
IDENTIFYING SOFTWARE ARCHITECTURE

EROSION THROUGH CODE COMMENTS

Vidudaya Neranjan Bandara

(168206G)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

June 2018

IDENTIFYING SOFTWARE ARCHITECTURE

EROSION THROUGH CODE COMMENTS

Herath Mudiyanselage Vidudaya Neranjan Bandara

(168206G)

Thesis submitted in partial fulfillment of the requirements for the

degree Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

June 2018

i

DECLARATION

I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my dissertation, in whole or in part in print, electronic or other

medium. I retain the right to use this content in whole or part in future works (such as

articles or books)

Signature: Date: ...….............................

H.M.Vidudaya Neranjan Bandara

The above candidate has carried out research for the Masters thesis under my

supervision.

Name of the supervisor: Dr. Indika Perera

Signature of the supervisor: Date:

ii

Abstract

Software architecture erosion or the as-implemented architecture is not complying with the

as-intended architecture is one of the major problems faced by many organizations. There is

no easy way to trace design decisions or tracking back or reconstructing those decisions by

looking at the source code level elements is one of the major reasons for software

architecture erosion. Other than that the mistakes or carelessness of the programmer may

lead the system to an eroded status eventually. Lack of domain knowledge, lack of

knowledge about intended architecture and unable to identify possible violations of as-

intended architecture (by identifying architectural degradation) are some other reasons for

software architecture erosion.

There are various methodologies and tools for architecture conformance checking and

analyzing the static architecture and provide comparison results which can be used to

determine whether the architecture of a system is altered or not [10]. Most of them require

high end tool support and providing the implemented architecture and the intended

architecture each time the analysis needs to done.

As the main research objective it identified a missing area of software architecture

conformance checking methodologies and analyzed and identified a way to prevent software

architecture erosion using that. This research is more focused on unconventional usability of

the code comments and how it can be leveraged to capture the architecture of the application

and how it can be used as an effective architecture conformance checking mechanism.

This research states a methodology which uses Java Doc comments to inject architecture

specific information into the code base and a mechanism to capture them and compare them

with a pre-defined architecture rule set. An empirical and theoretical evaluation has been

done to prove this concept actually works in real life scenarios. It opened up a new area of

architecture conformance checking to the future researchers of the field of software

architecture.

iii

ACKNOWLEDGEMENT

My sincere appreciation goes to my family for the continuous support and motivation

given to make this thesis a success. I also express my heartfelt gratitude to the

research supervisor Dr. Indika Perera, for the supervision, advice and continues

guidance given throughout to make this research a success. Also I am grateful for the

support and advice given by Dr. Malaka Walpola, by encouraging continuing this

research.

My special thanks go to Mr. Umesh Indith Liyanage and Dr. Rasika Withanawasam

for sharing their knowledge regarding software architecture and software architecture

conformance.

Finally I wish to thank the academic and nonacademic staff of Department of

Computer Science and Engineering and colleagues of MSC‟16 for the support and

encouragement given.

iv

TABLE OF CONTENTS

DECLARATION .. i

Abstract .. ii

ACKNOWLEDGEMENT ..iii

TABLE OF CONTENTS .. iv

LIST OF FIGURES ... vii

LIST OF TABLES .. ix

LIST OF ABBREVIATIONS .. x

Chapter 1 INTRODUCTION ... 1

1.1 Background ... 2

1.2 Software Architecture and Software Engineering ... 3

1.3 Problem Statement .. 3

1.4 Motivations to Solve the Problem ... 4

1.5 Research Objectives .. 5

1.6 Overview of the Document ... 6

Chapter 2 LITERATURE REVIEW... 7

2.1 Software Architecture Erosion and Industry Software 8

2.2 Industrial Examples of Design and Architecture Erosion 8

2.3 Causes of Erosion .. 9

2.4 Effects of Architecture Design Erosion on a System 11

2.5 When to Decide the Software Is Eroding and Needs to Be Repaired 12

2.6 What Kind of Solutions Are Applied To Fix an Eroded System 12

2.7 Architecture Reconstruction Techniques .. 13

2.8 Architecture Refactoring ... 14

2.9 Preventing Architecture Erosion ... 14

2.10 Preventing Software Architecture Erosion through Static Architecture

Conformance Checking .. 15

2.11 GRASP ADL Based Static Architecture Conformance Checking Tool for

Java 17

v

2.12 Reflexion Modeling and Inverting Reflexion for Design Control (An

Industrial Case Study of Architecture Conformance) .. 19

2.12.1 Reflexion Modeling .. 20

2.12.2 Inverting Reflexion for Design Control .. 21

2.13 Traceability Model For Viewing Architectural Tactics Using Code

Comments .. 22

Chapter 3 METHODOLOGY ... 26

3.1 Identifying a Possible Architecture Capturing Mechanism 27

3.2 Identifying Possible Architecture Violation Types to Consider For a Proof

of Concept .. 28

3.3 Developing a Proof of Concept ... 29

3.4 Evaluation of the Proof of Concept ... 29

Chapter 4 SOLUTION ARCHITECTURE AND IMPLEMENTATION 30

4.1 Presentation of Rules for Style Invariants and Prescriptive Architecture ... 31

4.1.1 Presenting the Rules via XML .. 31

4.1.2 Presenting the Rules via JSON ... 32

4.2 Mapping Source Elements to Architectural Information 33

4.2.1 Mapping Elements Using Java Annotations ... 34

4.2.2 Mapping Elements Using JavaDoc Tags .. 35

4.2.3 Comparison of Java Annotations and JavaDoc ... 36

4.3 Solution Architecture .. 37

4.3.1 Validating System Architecture Using JavaDoc Tags in the Source Code

 .. 38

4.3.2 How Descriptive Architecture Information Is Identified 39

4.4 Prototype Implementation ... 41

4.5 Generating Views for the Reports ... 43

4.6 Style Invariants Checker Added As a Separate Dependency through Maven

 43

Chapter 5 EVALUATION .. 49

5.1 Empirical Evaluation the Correctness Of the SIC 50

5.1.1 Evaluate the Correctness of the Loaded Prescriptive Architecture by SIC

 .. 51

5.1.2 Evaluation of the Style Invariants Checker Validation Components........ 52

vi

5.1.3 Evaluation of the Success Path ... 53

5.1.4 Evaluation of the Failure Paths ... 54

5.2 Performance Testing of SIC ... 57

5.2.1 Performance Testing By the Complexity of the Prescriptive Architecture

Rule Set .. 57

5.2.2 Performance Testing By the Size of the Code Base 59

5.3 Analytical Evaluation Of The Impact Of SIC When It Is Added To A

Continuous Integration Flow ... 62

Chapter 6 CONCLUSION .. 64

6.1 Research Contribution ... 65

6.2 Research Limitations ... 66

6.3 Future work and Conclusion ... 66

REFERENCES ... 67

APPENDIX A .. 70

APPENDIX B .. 72

vii

LIST OF FIGURES

Figure 2-1 : Simple GRASP Specification .. 16

Figure 2-2 : Design of the GRASP based static conformance checking tool 18

Figure 2-3 : GRASP specification containing mapping information 19

Figure 2-4 : The inverted Reflexion Modeling process ... 21

Figure 2-5 : XML based design pattern specification for Adapter pattern 23

Figure 2-6 : JSON based design pattern specification for Adapter pattern................ 23

Figure 2-7 : Minimal XSD needed to represent design pattern information 24

Figure 2-8 : Using Java annotations to map design pattern specifications 24

Figure 3-1 : Typical code review process with a reviewer other than the developer

itself .. 27

Figure 3-2 : Development process after the introduction of the solution 29

Figure 4-1 : Representing simple layered architecture invariants and details about the

architecture using XML ... 32

Figure 4-2 : Representing simple layered architecture invariants and details about the

architecture using JSON ... 33

Figure 4-3 : Use Java annotations to present the details of the architecture and other

information like style invariant .. 34

Figure 4-4 : Use JavaDoc tags to present the details of the architecture and other

information like style invariant. ... 35

Figure 4-5 : Solution Architecture ... 38

Figure 4-6 : Folder and package structure.. 41

Figure 4-7 : Simple_layer_access.json ... 42

Figure 4-8 : The basic Mojo class for the Maven plug-in .. 44

Figure 4-9 : Pom.xml configuration for the plug-in ... 45

Figure 4-10 : How to include the plug-in to an application through maven plug-in

configuration .. 46

Figure 4-11 : Run the scan using the SIC plug-in .. 47

Figure 5-1 : Basic flow of Style Invariants Checker .. 51

Figure 5-2 : Basic components of Style Invariant Checker 51

Figure 5-3 : Prescriptive Architecture rules can be presented in a JSON file format 52

Figure 5-4: Application's system structure ... 54

Figure 5-5 : Code section from a layer, access a functionality of another layer which

is not allowed to access directly ... 55

Figure 5-6 : Results of the SIC execution when a code section from a layer, access a

functionality of another layer which is not allowed to access directly 55

Figure 5-7 : Average execution time of SIC with the complexity of the prescriptive

architecture rules .. 58

viii

Figure 5-8 : Case 1, Change of the Average Execution Time with the size of the code

base ... 60

Figure 5-9 : Case 2, Change of the Average Execution Time with the size of the code

base ... 61

Figure 5-10 : Case 3, Change of the Average Execution Time with the size of the

code base .. 62

Figure 5-11 : Continues Integration flow before the introduction of Style Invariants

Checker .. 63

Figure 5-12 : Continues Integration flow after the introduction of Style Invariants

Checker .. 63

ix

LIST OF TABLES

Table 4-1 : Using Annotations vs JavaDoc tags .. 36

Table 5-1: Loaded prescriptive architecture validation test results 52

Table 5-2 : Expected and Actual results when executing the SIC on applications with

different violations ... 56

Table 5-3 : Average execution time of SIC with the complexity of the prescriptive

architecture rules .. 58

Table 5-4 : Case 1, Change of the Average Execution Time with the size of the code

base ... 60

Table 5-5: Case 2, Change of the Average Execution Time with the size of the code

base ... 60

Table 5-6 : Case 3, Change of the Average Execution Time with the size of the code

base ... 61

x

LIST OF ABBREVIATIONS

Abbreviation Description

IDE Integrated Development Environment

ARM Architecture Reconstruction Method

ADDRA Architectural Design Decision Recovery

Approach

ADL Architecture Description Languages

RM Reflexion Model

HLM High Level Model

SM

SIC

Source Model

Style Invariants Checker

1

Chapter 1
INTRODUCTION

2

1.1 Background

The software architecture of a program or computing system is the structure or

structures of the system, which comprise software elements, the externally visible

properties of those elements, and the relationships among them [1]. There are many

benefits obtained by the software architecture. It is used to present a common

abstraction of the system, and it will provide a basis for communication among

various stakeholders. Architecture of the software captures the earliest design

decisions which continue to have profound implications on remaining development,

deployment and maintenance phases of the system [2].

