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Abstract

Automatic analyzing and extracting useful information from the noisy social media content are
currently getting more attention from the research community. Recent days people easily
mixing their native language along with the English language together to express their thoughts
in social media, using the Unicode characters written in Roman Scripts. Thus these types of
noisy code-mixed text are characterized by a high percentage of spelling mistakes with
phonetic typing, wordplay, creative spelling, abbreviations, Meta tags, and so on. Identification
of languages at word level become as necessary part for analyzing the noisy content in social
media. It would be used as an intimidate language identifier for chatbot application by using

the native languages.

For this study used Tamil-English and Sinhala-English code-mixed text from social media.
Natural Language Processing (NLP) and Machine Learning (ML) technologies used to identify
the language tags at the word level. A novel approach proposed for this system implemented
as machine learning classifier based on features such as Tamil Unicode characters in Roman
scripts, dictionaries, double consonant, and term frequency used for Tamil-English code-mixed
text and features such as Sinhala Unicode characters written in Roman scripts, dictionaries,

and term frequency used for Sinhala-English code-mixed text.

Different machine learning classifiers such as Support Vector Machines (SVM), Naive Bayes,
Logistic Regression, Random Forest and Decision Trees used in the model evaluation process.
Ten-fold cross-validation used to evaluate the performance based on language tags at the word
level. Among that the highest accuracy of 89.46% was obtained in SVM classifier and 90.5%
was obtained in Random Forest classifier for Tamil-English (Tanglish) and Sinhala-English

(Singlish) code-mixed text respectively.

In the testing process of Tanglish model with SVM and Singlish model with Random Forest
gave accuracy as 93.87% and 95.83% respectively for the testing unseen data. Tanglish model
with SVM gave F-Measure for ‘tam’ and ‘eng’ tags were 0.965 and 0.894 respectively. Singlish
model with Random Forest gave F-Measure for ‘sin” and ‘eng’ tags were 0.975 and 0.929
respectively. So this the evidence that most of the times the Tanglish model with SVM and
Singlish model with Random Forest predict the language labels correctly at word level.



Table of Contents

Declaration [
Acknowledgements ii
Abstract ii
List of Figures vii
List of Tables viii
Chapter 1 Introduction

1.1 Prolegomena

1.2 Objectives

1.3 Background and Motivation

1.4 Code Mixing Problem in Brief

1.5 Proposed Solution

1.6 Resource Requirements

1.7 Structure of the Thesis

1.8 Summary
Chapter 2 Code Mixing in Social Media — Practices and Issues

2.1 Introduction

2.2 State of the art of language identification of code-mixed text in social media

2.2.1 Code Mixing
2.2.2 Language Identification
2.3 Future Trends

0 o o o o oA DN A WNN PR PR

[
w N

2.4 Summary

[EEN
N

Chapter 3 Natural Language Processing and Machine Learning

[EEN
N

3.1 Introduction

[EEN
iSN

3.2 Atrtificial Intelligence

[EEY
a1

3.3 Natural Language Processing
3.3.1 Natural Language Tool Kit (NLTK)
3.3.2 Pandas
3.3.3 Numpy

3.4 Machine Learning

L e e e =
~N N N o o

3.4.1 Supervised Learning

[EEN
(e}

3.4.2 Weka and Classifiers used in development of models
iv



3.4.2.1 Support Vector Machine (SVM)
3.4.2.2 Logistic Regression
3.4.2.3 Naive Bayes
3.4.2.4 Decision Tree
3.4.2.5 Random Forest

3.5 Summary

Chapter 4 Novel Approach to Language Identification of Code-Mixing Text

4.1 Introduction

4.2 Hypothesis

4.3 Process

4.4 Input

4.5 Output

4.6 Users

4.7 Summary

Chapter 5 Design

5.1 Introduction

5.2 Language ldentification System for Tamil-English Code-Mixed Text
5.2.1 Dataset Description
5.2.2 Preprocessing
5.2.3 Feature identification of Tamil-English code-mixed text
5.2.3.1 Tamil Unicode characters in Roman scripts
5.2.3.2 Language-specific dictionaries
5.2.3.3 Double consonants
5.2.3.4 Term Frequency

5.3 Language lIdentification System for Sinhala-English Code-Mixed Text
5.3.1 Dataset Description
5.3.2 Preprocessing
5.3.3 Feature identification of Sinhala-English code-mixed text
5.3.3.1 Sinhala Unicode Characters in Roman Scripts
5.3.3.2 Language-Specific Dictionaries
5.3.3.3 Term Frequency

5.4 Summary

19
20
20
22
23
24
25
25
25
25
26
27
27
27
28
28
28
29
29
29
29
31
31
31
31
32
33
33
33
35
35
35



Chapter 6 Implementation
6.1 Introduction
6.2 Language Identification System for Tamil-English Code-Mixed Text
6.2.1 Preprocessing
6.2.2 Feature identification of Tamil-English code-mixed text
6.2.3 Model Development for Tamil-English code-mixed text
6.3 Language Identification System for Sinhala-English Code-Mixed Text
6.3.1 Preprocessing
6.3.2 Feature identification of Sinhala-English code-mixed text
6.3.3 Model Development for Sinhala-English code-mixed text
6.4 Summary
Chapter 7 Evaluation
7.1 Introduction
7.2 Experimental design
7.2.1 Experimental design for Model Evaluation
7.2.1.1 Evaluation Strategy for predictive Models
7.2.2 Experimental design for Testing of Models
7.2.2.1 Evaluation Strategy for Testing Models
7.3 Experimental Results
7.3.1 Experiment Results for Model Evaluation
7.3.2 Experiment Results for Model Testing
7.4 Summary
Chapter 8 Conclusion and Future Work
8.1 Introduction
8.2 Concluding remarks
8.3 Limitation and Future work
8.4 Summary
References
Appendix A
Appendix B

vi

36
36
36
36
38
40
41
41
43
45
45
46
46
46
46
47
48
49
49
49
53
53
54
54
54
55
56
57
60
67



List of Figures

Figure 2.1: The selection of optimal hyperplane with linear SVM 10
Figure 2.2: Bags of Words Example 12
Figure 3.1: Workflow of the Supervised Learning 18
Figure 3.2: Structure of a Decision Tree 22

Figure 4.1: Design Diagram of Language Identification System for
Code-Mixed Text 26

Figure 5.2: Design Diagram of Language Identification System for
Tamil-English Code-Mixed Text 28

Figure 5.3: Design Diagram of Language Identification System for
Sinhala-English Code-Mixed Text 32
Figure 6.1: Sample of Tamil-English Code-Mixed Data 36
Figure 6.2: Sample of Tamil-English Code-Mixed words 37

Figure 6.3: Sample of Unique Tamil-English Code-Mixed words with Term Frequency 37
Figure 6.4: Sample of Annotated Tamil-English Code-Mixed Words with Language Tags 38

Figure 6.5: Sample Tamil word with features 39
Figure 6.6: Sample Tamil word with identified features with values 39
Figure 6.7: Sample of Sinhala-English Code-Mixed Data 41
Figure 6.8: Sample of Sinhala-English Code-Mixed words 42

Figure 6.9: Sample of Unique Sinhala-English Code-Mixed words with Term Frequency 42
Figure 6.10: Sample of Annotated Sinhala-English Code-Mixed Words

with Language Tags 43

Figure 6.11: Sample of Sinhala word with features 44

Figure 6.12: Sample of Sinhala word with identified features with values 44

Figure 7.1: The knowledge flow of experiment process for model evaluation 46
Figure 7.2: The User Interface for testing finalized model for language identification

of code-mixed text 48

Figure 7.3: Evaluation of features impotency for Tamil-English code-mixed text 52

Figure 7.4: Evaluation of features impotency for Sinhala-English code-mixed text 52

vii



List of

Table 1.1:

Table 1.2:

Table 5.1:
Table 5.2:
Table 5.3:
Table 5.4:
Table 6.1:

Table 6.2:

Table 7.1:
Table 7.2:

Table 7.3:

Table 7.4:

Tables

Example Comment and language-tagged sentence for
Tamil-English code-mixed text

Example Comment and language-tagged sentence for
Sinhala-English code-mixed text

Statistics of Tamil- English Code-Mixed Dataset
Tamil Unicode Characters

Statistics of Sinhala-English Code-Mixed Dataset
Sinhala Unicode Characters

The parameter used in model development by different classifiers for
Tamil-English code-mixed text

The parameter used in model development by different classifiers for
Sinhala-English code-mixed text

The statistics of the dataset used for testing of models

Overall results obtained from different classifiers for
Tamil-English code-mixed text

Overall results obtained from different classifiers for
Sinhala-English code-mixed text

Testing results obtained from Tanglish model and Singlish model

viii

29
30
32
34

40

45
49

50

51
53



Chapter 1

Introduction

1.1 Prolegomena

Automatic analyzing and extracting useful information from the noisy social media content are
currently getting more attention from the research community for NLP [1]. The type of noisy social
media text is characterized by a high percentage of spelling mistakes with phonetic typing (“how
IS your amma and appa”; since ‘amma’, ‘appa’ are Tamil words), wordplay (‘helloooo’ for ‘hello’),
creative spelling (‘Gud 9t” for ‘good night’), abbreviations (‘TC’ for ‘Take Care’), Meta tags
(URLs), and so on. Currently, bilingual speakers use Unicode characters or Unicode characters
written in Roman scripts to write in their own language and use phonetic typing, frequently add
English elements through the combination of native languages to express their thoughts. These

type of text is called code-mixed text.

Make automatic language identification a precondition for the complete process of text analysis
on social media. Although language identification is considered an almost solved problem in
different applications [2], language detectors fail within the context of social media such as code-
mixing, phonetic typing and lexical borrowing [3]. For this reason, the complexity of the analysis
and understanding of information will increase within the context of social media. The most reason
for this limitation is due to the correct corpus acquisition. Automatically detect the boundaries of
the language in a code-mixed social media text, for English-Bengali and English-Hindi has been
proposed [3], [4].

This study focuses on effectively detect the language boundaries at word level of Tamil-English
and Sinhala-English code-mixed noisy text. Natural language processing and machine learning
techniques proposed to provide a solution. This study proposed a novel approach by adding Tamil
Unicode characters in Roman scripts as new feature including dictionaries, double consonant, and
term frequency as other features for Tamil-English code-mixed text and Sinhala Unicode
characters written in Roman scripts as new features including dictionaries, and term frequency as

other features for Sinhala-English code-mixed text.



1.2 Objectives
The objectives of this study are listed below:

e Critical study to understand the characteristics of code-mixed languages in the social media
context

e Critical study of existing approaches in automatic language identification

e Design and develop a system for automatic language identification

e Evaluation of the proposed system

1.3 Background and Motivation

New forms of communication have greatly changed the types of traditional spoken and written
languages [5]. These new forms are the result of the internet and social media in particular -
Facebook, Twitter, etc. Typically, written languages tends towards a formal and defined structure,
while spoken language is more casual and context dependent. With the advancement of technology

in social media, the distinction between written and spoken languages has faded.

Scholars observed that the language across the internet, especially in synchronous communication
resembled spoken communication. It was observed to be less formal, simpler and very similar to
speech. This is the result of the conversion of casual vernacular to written form. People use words
and symbols to express emotions, which results in inconsistent language generation across users

since there is no defined structure for this usage [4].

In the 1940s and 1950s, code-mixing was often considered a sub-standard use of language.
However, since the 1980s it has generally been recognized as a natural part of bilingual and
multilingual language use. In social media communication, more than half of the users are
bilingual speakers who often switch from one language to another to express their thoughts,
especially in messages and comments on Facebook [6]. This language interchanging involves
complex grammar complications in social media data itself. Code-mixing refers to the use of

linguistic units from different languages in a single utterance or sentence.

Information retrieval deals with the issues of storing and retrieving information from all types of
resources including social media which is very tough with regard to tokenizing and text processing.
The impact of code mixing, creative spelling, phonetic typing, wordplay, abbreviations, Meta tags,
and so on, social media contents become noisy. So automatic language identification become as

necessary part for analyzing the content in social media [3].



As social media contains valuable information, due to the presence of above-mentioned problems,
the complexity in analyzing the data increases. Even today there are no proper tools that deal with
this type of data. So language identification at word level for code-mixing text became an as
necessary and challenging task. The language identification system at word level of code-mixing
text can be used as intimidate for chatbot application where the text written in native languages by

using Roman scripts.

1.4 Code Mixing Problem in Brief

In social media bilingual speakers often mixed two languages to express their thoughts. When we
consider the Sri Lanka local languages such as Sinhala and Tamil, most of the native speakers
often mixed English with native languages. Most of the time people find it easily chat with other
people in native language written in Roman scripts with the English word. The example Tamil-
English and Sinhala- English code-mixed comment is shown in Table 1 and Table 2 respectively.
For this reason, language identification at word level become a challenging task.

Table 1.1 Example Comment and language-tagged sentence for Tamil-English code-mixed text

Example Tamil-English Code-Mixed Sentence

Text | super anna romba days ku piraku ellarajum parkkuram

Tags eng tam tam eng tam tam tam tam

Table 1.2 Example Comment and language-tagged sentence for Sinhala-English code-mixed text

Example Sinhala-English Code-Mixed Comment

Text | screen eke pena okkoma photo ekata wadinawa

Tags eng sin sin sin eng sin sin

Also code-mixed noisy text is characterized by a high percentage of spelling mistakes with creative
spelling (‘2morrw’ for ‘tomorrow’), phonetic typing (“how is your amma and appa”; since
‘amma’, ‘appa’ are Tamil words), wordplay (‘wooooow’ for ‘wow’), abbreviations (‘H R U’ for
‘How Are You’) and Meta tags (URLs). Because of the spelling mistakes the complexity in
identifying language tags of code-mixed text at word level increases.



