
to transport manager

The plugin
instance should be
available in
TransportManager

The plugin
instance was
available in
TransportManager

Pass

The method should
start all the transport
plugin instances.

All the
transportation
extensions should
start.

start() All the
transportation
extensions were
started. ___

Pass

r

PassAll the
transportations
extensions were

1 stopped._____

All the
transportation
extensions should
stop._________

The method should
stop all the transport
plugin instances.

stopO

:

Component: OntologyManager

Unit testing results of the component: OntologyManager

Expected
Result_____

The ontology
should be
updated.

Table 4.7: StatusActual
ResultTest CaseMethod Name

PassThe ontology
updated.When a transport

extension sends
information that
should be updated
in the ontology, the
ontology should be
update^..--------■

set V alueByT ransportData
0

PassThe method
returned an
instance of
RuleManager

The method
should return
an instance of
RuleManager

thod should
an instance

The me
return l
of RuleManager to
set rules for an
ontology———

userRulesQ

PassThe method
should return returned an
The method

method should
ontologyThe

findClass() return an

88

r

class if the class is
available the ontology

class.
the ontology
class.

defmeDefault () The default
ontology should be
created when the
method is called.

The default
ontology
should create.

The default
ontology was
created.

Pass

Component: OntologyClass

Table 4.8: Unit testing results of the component: OntologyClass

Test Case StatusMethod Name Expected
Result

Actual
Result

r
PassA subclass

was created
in the
ontology
class.

Check whether the method
should be able to create a
subclass in an ontology
class.

A subclass
should be
created in the
ontology
class.

subclassQ

tr

•-
PassMultiple

subclasses
were created.

Multiple
subclasses
should be
created in the
ontology
class._____ _

Check whether the method
should be able to create
multiple subclasses in an
ontology class

subclassQ

PassA property
was created
in the
ontology
class.

A property
should be
created in the
ontology class

Check whether the method
should be able to create a
new property in an ontology
class.

propertyQ

PassMultiple
properties
were created.

Multiple
properties
should be
created in the
ontology

—

The method
should return
the subclasses.

Check whether the method
Should be able to create
multiple properties m an

ontology class

propertyQ

PassThe method
returned
subclasses.

hether the method
all the

ontology

Check w
should return
subclasses in an

getChildrenQ

class.

89

r
Component: OntologyProperty

Table 4.9: Unit testing results of the
component: OntologyProperty

Method Name Test Case
Expected J Actual
Result

Status
Result

onChange() Check when the value of the
property changes, the
callback method should
trigger.

The callback
method
should trigger.

The callback
method was
triggered.

Pass

setValueQ Check whether a value of an
ontology property should be
updated.

The ontology
property
should have
the newly
updated value.

The ontology Pass
property was
updated with
the new
value.

Check whether a value of an
ontology property should be
updated with an expiry time
and a revert value.

The ontology
property
should have
reverted value
after the
expiry time.

The ontology
property had
the reverted
value after
the expiry
time.

PasssetValueO f

i
PassThe value

was returned.
The value
should be
returned.

Check whether the method
should return the value of
the ontology property. _

getValueQ

Component: Scheduler

: SchedulerTable 4.10: Unit testing results ofthecomponent

Expected
Result____

StatusActual
ResultTest CaseMethod Name

PassTheThe reference
object’s value
should change
to the revert
value after the
expiry time.

The method should be able
to set a schedule with a
reference object, expiry
time, and a revert value.

reference
object’s
value
changed to
the revert
value after
the expiry
time.

scheduleQ

PassTheThe scheduler
should start. scheduler

started^Check whether the
scheduler is getting

started.startQ

90

r
stopO Check whether the

scheduler is getting stopped The scheduler
■ should stop.

The Pass
scheduler
stopped.

Component: ExpressionTree

Table 4.11: Unit testing results of the component: ExpressionTree
Method Name Test Case Expected

Result
Actual
Result

Status

binary() Check whether the
expression tree can create a
binary expression

The new
binary
expression
should be
created in the

The new
)inary
expression
was created
in the root.

Pass

root
Check whether the root of
the expression tree can be
changed.

setRootQ The The root of Pass
theexpression

tree should
replace its
root.

expression
tree was

Ireplaced.
The method PassThe method

should return
the root node
of the
expression
tree.______
The callback
function
should be
invoked.

Check whether the root of
the expression tree can be
retrieved.

getRootQ
return the
root node of
the
expression
tree.______
The callback
function was
invoked.

PassCheck whether the callback
method was triggered when
the expression tree is
evaluated.

onChangeQ

PassThe new
expression
tree was
returned.

The new
expression
tree should be
returned by
the function.

Check whether the
expression tree can be
cloned.

clone()

Component: BinaryExpression

: BinaryExpression

Actual
Result _
The method
returned the
parent node.

Its of the component

------ ' Expected
ResulL——
The method
should return
the parent
node.------

Table 4.12: Unit testing resu

Test Case

Checkw
node can be
binary expression

Status

PassMethod Name
hether the parent

returned in agetParentQ

91

setParentQ C^ec^toherthe^ar^
node can be set in a binary
expression.

The method
should return
the modified
binary
^expression.
The method
should return
the modified
binary
expression.
The method
should return
the modified
binary
expression.

The method
returned the
modified
binary
expression.

Pass

setLeftQ Check whether the left child
of the binary expression can
be set.

The method
retuned the
modified
binary
expression.
The method
retuned the
modified
binary
expression.

Pass

setRight() Check whether the right
child of the binary
expression can be set.

Pass

clone() Check whether the binary
expression can be cloned
including its child nodes.

The method
should return
the modified
binary
expression.

The method
retuned the
modified
binary
expression.