Software architecture can be seen in two different views. Prescriptive Architecture

and Descriptive Architecture. A system‟s prescriptive architecture captures the

design decisions made prior to the system‟s construction while a descriptive

architecture describes how the system has been built, it is the as-implemented or as-

realized architecture.

When a software system is initially built there may not be a huge difference between

the prescriptive and the descriptive architectures. That means the system is

implemented according to the intended architecture, but there will be large number of

prescriptive and descriptive architectures created during the lifespan of the project

due to various reasons. When the already implemented system is evolved, its

prescriptive architecture is modified appropriately and it will lead to do the

corresponding changes to its descriptive architecture. In many cases the system is

often directly modified without analyzing the impact to the prescriptive architecture.

With the time there will be a huge notable difference between the prescriptive

architecture and the descriptive architecture. This failure to update the prescriptive

architecture will results in potential dangers. The resulting discrepancy between a

system‟s prescriptive and descriptive architecture is referred to as architectural

degradation.

The architectural degradation comprises of two related phenomena, Architectural

Drift and Architectural Erosion. Drift in the architecture happens when introducing

principal design decisions into a systems descriptive architecture that are not

included in, encompassed by or implied by the prescriptive architecture, but which

do not violate any of the prescriptive architecture design decisions. Erosion happens

when introducing architectural design decisions into a systems descriptive

architecture that violates its prescriptive architecture.

From the above two, architectural erosion is more dangerous than the drift. Because

sometimes a drift may be intentional or can be corrected with low cost, but the

3

erosion may not be identified until the end of a major code release and the only

viable solution left may be to rewrite the entire code base from the scratch.

Throughout the last few decades many researches were conducted and many

methodologies and tools were created in order to mitigate architecture erosion.

Removing the architecture erosion completely is still an unsolved problem in the

field of software architecture.

1.2 Software Architecture and Software Engineering

As per the book Rational Unified Process: An Introduction, by Philippe Kruchten,

An architecture is the set of significant decisions about the organization of a software

system, the selection of structural elements and their interfaces by which the system

is composed, together with their behavior as specified in the collaborations among

those elements, the composition of these elements into progressively larger

subsystems, and the architectural style that guides this organization - these elements

and their interfaces, their collaborations, and their composition. So architecture of a

software intensive system is not just software. It is a combination of software,

hardware and human resources. The performance related design decisions, usability /

HCI (human computer interaction) related design decisions, security related design

decision and many more are included in a software architecture. In one way software

engineering is the process of making sure that the software is made to its architecture

correctly.

Software engineering is a study of engineering to the design, development and

maintenance of a software product. At the initial stage of the software industry there

were lots of issues related to low-quality software products. Then there were

problems regarding timeliness, budgets and reduces level of quality and correctness.

Most of the software products faced the challenge of constantly changing customer

requirements. The demand for this specific area of engineering called 'Software

Engineering' emerged to cater those requirements and as a solution for those above

mentioned issues.

This research can be considered as a study related to a common problem occurred in

between the software architecture and software engineering.

1.3 Problem Statement

Software architecture erosion can be a result of many bad practices and mistakes.

Most of the software development organizations hire programmers to maintain a

system or develop a system. Those programmers will start to change the code and

4

then the system itself without knowing that they may violate the intended software

architecture although the tasks that assigned to them are completed.

Few major reasons for software architecture erosion are,

 Developers lack domain knowledge

 Developers lack knowledge about intended architecture

 The organizations best practices are not followed correctly

 Hard to notice that the changes done by a developer may lead to architectural

degradation

The problem this research tried to focus comprise as follows.

There is no easy way to identify that the ready to commit code contains elements that

may lead the system to an eroded state other than carefully reviewing it or using

tools which are costly and do not guarantee 100% results.

1.4 Motivations to Solve the Problem

Finding a viable solution to the above stated problem and by doing that help the

software developers to write a better code that protects the intended architecture of

the system is the main motivation of this research.

The solution includes a tool which compares the intended architectural information

with the descriptive architectural information of a system at any given time.

Basically that tool will be able to,

 Identify the possible architectural violations and notify them to the developer

 Integrate with a continuous integration mechanism to be a part of a

deployment cycle

 Integrate with a build management tool like Maven

Though there are many researches going on in this area of the field there are so much

left to discover. With the exponential growth of the technologies and the industries,

new problems and new perspectives of solving the same problem come up.

There are existing methodologies and tools which try to solve the above stated

problem, with some limitations,

 They require the code base to be in a standard pattern

 They might add extra code changes other than the actual business logic

 Cost is high

5

 Customizing the tool is not easy

This research motivated to focus on mitigating the above mentioned limitations and

came up with a solution that actually does not have those limitations.

1.5 Research Objectives

The main research objective is to find a solution to the above stated problem while

mitigating the limitations of the existing methodologies and tools. To achieve that

major objective there are several sub objectives fallen in line. Throughout the

research period they were successfully achieved.

First objective was to survey and analyze the developer perspectives about the

research idea. This was necessary because to mitigate the limitations of the existing

tools and methodologies first it needed to be examined properly. The best way to do

so was to get the inputs from the actual developers who use them.

The second objective was to survey the relevant research literature in this research

area. This helped the research to identify the missing areas of software architecture

conformance checking and provide solutions to them. Understanding the existing

solutions for the same problem and identifying how to optimize them was another

plus point of the literature survey.

Third objective was to define a methodology to solve the problem and identify a

suitable tech stack to implement the solution. This was followed by the next

objective to implement the actual tool that used as a proof of the underline concept.

As the final objective a comprehensive evaluation has been done in both theoretically

and euphorically in order to prove the concept actually works.

In this research above mentioned sub objectives were successfully achieved and they

lead to a successful research outcome, which is the tool named SIC (Style Invariants

Checker).

6

1.6 Overview of the Document

This document consists of six chapters. The first chapter comprised the introduction

to the research by presenting a background to the underline domain of software

architecture and software architecture erosion. It will present a brief overview to the

problem which the research trying to find a solution. The motivations to solve the

stated problem and the objectives and milestones set to achieve that objectives are

also listed in the introduction chapter.

The second chapter comprised the findings of the related literature. It includes

descriptions regarding the software architecture erosion and the impact to the

industry level software. The causes of erosion and what kind of solutions available to

prevent it is also focused on this chapter. Findings of this chapter helped this research

to identify the potential methodologies and areas that are not yet considered to solve

the problem of architecture erosion.

The third chapter discuss about the identified methodology to solve the problem of

software architecture erosion. It will comprise of the possible architecture capturing

mechanisms identified and possible scope for this research. The methodology also

talks about the mechanism to develop a proof of concept to the identified solution.

Fourth chapter comprised the information regarding the solution architecture and the

implementation of the proof of concept. This chapter also contain in depth details

about finding a solution to the problem of software architecture erosion using

developer code comments. At the end of this chapter there is a section that describes

the prototype implementation to the tool Style Invariant Checker.

Fifth chapter has the information regarding the evaluation of the research

methodology which includes empirical and theoretical evaluation followed by the

performance testing. Sixth chapter conclude the research by stating the research

contributions along with the limitations of the research.

7

Chapter 2
LITERATURE REVIEW

8

2.1 Software Architecture Erosion and Industry Software

With the massively increasing complexity and the size of software, the existing

software development methods and tools beginning to be weak and less useful. This

is practically a true statement when it comes to maintaining software [3]. In the

Design Erosion : Problems and Causes paper they are illustrating that despite thirty

decades of research and despite the many suggested approaches it is still inevitable

that a software system eventually erodes under pressure of the ever changing

requirements.

2.2 Industrial Examples of Design and Architecture Erosion

In the software industry design erosion is quite common and the naive solution for

that is redeveloping the software system from the scratch. Almost in all the cases the

redevelopment effort was high.

An example of a project for this scenario is the famous Mozilla web browser. After

experiencing a fierce competition from the Microsoft‟s Internet Explorer Netscape

decided to release their own browser as open source. Nearly after 6 months the

developers of open source Netscape came to the conclusion that the original netscape

source code was eroded beyond repair. Obviously the decision was to start from the

scratch. Yet during two years of redevelopment, requirements had changed

sufficiently to retire a part of the system before the system was even finished [3].

Another example is the Linux kernel. Among the many reasons why it took nearly

two years to develop kernel 2.4 after the previous stable release 2.2 is that the old 2.2

code needed massive restructuring in order to incorporate the new designs and

requirements.

In those scenarios the preferred solution was to redevelop or restructure the source

code base. Though it was a successful approach a massive effort needed to be put on

in identifying the signs of design erosion early enough to be able to take such action.

Redeveloping software is a time consuming and a very expensive procedure, and

failing to get the right decision at the right time may cost an organization a fortune.

9

2.3 Causes of Erosion

Software architecture erosion can be caused by a number of problems associated

with the way the software is commonly developed.

 Traceability of design decisions

It is very important to know the prescriptive architecture of the system in

order to change the system when dealing with new requirements.

Problems can occur when the notations commonly used to create software

lack the expressiveness needed to express concepts used during design.

There are no or lack of proper documentation about the implemented

functionality or the design, which eventually leads to making guesses

about the system.

 Maintenance cost is increasing

During the software evolution the maintenance task becomes increasingly

effort consuming due to the fact that the complexity of the system keeps

growing. Those task can be both time consuming and costly. This may

eventually cause the developers to take suboptimal design decisions either

because they do not understand the architecture or because a more

optimal decision would be too effort consuming

 Accumulation of design decisions

Due to the hierarchical nature of design decisions high level architectural

decisions are followed by many low level architectural design decisions.

