
Chapter 9

9 CONCLUSIONS AND FUTURE WORK

9.1 Summary of the Observations Made

This study has provided reasons to come to the following conclusions:

The Benchmark represents a reasonable cross section of the real world because its

ranking of the Web service frameworks tested is consistent with Industry view.

[22]

The round trip time for a SOAP message is at least affected by the complexity of

the SOAP message and the payload it is carrying. A framework that is good at

handling complex SOAP messages may not deal with higher payloads equally

well. The difference in the values of the coefficients of complexity and payload

terms statistically substantiate this

A benchmark that utilizes a set of real world type data sets will give a more

accurate picture about the performance of the frameworks rather than theoretical

data sets. Again the values of the coefficients in the equations pertaining to the

real world and hypothetical benchmarks provide evidence.

9.2 Future Work

This study has the potential to be extended in numerous ways. Firstly Web services will

continue to evolve resulting in their penetration into the still untapped areas which will

definitely use innovative data structures in the transactions. Therefore it will be necessary

to continue to update the initial data set presented here in our real world type benchmark,

in order to make the data set compatible with data structures used in contemporary real

103

world Web services. Secondly, as far as this study is concerned frameworks have been

tested with respective to their RTT only. However another major factor that governs the

performance of a framework is its scalability. Therefore measuring the throughput of

Web services under busy conditions will give a better understanding of their

performances. Thirdly, another study, important from a scientific perspective, would be

using the same benchmark to compare the performance of the other Web service

frameworks (especially Microsoft's .Net framework) as our investigation is limited to

Java based tools. Fourthly extending the investigation to use the real world type

benchmark to compare SOAP based Web services with other technologies such as

CORBA would provide better insight. Elfwing et el has done a similar comparison using

theoretical datasets in [3]. Fifthly this study has implemented the scenario, where client

and server run on the same machine but at many practical situations the case is almost

entirely different. Introducing probable network delays, which are characteristic of

various scenarios, will contribute toward understanding the real performance of the

frameworks under various actual conditions. Our effort, which was basically aimed at

developing a benchmark that can depict the real word scenarios in an acceptable manner,

has not gone into these various implementation specific directions but future studies on

them will produce useful results.

How the Benchmark can be enhanced to make it more compatible with the developments

that have taken place with respect to the Web service stack after the implementation of

the Benchmark has been discussed in the next chapter.

104

Chapter 10

10 RECENT DEVELOPMENTS IN WEB SERVICE STACK

This chapter discusses the impact of some of the recent developments, which have taken

place with respect to the Web services stack, on the Benchmark described in the

preceding chapters.

10.1 From RPC to Document Style

The existing Benchmark uses RPC as its SOAP binding style because it was more

popular then than the Document style which was basically for message oriented

communication. However, document exchanges are becoming more popular due to

interoperability issues, etc. and therefore the Benchmark should cater to such

developments. Benchmarks should reflect contemporary industry practices if they want to

be regarded as true representations of the real world and therefore benchmarks should

evolve with the changing patterns of usage.

10.2 Message Exchange Patterns

With WSDL 2.0 [21], Message Exchange Patterns (MEP) have come to prominence and

accordingly, a set of scenarios are described here where MEPs can be seen in operation.

While WSDL 2.0 specification presents 8 predefined MEPs, it allows any organization to

define new Message Exchange Patterns if it is able and willing to do so. The following

scenarios, described with respect to a Supermarket Chain, explain how various predefined

MEPs can be helpful

105

In-Only

This represents a receipt of a message of non-critical nature. For example a

message from a staff welfare society targeted at employees can take this form.

Even if the message generates a fault it will not be propagated

Robust In-Only

This represents receipt of a critical message. If a fault is generated it should be

propagated in the opposite direction. For example a Good Receive Notice (GRN)

from a branch outlet received by a warehouse can be of this pattern. If the GRN

generates an error, the branch outlet will most probably receive an error message.