1.5 Proposed Solution

Effectively detect the language boundaries at word level of Tamil-English and Sinhala-English
code-mixed noisy text identified as a research problem. Natural language processing and machine
learning techniques proposed to provide a solution. Tamil-English and Sinhala-English code-
mixed data from popular social media posts and comments took as input for this study. This study
includes (a) Feature identification and feature selection of language identification system for
Tamil-English and Sinhala-English code mixed data at word level; (b) Creation of annotated data
set for collected Tamil-English and Sinhala-English code-mixed data; (c) implementing the
language identification system for the Tamil-English and Sinhala-English code-mixed data, and
(d) Evaluation of language identification with Tamil-English and Sinhala-English code-mixed
data.

1.6 Resource Requirements

e Tamil-English and Sinhala-English code-mixed data from popular social media
e PC/Laptop with minimum 8GB of RAM and Intel i5 or i7 Processor
e The software is expected to run on platforms above Microsoft Windows 7

1.7 Structure of the Thesis

This thesis is divided into 8 chapters. Chapter 1 gave an overall introduction to the project. Chapter
2 critically reviews critically reviews the work done on code-mixing and language identification
with background information and defining the research problem and identification of technologies.
Chapter 3 is on technology adapted to building the natural language processing and machine
learning based solution for language identification of code-mixing text in social media. Chapter 4
presents our approach to for language identification of code-mixing text in social media in terms
of input, output, process, users and features of the system. Chapter 5 demonstrates the detailed
design of the system. Chapter 6 contains the implementation of the components of modules given
in the design stage. Chapter 7 reports on evaluation strategy with respect to the objectives of the
project, experimental setup, and experimental results. Finally, Chapter 8 concludes the thesis with

a note on the possible further work.



1.8 Summary

This chapter provided an introduction to the entire project. For this purpose, we have presented
our research problem, objectives, technology adapted, proposed solution and resource
requirements. Next chapter provides a detailed critical review of the work done on code-mixing

and language identification with background information.



Chapter 2

Code Mixing in Social Media — Practices and Issues

2.1 Introduction

Chapter 1 gave an introduction to the overall project. To start with the research, it is important to
find out the current state of the research in the world by reviewing other’s work. This chapter
presents a critical review of Language identification of code mixing text in social media with
background information. This chapter formulate research problem and highlight the technology
adopted towards a solution. In doing so, this chapter has been structured with two main sections,
namely, State of the art of language identification of code-mixed text in social media and future

trends.

2.2  State of the art of language identification of code-mixed text in social
media

Code-mixing being a relatively new phenomenon has only attracted the attention of researchers in
the last two decades. In the context of code-mixed social media data, new complications have been
added to the Language Identification process. This section is described overall idea of code-mixing

and critically review the work done on language identification of code-mixed text.

2.2.1 Code Mixing

Social media creates social interaction among people in which they share information and ideas in
virtual communities and networks. One of social media features that are updated any time by users
is status. Through status, the user can inform all activity, news, opinions, exchange ideas, business,
and so on. In addition, they also are able to comment or respond to the latest status of their fellow
social media users. The user of the social media sometimes mixes and uses several languages to
update their status or comment to their friends’ status, for example when they chat with other
people at Facebook or web chat. The sociological and conversational needs behind the code-

mixing and its linguistic nature were mainly focused on the linguistic efforts in the field [7].

Code-mixing is a process in which lexical items and grammatical features of two or more
languages exists in the same sentence [8]. Spolsky commented that, it is common that people
develop some knowledge and ability in a second language and so become bilingual [9]. The



simplest definition of a bilingual is a person who has some functional ability in a second language.
This may vary from a limited ability in one or more domains, to very strong command of both

languages.

The researcher concluded that the abbreviation like ‘CD’, ’DVD’, ’SMS’, *VIP’ were used to make
sentences simple and easy to understand. Furthermore, some adjectives like hot, cool, high etc.
were used to produce stylish effect in sentences. Whereas duplication of words like ‘cute cute’,

‘high high’ pattern, it is not allowed in English grammar [10].

Two types of code-mixing can be categorized, namely Intra-sentential code-mixing and Inter-
sentential code-mixing [4]. The code-mixing that takes place within sentence with no superficial
change in topic is Intra-sentential code-mixing. An Intra-sentential code-mixing can occur in three
processes: - Firstly, noun insertion: This code mixing involves the mixing of noun in one code in
a sentence which is another code. Secondly, Verb insertion: This code mixing involves the mixing
of verb in a sentence from one code and remaining parts are from another code. And finally, Clause
and sentence insertion: complex sentence with different clause of another code reflects this code-
mixing. The code-mixing that takes place when switching between native and second language to
explain an incident is known as Inter-sentential code-mixing [11]. It was observed that word level
code mixing occurred most of the times and at phrasal level it’s happened rarely. Also noted that

the nouns were code-mixed mostly [12].

The users of Facebook have a tendency to use inter-sentential code mixing over intra-sentential
code-mixing, and reported that 45% of the code mixing was initiated by real lexical needs, 40%

was to talk about a particular topic, and 5% to clarify the content [13].
The major reasons for code mixing in Facebook explain here:

e 45% : Real lexical needs

For instance someone is thinking of some object but is not able to recall the word in the
language he/she is using already, then he/she will tend to switch to a language where he/she

knows the appropriate word.

e 40% : Talking about a particular topic

People tend to talk about some topics in their native language (like food) and generally while

discussing science people tend to switch to English.

7



e 5% : For content clarification

While explaining something, for better clarification of the audience, to make the audience more

clear about the topic, code mixing is used.

Problems of storing and retrieving information from all types of data including social media, which
is very difficult for tokenization and text processing are dealt by information retrievals [11].
Generally it is difficult to understand and analyze texts written in multiple languages. An
evaluation metric was proposed to determine the complexity which occurs due to code-mixed

social media texts which get developed rapidly due to multilingual interference [14].

Code-mixing for online data focused on the use of English and Arabic in e-mail communication
by a group of young professionals and concluded that English was used more frequently for search
on the Web. It was also discovered that a Romanized version of Egyptian-Arabic was used more
often in informal e-mails, conversations and even to express personal content as opposed to
classical Arabic [15]. Most of the people used Romanized version of native language script to
express their thoughts in social media.

2.2.2 Language Identification

The first work on code-mixing processing was done by Joshi more than 30 years ago, in 1982 [16],
while efforts to develop automatic language identification tools began earlier [17]. In its standard
formulation, language identification assumes monolingual documents and attempts to classify
each document according to its language from some closed set of known languages. Nevertheless,
the solving of the problem of applying the language identification process to texts mixed in several

languages, has only recently begun.

Automatic identification of word-level boundaries of different languages used in social media
texts, illustrated by mixed English-Bengali and English-Hindi Facebook messages with standard
techniques such as n-gram characters, dictionaries and, SVM classifiers[1]. Also, some different
techniques were used, including a simple unsupervised dictionary-based approach, supervised
word-level classification with and without contextual clues, and sequence labeling using
Conditional Random Fields. The dictionaries-based approach is surpassed by supervised
classification and sequence labeling, and it is important to consider contextual clues [3].

Classification of Hindi-English code-mixed data was performed to categorize the data into English,



Hindi, Mixed, Named Entity, Acronym, Universal, and undefined tags. Two types of embedding
features were considered; character-based embedding features and word-based embedding
features with the addition of context information. Support Vector Machine was used to train and
test the system [18].

A word-based language identification system on mixed Turkish-Dutch messages randomly
sampled from an online forum by comparing dictionary-based methods with language models and
with logistic regression and conditional random fields with linear chain. This system achieved a
high level of accuracy at the word level (97.6%), but with significantly lower accuracy at the post
level (89. 5%), although 83% of the messages were actually monolingual [19]. Similarly, using a
bilingual case using Spanish-English Twitter messages, uses only the ratio of the probability of
words as a source of information and obtain good results, with a 96.9% accuracy at the word-level.
However, the corpora are almost monolingual, so the result was obtained with a baseline of up to
92.3% [20].

The use of the most frequent word dictionaries is an established method in language identification.
In this method, efficient and automatic segmentation of the input text in individual language
blocks, in the case of multi-language documents [21]. But this method has a number of challenges,
especially for social media, the text is full of noise. The general trend in dictionary-based methods
is to keep only high-frequency words is for longer texts, and for the code-mixing situations it
cannot be applicable. Because most of the times code-mixing text are short texts. In this situation

avoid the most-frequent word lists and instead uses of the full-length dictionaries are better.

The probably most well-known language detection system is TextCat, which utilizes character-
based n-gram models [22]. The method generates language specific n-gram profiles from the
training corpus sorted by their frequency. A similar text profile is created from the text to be
classified, and a cumulative “out-of-place” measure between the text profile and each language
profile is calculated. The measure determines how far an n-gram in one profile is from its place in
the other profile. Based on that distance value, a threshold is calculated automatically to decide the
language of a given text. This approach has been widely used and is well established in language
identification.



Word-level language detection from code-mixed text can be defined as a classification problem.
Support vector machines (SVMs) are one of the most popular methods for text classification,
largely because of the automatic weighing of a large number of functions [23]. SVM is currently
the most successful machine learning technique across multiple domains [24].

A support vector machine (SVM) is a supervised learning technique which incorporates a learning
algorithm for like gradient descent and is used for tasks like classification, pattern recognition and
regression. The objective of the support vector machine algorithm is to find a hyperplane in an n-
dimensional space (n- number of features) that distinctly classifies the data points. To separate the
two classes of data points, there are many possible hyperplanes that could be chosen. The objective
is to find a plane that has the maximum margin (the maximum distance between data points of
both classes). Maximizing the margin distance provides some reinforcement so that future data
points can be classified with more confidence. Figure 2.1 shown the selection of optimal

hyperplane with linear SVM.

Support vectors are data points that are closer to the hyperplane and influence the position and
orientation of the hyperplane. Using these support vectors, able to maximize the margin of the
classifier. Deleting the support vectors will change the position of the hyperplane. These are the
points that help to build the SVM.

Support
Vectors

Y
S

~ ¥ margin
L] e
e >
X4

Figure 2.1 The selection of optimal hyperplane with linear SVM
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Hyperplanes are decision boundaries that help classify the data points. Data points falling on either
side of the hyperplane can be attributed to different classes. Also, the dimension of the hyperplane
depends upon the number of features. If the number of input features is two, then the hyperplane
is just a line. If the number of input features is three, then the hyperplane becomes a two-

dimensional plane. It becomes difficult to imagine when the number of features exceeds three.

Weakly semi-supervised methods are used to build the word level language identifier which
considered the problem sequence labeling where monolingual text is used as samples data. The
model which was performed well for this approach is continuous random field [25]. This classifier
was used by Vyas in English-Hindi code-mixed text to calculate the confidence probability for
each word [26].

By using a large Swahili-English internet corpus word-level language identification and prediction
of code switch points for Swahili-English code-mixed done. Features such as tagging the language
of words using char n-grams and capitalization set are taken and combined with label probabilities

on the adjacent words [27].

Recognizing language from English, French, Dutch, German and Spanish microblog posts work
was accomplished. This features like the content of attached links, language of blogger etc. and so

forth was demonstrated to develop the accuracy of the system [28].

Language identification for four Twitter code-mixed languages such as Spanish-English, Nepali-
English, Mandarin-English, and Modern Standard Arabic-Dialectal Arabic was organized as a
shared task [29]. A CRF-based approach which uses stylometric features like word length, the
presence of numbers, index, punctuations etc. was implemented by a team for the same shared task

for which were used [30].

A feature-based system which obtained accuracy of 76% had the features like punctuations,
prefixes, suffixes and so on along with SVM classifier was implemented with MSIR 2015 shared
task data [31].

11



Bag of Words is a method to extract features from text documents. These features can be used for
training machine learning algorithms. It creates a vocabulary of all the unique words occurring in

all the documents in the training set [32]. A bag of words example shown in figure 2.2.

Lol |

Document1 i E
- 5 5
The quick brawn Term é é
foxjumpedover | 00— I
:hnjln'n- deg's ald 011
back, all o1
back 110

BroWT 110

coma o1

dag 110

fax 110

Document 2 | good a1
jurnp 1119

Iazy 1|0

Mow s the bime man K
fiar all good men oW E
to come to the prvrY 1o
aid of their party. Darty 513
gLk 110

hair o1

v o1

Figure 2.2 Bags of Words Example

2.3 Future Trends

Currently some of the researches focused on some language pairs like English-Bengali, Hindi-
English, Telugu-English and so on, language identification of code mixed content in social media
[1], [3], [4], [18]. But it is reasonable to experiment with other language pair like Tamil-English,
Sinhala-English and so on with different types of social media content such as tweets, Facebook
posts and messages. Also possible to do the sentiment analysis in code mixed content by using
different language pairs. For the language identification incorporating other techniques and
information sources are obvious targets for future work. In particular, to look at other machine
learning methods, for example, to use a sequence learning method such as Conditional Random
Fields and deep learning approaches [1], [4] . Also could be focus on cases with more than two

languages, and languages that are typologically less distinct from each other or dialects [19].
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24 Summary

This chapter provides a detailed critical review of analyzing the meaning of code mixing text in
online social media with background information. Also formulate research problem and highlight
the technology adopted towards a solution. Next chapter provides technology adapted to building
the natural language processing based solution for analyzing the meaning of Tamil-English code

mixing text in online social media.
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Chapter 3

Natural Language Processing and Machine Learning

3.1 Introduction

Chapter 2 provides a detailed critical review of language identification of code mixing text in
social media with background information. This chapter provides detail description of technology
adapted to building the natural language processing and machine learning based solution for

language identification of code mixing text in social media.