The design decisions are accumulated and interact in a way such that

revision of one would force reconsideration of all of the others. When a

programmer decide to change a design for any reason, then they must

consider the system as a whole and take a optimal strategic decision

which eventually consider all other decisions affected by that or they must

work with a system design which is not going to be optimal

 Iterative methods

A primary goal of the system architecture design is to create a design that

can accommodate future changes to the system easily. This conflicts with

the iterative nature of many software development methods (ex: in agile)

since these methodologies typically incorporate new requirements that

may have an architectural impact, during development where a proper

design requires knowledge about these requirements in advance

10

 Lack of continuous refactoring

Refactoring should be done regularly, if not then small design or

implementation issues, architectural smells or decision inconsistencies

will be accumulated, and consequently the software qualities will degrade

 Uncertainty about the evolution of the system

Most of the times when the creation of prescriptive architecture takes

place the designers are uncertain about the possible future goals of the

system. What are the future extensions, the possible future integrations

and migrations are not visible during the primary phases due to various

reasons. This may lead the prescriptive architecture and hence the

descriptive architecture hard to maintain

 Release pressure

With the increasing number of change requests and the tight schedules the

developers are forced to complete the tasks assigned to the as soon as

possible. Though the task completed without a problem and passed the

user acceptance tests that doesn‟t mean the fix or the change made to the

system was the optimal one. The developer may be unintentionally

change the system architecture and cause the system to early eroded state

 Changing requirements

This cannot be stopped. Requirements are in their nature are subjected to

change. What we can do is to build the system so that it could withstand

the changes in the future. Knowing the possible changes or the possible

requirements can help the designers to do a better job

 Lack of knowledge about early design decisions

This happens due to both lack of documentation and staff turnover. If the

code base is not self explanatory (when the system is growing cannot

expect it to be self explanatory always) then there should be a proper

documentation or the developers needs to be in touch with the production

and maintenance. If not it‟s hard to understand and maintain the intended

purpose of the system

11

2.4 Effects of Architecture Design Erosion on a System

When a software system getting large and getting mature with the time it will tend to

degrade from the original architecture and erosion will eventually happen.

Identifying the software erosion with the time as early as possible will help to

recover from it or delay it. There are symptoms of a deteriorating system [4]

 Code quality

Quality problem s of a source code may include unnecessarily complex or

lengthy functions, abuse of language features, wrong use of infrastructure

features etc. When a experience developer feels that the code is too

complex for its intended purpose or there are so many boilerplate codes

here and there it might be too late to recover it. Sometimes a well

developed code base may have violated a major design decision with its

latest change. So with a review it can be identified as early as possible

and take actions to solve the problem

 Uncertainty about specifications

Most of the times undocumented changes added to the system effectively

making the existing design specifications obsolete. When it feels like

there is a great deal of uncertainty about the system specification and the

architecture design it might be a good time to take time to resolve those

problems and after that move forward

 Regressions

Fixes for defects often introduce new problems. Some of them are visible

or produced new bugs as soon as the new deployment goes and some of

them will remain few years to show symptoms

 Deployment problems

Since the original design of the system was developed aiming to cater a

certain set of deployment configuration steps it might not be hold on with

a new and changed set of deployment steps. This changing of the

environments keeps happening and we cannot stop that. These

deployment problems can be identified when the system show symptoms

regarding deployment issues

12

2.5 When to Decide the Software Is Eroding and Needs to Be Repaired

After identifying the symptoms of software architecture erosion sometimes it will be

kept as a low priority task to do the repairs or take the necessary actions to resolve

the problem due to various reasons like cost limitations and time limitations. Sooner

or later it needs to be done [14]. There are some tipping points to consider taking that

decision.

 By analyzing defect densities

Defect figures in a particular software component, which are larger than

the norm, automatically trigger management to initiate proper action.

Quick bug fixes and less number of reviews are the major reason for the

increased defect density. Those reasons are a clear indication of eroding

software

 By conducting proper system evaluations

Most of the times the decision to evolve the software was taken after an

internal evaluation. If there are problems with the existing software and if

it feels like the software is not in a good condition to evolve, then a

proper adjustment should be made

 When the new requirements arrives

If the system is not in a shape to cater the new requirements then probably

the system is no longer useful. Might be a case where the software

erosion is in place

2.6 What Kind of Solutions Are Applied To Fix an Eroded System

After it has been determined that a system is eroded and the possible causes have

been identified we can attempt to make the repairs and prevent future damage to the

system. As identified there are few obvious things that can be done [4]

 Redevelopment of the software

If the software is in a state that there are no options to repair it to a

workable system then we might have to redevelop it from the scratch.

Because changing the existing system might not end up giving the best

13

possible outcome, sometimes it might not satisfy the minimum

requirements of the system

 Restructuring

There might be a case where a restructuring of the system if enough to

make the erosion delay. If so it might be suitable for certain scenarios

 Strong focus on design

As identified before lack of up to date design and specifications in usually

one of the problems with eroded systems. In scenarios like that recovering

and updating the designs is an integral part of the attempt to address the

problems and a key to the success of the whole operation

 Modularization and object orientation

There might be a case where the source code is in a bad shape and that

there are many dependencies between the various modules and

components in the system. In both cases object oriented type mechanisms

such as encapsulation, information hiding and delegation can be applied

to improve the structure of the system

 Reverse-engineer the system and recover the architecture from the source

code

Sometimes the prescriptive architecture is no longer available and in such

a case it will be much harder to recover from it. If there is a possibility to

reverse engineer the source code and find the original architecture then

there is a chance of recovery

2.7 Architecture Reconstruction Techniques

There are different tools and techniques for reconstructing architecture from source

code or runtime artifacts. The Architecture Reconstruction Method (ARM) [5] is one

of the first semi-automatic methods for architecture recovery from source code. This

method is based on pattern matching idea to identify a set of patterns provided by the

user in a reverse engineered model of the implemented architecture.

Reflexion models by Murphy et.al [6] is used to map a hypothetical model of the

intended architecture to the results from a static analysis of the source code. A

clustering technique (Classes and packages as the elements of the clustering

14

technique) to refine the reflexion models and create a high level abstraction of the

system architecture was done by Lung et.al [7]. Pattern matching language called

Architecture Query Language was used by Sartipi [8] to develop a software

architecture recovery method. Jansen et.al [9] emphasizes recovering architectural

design decisions based on differences in architecture design across different versions

of the system. This method is called Architectural Design Decision Recovery

Approach (ADDRA) and it does not focus on the structure of the software. As the

first phase it will generate an architectural view for each version of the system. Then

the differences are inspected to identify the architecture changes and the various

design decisions.

2.8 Architecture Refactoring

This is used to reconcile the prescriptive and descriptive architectures of a system.

Architecture refactoring is often done to improve design fragments of software

architectures which can have a negative impact on system maintainability. Because

some requirement change and that might results in the adoption of a design solution

which is inappropriate for that context, or the new solution might result in

undesirable behavior. In such situation, refactoring the architecture is necessary to

remove the issues known as architectural smells and prevent their accumulation

which may end in design erosion. Various tools and IDE‟s have been developed to

support code refactoring but almost all of them do not emphasize the architectural

level concerns. It is kept as a developer responsibility to deal with the issues with the

architecture.

2.9 Preventing Architecture Erosion

As many suggested the first step towards preventing design erosion is having a more

mature software development process. As identified by Bengtsson et-al [4] the most

important factor in such a development process which can prevent design erosion is

proper documentation of the architectural design decisions. This documentation

should be accessible to all the developers and stakeholders and it should give them

up to date knowledge about the architecture of the system.

"Even when the code is designed so that changes can be carried out efficiently, the

design principles and design decisions are often not recorded in a form that is useful

to future maintainers. Documentation is the aspect of software engineering most

neglected by both academic researchers and practitioners. It is common to hear a

15

programmer saying that the code is its own documentation. Even highly respected

language researchers take this position, arguing that if you use their latest language,

the structure will be explicit and obvious." - Parnas

Not only the prescriptive architecture, the requirements itself should be documented

as well. Len Bass [11] prescribes a detailed documentation of requirements; it has

qualities in form of a precise description template which is ready for rigorous

analysis, as well as documenting the design architecture through different

architectural views suitable for different stakeholders. [12]

The prescriptive architecture should be clearly visible and understandable to all the

developers and architects of the system. New members and maintainers should be

properly introduced to the intended architecture so that they won't break it

unintentionally. The source code should be reviewed by the senior developers as well

as the architects who know the intended architecture.

There are researches about considering the linkage between architecture and

implementation. It might provide a basis for monitoring architectural compliance at

any time. The reflexion models technique developed by Murphy et al [6] which

compares a reconstructed model of the implemented architecture to a hypothetical

model of the design intended by the architects. Then the two models can be analyzed

to find possible deviation between intended and implemented architectures. There is

a research and a survey on extending this idea to provide a tool support for mapping

and deviation analysis [13]. It assumes that the intended architecture exists, then

repeatedly refines the implemented architecture as development progresses, and

compares it against the intended architecture.

2.10 Preventing Software Architecture Erosion through Static Architecture

Conformance Checking

There are researches that are trying to assess the conformity of the implemented

architecture to the intended architecture and can provide a strategy for detecting

software architecture erosion and thereby prevent its negative consequences.

When considering the current state-of-the-art of software architecture research and

popular industry practices on architecture erosion, it obviously appears that such

solution strategy is much needed to address the ever increasing demands for large

scale complex software systems [12].

16

As discussed earlier architecture erosion controlling approaches can be divided into

three broad categories. Namely minimizing the architecture erosion, preventing the

architecture erosion and repair an eroded system [13]. We are talking about

prevention approach when it comes to detecting the architecture erosion and try to

avoid erosion. Static architecture conformance checking belongs to that category as

well.

Static code analysis does not require the application to be running. It can be seen as a

methodology which can provide very quick and early feedback to developers. [2]. In

order to perform architecture conformance checking we need to have the architecture

of the system in a formal manner or according to a standard format. So that the

analyzing or processing in a programmatic way is easily possible. Architecture

Description Languages (ADL), which try to provide unambiguous definition of the

systems architecture, are formal languages that can be used to represent architecture

of a software intensive system [15] .

GRASP [16] [17] is a textual architecture description language capable of capturing

the „rationale‟ behind architectural design decisions. It is somewhat similar to a high

level programming language syntax or a pseudo code. GRASP can parse a given set

of specification and create an object model from it. In any GRASP specification

„architecture‟ element is the top most one. As described in the Figure 1, „layer‟

element will represent the layered architecture and „because‟ key word will link each

architectural element to relevant rationale.