Pass

The method PassCheck whether the binary
tree can be evaluated.

The method
should return
‘true’ if
evaluated.

evaluateQ
returns true
when it was

1 evaluated. I
Component: UnaryExpression

: Unit testing results of the component: UnaryExpression

Expected
Result_____
The callback
function
should trigger
when the
unary
expression
changes. _
The method
should return
anew
identical
instance:_____

Table 4.13:
StatusActual

Result
The callback
function
triggered.

Test Case

- Check whether the callback
function is getting triggered
when the unary expression
value is being changed.

Method Name
Pass

triggerChangeO

PassThe method
returned a
new identical
instance.

Check whether the unary
expression should be able to

clone.

cloneQ

92

4.2. System Testing
4.2.1. Testing of functionality, and extensibility
4.2.1.1. Test goals y

context processing, and context presentation.

. Verify whether the framework Mtae. applicati„ d„b|lnent M ^ ^

object architecture.

• Verify whether a context can be modelled using ontologies in the framework.

• Verify whether sensor extensions can be integrated to the framework.

• Verify whether sensor extensions can be developed.

• Verify whether data preprocessing can be map raw sensor data to higher level contextual

information.

• Verify whether subclasses can be created using ontology classes.

• Verify whether properties can be created for ontology classes.

!

4.2.1.2. Test scenario

ario monitors whether a person falls asleepThe application developed for the test

while watching the TV, the context-aware

seen
application will turn off the TV. To track whether

that simulates the heart rate tracking of a fitness

another mock/fake sensor that simulates
the person is sleeping, a mock/fake sensor

band was ere

a Smart TV was created. In addition, ano

person is also created which simulates the
location tracking of a fitness band.

93

i r ■■

5

The architecture of the context-aware application is as foil

M
fakeTvSensor

Switch Off

fakeLocationDetector

fakeActivityDetector

i

Figure 4.1: Architecture of the first sample application

To represent this scenario, the following ontology and the following rules were created;

1
Located In

(locationDetector)
Locatedln .

:*ei

I

♦ Status <- fakeTvSensor
^ NeededAction <- actuatorEngagedln

<- activityDetector

;

-> (TV NeededAction TumOff)
din Sleepinng)A Status On)

n Locatedln Bedroom)A (Person En®a®e
(Perso

le application
f the firs!samp4.2: Ontology oFigure

94

4.3.1.3. Source code of the context-ware applicati0ri

var perception = require ("./perception.js11);

///define the context model
perception.model (function(context) {

context. activity .deduced, subclasses ("
"shower", "cooking", "sleeping");

context. activity. property (" locatedln",
context. person. property ("locatedln",
context .person.property ("engagedln",
context .person, subclasses ("supun")
context. location. indoor. subclass ("bedroom");
context. compEntity. subclass ("device") . subclass ("tv") ;
context. device, property ("status") ;

movie", "dinner",

context.location);
context.location);
context.activity);

;

}) ;

//define the rules
perception. rules (function (rules, c) {

rules . logic (c.person, locatedln, c.bedroom) .and(c.tv.status,
"ON") . and(c.person.engagedln, c.sleeping) .then(c.tv.neededaction ,
"TURN OFF TV");

!}) ;

///map context model to sensors
perception, sensors (function (s,c) (eActivityDetector",

s.createractivityDetecto ^ M ing>data),

"fakeLocationDetector",
(function(mapping,data){s! create("locationDetector"

.locatedln).preprocess
.setValue(c.bedroom),{}).map(c.supun

c.supun..locatedln

>) ; "fakeTvSensor",
(function(mappings. create("tvSensor”,

.status) .preprocess .
.setValue("ON),

,data){
{}).map(c.tv

c.tv.status
});

});

actuators (functions, 0FF_TV„, . then (function 0 (
■neededaction, -

(••Turning off
perception

a.when (c.tv
console.log
}) ;

});

.initialize 0;perception
perception.play(^ '

95

<r

4.3.1.4. Test results and analysis

Table 4.14: Test results of the fiist test scenario

Test Case
Status

Sensor extensions can be dewd^^^

Context can be modelled using the framework

Rules can be applied to ontologies, and their properties

Actuators can be applied to the context model

Pass

Pass

5ass

Pass
Subclasses can be created for ontology classes Pass

Properties can be created for ontology classes Pass

Multiple subclasses can be created for an ontology class Pass

When a rule set satisfies its condition a property in an ontology gets changed

When an ontology property gets changed an actuator gets triggered

Sensors can be mapped to ontology properties

Rules can be applied via a chain

Multiple sensors can be used with a single ontology model______

Preprocessing can be used for sensor data___________________

Pass

Pass

Pass

!Pass

Pass

Pass

framework

can be
the test has verified that the

Using the framework context
• , context can be processed using rules and ontologies, and the

acquired via sensor extension , Dr0Cessing via actuations. Following
application can respond to contextual changes for context process

modeling approach such as ontologies has a!so

core
Taking the test results in to consideration,

functionality of context awareness.provides the core

enabled the developers to easily

a context
model a real-world context.

ideration, the framework exposes
oticed that the number of

into consi
Taking the sentient model reference arch.te M „

interfaces to ns. sensors, ontologres, ** ^ UnK excluding white spaces and

lines required to build the
. Therefore, it can be concluded ^ „ consid«»,i.n it « «>

»“”8^ „d.c-«.a”d»

attem to improve the p

comments
lightweight. Taking the progr

such as callbacks to use

create rules and

roductivity ofare sensors

ading design Pdesign patterns

ontologies. In addition to
that it uses case

the developer.
96

Taking the sensor extensions into c sideration, sensor extensions are implemented in separate
JavaScript files which uses the closure design pattern. In addition to that sensors can easily be

implemented via the bootstrapping process in the framework. In order to prep

sensor data a callback method can be passed to the

preprocessing function sets a predefined value for the particular property of an ontology.

rocess the raw
sensor extension. In this example the

4.2.2. Testing of context server approach, and portability

4.2.2.1. Test goals

• Verify whether the framework can be used to create a context server.
be used with the framework to communicate• Verify whether transport extensions

between the context server and the client.