3.2 Artificial Intelligence

Acrtificial intelligence (Al) is an area of computer science that emphasizes the creation of intelligent
machines that perform and react like humans which is concerned with automation of intelligent
behavior. It is the simulation of intelligent behavior in computers and imitate intelligent human
behavior. Al is accomplished by studying how human brain thinks, and how humans learn, decide,
and work while trying to solve a problem [33]. It has become an essential part of the technology

industry.

Al strives to build intelligent entities as well as understand them. Al can be defined in four ways.
Those are as a system that: thinks like humans; acts like humans; thinks rationally; and acts
rationally. In thinking like humans, it is the effort of making computers to think; machines with
minds. In acting like humans, Al is the art of creating machines that perform functions that require
intelligence when performed by people. Al as the study of the computations that make it possible
to perceive, reason, and act is defined as thinking rationally. Al acting rationally is seeking to

explain and emulate intelligent behavior in terms of computational processes [33].

Artificial Intelligence may be subdivided into two main branches or aspects. One aspect is
cognitive science which has a strong affiliation with psychology. The aim of cognitive science is
to construct programs for testing theories that describe and explain human intelligence. The other
is machine intelligence which is more computer oriented and studies how to make computers

behave intelligently [33].
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Some of the core applications that artificial intelligence with computers are designed for include

o Knowledge

o Reasoning

o Problem solving

o Perception

J Learning

o Planning

. Ability to manipulate and move objects

Major areas of artificial intelligence categorize as

. Expert systems

. Neural networks

o Fuzzy logic

. Genetic algorithms

. Case-based reasoning

. Natural language processing
. Machine learning

J Computer vision

o Robotics

. Multi agent system

In this project two major areas of Al such as natural language processing and machine learning
were used in development process. The description of natural language processing and machine
learning technologies is explained in below sections.

3.3 Natural Language Processing

Natural language processing (NLP) is a technique which can be said as interaction between
computers and human language. The ultimate goal of NLP is to enable computers to understand
human language (English, Tamil, Sinhala, and etc.). NLP began in the 1950s as the intersection of
artificial intelligence and linguistics. NLP was originally distinct from text information retrieval
(IR), which employs highly scalable statistics-based techniques to index and search large volumes
of text efficiently [34].

The two terms, Computational Linguistics (CL) and NLP, have often been used interchangeably.
The difference is that CL tends more towards Linguistics, and answers linguistic questions using
computational tools. Natural Language Processing involves applications that process language and

tends more towards Computer Science. NLP is the art of solving engineering problems that need
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to analyze the natural language. NLP is mainly used to help people navigate and digest large
quantities of information that already exist in text form. It is also used to produce better user
interfaces so that humans can better communicate with computers and with other humans. NLP is
the driving force behind things like virtual assistants, speech recognition, language identification,

sentiment analysis, automatic text summarization, machine translation and much more.

This mechanism of NLP comprises three processes which are natural language understanding,
natural language generation and natural language interaction [34]. Natural Language
Understanding (NLU) is a process which endeavors to understand the meaning of given text, nature
and structure of each word by trying to resolve the ambiguity present in natural language and the
meaning of each word is understood by using lexicons (vocabulary) and a set of grammatical rules.
In the natural language generation process, the text is produced automatically from structured data
in a readable format with meaningful phrases and sentences. The problem of natural language

generation is tough to deal with.

Natural language interaction is somewhat a conflation of the technologies in which users
communicate and evoke responses from systems via natural language. Humans are able to give a
command either by typing it or speaking it. An automated voice back or a typed response from the
computer or machine is the interaction piece that is generated in natural language interaction. In
this research mainly focus on natural language interaction and identify the mixing of natural

languages at word level which used to communicate in the social media.

3.3.1 Natural Language Tool Kit (NLTK)

NLTK is a leading platform for building Python programs to work with human language data. It
provides text processing libraries for classification, tokenization, stemming, tagging, parsing,
semantic reasoning and etc. [35]. In the implementation process nltk.word_tokenize() used to split

the word from the input sentences.

3.3.2 Pandas

Pandas is an open source library providing high-performance, easy-to-use data structures and data
analysis tools for the Python programming language [35]. In the implementation process pandas
DataFrame structure used to store the two-dimensional labeled data structures with columns of

potentially different types.
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3.3.3 Numpy

This is a scientific computing library with support for multidimensional arrays and linear algebra,
required for certain probability, tagging, clustering and classification tasks [35]. In the
implementation process numpy savetxt() function was used to save the feature matrix values into

a text file.

3.4 Machine Learning

Machine learning is a core part of Al which focused on algorithms that “learn” from data to
construct models that can be used to make predictions and decisions. Data plays a vital role in
machine learning and the learning algorithm is used to discover and learn properties of data. The
quality and quantity of the training dataset will affect the learning and prediction performance on

unseen data samples (test data) or future events.

Machine learning is generally composed of two important factors, modelling and optimization.
Modelling means how to model the separating boundary or probability distribution of the given
training set, and then the optimization techniques are used to seek the best parameters of the chosen
model. Machine learning is also related to other disciplines such as artificial neural networks,
pattern recognition, information retrieval, artificial intelligence, data mining, and function

approximation, etc. [36].

There are mainly three categories of machine learning based on the problem and the dataset. Those
categories are supervised learning, unsupervised learning and reinforcement learning. In this

project focused on supervised learning method.

3.4.1 Supervised Learning

Supervised learning is learning with adequate supervision. The training set given for supervised
learning is a labelled dataset. Supervised learning tries to find the relationships between the feature
set and the label set, which represent the knowledge and properties of the dataset. The supervised
learning work flow shown in figure 3.1. Classification and regression are the two types of
supervised learning. Classification determines the category an object belongs to and regression
deals with obtaining a set of numerical input or output examples, thereby discovering functions

enabling the generation of suitable outputs from respective inputs [36].
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Figure 3.1 Workflow of the Supervised Learning

3.4.2 Weka and Classifiers used in development of models

Weka was developed at the University of Waikato in New Zealand; the name stands for Waikato
Environment for Knowledge Analysis The system is written in Java and distributed under the terms
of the GNU General Public License [37]. It provides a uniform interface to many different learning
algorithms, along with methods for pre and post processing and for evaluating the result of learning
schemes on any given dataset. Weka provides implementations of learning algorithms that can be

easily apply to dataset.

Weka supports several standard data mining tasks, more specifically, data preprocessing,
clustering, classification, regression, visualization, and feature selection. All of Weka's techniques
are predicated on the assumption that the data is available as a single flat file or relation, where

each data point is described by a fixed number of attributes.

In the terminology of machine learning, classification is considered an instance of supervised
learning, learning where a training set of correctly identified observations is available. An
algorithm that implements classification, especially in a concrete implementation, is known as a
classifier. In this research different machine learning Classifiers such as Support Vector Machine,
Naive Bayes, Logistic Regression, Random Forest and Decision Tree used to evaluate the

performance of models.
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3.4.2.1 Support Vector Machine (SVM)

In Weka support vector machine implements the sequential minimal optimization (SMO)
algorithm for training a support vector classifier [38]. SMO is an algorithm for solving the
quadratic programming (QP) problem that arises during the training of support vector machines
(SVM). SMO breaks this large QP problem into a series of smallest possible QP problems. These
small QP problems are solved analytically, which avoids using a time-consuming numerical QP
optimization as an inner loop. The amount of memory required for SMO is linear in the training
set size, which allows SMO to handle very large training sets. SMO is fastest for linear SVMs and
sparse data sets. This implementation globally replaces all missing values and transforms nominal
attributes into binary ones. It also normalizes all attributes by default. SMO solved multi-class

problems using pairwise classification.

Consider a binary classification problem with a dataset (x1, y1), ..., (Xn, yn), where Xi is an input
vector and yi € {-1, +1} is a binary label corresponding to it. A soft-margin support vector machine
is trained by solving a quadratic programming problem, which is expressed in the dual form as
follows:

max o - 5 33y K (e, z;)oua,
1=1 i=1 j=1

subject to:

0<o; =C, fori=12...,n,
It

Zyﬁﬂz‘ =10

i=1

Where C is an SVM hyperparameter and K(x;, xj) is the kernel function, and the variables

ajare Lagrange multipliers.

SMO is an iterative algorithm for solving the optimization problem. SMO breaks the problem into
a series of smallest possible sub-problems, which are then solved analytically. Because of the
linear equality constraint involving the Lagrange multipliers ai, the smallest possible problem
involves two such multipliers. Then, for any two multipliers az and a2, the constraints are reduced

to:
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0<ay,m<C,

Y10 + yaorg = k,

And this reduced problem can be solved analytically: one needs to find a minimum of a one-
dimensional quadratic function. k is the negative of the sum over the rest of terms in the equality

constraint, which is fixed in each iteration.

So in the SMO algorithm the complexity parameter(c) and the kernel parameter are the important

parameters.

3.4.2.2 Logistic Regression

Logistic regression using a multinomial logistic regression model with a ridge estimator [39].

Logistic regression capable to deals with binary class, missing class values and nominal class.

If there are k classes for n instances with m attributes, the parameter matrix B to be calculated will
be an m*(k-1) matrix. The probability for class j with the exception of the last class is

Pj(Xi) = exp(XiBj)/((sum[j=1..(k-1)]exp(Xi*Bj))+1)
The last class has probability
1-(sum[j=1..(k-D)JPj(Xi)) = 1/((sum[j=1..(k-1)]exp(Xi*Bj))+1)

The (negative) multinomial log-likelihood is thus:
L =-sum[i=1.n]{
sum[3=1..(k-1)](Yy * In(Py(X1)))
H1 - (sum[=1..(k-1)]¥n))
* In(1 - sum[=1..(k-1)]P3(X1))
} +ndge * (B"2)
So in the logistic regression ridge parameter is the most important parameter, which uses log-

likelihood to assign the ridge value.

3.4.2.3 Naive Bayes

Naive Bayes is a simple, yet effective and commonly-used, machine learning classifier. Naive
Bayes classifier using estimator classes. Numeric estimator precision values are chosen based on

analysis of the training data [40]. Naive Bayes implements the probabilistic Naive Bayesian
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classifier based on applying Bayes' theorem with strong (naive) independence assumptions

between the features [41].

Bayes’ theorem states the following relationship, given class variable y and dependent feature

vector X1 through Xn:

Using the naive conditional independence assumption that

Pl:mf |y:~"rl1*":££—l1$i+l7' . ".Irr} - Pl[ﬂf'? |y:|

For all i, this relationship is simplified to

Since P(x1,...,xn) is constant given the input, can able to use the following classification rule:

P(y|ai,...,z,) x Ply) [ [ P(a:i | )
i=1
!

y—a,rgmde HP x; | y),

This is referred to as the Maximum A Posteriori decision rule. It can be used to

estimate P(y) and P(xily), the former is then the relative frequency of class y in the training set.
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3.4.2.4 Decision Tree

The C4.5 algorithm is used as a Decision Tree Classifier which can be employed to generate a
decision, based on a certain sample of data [42]. This is a standard algorithm that is widely used
for practical machine learning. Part is a more recent scheme for producing sets of rules called
“decision lists”; it works by forming partial decision trees and immediately converting them into
the corresponding rule. C4.5 uses Information gain. A decision tree consists of four parts named,

root, internal nodes, branches and leaf nodes as represented in Figure 3.2.

LEAF NODE

Figure 3.2 Structure of a Decision Tree

Decision tree use a divide-and-conquer strategy in order to partition the instance space into
decision regions. A decision tree is drawn upside down with its root at the top. The root of the tree
asks one of the feature questions to splits datasets into multiple branches based on the answer of
the parent question. If all the subsets of data in the branch have the same label, that branch will. It
will not grow from that branch any further. Otherwise, the constructor algorithm can split the data
further with new conditions from other features of the data sets. The algorithm will recursively try
to create new branches of the tree based on the features of datasets. Basically algorithm try to
understand which features effect the decision for labelling. So, from the tree structure the

importance of the features and relations in between them can be clearly and easily viewed.
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3.4.2.5 Random Forest

Random forest is a popular type of ensemble machine learning algorithm related with decision tree
algorithm which can be used for both classification and regression problems. Ensemble classifier
is a combination of weak classifiers in order to produce a strong classifier with the idea that the
predictions from multiple machine learning algorithms together to make more accurate predictions
than any individual model [43]. In this research, random forest algorithm was used as a supervised
classification algorithm. Same as, more trees in the forest makes the forest looks more robust, the
random tree classifier gives higher accuracy when there is higher number of trees. Random Forests
grows many classification trees. To classify a new object from an input vector, put the input vector
down each of the trees in the forest. Each tree gives a classification, and it is said to be tree "votes"
for that class. The forest chooses the classification having the most votes (over all the trees in the

forest).