Figure 2-1 : Simple GRASP Specification

17

Once the as intended architecture captured in a manner which supports programmatic

processing of the architecture specification, needs to define a mapping, which

contains as to how architectural elements map to implementation units in the actual

source code. Static architecture conformance checking is mostly concerned with

module view of the architecture, which deals with the organization of the source

code elements. Once the architecture and the mapping are in place actual source code

has to be analyzed. To do that one can build a model of the source code and then

evaluate rules related to architecture elements against this model. Another approach

will be to reverse engineer an architectural model using the mapping information and

then compare this with the original architectural specification to find deviations.

Since to do static architecture conformance the application doesn't needs to be in

execution, the above can be done easily.

2.11 GRASP ADL Based Static Architecture Conformance Checking Tool for

Java

As researchers say, given that GRASP is a textual ADL is would be easy to integrate

a static architecture conformance checking tool based on GRASP, with existing

build, continuous integration tools and frameworks [14].

The approach the suggested first need to have the information on what Java classes a

particular GRASP architecture element maps to. Once all the mapping of

architectural elements are known, it is possible to check whether associations

between Java classes are valid compared to the associations between architectural

elements.

18

Figure 2-2 : Design of the GRASP based static conformance checking tool

They have used annotation support in GRASP for mapping architectural elements to

Java classes. Figure shows example of an annotated GRASP specification. There the

mapping information contains which Java classes a given architectural element maps

to and which associations of those classes needs to be considered during conformity

checking.

19

Figure 2-3 : GRASP specification containing mapping information

2.12 Reflexion Modeling and Inverting Reflexion for Design Control (An

Industrial Case Study of Architecture Conformance)

In the paper An Industrial case study of Architecture conformance, they reports on a

case study which is designed to evaluate an approach for monitoring architectural

drift during software development. This approach is designed for application within a

forward engineering context. [18] In this paper they have identified that the

degradation of a software system‟s design, as a result of its very own implementation

and the continuous evaluation is a well documented phenomenon known as

architectural drift.

They report on a 2-year ongoing case study designed to evaluate a lightweight

process for monitoring the as-implemented or descriptive architecture of a software

system during its development phase. That process is based on an inverted version of

Reflexion Modeling [19] as suggested by Hochstein [20] and Knodel [21]

20

They argue that the architectural conformance process should be explicitly defined

and should be applicable during the initial development of the software system. The

reason is, if not, by the time the software is developed, it may have already drifted

substantially from its initial architecture. They further argue that it should be applied

by professional software developers to large commercial systems during

development and the developers should then be given the results of the process to

guide subsequent development.

2.12.1 Reflexion Modeling

This is a semi-automated, diagram-based structural summarization technique that

programmers can use to aid the comprehension of software systems.

This technique has 6 process steps,

 The software engineer creates a hypothesized architectural model, the High-

Level Model (HLM)

 A dependency graph of the subject system‟s sources is extracted, creating the

Source Model (SM)

 The software engineer creates a mapping assigning SM entities to HLM

entities

 The relationships in the HLM are compared with relationships in the SM.

Results of that comparison is presented in the resulting Reflexion Model

(RM). The following relationships are represented in this model

o A solid edge represents a relationship present in both, the HLM and

the SM. (convergence)

o A dashed edge represents a relationship present in the SM, not present

in the HLM. (divergence)

o A dotted edge represents a relationship present in the HLM, not

present in the SM. (absence)

 By analyzing these relationships in the RM, engineers can either alter the

mappings, the HLM, or the SM (through re-factoring the source code)

 Steps 4 and 5 are repeated until the recovered model is consistent

21

2.12.2 Inverting Reflexion for Design Control

The proposed architecture conformance checking based on a inversion of the above

mentions steps.

 Before implementation of the system commences, designer creates a HLM

representing system‟s as-designed architecture

 During the implementation phase, developers or/and architects, update the

mappings to reflect developer changes to the code base

 At any time, a RM can be generated to verify conformance of the

implementation

 Subsequently the resulting model is analyzed to reveal the following

o Where the implementation is consistent with the design

(convergences)

o Where the implementation violates the design (divergences and

absences)

 Of most interest are the violations, i.e. the absence of any edge in the SM

where one is expected, or the presence of an edge where one is not. Engineers

may choose to take one of the following actions to correct the issues

o The violation may be corrected by updating the code base (changing

the SM)

o Mappings may be updated, reassigning an SM entity to a different

HLM entity

o The „as implemented” design may be considered acceptable and the

HLM updated accordingly

o The violation may be accepted and documented for later consideration

 Steps 3 and 4 are applied repeatedly until the project is completed

Figure 2-4 : The inverted Reflexion Modeling process

22

2.13 Traceability Model For Viewing Architectural Tactics Using Code

Comments

There is a research which focuses on an analysis into a model to retain knowledge of

architectural tactics of a software project along with its source code, by a non-

intrusive, centralized way using code comments. A tool is implemented to read the

information in the model and generate documentation views based on the

information present in the model [22].

They expect to have several benefits from it, including,

 Preserve the unified knowledge of architectural tactics, design patterns and

quality goals of a software project in an assured and centralized way

 Provide comprehensive visualization to easily correlate the above: quality

goals, tactics, and the design patterns; thereby eliminating the abstractness of

the relationships of those elements

 Using the visualizations, function as a traceability mechanism to guard

against architecture degradation at every system build

 Facilitating easy ramping up of new team members by helping them to easily

understand the "architecture vision" of the software system

The primary mechanism here is the designed framework will read metadata and

provide high-level descriptions about the prescribed architecture of the software

system. The idea of DesignDoc, the tool developed as a proof of concept, is to be a

pluggable tool to view architectural tactics adopted in a software project while

serving as a traceability mechanism to detect any degradation of the architecture.

Design patterns defined in Gamma et al. (1995) are essentially formations of source

elements: i.e. classes, interfaces, class attributes and class methods. They have

leveraged this idea and tried to represent and retain that information of design patters

using a suitable data model. In this case XML and JSON formats are considered.

Among those XML is preferred since it is more readable and extensible in

hierarchical and relational data representation found in this context.

23

Figure 2-5 : XML based design pattern specification for Adapter pattern

Figure 2-6 : JSON based design pattern specification for Adapter pattern

24

Considering the pattern, class, interface, method and field relationships in, a XML

Schema Definition (XSD) can be created to describe the elements of a design pattern

XML.

Figure 2-7 : Minimal XSD needed to represent design pattern information

They have considered two possible ways to create a mapping between source

elements and design pattern elements. One is addition of Java annotations to source

code elements and other is commenting source elements with Javadoc tags.

Figure 2-8 : Using Java annotations to map design pattern specifications

25

This idea about creating a mapping between source code and the relevant

specification (design patterns or the intended architecture) can be used to track

design degradation as well.

26

Chapter 3
METHODOLOGY

27

Developing software to last long and have no major problems is a complex task. One

major threat is software architecture erosion. It can happen in many ways, simply put

if one developer makes some sloppy mistake the whole software might be at trouble

[24]. It might not be straight away, but take a long time, but by that time it might be

too late to recover from that.

The primary objective of this research is to identify a way to detect software

architecture erosion and what causes it by analyzing the code implemented by the

developers of the software. This can either be done at the code commits stage or at

the local development environments [23]. So the intended methodology will need to

have a way to capture the architectural specifications or the descriptive architecture

from the code which is implemented or committed by the developer and compare it

with the original architecture. The architecture conformance can be take place after

that.

Figure 3-1 : Typical code review process with a reviewer other than the developer

itself

3.1 Identifying a Possible Architecture Capturing Mechanism

With the literature survey about the past and present researches, several

methodologies have been identified to cater the need of having a mapping between

source code elements and the architectural specifications.

 Analyzing the source code using a Reflxion model

28

 Using a architecture description language to capture and preserve information

about the architecture

 Using an inverted Reflexion model

 Using a framework to represent and retain architectural information using a

suitable data model (XML, JSON with Javadocs)

For this research the latter was considered. As identified using a framework to

represent and retain architectural information using a suitable data model is

promising method with its own benefits.

 There will be no source code changes which leads to unnecessary

dependencies

 Easy to understand and implement accordingly

 There are still few research methodologies to discover in this area

There were few possible ways to represent the descriptive architecture in a code

base.

 Using Javadoc annotations

This was not chosen because with this the source code will get

changed

 Using Javadoc comments

Since there will be no source code changes other than the doc

comments this was selected.

These two was analyzed and compared to identify the best suitable methodology to

identify and represent the descriptive architecture for this research.

Then a Doclet program was used to capture that information represented in the code.

Doclet programs work with the Javadoc tool to generate documentation from code

written in Java. Doclets are written in the Java and use the Doclet API, which

provides an environment that allows clients to inspect the source-level structures of

programs and libraries, including API comments embedded in the source.

3.2 Identifying Possible Architecture Violation Types to Consider For a Proof of

Concept

There are many architecture violations to consider but for this research it was

identified that considering the architecture style invariants violations would be a

suitable candidate. An invariant is a condition that can be relied upon to be true

during execution of a program, or during some portion of it, for an example one

architect can decide that a layered architecture has an invariant stating that one layer

can access only the below and above layer only.

29

3.3 Developing a Proof of Concept

In order to prove that this research idea actually matters and can actually contribute

the software product line and software development life cycle, a tool was

implemented. A project which uses a layered architecture style was used as the

project under analysis. The tool was used to detect the architecture violations induced

to that source code.

To check the viability of using this approach to enhance the continuous integration

and continuous delivery a maven plug-in was created. It can be integrated to the local

build process and the continuous integration process (Using a jenkins plug-

in).[25][26]

Figure 3-2 : Development process after the introduction of the solution

3.4 Evaluation of the Proof of Concept

The implemented version was evaluated in order to check its performance and

capability of identifying the violations correctly. Both empirical and theoretical

evaluations have been done on order to solidify the evaluation. Improvement and

enhancements were identified and suitable conclusions were made with the results.

30

Chapter 4

SOLUTION ARCHITECTURE AND IMPLEMENTATION

31

Checking architectural style invariants and confirming they are intact can lead to a

way to identify whether the prescriptive architecture is degraded or not. [27]

Violations of style invariants massively contributed towards architecture erosion.