In-Out

The Supermarket Chain can receive an offer from a supplier to purchase items at a

discounted price. The Supermarket Chain should respond whether it is going to

accept the offer or not. If a fault is generated the error message will replace the

outgoing message.

In-Optional-Out

A warehouse of the Supermarket Chain can receive information about possible

increased demand for a certain item from a branch outlet. If that particular item is

not available only the warehouse will inform the branch outlet about its inability

to meet the demand. However if a fault message is generated the warehouse can

send it to the branch outlet

Out-Only

The Supermarket Chain can send messages related to its promotional campaigns

to its partners. No fault messages are expected

106

6. Robust Out-Only

This represents sending out a critical message. If a fault is generated it should be

propagated back to the sender. For instance, a message involved in informing the

head office regarding shortage of goods at a branch outlet can be of this pattern.

7. Out-In

The Supermarket Chain can send a purchase order to a supplier and it can receive

the corresponding invoice. If a fault is generated the supplier can send an error

message instead of the invoice.

8. Out-Optional-In

A branch outlet of the Supermarket Chain can inform the head office about a

possible increase in labour requirement during a given season. If the head office is

unable to provide additional employees only it will inform the branch outlet. If a

fault message is generated the head office will send it to the branch outlet.

The Benchmark can be enhanced by implementing the above mentioned various

scenarios because it can then represent novel usages of Web services in the real world in

a closer manner.

10.3 Making a Web service available at different endpoints over

diverse protocols

With WSDL 2.0, a service can be made available at different endpoints and this in turn

helps making the service made available over different transport protocols. This provides

significant benefit for benchmark development because it facilitates checking

performance of Web services under varying conditions thus making it possible for the

users to select most optimum implementation-al details.

107

The performance of a Web service does not solely depend on the strength of the Web

service framework used to make the service available to the outside world. The network

conditions, pros and cons of the protocols used, etc also play a significant role in the

ultimate service provided to the customers. Therefore to test the performance under

varying real world conditions, the WSDL 2.0 provides an enhanced support.

10.4 Testing for Non-Functional Requirements

WSDL 2.0 enables describing non-functional characteristics of a service and this feature

can help in the situations where services with such characteristics needs to benchmarked.

For instance, if a service needs to be exposed with "reliability", "security", "correlation"

or "routing" f e a t u r e s then WSDL 2.0 enables associating such non-functional

characteristics with the WSDL description. If a service needs to be delivered over a

secure channel, then that f e a t u r e can be added to the i n t e r f a c e .

It can be mentioned as an additional example that if a service needs to have ACID

properties then f e a t u r e component can be added indicating that transactional abilities

are required. If a Banking Service is considered then more often than not, under real

world situations, a service with the roll back capabilities is preferred to a service without

such abilities and WSDL 2.0 enables developing test cases to benchmark services with

such characteristics.

10.5 No Support for Operation Overloading

WSDL 2.0 has removed support for operation overloading but this change does not

demand modifying the Benchmark developed because in the implemented Benchmark,

operation overloading has been avoided as it was not in the spirit of interoperability,

which is the primary rational for going for Web services.

108

y 10.6 Measuring Performance of Evolving Web Services

In WSDL 2.0, i n t e r f a c e s are consisting of o p e r a t i o n s and it is possible to extend

i n t e r f a c e s by adding o p e r a t i o n s . The ability to create complex interfaces by

appending additional operations is significant in testing performance of Web services

while they are evolving. Everything should evolve with time if they want to be persistent

and so should software and Web services.

} Today one can expose a Web service which is having an i n t e r f a c e consisting of

limited number of o p e r a t i o n s , but when the business grows it is natural that new

o p e r a t i o n s should come in to play in addition to the existing ones. This can be

achieved by inheriting previous interfaces and the capability to inherit preceding

i n t e r f a c e s provides a window of opportunity to observe the changes in performance

during the life cycle of a Web service.