In random forest algorithm, it starts with randomly selecting ‘k’” number of features out of the total
‘m’ features in the data set provided. In the next stage, find the root node using the selected ‘k’
features using the best split approach. Because randomly selecting the feature for the root node
may give the bad result with low accuracy. As the third stage, find the daughter nodes using the
same best fit approach. These first three stages are repeatedly done until a target value is obtained
as the leaf node. In the final stage, the above four stages are repeatedly done to create ‘n’ number

of randomly created trees hence it forms the random forest.

Information gain is a popular measures used in best fit approach when finding the most relevant

attributes for each nodes while constructing the tree in the RandomForest classifier in WEKA.

Information gain is how much information can be gained by doing the split using a particular
feature. Before calculating the Information Gain, entropy should be calculated. Entropy is a

measure of the uncertainty or impurity associated with a random variable.

For given a set of examples D, the original entropy of the dataset is computed as:

HID] == ) P()log:P ()

J

where ¢ is the set of desired class.
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If calculate entropy for attribute Ai, with v values thinking to put the Ai feature for the root of the
current tree, this will partition D into v subsets D1, D2 ...Dv. The expected entropy if Ai is used
as the current root is given by
v
| Dy

Hy,[D] = D1 H[D;]
=1

J

Therefore information gained by selecting attribute Ai to branch or to partition the data is given

by

IG(D, A)) = H[D] — Hai[D]
Likewise, after calculating information gain for all the attributes that are remaining in the hand,
the attribute with the highest gain is chosen to branch/split the current tree.

When do prediction from a random forest algorithm, it takes the input features and send through
every decision tree in the random forest while storing the output from each tree. Then votes to
different output will be calculated and this is called majority voting concept. Predicted output with

the highest votes will be the final prediction of the whole algorithm.

3.5 Summary

This chapter briefly discussed the technologies adopted in the development of word level language
identification of code-mixing text in social media. Natural language processing and machine
learning are the key technical factors that handled. Next chapter reveals about the novel approach
of word level language identification of code-mixing text in social media with the use of NLP and
ML technologies.
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Chapter 4

Novel Approach to Language Identification of Code-Mixing
Text

4.1 Introduction

Chapter 3 presented a broad overview of the technologies that have been used for language
identification for Tamil-English and Sinhala-English code mixed text at word level in social media.
This chapter provides the novel approach to language identification of Tamil-English and Sinhala-
English code-mixing text at the word level in social media with the use of NLP and ML
technologies. As such the chapter structure with subsections namely, hypothesis, process, input,
output, and users of the solution. In the description, the section on process gives the overall

functionality of the system together with relevant technologies.

4.2 Hypothesis

This research hypothesized that the issue of effectively detect the language boundaries of Tamil-
English and Sinhala-English code-mixed noisy text at the word level, addressed by the use of NLP

and ML technologies.

4.3 Process

In the proposed solution firstly, raw Tamil-English and Sinhala-English code-mixed sentences led
to preprocessing steps. The preprocessing steps include tokenization, convert the word in
lowercase, removing wordplay characters, symbol removal and calculating the term frequency of

each word.

Then the pre-process data took as input for feature identification module for extracting features
from words. Feature identification plays a significant part of this study. This section analyzed the
pattern of the characters appears in the words from the Tamil- English and Sinhala-English code-
mixed dataset and identified relevant features among it. Tamil Unicode characters in Roman
scripts, dictionaries, double consonant, and term frequency used as features for Tamil-English
code-mixed text. Sinhala Unicode characters written in Roman scripts, dictionaries, and term

frequency used as features for Sinhala-English code-mixed text.
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Figure 4.1 Design Diagram of Language Identification System for Code-Mixed Text

Then, the feature-based embedding model was created according to selected classifiers in Weka
with identified features. Different machine learning classifiers such as Support Vector Machine,
Naive Bayes, Logistic Regression, Random Forest and Decision Tree used to create the models.
Ten-fold cross-validation used to evaluate the performance based on language tags at the word
level. The output was recorded based on accuracy and the F-Measure value of each tag. Based on
the accuracy and F-Measure values suitable machine learning models were selected for Tamil-
English and Sinhala-English code-mixed dataset. These suitable models were used to identify the
language tags at word level for the new Tamil-English and Sinhala-English code-mixed sentences.
The design diagram of language identification system for code-mixed text shown in figure 4.1.

Jupiter notebook 5.5.0 with Python 3.6.4 with Pandas, nltk and numpy libraries were used in
preprocessing and feature identification process. For the training, testing and model creation
process Weka 3.6 software was used. Java jdk 1.8, NetBeans IDE 8.0.2 and weka-stable-3.8.0
library were used to predict the language labels of new words for Tamil-English and Sinhala-

English sentences at word level.

4.4 Input

In the proposed system, Facebook comments and post with Tamil-English code-mixed text and
Sinhala-English code-mixed text were taken as separate inputs. All the posts and comments broke
down into sentences. Among that 2,000 Tamil-English code mixed sentences taken to the Tamil-

English code mixed dataset and 1,000 Sinhala-English code mixed sentences taken to the Sinhala-
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English code mixed dataset. There were three language tags used to annotate the Tamil-English
code-mixed dataset. They are ‘tam’ for Tamil words, ‘eng’ for English words and ‘rest’ for other
words. Likewise for the Sinhala-English code-mixed dataset annotated with three language tags

‘sin’ for Sinhala words, ‘eng’ for English words and ‘rest’ for other words.

4.50utput

The output of the proposed system is language identified sentences at word level both in Tamil
and English for Tamil-English code-mixed text and, language identified sentences at word level
both in Sinhala and English for Sinhala-English code-mixed text.

4.6Users

Machine learning researchers who used Tamil-English and Sinhala-English code-mixed data for
researches and developers who use Tamil and English native languages text is written in the

Roman script as an input for chatbot application are the users of this system.

4.7Summary

This chapter focuses on the hypothesis, the approach with input and output along with the process,
which will be carried upon. Users of the system also discussed. Next chapter discusses the system
design of the proposed system with a significant focus on elaborating the process mentioned in

this chapter.
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Chapter 5
Design

5.1 Introduction

Chapter 4 focused on the novel approach to language identification of Tamil-English and Sinhala-
English code-mixing text at the word level in social media with the use of NLP and ML
technologies. The design of language identification system for Tamil-English code-mixed text and
Sinhala-English code-mixed text is explained in this chapter. The design diagram mainly focus on
preprocessing, feature identification, training and testing of predictive model with expected

language labels. The supervised learning used as machine learning methodology.

5.2 Language ldentification System for Tamil-English Code-Mixed Text

The design diagram of language identification system for Tamil-English code-mixed text shown
in Figure 5.2. In this system raw Tamil-English code-mixed sentences led to preprocessing steps.
Then the pre-process data took as input for feature identification module for identifying features
from words. After that the predictive model created according to selected classifiers in Weka. Ten-
fold cross-validation used to evaluate the performance based on language tags at word level.

Machine
Learning
Classifiers

( Feature ldentification

Raw Tamil-
English Code
Mixed Text

Pre
Processing

Tamil Unicode
characters in Roman
scripts(184)
Language-specific
dictionaries(2)
Double consonants(16)
Term Frequency(l)

Figure 5.2 Design Diagram of Language Identification System for Tamil-English Code-Mixed
Text

28



5.2.1 Dataset Description

In the proposed system, Facebook comments and post with Tamil-English code mixed text taken
as input. All the posts and comments broke down into sentences. Among this 2,000 Tamil-English
code mixed sentences taken as training dataset. There were 17,603 tokens identified from the
sentences. Among that 8,607 unique words were identified in the training dataset. The statistics
of Tamil-English code-mixed dataset used for training shown in Table 5.1.

Table 5.1 Statistics of Tamil- English Code-Mixed Dataset

Tamil-English code- Train Data
mixed data
Sentences 2,000
Tokens 17,603
Words 8,607

The Tamil-English code-mixed dataset annotated with three main language tags, “tam” for Tamil
words, “eng” for English words and “rest” for all other words. The “rest” tag includes Named

Entities, Acronyms, Universal, mixed and other language tags.

5.2.2 Preprocessing

In preprocessing raw Tamil-English code-mixed sentences led to preprocessing steps. The
preprocessing steps include tokenization, convert the word in lowercase, removing wordplay

characters, symbol removal and calculating the term frequency of each word.

5.2.3 Feature identification of Tamil-English code-mixed text

The below features identified for language identification system for Tamil-English code-mixed

text.

5.2.3.1 Tamil Unicode characters in Roman scripts

Tamil characters written in Roman scripts was taken as important features to identify Tamil words.
For example “s” in Tamil Unicode character written as “ka” in Roman scripts. There is totally 247
Unicode letters in the Tamil language. The Tamil Unicode characters like “a” and “ar” written

same as “la” in Roman scripts. Among 247 Unicode characters repeating 39 characters with same

Roman script were remove and 208 characters were taken as features.
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In addition to that there are some characters like “g”, “ag”, “am”, “uf” used in the Tamil language
which are derived from other languages. Among that 53 Unicode characters also taken as features.
All together 261 Unicode characters were taken as 261 features. The features are taken from Tamil

Unicode characters shown in Table 5.2.

Table 5.2 Tamil Unicode Characters

TAMIL ALPHABETS - a9 aagasd

= ey 8 n i e a 9 8 e e oo
a aa [ ii u uu e ae a o o2 ow Q
L) an & , s Qa Coa @s Qas  Cen Qaan &
ka kaa ki kil ku kuu ke kae kai ko koa kow k
n na R o LY B Gu Cu eonv Qu Cas Quan w
nGa nGaa nGIi nGll nGu nGuu nGe nGae nGal nGo nGoa nGow nG
s an M & & & Qs Cs @s Qsn  Con Qasan 4
sa saa si sil su suu e sae sal 50 300 sowe 3
L en & < e en Qe Ce¢ @g Qet Cer Qo @
Gna Gnaa Gni Gnii Gnu Gnuy  Gne Gnae Gnal Gno Gnoa Gnow Gn
L Le Y o ® ® Qu Cu oL Qus Cs Qe C
ta taa U tii ty tuy te tae tal to toa tow t
am e e e g egor Qan Cam aan Qams Cams  Qawmen  an
Na Naa Ni Nii Nu Nuu Ne Nae Nai No Noa Now N
-3 s & & o g G C» @p Qs Gz Qo B
tha thaa thi thii thu thuu the thae thai tho thoa thow th
) B3 8 8 ] gr Q@ G @ Q31 Ca Qe B
nha nhaa nhi nhii nhu nhuu nhe nhae nhai nho nhoa nhowe nh
u ue V)] ) y d Qu Cu ou Quz Cus Quéen u
pa paa pi pii pu puuy pe pae pai po poa pow P
w wa [17] 7] w (Y] Qo Cu e Qoa Cos Qo o
ma maa mi mil my muy me mae mai mo moa mow m
w wa ] o Y] e Qu Cw ou Qus Cus Qua W
ya yaa n yil yu yuu ye yae yau yo yoa yow Y
9 na m (Y [ Cy 9 R Cgm  Qgn
ra raa n rii n ruu ro rae i o roa row r
o oR oF o on Qn  Cw @ Qua Com Qo ®
la laa 1 ] u luu le lae 1 o loa low I
') un ] of o o Q. Ceu e Qam Com Qoan ¢
va vas vi vil vu vuu ve vae vai vo voa vow v
9 ge 8 ¢ @ @ Q@ Cp @y Qg Cpa Qo P
za 200 2 zii v uu e za0 zai 20 200 0w z
Grantham (Sanskrt Characters) - 89558 agsgisam

R bea) 2 g & & Qg O og Q@ Cgr Qg g
» Jaa » » w Juu » e o » 0 ow )
@ e @ @ o v Qy Cy e Qupr Cor Qe &
sha shay sh sha shu shuu she shae sha sho shod show sh
an oot off of or oU° Qo Cop oom Qoms Coms Qoo Qb
ha haa hi ha hu huu he hae hat ho hoa how h
&0 P01 S S S g0 Qs Clp 8 Qspn Capn Qg 820
ksha kshaa kshi ksha kshu kshuu kshe kshae kshai ksho kshoa kshow ksh

L]

sri

Source: Tamil Alphabets - Tamilcube “http://tamilcube.com/learn-tamil/tamil-alphabets-

chart.aspx”
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5.2.3.2 Language-specific dictionaries
In order to identify the English words, two corpora were used as dictionaries. The corpora are
British National Corpus (BNC) and LEXNORM corpus. Existence of a word in these two corpora

were taken as two features.

e BNC: A computer corpus of 100 million words of British English, written and spoken [44].
e LEXNORM: A lexical normalization dataset released by Han et al. (2012) [45] . This

dataset used to identify the spelling variations are expected in social media data.

5.2.3.3 Double consonants

By analyzed the words in collected Tamil-English code-mixed dataset some of the double
consonant pattern letter was identified as features. The 16 identified double consonants were 'nn’,
‘ee’, 'II', 'Kk, 'tt, 'pp’, 'mm’, 'yy', 'rr', '00', 'cc’, 'ss', 'dd', 'ff', 'bb’, 'gg’.

5.2.3.4 Term Frequency

The frequency of each unique word occurs in the Tamil-English code-mixed dataset was taken as

a feature.

Eventually, 280 features were taken for language identification system for Tamil-English code-

mixed text.