[28]

As identified,

 The solution should not add intrusions to the source code. I.e. the actual

source code should not include any additional dependencies

 There should be a way to define a rule set to identify the prescriptive

architectural aspects

 It should be easy to extend to capture other types of invariants and

architectures

 It should be a single dependency and easy to configure

 Should operate in acceptable processing times and resource utilizations

4.1 Presentation of Rules for Style Invariants and Prescriptive Architecture

Basically the conformity includes comparing the prescriptive architecture rules with

the descriptive architecture, i.e. the architecture identified by the existing source

code. So presentation of the intended prescriptive architecture is quite important. [29]

It can be a one single presentation for the overall architecture or can be separate rules

for style invariants and others. [33]

4.1.1 Presenting the Rules via XML

XML (eXtensible Markup Language) is a software and hardware independent

markup language for storing and transporting data. Data represented through XML is

both human and machine readable. The design goals of XML emphasize simplicity,

generality, and usability across the Internet. [30] XML has come into common use

for the interchange of data over the Internet also.[31]

Figure shows representing simple layered architecture invariants and details about

the architecture using XML.

32

Figure 4-1 : Representing simple layered architecture invariants and details about the

architecture using XML

4.1.2 Presenting the Rules via JSON

JavaScript Object Notation or JSON is an standard file format which can be used for

multiple purposes.[32] It uses human readable and machine readable text to transmit

objects of data which are commonly attribute-value pairs and array data types.

It was derived from JavaScript but now widely used from others too. Now it's

language independent data format.

Figure shows representing simple layered architecture invariants and details about

the architecture using JSON.

33

Figure 4-2 : Representing simple layered architecture invariants and details about the

architecture using JSON

4.2 Mapping Source Elements to Architectural Information

Source or the code base is the most important artifact here. The solution should

introduce a way to extract the architecture information from the code and compare

the extracted architecture (i.e. the descriptive architecture) with the defined

architecture.

Although there are complex ways to extract those details as mentioned before, in this

research it‟s mainly focused to check other ways to do the same.

One identified such solution is to introduce some source code changes to be done by

the developer or the architect during the development time. This method will require

an initial training to use the tool and write a code which complies with that tool.

As identified by previous researchers there are many ways to do so. This research

only focuses on two out of them.

 Mapping elements using Java Annotations

 Mapping elements using JavaDoc tags

34

4.2.1 Mapping Elements Using Java Annotations

Java annotations are used to provide metadata for a Java code. Since its metadata,

Java annotations do not directly affect the execution of the code. Even though it is

stated like that, some types of annotations can actually be used for that purpose. Java

annotations were added to Java from Java 5.

There are three typical use cases of Java annotations. For the purpose of Compiler

instructions, Build-time instructions and Runtime instructions. [34] When using in

the build time, the build process includes generating source code, compiling the

source, generating XML files like deployment descriptors and packaging the

compiled artifacts. An automated build tool like maven can be used to building the

system, and those build tools may scan the Java code to identify specific annotations

and generate source code or other files based on these annotations.

Java annotations will not be present in the code after compilation. It is possible to

define custom annotations which are available at runtime. Those annotations can be

accessed via Java Reflections also [35]. By using that kind of an approach we can

extract some information about the source code, like architecture details states like in

this case.

The figure shows how we can use Java annotations to present the details of the

architecture and other information like style invariant. [36]

Figure 4-3 : Use Java annotations to present the details of the architecture and other

information like style invariant

35

4.2.2 Mapping Elements Using JavaDoc Tags

As Oracle state Javadoc is a tool for generating API documentation in HTML format

from doc comments in source code.

JavaDoc uses a format called "doc comments" and it's a common industry standard

for documenting classes. Some IDEs (Integrated Development Environments) like

Eclipse, Netbeans, JIdea automatically generate JavaDoc HTML reports.

JavaDoc also provides a good API for creating doclets and taglets, which allows

users to analyze the structure of the Java application.

As Oracle state The Doclet API (also called the Javadoc API) will provide a

mechanism for the users to inspect the source-level structure of programs and

libraries, which has embedded javadoc comments in the source. That can be used by

a third party tool to do any kind of documentation or checking the program itself.

Doclets are typically invoked by javadoc can use this API to write out program

information to any format. The javadocs‟ standard doclet is called by the default and

writes out documentation to HTML files.

The figure shows how we can use JavaDoc tags to present the details of the

architecture and other information like style invariant.

Figure 4-4 : Use JavaDoc tags to present the details of the architecture and other

information like style invariant.

36

4.2.3 Comparison of Java Annotations and JavaDoc

Most of the research literature has identified similarities and dissimilarities of these

two. Below table contains a comparison of the two approaches.

Considering the below factors, Javadoc tags was chosen as the optimal approach for

mapping source elements to design pattern specifications.

Table 4-1 : Using Annotations vs JavaDoc tags

 Using Annotations Using Javadoc tags

Extendibility to add

custom design

patterns

High

(Java annotations provide

implementation level

flexibilities to easily

extend the solution)

Medium

(Passing auxiliary data to

The tool from Javadoc

tags is limited)

Portability of

The tool across

projects

Medium

(Target application must

use a Java version above

Java 1.5)

High

(Target application can be of

any Java version)

Ease of setting up

Same

tool in a project

(Only need to add the tools‟

library to the application

as a dependency)

(Only need to add the tool‟s

library to the application

as a dependency)

Learn ability of

using

The tool

Low

(Developers need to know

about using Java

annotations)

High

(Only need to know about

adding Javadoc tags)

Ease of using

The solution in an

application

Medium

(Needs to annotate source

elements)

High

(Only need to comment the

source elements)

Level of intrusion to

the code

High

(Have to insert annotations

which are Java code

elements processed in the

compiler)

Very Low

(Only code comments)

Overall performance

of processing in

The tool

Less

(High overhead to scan all

the sources and filter out

candidate source elements

More

(Javadoc is fast and has

minimal overhead to filter

out

37

based on annotations) sources with matching tags)

Ease of integrating

with Javadoc to

generate Javadoc

documentation

Less Naturally more

Cross-platform

portability (i.e.

implementing

The tool on another

implementation

platform like C#,

C++)

None

(Java annotations are

specific to Java and will

not be able to manipulate

by any other

implementation language)

Low

(Javadoc only work on Java

source files but commenting

scheme of using @comment

tags may still be portable to

any platform if needed. It

will

be a matter of reading them

from source files)

Relative effort to

implement

More Less

4.3 Solution Architecture

As identified the solution system architecture of the Style Invariants Checker (SIC)

will include few main components,

 Source code parser

 Rule processor

 Architecture confirmation validator

 Style invariants checker

 View module

38

Figure 4-5 : Solution Architecture

4.3.1 Validating System Architecture Using JavaDoc Tags in the Source Code

As identified above JavaDoc tags which implemented for custom purposes, can be

used to inject some information about the descriptive architecture of the system [37].

This information injecting should be done by the developer or the system software

architect at the time of developing.

For an example if the system follows a layered architecture there will be several style

invariants.

Below are some typical style invariants of layered architecture.

 Limiting the layer interactions to adjacent layers only

This can be further customized (by violating the fact that only adjacent

layer interactions are allowed) such that any layer can use the services of

any below layer or something similar to that.

 Below layer should support the requirements of the immediately above layer

39

When these style invariants add up it is hard to manually decide whether the system

comply with the actual prescriptive architecture or not [38]. Especially when the

system is quite complex and large and handled by large number of developers.

Using this research methodology the architects can design certain rules using the

prescriptive architecture. Then when developing how to inject the architectural

decisions made to the source code itself.

In a simple case like simple layered system, it can be done by simply mentioning

what are the packages the class access and what are the packages this class should

provide support for. Packages can be categorized as relevant layers for the ease of

development. In a complex scenario we can add more detailed information like what

are the functions access certain layers and how those happens in the code.

4.3.2 How Descriptive Architecture Information Is Identified

As Oracle describes the Doclet API (also called the Javadoc API) provides a

mechanism for clients to inspect the source-level structure of programs and libraries,

including javadoc comments embedded in the source. Doclets are programs written

in the Java™ programming language that use the doclet API to specify the content

and format of the output of the Javadoc tool. By default, the Javadoc tool uses the

"standard" doclet provided by Sun™ to generate API documentation in HTML form.

However, we can supply our own doclets to customize the output of Javadoc as you

like. We can write the doclets from scratch using the doclet API, or we can start with

the standard doclet and modify it to suit our needs. A simple custom doclet can be

like below,

import com.sun.javadoc.*;

public class ListClass {

 public static boolean start(RootDoc root) {

 ClassDoc[] classes = root.classes();

 for (int i = 0; i < classes.length; ++i) {

 System.out.println(classes[i]);

 }

 return true;

 }

}

What this doclet does is it will take the classes upon which Javadoc is operating and

prints their names to standard out.

40

As mentioned before custom tags may also be created. Here is an example usage of

custom tags.

Let‟s say we want use a custom tag, say @invariants, in your documentation

comments in addition to the standard tags like @param and @return. To make use

of the information in our custom tags, we need to have our doclet use instances of

Tag that represent our custom tags. One of the easiest ways to do that is to use the

tags (String) method of Doc or one of Doc's subclasses.

import com.sun.javadoc.*;

public class ListTags {

 public static boolean start(RootDoc root){

 String tagName = "invariants";

 writeContents(root.classes(), tagName);

 return true;

 }

 private static void writeContents(ClassDoc[] classes, String

tagName) {

 for (int i=0; i < classes.length; i++) {

 boolean classNamePrinted = false;

 MethodDoc[] methods = classes[i].methods();

 for (int j=0; j < methods.length; j++) {

 Tag[] tags = methods[j].tags(tagName);

 if (tags.length > 0) {

 if (!classNamePrinted) {

 System.out.println("\n" + classes[i].name() +

"\n");

 classNamePrinted = true;

 }

 System.out.println(methods[j].name());

 for (int k=0; k < tags.length; k++) {

 System.out.println(" " + tags[k].name() + ":

"

 + tags[k].text());

 }

 }

 }

 }

 }

}

The tag for which this doclet searches is specified by the variable tagName. The

value of the tagName string can be any tag name, custom or standard. This doclet

writes to standard out, but its output format could be modified, for example, to write

HTML output to a file.

41

So it is clear that by using custom tags we can extract some information associated

with them. That is how the information about the descriptive architecture is gathered.

4.4 Prototype Implementation

For the purpose of proof of concept let‟s consider a simple layered architecture of a

system. Where we have few layers like below,

 Presentation layer

 Application layer

 Business layer

 Data access layer

Folder and package structure may look like below,

Figure 4-6 : Folder and package structure

Few of the classes implemented for this is included in the Appendix A.

42

To store the details about prescriptive architecture we can use a JSON as below.

Figure 4-7 : Simple_layer_access.json

To process that rules and store it in memory we can a Java program which use Doclet

and JavaDoc annotations to extract the data. Java code for a basic implementation for

an analyzer is included in Appendix B.