. Verify whether the inferencing occurs in the context server

can i
while sensing occurs in the

client. lient side when the proper contextfy whether the actuator is getting triggered in the c

has been inferenced in the context server.

• Verify whether the framework can be po

web browser, and node.js

• Veri

rted among the applications developed for the

4.2.2.1. Test scenario

based approach to context
The objective of this test scenario is to i*e®“ * “ ^ _n p„,p,i„„js framework

processing andpresent the portability expanded with acontext server approach.

For this example, the P«v« »»m0 ” the preview «-»>

used to map the se ndel is used to create the and to notify the
the server, the ontology ™sport,he sensor data to t eco

contextual change occurs.

sensors,

97

■
!

client when the context ch

the transportation mechanism.
anges, a transport extensio

n was created which uses web sockets as

The architecture of the context-aware application is as follows;

fakeTvSensor
SwitchOff

fakeLocationDetector

>raw5

Sensor DatafakeActivity Detector

1 I

Actuator Trigger

Figure 4.3: Architecture of the second sample application

rver-side component, twoconsists of a client-side component, and a se
the client side and the server side. In both the files

added to integrate the transport extensions to the

Since the application

JavaScript files were created which runs on

the following additional code segments were |

ontology model;

added which accepts

or information should
following code segment

, and to specify which sens

was
client, the

- ct to the context server

Xt server for processing;

In the context awareness

parameters to conne

be sent to the conte

iiooon

: "localhost",, {host

tedln)/port
c.supun.engagedln
}) ;

98

In the context awareness server, the followi
sockets endpoint with a port number

g code segment was added to expose a web
will notify the clients of any contextua^^ 0m°l08y ”” * ** “

perception. transport (function (t c) {
t. create ("WebSockets", "wsServer"
{port: 4000}) .map (c. tv.neededaction) ;

}) ;

4.2.1.2. Test results and analysis

Table 4.15: Test results of the first second scenano

Test Case Status

Extensions can be developed for context awareness client Pass

PassExtensions can be developed for context awareness server

PassRules can be defined in the server for inferencing

Ontologies can be defined for context server approach

Changes in context model can be replicated from client to server

Changes in context model can be replicated from server to client________
be triggered in the client after reasoning is happened in serve?

Pass

Pass

Pass

Pass
Actuators can

Transport client extensions can be configured

extensions can be configured

Pass

Pass
Transport server

The developer can define transport extensions
Pass

■, n it was verified that that the framework can be used
Taking the test results into ™ ^ Qn ^ context client. In addition to that

to develop a fully functional contex pressing. When the context

server had identified the context, an actuator w

able to be used in a

Through the
ideration, the framework was

based client application,
cessfully loaded in both platforms.

nt into const
and a browser

Taking the portability requireme

node.js context server
bootstrapping processes the

applications
sensor extensions were sue

99

Taking the transport extensions i
extension could connect to th

into considerati°n, a client-side web sockets transportation
e context server after when it was configured use a specific port

and a specific host. On the other hand the contevt < ^ ^
^ . ’ 6Xt server used a web sockets server extension

expose a poo usmg a specie eo„fig»ion. ^ eich ^
to have their own settings.

4.3. Usability Testing

4.3.1. Test goals

• Verify whether the framework can be used to get the expected results for the developers

without focusing on technical details.
• Verify whether the framework can be used to get the expected outcome with less effort,

time, and bug rate.
• Verify whether the application built using the framework is easy to debug and test.

• Verify whether the framework has a less learning curve.
. Verify whether the framework can be used with existing best practices in the industry.

4.3.2. Test scenario

whether the framework meets the usability
less number of

focused on verifying

requirements. To achieve that objective

features were

This test scenario was a context-aware application with
- f„,. team of wo develop® Deleep. *"d ““T1" d"'"°P"S “

, . con«-.w«e applLcaaonefeveSopn,.™. However, they hed
have any previous knowledg developing node.js, and Cordova applications,
knowledge and previous experience m d ^ deveiopment environment in their
Therefore, they successfully installed n in the industry for nearly two years. The

laptop, Abo. .he wo ^tel, weak, worn given..

application was developed on a ftamewotk.
ihemonhowtosolve.heir various probiems us

100

4.3.3. Test process

At the beginning 2 hours of training was given for jj^ d(,

concepts of context awareness, and how the fr velopers which covered the
amework enables the developers to easily

context awareness features in their apptications. Hie topics coveted included on how to use its

features, l>ow to develop their own exte™, „d how to «Ht.ct«,e the]

the framework. Then the developers were asked to come

use

it applications using
up with a hypothetical scenario for

the application which they plan to build. Once the they established their idea they

the opportunity to come up with an architecture for their applications which is based on the
were given

sentient object model. Next, they have come up with a work breakdown structure which

consisted of all the tasks they have worked on. While they were working on the tasks the time

was recorded for each task. At the completion, a questionnaire was given and feedback was

taken for analysis.