5.3 Language Identification System for Sinhala-English Code-Mixed Text

The design diagram of language identification system for Sinhala-English code-mixed text shown
in Figure 5.3. In this system raw Sinhala-English code-mixed sentences led to preprocessing steps.
Then the pre-process data took as input for feature identification module for identifying features
from words. After that the predictive model created according to selected classifiers in Weka. Ten-

fold cross-validation used to evaluate the performance based on language tags at word level.
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Figure 5.3 Design Diagram of Language Identification System for Sinhala-English Code-Mixed
Text

5.3.1 Dataset Description

In the proposed system, Facebook comments and post with Sinhala-English code mixed text was
taken as input. All the posts and comments broke down into sentences. Among this 1,000 Sinhala-
English code mixed sentences was taken as training set. There were 6,640 tokens identified from
the sentences. Among that 2,896 unique words were identified in the training dataset. The

statistics of Sinhala-English code-mixed dataset used for training shown in Table 5.3.

Table 5.3 Statistics of Sinhala-English Code-Mixed Dataset

Sinhala-English code- Train Data
mixed data
Sentences 1,000
Tokens 6,640
Words 2,896

The Sinhala-English code-mixed dataset annotated with three main language tags, “sin” for
Sinhala words, and “eng” for English words and “rest” for all other words. The “rest” tag includes

Named Entities, Acronyms, Universal, mixed and other language tags.
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5.3.2 Preprocessing

In preprocessing raw Sinhala-English code-mixed sentences led to preprocessing steps. The
preprocessing steps include tokenization, convert the word in lowercase, removing wordplay

characters, symbols removal and calculating the term frequency of each word.

5.3.3 Feature identification of Sinhala-English code-mixed text

The below features identified for language identification system for Sinhala-English code-mixed

text.

5.3.3.1 Sinhala Unicode Characters in Roman Scripts

Sinhala characters written in Roman scripts was taken as important features to identify Sinhala
words. For example “®” in Sinhala Unicode character written as “ga” in Roman scripts. The most
common 284 Unicode characters used in writing convert to Roman script. The Sinhala Unicode
characters like “&” and “e7” written same as “a” in Roman scripts in lower case. Also the “23”and
“@@> characters written same as “n” in Roman scripts. So among 284 Sinhala Unicode characters
written in Roman script, repeating 51 characters with same Roman script were remove and 233

Sinhala Unicode characters written in Roman scripts were taken as features. The features are taken

from Sinhala Unicode characters shown in Table 5.4.
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Table 5.4 Sinhala Unicode Characters

Sinhala Alphabets

a | a | A | oae | Q|| u]w ]| e | e | 0 oe | au

gl |w|n|e|b e cw|e|&|od]| @ | B |

ka | kaa | kA | kae | ki | kil | ku | kuu | ke | keas Kl ko | koe | kau K
B |m| | B|A || %R || x| cen|om| e e o
ba | baa | bA | bae | bi | bit | bu | buu | be | bea | bl bo | boe | bau | b
Q| D | Q| ||| Q| Q|0 el | cod|od| ol oda| B
g8 | gaa | oA | gae | ogi | gil | gu | guu | ge |gea| gl | go | goe | gau | g
@l ||| d|d| | g |en|od| oew|ewm |on| one|
ma |maa| mA | mae| mi|mi|mu|mus| me | mea| ml | mo | moe| mau | m
@ | @& | @ | @ |d| 2|3 8 |08 0| eed|ed| 0df ods| B
cha | chaa| chA | chae | chi | chii | chu | chuu | che | chea| chl | cho | choe | chau | ch
9| ||| 8|8 |8 8 |ed]| 0d|ced|ed|ed|ede| d
ya | yaa | yA | yae | yi | i ﬁ.r yuu | ye | yea | yo | yoe | yau | y
@ | |y |y | BB | @] @ [on| 0| eon | e | saf| e | of
ja | jea | A | jee | i | i ]-u Juu | je | jea il jo | joe | jau i
| e || e | S| & E| g | 0| od | oo | axy | 0| oehe é
ra | raa | rA | rae | ri | ri [ ru|oruw| re | rea| r ro | roe | rau | r
6|6 |d|a| 8|8 |6&| 6 |ed)|ol|oed|ad|odd eda| &
ta | taa | tA | fae | i | bl | tu | luu | le | tea tl to | toe | tau t
D | D || |03 |[2]| 2 |eD|0d|eed|ed |0 00| B
la | laa | A | lae | i | li | lw] tou] le | lea i le loe | lau l
s|®|a|6|8]8 G | o3| od | oeg | e | ol | oge | ¢
da | daa | dA | dae | di | dii | du | duu | de | dea | dl do | doe | dav | d
O | ||| 8| |R| 0 |oD]|eh|ced|of|odf ola| B
Wa | waa | wA | wae | wi | wil | wu | wuu | we | wea| wl | wo | woe | wau | w
| O | 0| | 5|2 (2] 2 |eD| 0d | ced oD | 0| ede| D
tha | thaa | thA | thae | thi | thii | thu | thuu | the | thea | thl [ tho | thoe | thau | th
B ||| oA A || n |en| el eem|em| enl|eme| A
62 | saa | sA | sae | si | sii | su | suu | se | sea | &l 50 | so0e | sau | &
@ | e | ea | ey | B | D | | g | o | ol | oom | omn | omf| ome | of
dha | dhaa | dhA | dhae | dhi | dhii | dhu | dhuu | dhe | dhea| dhl | dho | dhoe | dhau | dh
¢ | &l a| | 885 p|oe|0d|oe on |0 ol d
ha | haa | hA | hae | hi | hii [ hu | huu | he | hea | hl | ho | hoe | hau | h
gl e | e | S| Q|| n | ew]| oxl| cem|owm| e oo &
Na |naa | NA | nae| ni | ni | nu|nu|ne |nea| nl | no | noe | nau | n
n | m|m|m|A|A|n|an|en| e een|em| en en| o
Na | Naa | NA | Nae | Ni | Nii | Nu| Nuu | Ne | Nea | NI No | Noe | Mau | N
& | & | & | & | &| & | &| & |0k 0| co | o | 0! | oeta | &

Source: Real Time Unicode Converter - UCSC — University of Colombo
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5.3.3.2 Language-Specific Dictionaries

In order to identify the English words, two corpora were used as dictionaries. The corpora are
British National Corpus (BNC) and LEXNORM corpus. Existence of a word in these two corpora

were taken as two features.

e BNC: A computer corpus of 100 million words of British English, written and spoken [44].
e LEXNORM: A lexical normalization dataset released by Han et al. (2012) [45]. This
dataset used to identify the spelling variations are expected in social media data.

5.3.3.3 Term Frequency

The frequency of each unique word occurs in the Sinhala-English code-mixed dataset was taken
as a feature.

Eventually, 236 features were taken for language identification system for Sinhala-English code-

mixed text.

5.4 Summary

This chapter discussed the design of the system. Design for language identification system for
Tamil-English code-mixed text and design for language identification system for Sinhala-English
code-mixed text is discussed. Feature identification plays a significant part of this project. The
feature identification from Tamil-English code-mixed text and Sinhala-English code-mixed text

are discussed. Implementation of the proposed design is discussed in the next chapter.
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Chapter 6
Implementation

6.1 Introduction

Chapter 5 discussed detailed design of language identification system for Tamil-English code-
mixed text and language identification system for Sinhala-English code-mixed text.
Implementation detail of each module of the system design is explained with the used algorithms,
software and tools in this chapter.

6.2 Language Identification System for Tamil-English Code-Mixed Text

Language identification system for Tamil-English code-mixed text developed by using Jupiter
notebook 5.5.0 with Python 3.6.4. Mainly Pandas, nltk and numpy libraries were used in
preprocessing and feature identification process. For the training, testing and model creation
process Weka 3.6 software was used. Java jdk 1.8, NetBeans IDE 8.0.2 and weka-stable-3.8.0
library were used to predict the language labels of unseen Tamil-English sentences at word level.
The detailed implementation of language identification system for Tamil-English code-mixed text

is explained in this section.

6.2.1 Preprocessing

In the preprocessing module raw Tamil-English code-mixed sentences was taken as input. A

sample of sentences taken for input shown in Figure 6.1.

In [1]: with open('final train data.txt’, encoding="utfg") as trainFile:
trainData=trainFile.read()

print(trainData

Thank you periyappa
Happy birthday akka .Be happy forever :) @)

HBD Sister
Happy birthday to my daughter. Valga valamudan
Nalla thane d iruntha... Sudden a ennachu

Own creation..nammala kalakkeraloo ??

22222227 , avala easy a exam??P?I??

thanks di...:) vayasanalum vadiva eruppan endathukku sample di.....:P :D
Thambi appa nenga antha tym yara parthiddu erunthinga :-P

Engada faculty cricket match :-})

innum than complete aakalaye....

Ena solurenka? appa pass a?

@jasi knowledge is constant da...:P...@naga unna mathiri ellam ennala mudiyathudi.
interesting aa erukkirathukku...:P

engadi exam hall la irunthaa?

nerave paper aa parkka mudiyathu....ithila different pespective la...:P
kaanum d poal assignments a sei :P

Eai intha post ku evalo cmnt thevayadi

Inga paaruuu Purple toffee um pack la irukku ... MNe ennai emaathiitte :"( :{

Figure 6.1 Sample of Tamil-English Code-Mixed Data
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Tokenizer in NLTK used to tokenize input Tamil-English sentences as words. The lower()
function used to convert the words in lowercase. A sample of Tamil-English code-mixed words

shown in Figure 6.2.

In [2]: import re
from nltk.tokenize import word_tokenize

cleanData=re.sub('[.@/]+", ' ', trainData)
cleanTrainData=cleanData.lower()

print("\n Words in Training data")
TrainWordList = word_tokenize(cleanTrainData)
TrainWordList=[re.sub( ' \ufeff', '*,x) for x in TrainWordList]

print(TrainWordList)

‘dress’, ‘namba’, "aslu’, "full’, “white', ‘aravinth', ‘always', 'kamal®, "sir’, "than', 'maththavanga', ‘yaara’', "irundhalu -
m', "pinnalathan’, 'annan', ‘pulliya’, ‘anna’, ‘wazhlthukal', ‘'padinnarum’, ‘petru’, 'seerum’, 'sirappuma’, ‘peru’, ‘valvu',
‘vazhanum', 'annana', 'kettada’, 'selunga’, 'fans', 'love’, 'you', "bye', 'coming', 'soocon', 'mano’, 'vours', 'faithfully’,
‘antha', ‘raja’, ',', 'manishanuku’, "bathila', 'oru', ‘koranga’, 'thanzku', 'thonaiya', 'wvecharam', ‘epic’, 'story’, ‘anu’,
‘chechi’, 'ethupati', 'anu’, 'radha’, "sriram’, 'yen', 'ipadi’', 'ayitanga’, ‘appadi’, 'semma’, 'pic’', 'bhogan', 'sir"’, ‘appap
paaaaa’, 'enna’, ‘arhagu’, 'aravindswamy', ‘eppadi’, 'irunthalum’', ‘engsl’, ‘favourite', 'than’, ‘aravind', ‘swamy', "inka’,
‘kekazaa", 'ariva’, ‘erukura’, ‘angal’, ‘yellam', ‘"alaga’, ‘eruka', 'mattanga’, ‘arvind’, ‘sir’, ',', 'enaku', 'romba’, "naal
a', 'oru’, 'aasai’, 'arvind', ‘swami', 'fans', ‘entu', 'solitu’, 'surya’, 'da’', ‘family’, ‘avle', 'seenu’, 'illa‘', 'smara’,
"than', "iruku', 'beautiful', ‘smile', 'sema', 'azhagu', 'lovely', "awesome', 'locking', 'superb’, 'bro', 'bogan', 'shoot',
‘ella’, 'use', 'paina’, 'costum', "thana', 'cha', 'evanalam', 'oru', 'manisan’', 'nenga', 'ethukku', "thanda', 'sari', 'chinn
a', 'chinna’, 'mazhaithullikal’, 'serthu’, 'vacheneeaa', 'choppu’, ‘vilaiyatula', 'use', 'pannuvom', ‘ha’, 'ha', "ha", 'hs',
‘chubby’, 'appadiye', 'killu', ‘'chubby’, "appadiye’, 'kiu', 'cup’', "kulla', ‘enna’, 'sir’', 'irrukum’, 'tea’, 'ah’, ‘coffes’,
‘ah', 'juice', 'ah', 'illa’, ‘matter', 'ah', '2', ‘edhu', 'epdiyum', 'irukuttum', ‘en', ‘wvuyir', ',', 'alagu’', 'sellam’', ',",
‘en', 'manam’', ‘virumbum', ‘anbu', 'aravind', ‘samykku', ‘munnaala’, 'nee’', ‘wufina', 'kaiya', 'vachu', 'maraichalum’, ‘'sari’
‘maraikkaatiyum’, 'sari’, ',", ‘ellaar’, "kannum', ‘aravind', ‘maeladhsana’, ‘irukkum', '!', 'kan', "cover', ‘alagu’, "',
‘elloraiyum’, "kollai', 'kollum', ‘azhagu', 'smile’, 'you', ‘are', "the’, 'best', 'looking’, 'person’, ‘enakku', "indha', 'ma
thiri', "yellam', 'waradhu’, 'enga’, "anna’', 'familykeva', ‘orukodi®, 'like’, 'anna’, 'kita', 'sollunga', 'thalabathy’, '8@’
‘avarkuda', 'nan’, 'serndu’, 'nadikkaporennu’, ‘bye’', 'mano’, ‘en’', 'ippideese’, 'enku’, 'rmb’, ‘pdcha’, ‘mv', ‘and', ‘ds’,

Figure 6.2 Sample of Tamil-English Code-Mixed words

It was observe the some words contains wordplay characters. For example in the word
“maaaaaaaaaaaa” the character ‘a’ appears lot of times. So that word consider as wordplay word.
The regular expression used to remove the wordplay characters. The characters appears more than
two times were eliminated. So the regular expression used to replace the word “maaaaaaaaaaaa”
as “maa”. After that, the term frequency of each unique word was taken using count() function. A

sample unique word with term frequency shown in Figure 6.3.