43

4.5 Generating Views for the Reports

For the scenario mentioned as the example it will create an output like below. Since

it is printing to the standard output we can see below on the console itself.

Loading source files for package com.sic.system.presentationlayer...

Loading source files for package com.sic.system.businesslayer...

Loading source files for package com.sic.system.dataaccesslayer...

Loading source files for package com.sic.system.applicationlayer...

Constructing Javadoc information...

Analyzing classes of presentationlayer layer

 Class OutputPresenter PASSED

Analyzing classes of businesslayer layer

 Class DataProcessor PASSED

 Class DataPreProcessor PASSED

Analyzing classes of dataaccesslayer layer

 Class DataExchange PASSED

Analyzing classes of applicationlayer layer

 Class DataStreamAPI PASSED

 RequestValidator violates the layered architecture by accessing dataaccesslayer as a client

Process finished with exit code 0

4.6 Style Invariants Checker Added As a Separate Dependency through Maven

At the early stage of the research the SIC was designed to run as an inbuilt

component of the application. Later it was ported out and resulted in a separate plug-

in for the application which gave the flexibility to separately modify the SIC and

maintain. In order to achieve this maven plug-in was created with the SIC

functionality.

A plug-in should be created using a suitable methodology and as per this case

Apache maven was selected, as it is the most widely used software project

management and build automation tool. Developing a plug-in for maven is much

suitable since most of the industry applications use Maven as the underline project

management tool.

44

Plug-in creation using Maven is fairly easy than the others since it has a large

community support and a good shared resources to follow on. The figure 4-14 shows

the main Mojo class of the maven plug-in.

Figure 4-8 : The basic Mojo class for the Maven plug-in

In order to create the plug-in we had to add few dependencies through maven. Figure

4-15 shows the project pom.xml with the required dependencies.

45

Figure 4-9 : Pom.xml configuration for the plug-in

In order to this plug-in to be used by other applications this needs to go into the

maven repository. After that the application which needs to access the plug-in should

set the pom.xml configurations as shown in the figure 4-16.

46

Figure 4-10 : How to include the plug-in to an application through maven plug-in

configuration

To run the plug-in goal defined we need to use the mvn sic:scan command. Figure

4-17 shows an example instance of running the maven goal.

47

Figure 4-11 : Run the scan using the SIC plug-in

An example result of the maven goal execution is shown below. As it shown the scan

took place with an actual build for the project.

[INFO] Scanning for projects...

[INFO]

[INFO] --

[INFO] Building abcmanager 1.0-SNAPSHOT

[INFO] --

[INFO]

[INFO] --- sic-maven-plugin:1.0-SNAPSHOT:scan (default-cli) @ abcmanager ---

[INFO] scanning the project

Loading source files for package com.sic.system.presentationlayer...

Loading source files for package com.sic.system.businesslayer...

Loading source files for package com.sic.system.dataaccesslayer...

Loading source files for package com.sic.system.applicationlayer...

Constructing Javadoc information...

Analyzing classes of presentationlayer layer

 Class OutputPresenter PASSED

48

Analyzing classes of businesslayer layer

 Class DataProcessor PASSED

 Class DataPreProcessor PASSED

Analyzing classes of dataaccesslayer layer

 Class DataExchange PASSED

Analyzing classes of applicationlayer layer

 RequestValidator violates the layered architecture by accessing

dataaccesslayer as a client

 Class DataStreamAPI PASSED

[INFO] --

[INFO] BUILD FAILURE

[INFO] --

[INFO] Total time: 0.939 s

[INFO] Finished at: 2017-12-31T11:56:19+05:30

[INFO] Final Memory: 10M/160M

[INFO] --

[ERROR] Failed to execute goal sic.plugin:sic-maven-plugin:1.0-SNAPSHOT:scan

(default-cli) on project abcmanager: layered architecture violations detected !!!

[ERROR] RequestValidator violates the layered architecture by accessing

dataaccesslayer as a client

[ERROR] -> [Help 1]

[ERROR]

[ERROR] To see the full stack trace of the errors, re-run Maven with the -e switch.

[ERROR] Re-run Maven using the -X switch to enable full debug logging.

[ERROR]

[ERROR] For more information about the errors and possible solutions, please read

the following articles:

[ERROR] [Help 1]

http://cwiki.apache.org/confluence/display/MAVEN/MojoFailureException

49

Chapter 5

EVALUATION

50

The evaluation of this methodology and the actual implementation of it rely on few

factors. Few of them are the skill level of actual human resources who is going to test

this manually and the complexity of the applications which the SIC is applied to.

The main reason of this research is to identify and propose a methodology to

decrease architecture erosion of an enterprise level application. Many researches

have been done in this area and this research will focus on a new tactic to identify

architecture erosion. In here the research was done to identify how can JavaDoc

comments help to reduce the violations to the prescriptive architecture when

developing a complex system.

There can be many reasons to violate the prescriptive architecture by a developer. As

per this research we narrowed it down to check whether some of the pre defined

architecture style invariants are violated or not. Style invariant is a rule that should

not be violated throughout the development process.

The evaluation strategy for the system that was developed to test this methodology

(hereby called as SIC - Style Invariant Checker) consists of few phases.

 Empirical evaluation the correctness of the SIC

 Performance testing of the SIC

 Analytical evaluation of the impact of SIC when it is added to a continuous

integration flow

5.1 Empirical Evaluation the Correctness Of the SIC

Basic flow of the SIC to check the descriptive architecture against the prescriptive

architecture is as in the figure 5-1.

 Will load and read the prescriptive architecture rule set

 Will extract the descriptive architecture details from the application code base

 Will compare the prescriptive and descriptive architectures

 Will produce s set of results

51

Figure 5-1 : Basic flow of Style Invariants Checker

The SIC itself contains few components as shown in the figure 5-2.

 Prescriptive Architecture Rules Processor

 Invariants Violation Checker

 Result Generator

Figure 5-2 : Basic components of Style Invariant Checker

5.1.1 Evaluate the Correctness of the Loaded Prescriptive Architecture by SIC

For this we needs to evaluate the correctness of the Prescriptive Architecture Rules

Processor of the SIC, since it is the components, which the actual prescriptive

architecture is loaded to the SIC. This must be correct to continue further rule

validation on SIC.

The prescriptive architecture rules are pushed to the system via JSON file.

52

Figure 5-3 : Prescriptive Architecture rules can be presented in a JSON file format

We can test the results using a dedicated tests suite. We need to test whether the

provided rules are actually being loaded or not. This evaluation strategy took few

steps.

 Define 10 different prescriptive architecture rules documents (.json files)

 Loaded the rules via the SIC

 Evaluated the loaded results are correct or not

Table 5-1: Loaded prescriptive architecture validation test results

Json
1

Json
2

Json
3

Json
4

Json
5

Json
6

Json
7

Json
8

Json
9

Json
10

Passed 100% 100% 100
%

100
%

100
%

100
%

100
%

100
%

100
%

100
%

The results (As in the table 5-1) shows that the Prescriptive Architecture Rules

Processor can load the given prescriptive architecture rule set without a problem in

all the cases.

5.1.2 Evaluation of the Style Invariants Checker Validation Components

53

In this section the SIC is tested under actual code base of an application. For this a

sample application was developed with below properties.

 The application uses the layered architecture style

 The invariants to consider are defined as

o A layer can only access the immediately above and below layers

Apart from the above invariants to the architecture, we introduced few organizational

specific coding standards to be strictly followed in order to get a better result with

SIC. SIC is supposed to extract the descriptive architecture using JavaDoc comments

using custom JavaDoc tags specified for that architecture design. So developers need

to strictly adhere to those as well. If not the SIC will throw an exception and result it

as a failure case, a violation to the architecture.

5.1.3 Evaluation of the Success Path

For this case we used an application which correctly adheres to the above mentioned

guidelines. So this case should verify that the SIC can identify that an application is

being built correctly so far.

The results generated are as below, and that was the expected outcome as well.

Loading source files for package com.sic.system.presentationlayer...

Loading source files for package com.sic.system.businesslayer...

Loading source files for package com.sic.system.dataaccesslayer...

Loading source files for package com.sic.system.applicationlayer...

Constructing Javadoc information...

Analyzing classes of presentationlayer layer

 Class OutputPresenter PASSED

Analyzing classes of businesslayer layer

 Class DataProcessor PASSED

 Class DataPreProcessor PASSED

Analyzing classes of dataaccesslayer layer

 Class DataExchange PASSED

Analyzing classes of applicationlayer layer

 Class DataStreamAPI PASSED

 Class RequestValidator PASSED

54

5.1.4 Evaluation of the Failure Paths

The most important case is to evaluate whether the SIC is able to identify the

violations to the intended architecture.

The application's system structure is as in the figure 5-4.

Figure 5-4: Application's system structure

Few cases where violations happen were identified first.

A case where a code section from a layer, access a functionality of another layer

which is not allowed to access directly. Figure 5-5. Figure 5-6 shows the result of the

SIC execution on that application.

55

Figure 5-5 : Code section from a layer, access a functionality of another layer which

is not allowed to access directly

Figure 5-6 : Results of the SIC execution when a code section from a layer, access a

functionality of another layer which is not allowed to access directly

56

For the other cases, the obtained results are shown in the below table. It summarizes

the approach carried out to do each validation test and the expected and actual

results. So for the case where we check the style invariants violation in a layered

architecture style application, the SIC tend to perform in a significantly accurate

manner.

Table 5-2 : Expected and Actual results when executing the SIC on applications with

different violations

Scenario Expected Result Actual Result Evaluation

The prescriptive

architecture rule

file is missing

An exception

should be thrown

with the relevant

error message

An exception thrown with the

message “The Prescriptive

Architecture Rules file not

found”

Correct

A class file in the

application

system package

does not have a

@sic.server tag or

a @sic.client tag

An exception

should be thrown

with the relevant

error message

An exception thrown with the

message “The

DataPreProcessor class does

not have the required doc tags

with the relevant information”

Correct

A class in a

middle layer does

not have the

@sic.client tag

An exception

should be thrown

with the relevant

error message

An exception thrown with the

message “The

DataStreamAPI class does not

have the required @sic.client

tag with the relevant

information”

Correct

A class in a

middle layer has a

misspelled

@sic.client tag

name

An exception

should be thrown

as it was not

found, with the

relevant error

message

An exception thrown with the

message “The

DataStreamAPI class does not

have the required @sic.client

tag with the relevant

information”

Correct

A class in a

middle layer has

an empty

@sic.client tag

name

An exception

should be thrown,

with the relevant

error message

An exception thrown with the

message “The

DataStreamAPI class does not

have the required @sic.client

tag with the relevant

information”

Correct

A class has a

syntax error

An exception

should be thrown

Relevant exception was

thrown after the SIC analysis

Correct

57

but the code

analysis should be

done to detect

architecture

violations

performed

An internal error

occurred with the

SIC

An exception

should be thrown

and the code

analysis results

should not be

published

An Exception with the internal

error was thrown

Correct

5.2 Performance Testing of SIC

For the evaluation of the performance of the SIC couple of workload factors were

used [39]. The complexity of the prescriptive architecture rule set and the size of the

code base or the number of Java class files in the code base.