4.3.3.1. Overview of the application being developed
*
iThe application that is being developed for this application was an automated employee health

tracking system which operates in a hypothetical scenario. In a hypothetical organization,
which weakens their health. In addition to thatemployees are required to work under pressure

work under stress for longer periods their productivity could go down an

in bum outs. If the management could find out such conditions
when employees

ultimately, they could end up
both the businesses and employees will benefit.

at the early stages

_k management system such as lira. Also, if a

he would spend almost all his time at his cubicle

If an employee has a higher

his number of allocated tasks in his
which connects to a tasusing a virtual sensor

person doesn't have

which can be tracked using

much physical activity
the GPS sensor in his sm
ftasks in lira, and ifhe stays

art watch.
in his cubicle, an email is sent to his

and the managementheart rate, a higher number o
indicating that specific

Id be under pressureemployee cou
t0 maintain his health.line manager

should take action to help the employ

collects all his personal
. Context

atch of an employee

and his task list
client side the smart w

his location,
in Jira using sensorsIn this application, in the

data such as his heart rate,
101

processing occurs in the server sid

the server side. The actuator will send an
e- Therefore, the rules

email to the
and the actuator is implemented in

manager.

4.3.3.2. Requirements of the application

. The client-side application should collect location data from the

. The client-side application should collect heart rate data from the smart watch.

. The client-side application should collect his number of Jira tasks from the smart watch.

• The client-side application should send data to the context server for processing.

• The context server should maintain information about all the employees.

• The context server should respond to contextual changes of all the employees.

• the context server should send an email to his line manager if an employee is under

pressure.

smart watch.

43.3.3. Architecture of the application being developed

developers have developed the following architecture for their application which

sentient object model. The sensor extensions are developed for the client-side
the web sockets client extension to

The

is based on the
application. Also, the client-side application
communicate with the co„te» »». The <-*V * » *« “

ontology is required by the framework to ^ ^ context server since nties
is implemented to send email. Context processmg takes places

uses

In the context server, an actuator

are defined in the server.

SendEmail

GPSSensor

)
CnioUigV

V

Sensor Data

third sample application
of the4.4: ArchitectureFigure

102

4.3.3.4. Detailed design of the application being developed

In the client application, the followimg JavaScript objects

. SmartWatchApp: this object consists of the

application

. OntologyMapping: this object consists of a reusable

context model.

• SensorMapping: this object consists of the sensor integrations for the framework.

• TransportMapping. this object consists of the web socket client extension integration.

were created;

core business logic of the client-side

component which consist of the

SensorMapping

l

o

1 o SmartWatchAppTransportMapping

o

l

OntologyMapping

m „f«. du into*, tfFigure 4.5: Class diagr

103

In the context server application, the foil
wing JavaScript objects

were created;

. ContextServer: this object consists of the

business logic of the application

. OntologyMapping this object consists of a

The same object that was used for the client application was used in the

main app object which consists of the core

reusable component which consist of the
context model,

server as well.

. TransportMapping: this object consists of the web sockets server extension integration

with the application.

• RuleMapping. this object consists of the rules which are used to deduce the context
which sends an email

• EmailSender: this object consists of the logic to send an email.

OntologyMapping

EmailSender
TransportMapping

of the third sample applicationf the context serverFigure 4.6: Class diagram o

104

43.1.5. Breakdown of tasks

To develop the abo.e architecture, fte fo.^ing work breakdown structure was created.

Uist'ZC Gci Si~5
rr&c-ar sr- r^a.a-

Ceve.cc 5cP3 rg
* 1 ' mKban.srr. .r Ja-< aSc* ot

Deveicp Heart Rate sensor
Extension 112 2

Wrap sens . ngm*cr an st. r,
the extens on

1.1.3 1
Deve cp JiRAsens ng

rrechan srr nja-.a3c'i?t12
5 Model the Context us ng

Ontologies _____
113 2«=

3 Wrap sens ng mechanism ,r.
~CL the extens on
o.< integrate Web Sockets Client

Extension
■/.

IA
QJ

<U
ru
§<
5
Ou

Develop Rules for OntO'Ogvg.
>
QJa

1 3
Develop the context server

integrate the web sockets

1 3 4
and test the context

server _
Debug

f the third sample application; Work breakdown structure o
Figure 4.7:

advised to track time for thewerethe tasks they
work breakdown structure.working on

lete each item
wereWhile the developers

duration it took to comp
in the

105

4.3.4. Test findings
4.3.4.1. Developer feedback questionnaire

identic thei, experts ^ T' ”
““ ,sked give their ,*„g.see „f5 8iventa, is«““ **

Table 4.16: Developer feedback questionnaire

Question Deleepa’s Score Rifhan’s Score

General Development

Able to use with existing tools and technologies 5 5

Able to use with established patterns and practices 4 5

Able to easily respond to requirement changes 5 4

44Able to respond to technical changes

43Able to easily track and fix errors

Usability of the Framework

44Easier to learn
55Has the consistency throughout the framework

Easier to develop the desired business functionality

Able to use hard and soft sensing mechanisms

Has the ability to focus on context awareness logic

than technical details

Able to track the internal workings

44

55

44

55

ired methods toHas the ability to easily identify require
perform the desired action
Easier to n^dd^Td^^ USing

55

55
ontologies

rules for the context 4Easier to specify inferencing

model
4

33for the framework
Easier to develop extensions

Easier to developl^isinge5ctenslons
33
33

rt extensions
Easier to develop transpo

106

4.3.4.2. Time taken to develop each task

___________________ Table 4.4: Time tak
en complete each task

TaskID Task Name Duration
(hours)Parent Task ID Assignee

Develop contexfawi^^

Develop client-side application

Develop GPS sensor extension

Develop GPS sensing mechanism in
JavaScript

1
N/A 8.75

1.1 1 6.75
1.1.1 1.1 0.75

1.1.1.1 1.1.1 Deleepa 0.5
Wrap sensing mechanism in the
extension1.1.1.2 1.1.1 Deleepa 0.25