In [5]: Trainwordfreq = []
for w in trainWords:
Trainwordfreq.append(trainkords.count(w))

def sortFreqDict(freqdict):
aux = [(fregdict[key],key) for key in freqdict]
aux.sort()
aux.reverse()
return aux

for a,b in zip(trainWords,Trainwordfreq):
trainWordFregDict=dict(zip(trainkords,Trainwordfreq))

trainWordFreq_sorteddict = sortFregDict(trainWordFregDict)
for s in trainWordFreq_sorteddict: print(str(s))

(178, 'da')
(138, 'la")
(113, 'oru')
(11@, "enna’)
(1e@, 'nee’)
(99, 'than')
(85, 'sir')
(73, 'ah")
(71, 'illa")
(7@, 'ku')
(59, 'neenga’)
(55, 'enga’)
(53, 'poi’)
(51, 'tamil®)

Figure 6.3 Sample of Unique Tamil-English Code-Mixed words with Term Frequency
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After that the unique Tamil-English code-mixed word annotated with language tags. There are
three language tags, “tam” for Tamil words, and “eng” for English words and “rest” for all other
words. The “rest” tag includes Named Entities, Acronyms, Universal, mixed and other language
tags. A sample of annotated Tamil-English code-mixed words with language tags shown in Figure
6.4.

Words Lang Class 1
2 da tam
3 |la tam
4 loru tam
3 |enna tam
& |nee tam
7 |sir eng
g lilla tam
g |ku tam
10 \neenga tam
1 |enga tam
12 |poi tam
13 |tamil tam
14 |dai tam
15 junga tam
16 ellam tam
17 |nu tam
12 |ne tam
19 |nalla tam
20 |super eng
21 |ithu tam
22 |intha tam
23 | rest

Figure 6.4 Sample of Annotated Tamil-English Code-Mixed Words with Language Tags

6.2.2 Feature identification of Tamil-English code-mixed text

The annotated Tamil-English code-mixed word with languages tags was taken as the input for
feature identification module. In this process the features mentioned in section 5.2.3 was identified
for each words. The features are Tamil Unicode characters in Roman scripts, language specific
dictionaries, double consonant, and term frequency. A sample Tamil word with features shown in

Figure 6.5
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{'Words": ‘enna’, 'Lang Class': 'tam', 'Term Freq': 118.@, 'a': "', 'aa': '', 'ae': "', 'ai': "', 'bb': "', 'cc': "', 'dd': '°,
‘et "', tee': "', 'ff': "7, 'gg': 'Y, 'gn': 'Y, ‘'gna’: "%, ‘gne': "', ‘gni': 'Y, ‘gnut: 'Y, "h': "', 'ha': "', 'haa': '", ‘ha
e’ "', "hai': "', 'he': "', 'hi': '', *hii': "", "ho': '", "how': "', ‘hu': *', ‘huu': ", "it: ", iit: vty tjtott, tjal
", "jastr v, fjadit: i, ettty tgite tt, Mjetdo tt, juts tt, Tk'rott, ket ', kaa': ', Tkait: ", Tke': ", Tkea': U,
"kite v, 'kk': ", "ke': "', "ksh': "', 'ksha': "', "ku': "', Ckwu': ", '1': "7, "1at: 't, "laa’: ", "lae’: 'Y, 'lait: ',
"le': *", "1i": 7, f11': ', "let: tt, "leat: ', low’: Y, flut: 'Y, 'm': ", ‘ma’: ", 'maa’: 'Y, ‘mae’: "7, 'mai’: 'Y, 'm
e': "', 'mi‘: '*, ‘'mm": *', ‘'me’: ', ‘mu‘: "', ‘n*: *', 'na': """, ‘maa’: '', 'nae’': "', 'mai': '’", 'me': ', 'ng": '", 'nga’

, 'ngaa': '", 'ngal': "', 'nge’': "', 'ngi': *", 'ngo’: "', ‘ngu': '", ‘nh’: "", ‘nha’: *", 'ni': *", "nii': "', ‘mn": ", 'n
o': "', 'now': "', 'nu': "', 'nuu': ', "o': "', 'oa': "', 'oo': "', ‘ow': "', 'p': "', 'pa': "', 'paa': '", 'pae’: '", 'pai’
tt, fpet: ', fpif: "', fpot: ", fpoa’: "', 'pow': 'Y, 'pp': ‘7, Cpu': 7, puut: "', 'gt: ', 'pf': "', 'pa': "', 'raa': "',
"rae’: "', ‘rai’: "', Cre’: Y, frit: ", Crdit: 'Y, frot: YU, rea’: Y, row’: ", 'ret: Y, fpPut: Y, ‘ruu’: Y, st Y, s
a": "', 'saa': "', 'sai': '", 'se': '", 'sh': '", 'sha’': "', ‘shaa’': ', "she’': '", ‘shi': *", 'she’: ", 'shu': "7, "si': '°,
'so't 'Y, 'spitc ", sstro U, tsu'r Y, Tsuwt:o ", 't tt, Ttatr U, taat: 'Y, ftae’: 'Y, talt:r 7, te': 'Y, 'th':r 'Y, 'th
a': "', "thaa': '", "thae': "', 'thai': "', "the': "', "thi': ', "thii': ', "the': "', "thu': "', "thuu': "7, "ti': 'Y, to’

, 'tow': "', "ttt "', ftu': ", Ctuw': Y, ' ", Cwu': 'Y, w'po ', fwa': "', 'wvaa': "', 'wvae': "', 'wai': '", ‘ve': "',
wvit: *t, Cwiit: ", Cwo': ', Cwoa': 'Y, Cwu': 'Y, fwvuu': Y, Cy':o 'Y, 'ya': 'Y, ‘yaa': 'Y, ‘yae': "', ‘yal': "', ‘ye': "', 'y
ite v, Cyiit: Y, Cyo'i 'Y, Cwyut: U, Cyyt: 'Y, fzt: ', 'zat: ", tzalt: 'Y, fze': 'Y, fzit: 'Y, tzu': '", 'BNC_Corpus’: "',

LexNorm_Corpus’: "'}

Figure 6.5 Sample Tamil word with features

In the feature identification process of Tamil-English code-mixed text the below features

extracted from the words.

e Tamil Unicode characters in Roman scripts: The presence of 261 features in the words
were identified. This is a Boolean feature. Presence of each feature recorded as 1 otherwise
0.

e Language-specific dictionaries: Use to identify the presence of a word in dictionaries. This
is a Boolean feature. Presence of word will be 1 otherwise 0. The presence of words in
BNC and LEXNORM dictionaries was identified.

e Double consonant: The presence of 16 double consonant features in the words was
identified. This is a Boolean feature. Presence of each feature recorded as 1 otherwise 0.

A sample of Tamil word after the feature identification process shown in Figure 6.6.

{'Words": "nalla’, 'Lang Class’: 'tam’', 'Term Freq': 43.@, 'a’: 1, 'aa': @, 'ae’: @, 'ai': @, 'bb': @, 'cc’: @, 'dd': @, 'e":

a, 'ee’': 8, 'ff': 8,

‘gg': @, 'gn': @, 'gna': 8, 'gne': @, 'gni': @, 'gnu':r @, 'h': 8, 'ha': 8, 'haa': B, 'has': @8, "hai': @,
‘he': @, 'hi': @, "hii': @, 'ho': 8, 'how': &, "hu': @, "huu': @, "i': B, "ii': 8, "j': @, 'ja': @8, "jaa': @, 'jai': 8, 'je':
, 'ji': @, 'jo': @, "ju': @, 'k': @, 'ka': @, 'kaa': B, 'kai': @, 'ke': @, 'kea': 8, 'ki': @, 'kk': @, 'ko': @, "ksh': @, "ksh
'+ 8, 'ku': @, 'kou': @, '1': 1, "la': 1, "lag": @8, 'las': @, "lai': @, 'le': @, "li': @, '11': 1, 'lo': @, 'loa': @8, 'low':

, 'nae’: @, 'nai': @, 'ne': @, 'ng': @ 'nga':®, 'ngaa': @, 'ngai’': 8, 'nge': B, 'ngi': 8, 'ngo': 8, 'ngu': B, 'nh’: @, 'nh

@
a
g, 'lu': e, 'm:@, 'ma': e, 'mea': @, 'mae': @, ‘mai': @, ‘me':r @, mi': @, 'mm’': @, ‘mo’: @, ‘mu':@, 'n": 1, 'na': 1, 'naa’:
a
a
a

‘18, 'ni': @, 'nii': @8, 'nn': @, 'no’: B, ‘now': &, 'nu': B, ‘nuu’: @, 'o': @, '0a': @, 'oo’: @, 'ow': @, 'p': @, 'pa': @, 'p
a': B, 'pae’': 8, 'pai': @, 'pe’': @, 'pi': @, 'po’': @, 'poa': @, 'pow': @, 'pp': @, 'pu': @, 'puu': @, 'g': 8, 'r':8, 'ra': @,
'raa': 8, 'ras': @, 'rai': @, 're': @, 'ri': @, 'rii': @, 'ro': @, 'roa': B8, 'row': @, 'rr': @, 'ru': 8, 'ruu': @, 's': @, 's

a': 8, 'saa': @, 'sai': 8, 'se': @, 'sh': @, 'sha': e, 'shaa': @, 'she’': @, 'shi': @, 'sho': @, ‘shu’: @, 'si': e, 'so': @, 'sr
i': @, 'ss': @, 'su': @, 'suu': @, 't':@, 'ta': @, 'taa': @, 'tae’': @, 'tai': @, 'te': @, 'th': @, "tha': @, 'thaaz': @, 'tha
e': B, "thai': @, "the': @, 'thi': @, "thii': @, "the': @, "thu': @, 'thuu': 8, "ti': @, "to': @, "tow': @, "tt': @, "tu': &,

"tuu': @, 'u': @, 'uu': B, 'v': @, 'va': @, 'vaa': B8, 'vae': @, 'vai': @, 've': @, 'vi': @, 'vii': @, 'vo': @, 'voa': @, 'vu'

8, 'vuu': @, 'y': 8, 'ya': @, 'yaa': @, 'yae': @, 'yai': @, 'ye': @, 'yi':r @, 'yii': @, 'yo': @, 'yu': @, 'yy': @, 'z': @8, 'z
a': 8, 'zai': @, 'ze': @, 'zi': @, 'zu': @, 'BNC_Corpus’': @, 'LexMorm_Corpus’: @}

Figure 6.6 Sample Tamil word with identified features with values

39



Among this embedded features there were some Tamil Unicode characters in Roman scripts
features had the mean value as zero. The below 77 features mean value identified as zero. These
features did not play a significant role in algorithm. So these features were removed from the
training dataset of Tamil-English code-mixed text.
['gnaa’,'gnae’,'gnai’,'gnii’,'gno’,'gnoa’,'gnow','gnuu’,'hoa’, 'jae', jii','joa’, jow','juu’,'kii','’koa’','kow','ksh
aa','kshae','’kshai','kshe',’kshi','kshii’,'ksho’,'kshoa’,'kshow','kshu’,'kshuu','lit", luu’,'mii’,'moa’,'mow’",’
muu’,'ngae’,'ngii’,'ngoa’,'ngow’,'nguu’,'nhaa’,'nhae’,'nhai’,'nhe’,'nhi’,'nhii’,'nho’,'nhoa’,'nhow’,'nhu’,'n
huu','noa’,'pii’,'sae’,'shae’,'shai’,'shii’,'shoa’,'show’,'shuu’,'sii’,'soa’,'sow’, thoa’,'thow’, tii','toa’,'vow','y

oa','yow','yuu’,'zaa’,'zae','zii','z0','zoa’,'zow','’zuu’' ].

So now the training dataset consists of 203 features. In addition of corresponding language tags

totally 204 attributes included in training data of Tamil-English code-mixed text.

6.2.3 Model Development for Tamil-English code-mixed text

For the model development process, the Weka 3.9.2 tool was used. Different machine learning
classifiers such as Support Vector Machine, Naive Bayes, Logistic Regression, Random Forest
and Decision Tree used to create the models in order to evaluate the model performance. The
feature-based model created based on identified features and languages labels as input. The dataset
subjected to 10 fold cross-validation in order to evaluate the predictive models. The overall
accuracy and F-Measure of different classifiers were recorded to identify the most suitable model
for perdition process. The parameter used in model development process for different classifiers

shown in Table 6.1.