This performance testing was done in a personal computer with following properties.

 Processor : Intel(R) Core(TM) i7-2630QM CPU @ 2.00GHz

 Random Access Memory : 6.00 GB

 System Type : 64-bit Operating System

 Operating System : Linux (Ubuntu 12.0)

5.2.1 Performance Testing By the Complexity of the Prescriptive Architecture

Rule Set

For this the same application with layered architecture was used. The size of the code

base kept constant to 24 java classes. The classes under test were 20 altogether.

The complexity of the rule set was changed by adding few additional rules which are

relevant to the layered architecture and the some relevant to organizations

customizations, which includes rules relevant to development best practices.

58

Table 5-3 : Average execution time of SIC with the complexity of the prescriptive

architecture rules

Complexity of the rule set (Number of rules) Average Execution Time (milliseconds)

4 20

6 20

10 22

25 26

30 30

Here we can see that the execution time tend to increase with the complexity of the

prescriptive architecture rule set. That variation is not significant. As the figure 5-7

shows we can predict that the execution time will increase with the complexity of the

rule set when goes into rule sets with much higher complexities.

Figure 5-7 : Average execution time of SIC with the complexity of the prescriptive

architecture rules

59

5.2.2 Performance Testing By the Size of the Code Base

Evaluating the performance of the SIC against the size of the code base is very

important since this kind of a tool is much more useful to a fairly large and complex

applications. For this testing the same application code base was used with

systematically increased code base. SIC will load every class file under the

considered package into the memory at some point and do the analysis. So when the

number of classes increased a significant amount of increase in the execution time

was expected. It was not increased by a very large number.

The test was again conducted on three scenarios where the complexity of the

prescriptive architecture is differed. This was done to check how the complexity of

the prescriptive architecture affects the run time along with the increased code base.

For that we used three different prescriptive architectures.

 The code base size was increased systematically and the prescriptive

architecture has 4 rule sets - Case 1

 The code base size was increased systematically and the prescriptive

architecture has 10 rule sets - Case 2

 The code base size was increased systematically and the prescriptive

architecture has 15 rule sets - Case 3

The observations show that when the complexity of the prescriptive architecture

changed then the execution time is also getting affected by that.

The execution time of this scenario will affect on the following factors,

 The processor which host the execution

o This can be considered as an obvious case

 The memory capacity of the machine

o This can be considered as an obvious case

 The complexity of the prescriptive architecture

o Obtained from the above evaluation results

 The performance level of the rule processor

o In the case of SIC this rule processor has to be implemented by a

senior developer, probably by an architect. So that will also impact the

performance of it since the implementations may differ from one to

another.

60

Table 5-4 : Case 1, Change of the Average Execution Time with the size of the code

base

Size of the code base Average Execution Time (milliseconds)

20 35

50 64

100 95

150 130

200 170

Figure 5-8 : Case 1, Change of the Average Execution Time with the size of the code

base

Table 5-5: Case 2, Change of the Average Execution Time with the size of the code

base

Size of the code base Average Execution Time (milliseconds)

20 55

50 94

100 125

150 160

200 195

61

Figure 5-9 : Case 2, Change of the Average Execution Time with the size of the code

base

Table 5-6 : Case 3, Change of the Average Execution Time with the size of the code

base

Size of the code base Average Execution Time (milliseconds)

20 70

50 110

100 135

150 175

200 205

62

Figure 5-10 : Case 3, Change of the Average Execution Time with the size of the

code base

5.3 Analytical Evaluation Of The Impact Of SIC When It Is Added To A

Continuous Integration Flow

Since SIC is developed to practically detect the architecture violations of a code base

change it is ideal to plug-in this to a proper continuous integration flow. SIC is

ported as a Maven plug-in and the developer can do a local analysis for his changes

to the code base. Then after the code goes into the shared repository the code will

again get scanned for the architecture violations.

Before it is introduced to the CI flow it was like in the figure 5-11.

This phase 2 might take days with the availability of the reviewer resulting long

waiting time to deploy the code in pre production environment. Results of that

review will depends on the skill level of the reviewer and his quality of the

understanding about the prescriptive architecture of the system.

63

Figure 5-11 : Continues Integration flow before the introduction of Style Invariants

Checker

After Introducing the SIC maven goal (Figure 5-12), the phase 2 can be enhanced or

completely removed. SIC will have a comprehensive set of rules to check the

descriptive architecture match the prescriptive architecture or not. It won't have the

problems like when it is done by another reviewer.

Figure 5-12 : Continues Integration flow after the introduction of Style Invariants

Checker

64

Chapter 6

CONCLUSION

65

Development of a durable and maintainable software application is a challenging

task for any development organization. Achieving nonfunctional quality goals like

protecting the system architecture throughout the software development cycle,

protecting the organization wise quality standards and fast time to market or

deployment is directly affecting the above mentioned goal. There have been many

researches carried out towards this area focusing on developing methodologies to

protect the systems by retaining and properly managing the non functional quality

goals.

6.1 Research Contribution

This research focuses on finding out an approach to preserve the prescriptive

architecture using comments added by the developers throughout the development

cycle. With this approach an organization can develop a standard to write code

within the organization, and that includes users to inject special architecture specific

information to the code that they write using JavaDoc comments. Then they have to

develop a rule processor to process the code base against the prescriptive architecture

information. This tool can be configured to support the systems‟ architecture in the

beginning of the design development process. The prescriptive architecture

information can be configured through a file with predefined rule set, preferably in

JSON format.

The developed proof of concept is the Style Invariants Checker (SIC). SIC as per the

POC version will take a JSON file with a predefined rule set which contain rules for

a standard layered architecture pattern. There is an analyzer component to analyze

the descriptive architecture and compare it with the predefined rule set. Then it will

produce the results which will be use in the decision making process. This POC was

evaluated both empirically and analytically to prove that this kind of a methodology

can actually work in software development practice.

Yet actually using this methodology in a real complex software project is somewhat

challenging task. Not because of the technical barriers (we have proved that it can

actually be done using a SIC like tool) but because of the changes that needs to be

done to the software development life cycle. If an organization needs to adopt this

approach for a project then first they need to derive strong prescriptive architecture

documentation. Then derive a rule set to be checked or define the architecture style

invariants, and then identify how to enforce those rules within the code base. That is

basically defining the required JavaDoc tags and where to use them in order to

augment the codebase with additional information. After that each and every member

of the development team needs to adhere to those guidelines. If an organization can

make sure that these are in place then they can actually get the real benefit of this

approach.

66

6.2 Research Limitations

Few limitations for this research are that this research methodology and the POC

system was not tested in extreme conditions like within real life complex software

applications. To be able to test it under those conditions above mentioned barriers

should be cleared and a significantly larger development team is required [40]. That

development team should be trained to understand what needs to be done and how to

properly use this framework. To get actual progress over a significant time period we

need to use this POC (SIC tool) in that project team for a fairly long time. It was not

feasible because with the time constraints for this research.

For this research as a programming language Java was considered. Since most

developers and organizations use Java as the preferred programming language for

their development tasks. So this research methodology was actually limited to the

resources and tools which support Java programming language.

6.3 Future work and Conclusion

In this research a basic tool called Style Invariants Checker (SIC) was implemented

as a proof of concept. It can be enhanced in few ways to add extra advantage to using

this approach. So far the JavaDoc tags to be placed inside the code base were

externally defined, and the developers have to know those beforehand. If we can

introduce an IDE plug-in with all those pre defined tags to be placed, then it would

be much easier for the developers when writing code with introduced standard

guidelines. Additionally if we can introduce a framework, specific to each project

with the prescribed architecture then it would be much easier to use this approach in

real life complex projects. Since SIC uses the JavaDoc comments added by the

developer, A dedicated framework can actually inject some of the default

architectural information into the code base so the work needs to be done by the

developer gets reduced.

So far this SIC framework supports projects written in Java language only. This

framework can be extended to support other implementation languages like C#, C++

etc. The descriptive architecture capturing part and the comparison needs to be done

in that language.

This research was meant to find out the feasibility of identifying software

architecture erosion through code changes done by the developer. Using a

methodology which augment the code base with added comments to the codebase

and use a set of predefined information to compare the prescriptive architecture with

the descriptive architecture was a successful one. With the results of the evaluations

we can conclude that augmenting the code with less complex information like

JavaDoc comments can actually be used to decrease the architecture erosion up to a

significant extend.

67

REFERENCES

[1] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice (2nd

Edition). Addison-Wesley Professional, 2 edition, April 2003

[2] M. De Silva and I. Perera, "Preventing software architecture erosion through

static architecture conformance checking", in IEEE 10th International

Conference on Industrial and Information Systems (ICIIS), 2015.

[3] Parnas, D. L. Software aging. In Proceedings of the 16th international

conference on Software engineering (Los Alamitos, CA, USA, 1994), ICSE

‟94, IEEE Computer Society Press, pp. 279–287.)

[4] van Gurp, J., Brinkkemper, S., and Bosch, J. Design preservation over

subsequent releases of a software product: a case study of baan erp: Practice

articles. J. Softw. Maint. Evol. 17 (July 2005), 277–306.

[5] Guo, G. Y., Atlee, J. M., and Kazman, R. A software architecture

reconstruction method. In Proceedings of the TC2 First Working IFIP

Conference on Software Architecture (WICSA1) (Deventer, The Netherlands,

The Netherlands, 1999), WICSA1, Kluwer, B.V., pp. 15–34.

[6] Murphy, G. C., Notkin, D., and Sullivan, K. J. Software reflexion models:

Bridging the gap between design and implementation. IEEE Trans. Softw.

Eng. 27, 4 (Apr. 2001), 364–380.