Develop Heartrate sensor extension1.1.2 1.1 1.25

Develop Heartrate sensing mechanism
in JavaScript Deleepa 11.1.21.1.2.1

Wrap sensing mechanism in the
extension

Develop Jira sensor extension

Develop Jira sensing mechanism in
JavaScript

Wrap sensing mechanism in the
extension

Integrate the web socket client
extension for mobile
Debug and test the cliemapphcation

ModeTtheam^

0.25Deleepa1.1.21.1.2.2
3.251.11.1.3

3Rifhan1.1.31.1.3.1

0.25Rifhan1.1.3
1.1.3.2

Deleepa 0.51.1
1.1.4 11.1
1.1.5 0.251
1.2 2.751

Develop the context server

d email

1.3 0.25Rifhan1.3
1.3.1 1Rifhan1.3

Create an actuator to sen

serV6r
extension __

1.3.2
Deleepa 0.5

1.3
11.3.3 1.3d test the context server

Debug an1.3.4

107

4.3.4.3. Developer feedbacks

Deleepa’s Feedback

It was a good learning for me to use this tram,

applications before. The concept behind the ffam

easier for new developers like us to understand and 1

ework since I haven't developed context-aware
ework is straightforward which makes it
earn* However, developing extensions for

perception.)* to been . bit difficult to « bee i, «, c.tnpie* „
closures. However, because of the extensions the framework beeomes more agile that helps us
to respond to technical changes.

Refhan's Feedback

This has been a whole new experience for me. Being a backend developer, I find this
framework helpful for my future work. This framework can also be used to develop

applications in small teams so managing software projects also becomes easier with this

framework. I think this framework would be more better if rules can be generated dynamically

with the data gathered by sensors. That way the system can become more intelligent. Also, it
would be better if latest trends such as Neural Networks and Deep Learning can be adopted to

the framework.

4.3.5. Analysis of usability
learn a frameworkReview, when the developer uses orAs mentioned in Literature

and if the framework is poorly designed, he would enco ^ ^ fey developers.

designed to avoid such barriersappropnate documentation, the framework

ter six barriers [52]. The framework

was
Although use barriers can be overcome

designed to address the following barriers;was

is enables the developer to model
to easily

Avoidance of design barriers
Design barriers defined as cognitive diffi eption.js e

notation used to represent a

real world context using ontolog
io using the fram

represent a real-world scenar
this barrier.has enabled to overcome

108

T
According to the responses of the questionnaire

when it comes to making it easier to use the desired b

addition,,,ha,

is concerned, and a point of 4 when ease of specifying rules is concerned. When the times are

taken into consideration which are 15 mins each to model the context and to specify the rules

solving tiestgn bareta is mote reinforced. Also, tb. devoid tavt egteed „* «lng

framework the context awareness logic can be focused

details.

both the developers have scored 4 points
usiness functionality of the framework.

ing a context

more than focusing on the technical

Avoidance of election barriers

Election barriers prevents a developer from finding the best suited interface to achieve a

particular behavior [52]. Perception.js consists of a global object known as ‘perception’ which

can be used in any platform such as node.js, Cordova, or a web browser. Through portability

the underlying technical complexity of using different methods/interfaces for different
platforms were eliminated. Instead generic methods were provided to developers to map

sensors (the sensors 0 method), map actuators (the actuators 0 method), create rules (the

ontology () method), and model ontology (the model 0 method). Such method names were

selected to enable the developers to easily find the required method to perform his task.

developers have agreed that the

consideration, the both developers have
is taken into

due to the complexity of

However, ease of developing extensions is taken into

given a score of 3. Taking the time duration

consideration, the Jira extension had
integration, whereas the developing the ^ devdop. However, to create a wrapper

the heart rate sensor had taken 1 hour an minutes. Therefore, it can be concluded
around the sensorlogiC ^.^itonal technical complexity which is outside of the

to develop each extension

and 15 minutes
taken 45 minutes to develop, whereas

that developing

scope of the framework.

amming system to
ided which

barriers

Prevents a developer front
behaviors

Avoidance of coordination amming interface with a progr
this barrier was avoibility features

achieve complex
109

enables the developer the extend the pe

the programming interfaces provided by pe

platform (i.e. node.js, Cordova or the web brow

rception.js framework by creating an
extension using

rception.js to utilize the features of the underlying
ser).

Taking the responses of the questionnaire iinto consideration, both the developers have gi
a scope of 5 points when ease of using the framework together with existing tools is taken i

consideration. In addition to that when the

ven
into

of using the framework with existing best
practices and patterns is taken into consideration the developers have scored 4 and 5

ease

respectively. However, when the time taken to debug the client and server applications each

the developers have logged 1 hour for each task. However, it can be concluded that

the design decisions taken to avoid coordination barriers are effective.,

Avoidance of information barriers
Prevents a developer from acquiring information about a program’s internal behavior [52].

When the architectural baseline was implemented, an eventing mechanism was implemented

identity the internal workings of the framework which enables the developers to

such as an expression tree is created, an expression tree is evaluated, etc...
in order to

know events

=====

concluded that the framework is suitable of preventing informanonon a

Therefore, it can be

barriers.

ire included questions related to
of 5 and

fuse the developers the questionnaire..

,es). The developers have agreed on scores
is taken into consideration. In addition,

In addition to the barriers o

the agility (being able to respo

4 respectively when addressing requi

the developers have agree
consideration. Therefore, it can be cone

real-world business applicatio

nd to chan
irement changes

f 4 and 4 when facing

luded that the framewo

technical changes is taken into
rk can also be used to developd on scores o

functionality related questions m

f specifying the rules, etc... ■

usability goals.