Table 6.1 The parameter used in model development by different classifiers for Tamil-
English code-mixed text

Classifiers Parameters Used
Support Vector Machine Linear Kernel, C=1
Logistics Regression Ridge = 1.0E-8
Decision Tree Confident Factor=0.25, Number of objects=2
Naive Bayes Use Kernel Estimator=False
Random Forest Number of iteration = 10

40



6.3 Language Identification System for Sinhala-English Code-Mixed Text

Language identification system for Sinhala-English code-mixed text developed by using Jupiter
notebook 5.5.0 with Python 3.6.4. Mainly Pandas, nltk and numpy libraries were used in
preprocessing and feature identification process. For the training, testing and model creation
process Weka 3.6 software was used. Java jdk 1.8, NetBeans IDE 8.0.2 and weka-stable-3.8.0
library were used to predict the language labels of unseen Sinhala-English sentences at word level.
The detailed implementation of language identification system for Sinhala-English code-mixed

text is explained in this section.

6.3.1 Preprocessing

In the preprocessing module raw Sinhala-English code-mixed sentences was taken as input. A

sample of sentences taken for input shown in Figure 6.7.

In [1]: |with open('Sinhala-English code mixed text.txt', encoding="utf-8") as trainFile:
trainData=trainFile.read()

print(trainData

Meka wath ehenam damu e man kiyanna

Ehakota lakshan inne kohomada

Den meke man ko 2

Honda prashnayak akke..@@ blouse eka thama tag kare

e phone 1ke prashnayak.screen lke kawruth penniwa.nathnam kawruhari crop karala ..
Onna mama nm newei

screen eke pena okkomz photo ekata wadinawa

Metchara mahathata indalath math nane e 4to eke...

ayyage phone 1ka ..

balanna api dennata karana wenaskam. Api dennawama photo eken kapala

eka galen kurullo dennekma maranawa kiyanne mehema scene walata wenna athi

Nilupul aiyage ara gorilla glass effect ekenda mockadda ekenda danne na api dennawa kepune...
ahaka inna rilaw , gorille allanna epa ckata , gaanata cut karala tiyenne

Ow man hitanne e gorilla glass eken gorillo tika witarzk filter karala aranda koheda.
Anna hari...eka thamai wela thiyenne

Wow....good job putha.

kolla goda yamin sitina baws penawa

Oya colombo gihin karana ewa anith aya karane na bre

Mana ube kathawa neh coke tiyenne

Figure 6.7 Sample of Sinhala-English Code-Mixed Data

Tokenizer in NLTK used to tokenize input Sinhala-English sentences as words. The lower()
function used to convert the words in lowercase. A sample of Sinhala-English code-mixed words

shown in Figure 6.8.
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In [2]: dimport re
from nltk.tokenize import word_tokenize

cleanData=re.sub("[.@/]+", ° ', trainData)
cleanTrainData=cleanData.lower()

print("\nkords in Training data™)
TrainWordList = word tokenize(cleanTrainData)

TrainWordList=[re.sub( " ‘ufeff', '",x) for x in TrainWordlList]

print(TrainWordList)

kiords in Training data

['meka’, 'wath®, 'ehenam', 'damu', 'e', "man', 'kiyanna', 'ehakota', 'lakshan', 'inne', 'kohomada', 'den’, 'meke', 'man', 'k
o', "?', 'henda', 'prashnayak', 'akke', 'CD', 'blouse’, "eka', 'thama', 'tag', 'kare', 'e', 'phone', '1lke', 'prashnayak’', 'sc
resn’, "1lke', 'kawruth', 'penniwa’, 'nathnam', 'kawruhari’, ‘crop’', 'karala', 'onna’, 'mama’, 'nm’, ‘newei’', ‘screen’, ‘eke’,
‘pena’, 'okkoma', 'photo’, 'ekata', 'wadinawa', 'metchara’, "mahathata’, 'indalath’, 'math’', 'nane', 'e", '4to’, 'eke’', 'ayya
ge', 'phone', "1ka', 'balanna', 'api', ‘dennata’, 'karana', ‘wenaskam', 'api’, ‘'dennawama’, ‘photo’, ‘'eken', ‘kapala’, ‘eka’,
‘galen’, 'kurullo’, 'dennekma’', ‘maranawa’, 'kiyanne', ‘mehema’, ‘scene’, "walata', 'wenna', "athi', 'nilupul’, ‘aiyage’, ‘ar
a', "gorilla', 'glass', 'effect', ‘ekenda', 'mokadda', 'ekenda', 'danne', 'na', 'api', 'dennawa', 'kepune', 'ahaka', 'inna’',
‘rilaw’, ',', 'gorille', 'allanna', 'epa’, 'ckata', ',', 'gaanata', 'cut', 'karala', 'tiyenne', 'ow', 'man', ‘hitanne', 'e',
‘gorilla’, ‘'glass’, ‘eken’, ‘'gorille’, ‘tika', 'witarak', 'filter', 'karala', 'aranda’, 'koheda', 'anna’, ‘hari', ‘eka', 'tha
mai', ‘wela', "thiyenne', 'wow’, 'good’', 'job', ‘putha’, ‘"kolla', ‘goda’, 'yamin', ‘sitina’, 'bawa', 'penawa’, ',’', ‘oya', 'c
olombo®, 'gihin®, 'karana', 'ewa', 'anith’, 'aya', "karane', 'na’, 'bro', 'mana', 'ube', ‘'kathawa', 'neh’, ‘oke', 'tiyenne’,
‘'matath’, 'tama’, 'matakai’', 'uncle', 'issara', ‘oyawa', "iskoleta', 'ekkaragena', ‘'ena’', ‘widiya', 'vas', 'mama’, ‘oyage',
‘wedding’, ‘eke’, 'photos’', 'balala’, 'mata’, 'ae’, 'kale', 'matak’, 'una’, 'vas', "ara’, 'balance’', 'karana', 'ekatanam’, 'j

eshan', 'one', 'na', 'man’, 'hitanne', 'meka', 'liyanna', "hethuva', ‘'mokakda', 'danne', 'ne', 'neda', 'athi', 'yantham', 'nal

Figure 6.8 Sample of Sinhala-English Code-Mixed words

It was observe the some words contains wordplay characters. For example in the word
“choooooty” the character ‘0’ appears lot of times. So that word consider as wordplay word. The
regular expression used to remove the wordplay characters. The characters appears more than two
times were eliminated. So the regular expression used to replace the word “choooooty” as
“chooty”. After that, the term frequency of each unique word was taken using count() function. A

sample unique Sinhala-English words with term frequency shown in Figure 6.9.

In [4]: Trainwordfreq = []
for w in trainwords:
Trainwordfreq.append(trainords. count(w))

def sortFreqDict(freqdict):
aux = [(freqdict[key],key) for key in freqdict]
awx. sort()
awx.reverse()
return aux

for

a,b in zip(trainWords,Trainwordfreq):
trainWordFregDict=dict(zip(trainWords,Trainwordfreq))

trainlordFreq_sorteddict = sortFreqDict(trainWordFreqDict)
for s in trainkWordfFreq_sorteddict: print(str(s))

(23, 'set') -
{21, ‘'yako')
(21, 'photo")
(21, ‘'inne")
(21, ‘hari")
(21, ‘ai’)
(2@, 'wela')
(2@, 'thama')
(2@, 'neh')
(20, 'meka')
(2@, 'mata’)

(2@, 'ekata")

Figure 6.9 Sample of Unique Sinhala-English Code-Mixed words with Term Frequency
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After that the unique Sinhala-English code-mixed word annotated with language tags. There are
three language tags, “sin” for Sinhala words, and “eng” for English words and “rest” for all other
words. The “rest” tag includes Named Entities, Acronyms, Universal, mixed and other language
tags. A sample of annotated Sinhala-English code-mixed words with language tags shown in
Figure 6.10.

api sin
ekak sin
oya sin
eke sin
dan sin
uba sin
ow sin
wage sin
epa sin
mama sin
kiyala sin
set eng
yako sin
photo eng
inne sin
hari sin
ai sin
wela sin
thama sin
meka sin
mata sin
ekata sin

Figure 6.10 Sample of Annotated Sinhala-English Code-Mixed Words with Language Tags
6.3.2 Feature identification of Sinhala-English code-mixed text

The annotated Sinhala-English code-mixed word with languages tags was taken as the input for
feature identification module. In this process the features mentioned in section 5.3.3 was identified
for each words. The features are Sinhala Unicode characters in Roman scripts, language specific

dictionaries, and term frequency. A sample of a Sinhala word with features shown in Figure 6.11.
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{"Words": 'kiyala', 'Lang Class': "sin', 'TermFreq’: 24.8, 'a': "', 'aa': "', 'ae': "', fau': "', 'b': "7, 'ba': "', 'haza': "',
'bae": "', 'bau': "', 'be': "', 'bea': "', 'bi': "', "bo': ', "bu': '", "buu': "', 'ch': "', 'cha': "', 'chaa': """, 'che': "',
‘chi': "', 'cho’: "', ‘chu': ', 'd': ", 'da’: "', ‘'daa’: "', "dau’: "', 'de': "', ‘'dea’: '', 'dh': '", 'dha': '", "dhe': "',
‘dhi': "', 'dhu’: "', 'di': ", diiv: ', Cdot: Y, dut: "7, fe': "', ea’: ', 'g'y 'Y, 'ga': "', 'gaa': 'Y, 'gau': ', g
et ", gity "', 'go': "', fgut: "', 'hT:r ', Chat: "', "has': "', 'he': "', 'hea': "', 'hi': '", 'hii': "', 'ho': "', 'hu'
t, titoott, tiite vty 'ttty gdat:o v, tjeat: tt, ettty t4qitoott, fjetr ', Tjutr oty k'rott, 'ka': ', 'kaa': ', ka
uts tt, ket T, kit oty Ckdivt: oty Cke': ', Cke': Y, Ckew': ', "1ttty 'lat: 'ty "laat: tt, 'letr t, leat: v, 14
ty, "ot tt, "wt: 7, 'm': ', 'mat: 'Y, ‘maa": "', ‘mae': "', ‘me': "', 'mi': "', 'mo': "', 'mu': "', ‘muwu’: "', 'n': "', 'n
a': "', 'naa': "', 'me': "', 'nea’': '’, 'ni': *", 'mo': "7, ‘nu': "7, fo': "7, foe': "', 'P': "', 'ra’: "', 'raa’: '’", 'rae’
'y 'raut: ", ‘re’: "', 'rea’: "', 'rit: 'Y, 'piit: 'Y, C'ref: ", rwt: ", ‘s’ 'Y, 'sa': "', 'saa’: "', 'sae': "', 'sau':

, 'se': "', 'sea': "', 'si': "', ‘'sii': "', 'so": '", 'su’: ', 'ttt ", ‘ta': 'Y, 'taa': "', "te': 7, "tea': "', 'th': "7,
"tha': "', 'thaa': '", 'the': "', "thi': "', 'thii': "', "tho': "', "thu': "', 'ti': "', "to': "7, "tu': "7, Tu': "', uu': 'Y,
Wi Y, fwa': ", 'waa't ", fwe': U, Twiti YU, wo'r U, wuti U,y 'Y, ya'i ', Cyaa':t ', yau': U, ye': U7, yi?

, ‘yo'r "', Cwu': "', U"BNC_Corpus': "', 'LexMNorm_Corpus’: "'}

Figure 6.11 Sample of Sinhala word with features

In the feature identification process of Sinhala-English code-mixed text the below features

extracted from the words.

e Sinhala Unicode characters in Roman scripts: The presence of 233 features in the words
were identified. This is a Boolean feature. Presence of each feature recorded as 1 otherwise
0.

e English language-specific dictionaries: Use to identify the presence of a word in
dictionaries. This is a Boolean feature. Presence of word will be 1 otherwise 0. The
presence of words in BNC and LEXNORM dictionaries was identified.

A sample of Sinhala word after the feature identification process shown in Figure 6.12,

{'Words': 'kiyala', 'Lang Class': 'sin', 'TermFreq': 24.@, 'a': 1, 'aa': 8, 'ae': @, 'au': @, 'b": @, 'ba': @, 'baa’: @, 'bae':
@, 'bau’': @, 'be': @, 'bea': @, 'bi': @, 'bo': ®, 'bu': @, 'buu': @, 'ch': @, 'cha': @, 'chaa': @, 'che': @, 'chi': @, 'cho":
a, 'chu': @, 'd': @, 'da": 8, 'daa’: @, 'dau': @, 'de': @, 'dea’: @, 'dh': @, 'dha': e, 'dhe': @, 'dhi': @, 'dhu': @, 'di': @,
‘dii*: @, 'do': @, 'du': @, 'e': @, 'ea’': @, 'g': @, 'ga': @, 'gaa’': @, 'gau’': @, 'ge': @, 'gi': @, 'go': @, 'gu':@e, 'h': 86,
‘ha': @, 'haa': @, 'he': @, 'hea': @, 'hi': @, "hii': @, 'ho': @, 'hu': e, 'i': 1, "ii': @, 'j': @, "ja': @, "jaa": @, 'je': @,

s
'ji': @, 'jo': @, "ju': 8@, 'k': 1, 'ka': 8, 'kaa': 8, 'kau': B, 'ke': B, 'ki': 1, 'kii': @, 'ko': @, 'ku': 8, 'kuu': @, '1': 1,
'la': 1, 'laa': @, 'le': @, '"lea': @, "1li': @, "lo": @, 'Iu': @, 'm": @, 'ma': 8, 'maa': 8, 'mae’': @, 'me': @, 'mi': @, 'mo’
@, 'mu': @, 'muw':@ 'n:@, ‘na':@e, 'naa': @, 'ne': @, 'nea': @, 'ni': @, 'no': @, 'nu':e, 'o':8, ‘0e':@ 'r':.:e, 'ra:
8, 'raa’: @, 'rae’': @, 'rau’: @, 're': @, 'rea’: @, 'ri': @, 'rii': @, 'ro': @, 'ru':r @, 's': B, 'sa': B, "saa': 8, 'sae': @,

'sau': @, 'se': @, 'sea': @, 'si': @, 'sii': @, 'so': @, 'su': @, 't': @, 'ta': B, "taa': B, 'te': @, 'tea’: @, "th': @, 'tha':
@, 'thsa’': @, "the': @, "thi': @&, "thii': e, 'tho': @, 'thu': @, 'ti': ®, "to': @, "tu': @, 'u': @, 'uu': @, 'w: 8, 'wa': e,
'waa': @, 'we': @, 'wi': @, 'wo': @, 'wu': @, 'y': 1, 'va': 1, ‘yaa': @, ‘yau': 8, ‘ye': @, 'yi': @, 'yo': 8, 'vu': 8, 'BNC_Cor
pus': @, 'LexNorm_Corpus': @}

Figure 6.12 Sample of Sinhala word with identified features with values

Among this embedded features there were some Sinhala Unicode characters in Roman scripts
identified features had the mean value as zero. The below 76 feature’s mean value identified as
zero. These features did not play a significant role in algorithm. So these features were removed

from the Sinhala-English training dataset.