10.7Support for Multiple Inheritance

WSDL 2.0 supports multiple inheritance and the diamond problem, which is due to the

ambiguity that arises when two classes inherit from a third common class and when a

fourth class inherit from the first two classes, is solved by merging equivalence

operations.

r

109

T 11 REFERENCES
[I] Cohen, F., Discover SOAP Encoding's impact on Web service performance, http://www-

106.ibm.com/developerworks/webservices/library/ws-soapenc/, last accessed, June 2004.
[2] Cohen, F., Performance testing SOAP-based applications, http://www-

I06.ibm.com/developerworks/webservices/library/ws-testsoap/, last accessed June 2004.
[3] Elfwing, R., Paulsson, U., Lundberg, L., Performance of SOAP in Web Service Environment

Compared to CORBA, Proc. Ninth Asia-Pacific Software Engineering Conference (ASPEC'02)
[4] Chiu K., Govindaraju M , Bramley R., Investigating the Limits of SOAP Performance for Scientific

Computing, Proc. 1 l l h IEEE International Symposium on High Performance Distributed Computing
[5] Davis, D, Parashar M., Latency Performance of SOAP Implementations, Proc. 2 n d IEEE/ACM

International Symposium on Cluster Computing and the Grid
[6] Christopher Kohlhoff et al, Evaluating SOAP for High Performance Business Applications: Real-

Time Trading Systems, Proc. The 12 t h International World Wide Web Conference
[7] Robert A. van Engelan, Pushing the SOAP envelop with Web services for scientific computing, Proc.

Is' International Conference on Web Services
[8] Ferguson, D., Storey, T., Lovering, B., Shewchuk, J., Secure, Reliable, Transacted Web services,

http://www-3.ibm.com/software/solutions/webservices/pdf/SecureReliableTransactedWSAction.pdf,
last accessed June 2004.

[9] Tuecke, S., Foster, I., Frey, J., Graham, S., Kesselman, C , Maquire, T., Sandholm, T., Snelling, D.,
Vanderbilt, P., Open Grid Services Infrastructure,
http://xml.coverpages.org/OGSI-SpecificationVl 10.pdf, last accessed June 2004.

[10] Bhutta, K. S. and Haq, F., Benchmarking Best Practices: an Integrated approach, Benchmarking: An
International Journal, Vol. 6 No. 3, 1999, pp 254-268

[II] http://www.w3.org/TR/xml/, last accessed, June 2004
[12] http://www.w3.org/TR/soap/, last accessed, June 2004
[13] http://www.w3.org/TR/wsdl, last accessed, June 2004
[14] http://ws.apache.org/axis/, last accessed, June 2004
[15] http://www.systinet.com/, last accessed, June 2004
[16] http://www.webmethods.com, last accessed, June 2004
[17] http://jakarta.apache.org/tomcat/, last accessed, June 2004
[18] http:// www.xmlrpc.com, last accessed, June 2004
[19] http://www.java.sun.com/xml/jaxrpc/index.jsp, last accessed, June 2004
[20] http://www.spss.com, last accessed, June 2004
[21] http://www.w3.org/TR/wsdl20/
[22] Wickramage, N., Weerawarana, S., A Benchmark for Web Service Frameworks, Proc. 2005 IEEE

International Conference on Services Computing, pp 233-242

110

r

http://www-
http://106.ibm.com/developerworks/webservices/library/ws-soapenc/
http://www-
http://I06.ibm.com/developerworks/webservices/library/ws-testsoap/
http://www-3.ibm.com/software/solutions/webservices/pdf/SecureReliableTransactedWSAction.pdf
http://xml.coverpages.org/OGSI-SpecificationVl
http://www.w3.org/TR/xml/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/wsdl
http://ws.apache.org/axis/
http://www.systinet.com/
http://www.webmethods.com
http://jakarta.apache.org/tomcat/
http://
http://www.xmlrpc.com
http://www.java.sun.com/xml/jaxrpc/index.jsp
http://www.spss.com
http://www.w3.org/TR/wsdl20/