4 for thehigher than
delling the context, ease o

rk meets the

also given scores
ch as the ease of mo

luded that the

The developers have

the questionnaire su

Therefore, it can be cone
framewo

110

CHAPTER 4
CONCLUSION

ill

5.1. Summary of the Developed Fra
mework

The developed framework enables the d

features related to context
eveloper to easily develop context awareness

acquisition, contest posing «* contest praenMion. Tie
framework has extensibility features which enable the developers to integrate various sensing

technologies (i.e. hard sensots, nnd soh senses), integrate „™, p^,,

WebSockets), and integrate various storage mechanisms (Relational databases,

databases). In addition, the framework has portability features which enable the developers to

embed the framework in applications developed for platforms such as node.js, Cordova, and

TCP, NoSQL

the web browser. The developers can transform their applications into a ‘Sentient Object’
which is the reference architecture the framework is based on.

Context pre-processing can also be performed using the framework to handle sensor
imperfections by providing a callback function to the framework for each sensor integration.
Context processing in the framework is handled using ontologies and rules which is internally

represented using expression trees. In addition to that developing context servers for context
processing can be done using the framework. Context presentation is handled using actuators

which can be created using the framework.

5.2. Advantages of the Framework

ith widely used technologies in the industry such as

HiveMQ), machine g^ja^cript ceding practices such as separation

. The Framework integrates ^ Yourself) Principie, SOLID Principles.

^.^hepohed-eng^P—

• The framework integrates well wi

of concerns, DRY (Do

• The framework core
ables the developers forCordova, and Web Browser.

1c is designed With good US

d to reduce

deal with multiple

ability feamres that en
• The Framewor

rapid development an

• The framework can

using extensions.
• The framework supports

learning curve. d technologiesus devices, systems an

sentient object model
alability through thelocalized sc

architecture.

112

5.3. Limitations

Upon conducting testing, the test

framework;
results have identified the following limitations in the:

:

. In the context server approach currently, the context model is required to be defined in

both the client and the server, therefore inconsistencies between context models can occur.

As a result, the application could become unstable. As a future work, an automated

mechanism can be implemented to check the consistencies in the context models to make

the application more stable.

• Developers have found out that developing extensions for perceptionjs is comparatively

difficult that using the framework to develop context-aware applications. The developer

interviews have revealed that to develop as extension the ‘closure’ design pattern should

be implemented. Since this approach is counterproductive by the developers, a new design

pattern can be introduced for the developers to develop extensions.

5.4. Future Enhancements

Even though the framework facilitates ease of context-awan

further improve its capabilities if the following features ar

are application development, it could

added in the future;

OWL file and rules from SWRL
code which improves theis available to import an ontology from an

ru,es can be separated from the source• If a feature
file, the ontology and the
maintainability of the application.

artially defin
sensor acquisition

del would be more
ed in each sentient object (i.e.

art on server side) the context mo• If context model can be p

part in the client side, and reasoning p

ork can be wrapped using a

to follow good practices
maintainable.

. Developer productivity can be
Typescript because

d if the framew

it enables the developer

intainability-

further improve

language such as
SOLID principles to 1 in runtime which

ior and contextual

improve mai.
dified to dynamically ere

learn

ate inferencing rules

user’s behavior
such as

• The framework can be mo

enables the
information and optimiz

lication to

:7g its adaptability'
appcontext-aware

113

1
:
1

• A graphical user interface can be devel

without using code.

• A mechanism can be implemented to offload

(i.e. mobile) runs out of battery or processing power.

. If features for aggregating sensors are provided through the framework,

contextual information can be reduced.

P to make it easier to model and create rules!

processing to the context server if the client
!

uncertainties in

5.5. Conclusion

In summary, this research is focused on developing a framework for software

developers to mitigate the technical complexity in developing context-aware applications to

reduce the development time and improve the overall quality of the application.

Moreover, this research was conducted io the academia related to cordext acquisition,

context processing and presenhhio. .o idepiifj ft* cl*»g.s,»d b“"

““7,^r;r“:r====
was conducted on API nsab V-
also presented to implement quality

d detailed design and

the findings of
the requirements, architecture an

were
In Design and Implementation,

the internal implementations

literature review. The chapter
context modelling

presented based on
th descriptions of mechanisms

and inferencing using

of the framework
also included detailed and in-dep

context processing
and storage) to ontologies, andwith ontologies,

related to
expression trees, mapping
source code syntaxes on how top"*”

transport,
alities of context awareness.extensions (sensors

function

Inst three different scenarios to

ibility, and portability
d using the framework.

rk can be

tested aga

, usability, extens
is. the framework was

ts the functionality
lications were

In Testing and Analysis,
hether the framework mee

all the scenarios
ability test was

develope
verify w sample app

conducte
whether the framewo

ntext-aware application.d to verify
al-world co

requirements. For

In the last scenario, a us develop a reare developers to
d by real-world softwuse

114

1

to addition ,o that ,o Beg* etdsdttg tecta,,^ to

presented methods on ho. „ accocnpiish this « fo, ^

information, and storing contextual information.

:!

i

.1

;
:l

i

>

i

115

i

REFERENCES}.

■

y

[1] D. Saha and A. Mukherjee, “Pervasive
Computer, vol. 36, no. 3, pp. 25-31,2003.

[2] M. Weiser, “The Computer for the 21st Century”
1991.

computing: a paradigm for the 21st century”,
ii

ry \ Sci Am, vol. 265, no. 3, pp. 94-104,

[3] Pervasive computing Definition and
http://www.dictionaryofengineering.com/defmi tionypemsK'e-computin^htnJ.^ AVallab'e:

[4] V. Basili, "The Role of Experimentation: Past, Present, Future (keynote presentation),"
International Conference on Software Engineering, 1996.