[7] Lung, C.-H., Zaman, M., and Nandi, A. Applications of clustering techniques

to software partitioning, recovery and restructuring. J. Syst. Softw. 73, 2 (Oct.

2004), 227–244.

[8] Sartipi, K. Software architecture recovery based on pattern matching. In

Proceedings of the International Conference on Software Maintenance

(Washington, DC, USA, 2003), ICSM ‟03, IEEE Computer Society, pp. 293

[9] Jansen, A., Bosch, J., and Avgeriou, P. Documenting after the fact:

Recovering architectural design decisions. J. Syst. Softw. 81, 4 (Apr. 2008),

536–557

[10] Abi-Antoun, M., Aldrich, J. (2009). Static extraction and conformance

analysis of hierarchical runtime architectural structure using annotations. In

Proceedings of the 24th ACM SIGPLAN conference on Object oriented

programming systems languages and applications (OOPSLA '09). ACM,

New York, NY, USA, 321-340. [Online]. Available from:

DOI=http://dx.doi.org/10.1145/1640089.1640113

[11] Len Bass, Paul Clements, R. K. Software Architecture in Practice. 2000

[12] M. Mirakhorli, "Preserving the Quality of Architectural Tactics in Source

Code", 2014.

[13] Rosik, J., Le Gear, A., Buckley, J., and Ali Babar, M. An industrial case

study of architecture conformance. In Proceedings of the Second ACM-IEEE

68

international symposium on Empirical software engineering and

measurement (New York, NY, USA, 2008), ESEM ‟08, ACM, pp. 80–89

[14] Bennett, K. (1996). Software evolution: past, present and future. Information

and software technology, 38(11), 673-680.

[15] Paul C. Clements. “A survey of architecture description languages”. In

Proceedings of the Eighth International Workshop on Software Specification

and Design. IEEE Computer Society Press, 1996

[16] L. de Silva, “A Rationale-based Architecture Description Language using the

Oslo Modelling Platform,” Master‟s thesis, University of St Andrews, 2008

[17] L. de Silva and D. Balasubramaniam, “A model for specifying rationale using

an architecture description language,” in Software Architecture. Proceedings

of the 5th European Conference on Software Architecture (ECSA 2011) (I.

Crnkovic, V. Gruhn, and M. Book, eds.), pp. 319–327, Springer Berlin

Heidelberg, 2011

[18] J. Knodel, D. Muthig, and M. Naab. Understanding software architectures by

visualization–an experiment with graphical elements. In WCRE ‟06:

Proceedings of the 13th Working Conference on Reverse Engineering

(WCRE 2006), pages 39–50, Washington, DC, USA, 2006. IEEE Computer

Society

[19] G. C. Murphy and D. Notkin. Reengineering with reflexion models: A case

study. Computer,30(8):29–36, 1997.

[20] L. Hochstein and M. Lindvall. Diagnosing architectural degeneration. sew,

00:137, 2003.

[21] J. Knodel, D. Muthig, M. Naab, and M. Lindvall. Static evaluation of

software architectures. In CSMR ‟06: Proceedings of the Conference on

Software Maintenance and Reengineering, pages 279–294, Washington, DC,

USA, 2006. IEEE Computer Society.

[22] U. Liyanage and I. Perera, "Traceability Model For Viewing Architectural

Tactics Using Code Comments", 2017.

[23] Continuous Integration and Its Tools. (2014). IEEE Software, 31(3), pp.14-

16.

[24] Smith, T. (2010). Protecting the process [source code management].

Engineering & Technology, 5(4), pp.51-53.

[25] Quibeldey-Cirkel, K. and Thelen, C. (2012). Continuous Deployment.

Informatik-Spektrum, 35(4), pp.301-305.

[26] CSS-Tricks. (2018). Why You Should Use Continuous Integration and

Continuous Deployment | CSS-Tricks. [online] Available at: https://css-

tricks.com/continuous-integration-continuous-deployment/ [Accessed 22 Feb.

2018].

[27] Kim, J. and Garlan, D. (2010). Analyzing architectural styles. Journal of

Systems and Software, 83(7), pp.1216-1235.

69

[28] Monroe, R., Kompanek, A., Melton, R. and Garlan, D. (1997). Architectural

styles, design patterns, and objects. IEEE Software, 14(1), pp.43-52.

[29] Mehta, N. and Medvidovic, N. (2003). Composing architectural styles from

architectural primitives. ACM SIGSOFT Software Engineering Notes, 28(5),

p.347.

[30] Thongkum, S. and Vatanawood, W. (2014). An Approach of Software

Architectural Styles Detection Using Graph Grammar. International Journal

of Engineering and Technology, 6(2), pp.123-127.

[31] Darshan, K. and P., S. (2017). Json is Efficient over the XML in Native

Application. International Journal of Computer Applications, 165(8), pp.14-

17.

[32] Pandey, M. and Pandey, R. (2017). JSON and its use in Semantic Web.

International Journal of Computer Applications, 164(11), pp.10-16.

[33] Architectural Design Patterns for Language Parsers. (2014). Acta

Polytechnica Hungarica, 11(5).

[34] Lyon, D. (2010). Semantic Annotation for Java. The Journal of Object

Technology, 9(3), p.19.

[35] Ahuja, K. (2018). Are annotations bad?. [online] Java Code Geeks. Available

at: https://www.javacodegeeks.com/2015/08/are-annotations-bad.html

[Accessed 22 Feb. 2018].

[36] dzone.com. (2018). How Do Annotations Work in Java? - DZone Java.

[online] Available at: https://dzone.com/articles/how-annotations-work-java

[Accessed 22 Feb. 2018].

[37] ZHANG, L. (2008). Software Architecture Evaluation. Journal of Software,

19(6), pp.1328-1339.

[38] Garlan, D. and Shaw, M. (1994). An Introduction to Software Architecture.

Pittsburgh: Carnegie Mellon University.

[39] Weyuker, E. and Vokolos, F. (2000). Experience with performance testing of

software systems: issues, an approach, and case study. IEEE Transactions on

Software Engineering, 26(12), pp.1147-1156.

[40] Marshall, A. (1991). A conceptual model of software testing. Software

Testing, Verification and Reliability, 1(3), pp.5-16.

70

APPENDIX A

Few of the Java classes used for the proof of concept implementation.

 DataExchange.java

 DataPreProcessor.java

 DataProcessor.java

71

 DataStreamAPI.java

 OutputPresenter.java

 RequestValidator.java

72

APPENDIX B

First a structure to store the layer data,

class SimpleLayer {

 private String name;

 private String server;

 private String client;

 public SimpleLayer(String name, String server, String client) {

 this.name = name;

 this.server = server;

 this.client = client;

 }

 public String getName() {

 return name;

 }

 public String getServer() {

 return server;

 }

 public String getClient() {

 return client;

 }

 @Override

 public String toString() {

 return "SimpleLayer{" +

 "name='" + name + '\'' +

 ", server='" + server + '\'' +

 ", client='" + client + '\'' +

 '}';

 }

}

73

Then to extract the prescriptive architecture.

static Map<String, SimpleLayer> layerRulesMap = new HashMap<String,

SimpleLayer>();

public static void processRules() throws IOException, ParseException {

 JSONParser parser = new JSONParser();

 //Use JSONObject for simple JSON and JSONArray for array of JSON.

 JSONObject data = (JSONObject) parser.parse(

 new FileReader("/path/to/simple_layer_access.json"));//path

to the JSON file.

 String json = data.toJSONString();

 JSONArray msg = (JSONArray) data.get("layers");

 Iterator<JSONObject> iterator = msg.iterator();

 while (iterator.hasNext()) {

 JSONObject layerJson = iterator.next();

 String layerName = (String) layerJson.get("name");

 String serverLayer = (String) layerJson.get("server");

 String clientLayer = (String) layerJson.get("client");

 SimpleLayer layer = new SimpleLayer(layerName, serverLayer,

clientLayer);

 layerRulesMap.put(layerName, layer);

 }

}

74

For a simple layered system we can create a doclet with below details.

static Map<String, SimpleLayer> layerRulesMap = new HashMap<String,

SimpleLayer>();

 public static boolean start(RootDoc root) throws IOException,

ParseException {

 processRules();

 processLayers(root.specifiedPackages());

 return true;

 }

75

private static void processLayers(PackageDoc[] packages) {

 for (PackageDoc layer : packages) {

 String nameSplit[] = layer.name().split("\\.");

 String layerName = nameSplit[nameSplit.length - 1];

 System.out.println("\nAnalyzing classes of " + layerName + "

layer");

 SimpleLayer layerRule = layerRulesMap.get(layerName);

 ClassDoc[] classes = layer.allClasses();

 boolean isPass = true;

 for (ClassDoc classDoc : classes) {

 isPass = true;

 Tag[] serverTags = classDoc.tags("sic.server");

 Tag[] clientTags = classDoc.tags("sic.client");

 for (Tag tag : serverTags) {

 if (tag.text().length() > 0 && !tag.text().equals

(layerRule.getServer())) {

 System.out.println("\t" + classDoc.name()

 + " violates the layered architecture by

accessing " + tag.text() + " as a client");

 isPass = false;

 }

 }

 for (Tag tag : clientTags) {

 if (tag.text().length() > 0 && !tag.text().equals

(layerRule.getClient())) {

 System.out.println("\t" + classDoc.name()

 + " violates the layered architecture by

accessing " + tag.text() + " as a server");

 isPass = false;

 }

 }

 if (isPass) {

 System.out.println("\tClass " + classDoc.name() + "

PASSED");

 }

 }

 }

 }

76

public static void processRules() throws IOException, ParseException {

 JSONParser parser = new JSONParser();

 //Use JSONObject for simple JSON and JSONArray for array of

JSON.

 JSONObject data = (JSONObject) parser.parse(

 new FileReader

("/home/vidudaya/vnbandara/MSc/Project/SicAlpha/src/main/resources/sicr

ules/simple_layer_access.json"));//path to the JSON file.

 String json = data.toJSONString();

 JSONArray msg = (JSONArray) data.get("layers");

 Iterator<JSONObject> iterator = msg.iterator();

 while (iterator.hasNext()) {

 JSONObject layerJson = iterator.next();

 String layerName = (String) layerJson.get("name");

 String serverLayer = (String) layerJson.get("server");

 String clientLayer = (String) layerJson.get("client");

 SimpleLayer layer = new SimpleLayer(layerName, serverLayer,

clientLayer);

 layerRulesMap.put(layerName, layer);

 }

 }