[5] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. El Emam,
and J. Rosenberg, "Preliminary Guidelines for Empirical Research in Software Engineering,"
IEEE Transactions on Software Engineering, vol. 28, no. 8, pp. 721-733,2002.

[7] A.K. Dey, G.D. Abowd, “Towards a Better Understanding of Context and Context-
Awareness”, 2002.

;

i

[8] P. Mehra, “Context-A ware Computing: Beyond Search and Location-Based Services’,
IEEE Internet Comput., vol. 16, no. 2, pp. 12-16,2012.
[9] B. Schilit and M. Theimer, “Disseminating active map information to mobile hosts’, IEEE

Network, vol. 8, no. 5, pp. 22-32,1994.
”, IEEE Personal[10] M. Satyanarayanan, “Pervasive computing: vision and challenges

Communications, vol. 8, no. 4, pp. 10-17,2001.

. Nischeiwitzer, S.[11] A. Holzinger, A
models for ubiquitous applications”, Wireless
10, no. 10, pp. 1350-1365,2008.
[12] A. Cockbum, Agile Software Development
Longman, 2001.

. Reading, Massachusetts: Addison WesleyI

” Toward a
[13] L WilUams, W. K«bs, ,
Framework for Evening PW-» «■ ^ of 0-ogte 1,

[14] Ranganathan, A, McGrath, E,g. Rev. 18,209-220 (Sep 2003)
a pervasive computing environme ^ Omental Models for Validating Technology,

[15] M. V. Zelkowitz and D. ^ May 1998.
IEEE Computer, vol. 31, no. 5, PP- ’ nntoloey for context-aware pervasive

computing environmens » i nn 197—207. «
Engineering Review, Voh 1 • » ■ ^ ’̂

i

I

116

http://www.dictionaryofengineering.com/defmi

1

Based Systems with ^,'alln8" C""-A"”' M"

‘°--™

S4T £—5,!““ *rf“—- *
[23] K. Henricksen, J. Indulska, A. Rakotonirainy “Modeling Context Information in
Pervasive Computing Systems”, 2008.

[24] M. Baldauf, S. Dustdar and F. Rosenberg, “A survey on context-aware systems”,
International Journal of Ad Hoc and Ubiquitous Computing, vol. 2, no. 4, p. 263,2007.

[25] T. Strang, C. Linnhoff-Popien, “A Context Modeling Survey”, 2006.

[26] Strang, T., Popien, C. “A context modeling survey. In: Workshop on Advanced Context
Modelling, Reasoning and Management”, UbiComp 2004 - The Sixth International
Conference on Ubiquitous Computing (2004)

[27] S Amulowitz, M., M Ichahahelles, F., and L Innhoff - P Opien , C. Capeus: An
architecture for context-aware selection and execution of services. In New developments in
distributed applications and interoperable systems (Krakow, Poland, September 17-19 2001),
Kluwer Academic Publishers, pp. 23-39.

[28] Chen, P.-S. The entity-relationship model - toward a unified view of data. ACM
Transaction on Database Systems 1, 1 (March 1976), 9-36.

[29] U Schold, M., and G R Uninger, M. Ontologies: Principles, methods, and applications.
Knowledge Engineering Review 11, 2 (1996), 93-155.

[30] DE B Ruijn, J. Using Ontologies - Enabling Knowledge Sharing and Reuse on the
Semantic Web. Tech. Rep. Technical Report DERI-2003-10-29, Digital Enterprise Research

Institute (DERI), Austria, October 2003.
r3 n X H Wang, D.Q. Zhang, T. Gu, HK. Pung. Ontology Based Context Modelling and
Reasoning using OWL. School of Computing, National Univers.ty of Singapore, Singapore.

‘Toolkit to Support Intelligibility in Context-Aware Applications",
[32] B.Y Lim, A.K Dey, ‘
(2010)
[33] S Bobek, G. J. Nalepa, “Incomplete and Uncertain Data Handling in Context-Aware Rule-
Led Systems with Modified Certainty Factors Algebra , 2014

[34, K. Hamadache, E. Barth,, A. B.eeh.e.uU Be.yaMa, -0—*- Comm—
Servicves: an Ontology Based Approach, 2007

[35] nments^' Proceedings‘of the 2P‘

1150SAC •05, ACM, New York. NY, USA (2005)

AWARE, 2017. [Online]. Available:
eframework.com/context/[36] Context-

http://www.awar

117

http://www.awar

1

J
http]://ambientdynZixXorg/The PlUg'and'pIay Context framework, 2017. [Onl

[38] J.E. Bardram, “The Java Context Awareness Framework riPAn
rastructure and Programming Framework for Context-Aware Applicatio ns” 2005

“A C—ss Framework for Intelli

https.//github.com/hubiquitus/hubiquitus-core

[41] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste, “Project aura: Toward
distraction-free pervasive computing,” IEEE Pervasive Computing, vol. 1, no. 2, pp. 22-31,
Apr. 2002. [Online]. Available: http.V/dx.doi.org/10.1109/MPRV.2002.1012334*

[42] M. Roman, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and K. Nahrstedt,
“A middleware infrastructure for active spaces,” IEEE Pervasive Computing, vol. 1, no. 4,
pp. 74-83, Oct. 2002. [Online]. Available: http://dx.doi.Org/10.l 109/MPRV.2002.1158281

[43] A. Gluhak and W. Schott, “A wsn system architecture to capture context information for
beyond 3g communication systems,” in Intelligent Sensors, Sensor Networks and
Information, 2007. ISSNIP 2007. 3rd International Conference on, dec. 2007, pp. 49 -54.
[Online]. Available: http://dx.doi.org/10.1109/ISSNIP.2007.4496818

[44] D. Conan, R. Rouvoy, and L. Seinturier, “Scalable processing of context information
with cosmos,” in Proc. 7th IFIP WG 6.1 international conference on Distributed applications
and interoperable systems, ser. DAIS’07. Berlin, Heidelberg: Springer-Verlag, 2007, pp.
210-224. [Online]. Available: http://hal.inria.fr/docs/00/15/50/45/PDF/article.pdf

ine]. Available:

- A Service

igent

;

ii

•!.

[45] B. Fimer, R. S. Moore, R. Howard, R. P. Martin, and Y. Zhang, “Poster: Smart
buildings, sensor networks, and the internet of things,” in Proc. 9th ACM Conference on
Embedded Networked Sensor Systems, ser. SenSys ’ll. New York, NY, USA: ACM, 2011,
pp. 337-338. [Online]. Available: http://doi.acm.org/10.1145/2070942.2070978

:
?

[46] J Herbert, J. O’Donoghue, and X. Chen, “A context-sensitive rule-based architecture
for a smart building environment,” in Future Generation Communication and Networking,

08. Second International Conference on, vol. 2, dec. 2008, pp. 437 -440.2008. FGCN ’
[Online]. Available: http://dx.doi.org/10-l 109/FGCN.2008.169

[47] I. Sommerville, Software engineering. Harlow, England: Addison-Wesley, 2007.

“Using HCI Techniques to Design a More Usable Programming

;

[48] J.F. Pane, B.A. Myers
System”, 2007.

m B. * T. 0,fc,

_ , > cnohrer "KidSim: Programming Agents
** *pp- **

[51] K. CwalinaandB. Abrams,
Addison-Wesley, 2006.

■

without a

Framework design guidelines. Upper Saddle River, NJ:

118

http://http.V/dx.doi.org/10.1109/MPRV.2002.1012334*
http://dx.doi.Org/10.l
http://dx.doi.org/10.1109/ISSNIP.2007.4496818
http://hal.inria.fr/docs/00/15/50/45/PDF/article.pdf
http://doi.acm.org/10.1145/2070942.2070978
http://dx.doi.org/10-l

UNlVERSITYn^RARY

MORAnw^^WNKA

Systems”, 2005^^ *"* “Sk I~*V »f» » End-U

[53] R. N. Taylor, N. Medvidovic, and E. M
Theory, and Practice. Wiley, 2009.

10 md *• —,

[55] A. Fitzpatrick, G. Biegel, S. Clarke, V. Cahill, “Towards a Sentient Object Model”, 2001.

[56] Orchards, S. Lebresne,B. Burg and J. Vitek, “An analysis of the dynamic behavior
of JavaScript programs”, ACM SIGPLAN Notices, vol.

[57] D. Crockford, JavaScript. Beijing: O'Reilly, 2008.

[58] S. Stefanov, JavaScript patterns. Sebastopol, CA: O'Reilly, 2010.

[59] A.K. Hota, D. Madan Prabhu. “NODE.JS - Lightweight, Event driven IO web
development”, 2014.

[60] I. Roth, “StrongLoop | What Makes Node.js Faster Than Java?”, Strongloop.com, 2015.
[Online]. Available: http://strongloop.com/strongblog/node-js-is-faster-than-java/. [Accessed:
24- Feb- 2015].

[61] Cordova, 2015. [Online]. Available: http://cordova.apache.org/. [Accessed: 24- Feb-
2015].

[62] Enterprise Integration Patterns - Polling Consumer, 2018. [Online]. Available:
http://www.enterpriseintegrationpattems.com/pattems/messaging/PollingConsumer.html

[63] Enterprise Integration Patterns - Event Driven Consumer, 2018. [Online]. Available:
http://www.enterpriseintegrationpattems.com/pattems/messaging/EventDrivenConsumer.ht

ser Programming

Dashofy. Software Architecture: Foundations,

;i
::
I

45, no. 6, p. 1,2010.
i

:
:!

n

i;

ml
[64] Firebase, 2017. [Online]. Available: https://firebase.google.com

database for the realtime web, 2018. [Online]. Available:[65] RethinkDB the open-source
https://www.rethinkdb.com/

[66] Plugin Search - Apache Cordova, 2018. [Online]. Available:
https://cordova.apache.org/plugins/

, 2018. [Online]. Available: https://www.npmjs.com/package/raspi-
[67] raspi-sensors - npm
sensors

!

TensorFlow, 2018. [Online], Available:[69] TensorFlow Wide & Deep Learning Tutorial |
https://www.tensorflow.org/tutorials/wide_and_deep

,701 GitHub - RedisLabsModules/redis-ml: Machiue Leaniing Model Serve,
™ lable: hrtps7/gi,hub.comyRedisLabsModules/iedis-ml
[7,1 GitHub - antirez/neural-redis: N«u,„ «•—a -uiefo, Red, 2«18. JWtaBWNM
Available: h«ps://gitbub.com/anbrea/ne«a re |g(Q7 JAHWB/C

, 2018. [QpU

&

i 1

Vv

119

T*Hb'/08

http://strongloop.com/strongblog/node-js-is-faster-than-java/
http://cordova.apache.org/
http://www.enterpriseintegrationpattems.com/pattems/messaging/PollingConsumer.html
http://www.enterpriseintegrationpattems.com/pattems/messaging/EventDrivenConsumer.ht
https://firebase.google.com
https://www.rethinkdb.com/
https://cordova.apache.org/plugins/
https://www.npmjs.com/package/raspi-
https://www.tensorflow.org/tutorials/wide_and_deep