[bii, boe, chae, chau, chea, chii, choe, chuu, dae, dhaa, dhae, dhau, dhea, dhii, dho, dhoe, dhuu,

doe, duu, gae, gea, gii, goe, guu, hae, hau, hoe, huu, jae, jau, jea, jii, joe, juu, kae, kea, koe, lae,
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lau, lii, loe, luu, mau, mea, mii, moe, nae, nau, nii, Noe, nuu, roe, ruu, soe, suu, tae, tau, thae, thau,

thea, thoe, thuu, tii, toe, tuu, wae, wau, wea, wii, woe, wuu, yae, yea, Yii, yoe, yuu]

So now the training dataset consists of 160 features. In addition of corresponding language tags

totally 161 attributes included in training data of Sinhala-English code-mixed text.

6.3.3 Model Development for Sinhala-English code-mixed text

For the model development process, the Weka 3.9.2 tool was used. Different machine learning
classifiers such as Support Vector Machine, Naive Bayes, Logistic Regression, Random Forest
and Decision Tree used to create the models in order to evaluate the model performance. The
feature-based model created based on identified features and languages labels as input. The dataset
subjected to 10 fold cross-validation in order to evaluate the predictive models. The overall
accuracy and F-Measure of different classifiers were recorded to identify the most suitable model
for perdition process. The parameter used in model development process for different classifiers

shown in Table 6.2.

Table 6.2 The parameter used in model development by different classifiers for Sinhala-English
code-mixed text

Classifiers Parameters Used
Support Vector Machine Linear Kernel, C=1
Logistics Regression Ridge = 1.0E-8
Decision Tree Confident Factor=0.25, Number of objects=2
Naive Bayes Use Kernel Estimator=True
Random Forest Number of iteration = 100

6.4 Summary

In this chapter the implementation of the word level language identification system for Tamil-
English and Sinhala-English code-mixed text is discussed in detail. In the next chapter, evaluation

of the proposed solution is given with experimental results.
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Chapter 7

Evaluation

7.1 Introduction

Evaluation strategy, experimental design and results are discussed in this chapter. Experiment
results of model development for Tamil-English code-mixed text and Sinhala-English code-mixed
text is discussed in this chapter. Also sample based evaluation results of predictive models for

Tamil-English code-mixed text and Sinhala-English code-mixed text is discussed in this chapter.

7.2 Experimental design

Experiments designed to evaluate the performance of the models developed based on Tamil-
English feature set and Sinhala-English feature set. Also another experiment designed to evaluate
the model prediction for test data based on sample based analysis.

7.2.1 Experimental design for Model Evaluation

For the model evaluation process, the Weka 3.9.2 tool was used. Different machine learning
classifiers such as Support Vector Machine, Naive Bayes, Logistic Regression, Random Forest
and Decision Tree used to evaluate the performance of models developed based on Tamil-English
code-mixed text and Sinhala-English code-mixed text. The knowledge flow of experiment process

for model evaluation shown in Figure 7.1.
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Proie) b batch Classifiey . v text a8 b
<l » ‘?_;xgl ) .@

NaiveBayes Classifier Text\iewer
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Loou - tox | & _J
Logistic Classifi TextMewer2
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Figure 7.1 The knowledge flow of experiment process for model evaluation
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7.2.1.1 Evaluation Strategy for predictive Models

Models were tested using 10 fold cross-validation. Cross-validation is a technique to evaluate
predictive models by partitioning the original sample into a training set to train the model, and a

test set to evaluate the model.

In k-fold cross-validation, the original sample is randomly partitioned into k number of
subsamples. Of the k subsamples, one subsample is retained as the validation data for testing the
model, and the remaining k-1 subsamples are used for training. The cross validation process is
then repeated k times (the folds), with each of the k subsamples used exactly once as the validation
data. The k results from the folds is then averaged (or otherwise combined) to produce a single
answer. The advantage of this method is that all observations are used for both training and

validation, and each observation is used for validation exactly once.

When comparing the models and evaluating performance of them with each other, different

measures like Accuracy (%), and F-Measure were considered in the evaluation process.

Accuracy is how close a measured value is to the actual (true) value. Accuracy retrieves the

percentage of correctly classified instances.

TP+TN

Accuracy = ——————
TP+FP+TN+FN
Precision is a value of the accuracy provided by a unique class that was predicted.

TP

Precision = ————
recision TP + FP

Recall is a measure of the ability of a prediction model to select instances of a certain class

from a data set. It is ¢ also called sensitivity, and points to the true positive rate.

TP

Recall = ———
N = TP T FN

Where, TP = True Positive
TN = True Negative
FP = False Positive
FN = False Negative
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The F score, also called the F1 score or F measure, is a measure of a test’s accuracy. The F score
is defined as the weighted harmonic mean of the test’s precision and recall. This score is calculated
with the precision and recall of a test taken into account. Precision, also called the positive
predictive value, is the proportion of positive results that truly are positive. Recall, also called
sensitivity, is the ability of a test to correctly identify positive results to get the true positive rate.
The F score reaches the best value, meaning perfect precision and recall, at a value of 1. The worst
F score, which means lowest precision and lowest recall, would be a value of 0.

Precision=Recall

F1=2x

Precision+Recall

7.2.2 Experimental design for Testing of Models

A system is developed to test the finalized Tamil-English code-mixed model (Tanglish model with
SVM) and Sinhala-English code-mixed model (Singlish model with Random Forest). The User
Interface of the testing of finalized model shown in Figure 7.2.

| £ Waord Level Language Identification of Code-Mixed Text — O x
English Mixed Tamil Words English Mixed Sinhala Words
Words With Label Words With Label
Compare With Tanglish Model Compare With Singlish Model
Tamil Words Sinhala Words
| Finalize Label For Tamil Words | | Finalize Label For Sinhala Words |

Figure 7.2 The User Interface for testing finalized model for language identification of code-

mixed text
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In this testing process identified word from a Tamil-English code-mixed sentence was taken as
input for testing the Tanglish model (SVM), likewise Sinhala-English code-mixed sentence was
taken as input for testing the Singlish model (Random Forest). After that for each word of Tamil-
English code-mixed sentence the features such as Tamil Unicode characters in Roman scripts,
language specific dictionaries, double consonant, and term frequency was identified and that
features compared with Tanglish model and for each word the language labels was predicted using
the Tanglish model. Likewise for each word of Sinhala-English code-mixed sentence the features
such as Sinhala Unicode characters in Roman scripts, language specific dictionaries, and term
frequency was identified and that features compared with Singlish model and for each word the
language labels was predicted using the Singlish model. The statistics of the dataset used for

testing of models shown in Table 7.1.

Table 7.1 The statistics of the dataset used for reevaluation of models

Test Data Tamil-English Sinhala-English
code-mixed data code-mixed data

Sentences 50 50

Tokens 312 273

Words 261 216

7.2.2.1 Evaluation Strategy for Testing Models
In the testing process 50 sentences from Tamil-English code-mixed text and 50 sentences from

Sinhala-English code-mixed sentences were taken. The sentences were annotated using language
labels by human annotators at word level. After that Tanglish words feature matrix and Singlish
words feature matrix compared with Tanglish model (SVM) and Singlish model (Random Forest)

respectively. The accuracy and the F-measure for each tags were recorded.

7.3 Experimental Results

7.3.1 Experiment Results for Model Evaluation
The model evaluation results obtained from different machine learning classifiers such as Support

Vector Machine, Naive Bayes, Logistic Regression, Random Forest and Decision Tree by using
10 fold cross validation for Tamil-English code-mixed text and Sinhala-English code-mixed text

is presented in this section.
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The confusion matrix, overall accuracy and F-Measures of ‘tam’, ‘eng’, and ‘rest’ tags obtained

from different classifiers for Tamil-English code-mixed text shown in Table 7.2.

Table 7.2 Overall results obtained from different classifiers for Tamil-English code-mixed text

F-Measure [ F-Measure I F-Measure

Classifiers Confusion Matrix Accuracy
(awtam) (breng) (cwrest)
Support Vector Machine 3 b 3
‘ [a| 605 | 82 | 32
(Linear Kernel, C=1) 51193 BT B946% 0547 0.806 0240
c| 443 106 | 100
Logistics Regression a| 6886 T 93 | % |
’ o 178 8 | N 89.09% 0947 0.794 0273
gRses 1A% A0 y: 3
Decision Tree a| 6HM B2 ] 6 |
(Confident Factor=0.25, Num o] BT | 83 | 75 88.89% 0.945 0.752 0396
Naive Bayes a| WA 82 ] %63 |
. o 97| 1 TS0 8461% 0510 0.721 0304
(Use Kernel Estimator=False) | = 248 1601 344
Random Forest : 6781 | 34 4 ]
b 548 58l 10 86.06% 0522 0.646 0.127
(Number of iteration = 10) c 559 44 | 45

Among this results for Tamil-English code-mixed text SVM with a linear kernel gave 89.46%
accuracy for language identification system for Tamil-English code-mixed text at the word level.
This model is good for identifying Tamil and English language tags. Because the F-Measure for
‘tam’ and ‘eng’ tags were 0.947 and 0.806 respectively. So this SVM model was taken as finalized

model as Tanglish data for testing process.

The confusion matrix, overall accuracy and F-Measures of ‘sin’, ‘eng’, and ‘rest’ tags obtained

from different classifiers for Sinhala-English code-mixed text shown in Table 7.3.
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Table 7.3 Overall results obtained from different classifiers for Sinhala-English code-mixed text

F-Measure F-Measure V F-Measure
Classifiers Confusion Matrix Accuracy
(a=sin) (b=eng) (c=rest)
Support Vector Machine 2 b 2
eaar Karnal G [a| 2214 | 4 | 6
(LA ) T 8% 0942 0.749 0.174
c| 125 32 | 18
Logistics Regression a| 2241 | S§ | 28
: b| 8 | 280 | 31 88.33% 0943 0.727 0273
= |.0E-§ : |
(s ) <1100 TR
Decision Tree a| 250 | 50 | 44
(Confident Factors0.25, Nom | B| 109 | 286 | 20 | 8930 0543 0731 0474
ofobpcutl) | c | g9 | 18 | [
Naive Bayes B 2185 105 34
B 6 | 319 | 12 86.81% 0936 0715 0.087
(Use Kernel Estimator=True) ety T
Random Forest |a] 2280 | 24 | 20 |
b| 118 271 8 90.50% 0.549 0.758 0513
(Number of iteration = 100) | c | 82 1 23 | 70

Among this results for Sinhala-English code-mixed text, Random forest classifier gave 90.5%
accuracy for language identification system for Sinhala-English code-mixed text at the word level.
This model is good for identifying Sinhala and English language tags. Because the F-Measure for
‘sin” and ‘eng’ tags were 0.949 and 0.758 respectively. So this Random forest model was taken as
finalized model as Singlish data for testing process.

In order to identify the important features from feature set, feature evaluation was done with
different classifiers by adding and removing the features. The accuracy obtained from different
classifiers for different feature set was recorded. The features evaluation chart for Tamil-English
code-mixed text and Sinhala-English code-mixed text illustrated in Figure 7.3 and Figure 7.4

respectively.
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Features Evaluation for Tamil-English Code-Mixed Text

Support Vector Logistics Dicision Tree Random Forest Naive Bayes
Machine Regression

Classifiers

Accuracy ( %)
N N 00 0000000 W W
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B Tamil Unicode characters in Roman scripts
B Tamil Unicode + Double Consonants(DC)
B Tamil Unicode+DC+Term Frequency(TF)

© Tamil Unicode+DC+TF+Language specific dictionaries

Figure 7.3 Evaluation of features impotency for Tamil-English code-mixed text

Features Evaluation for Sinhala-English Code-Mixed Text
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Figure 7.4 Evaluation of features impotency for Sinhala-English code-mixed text
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7.3.2 Experiment Results for Model Testing

The testing results obtained from Tanglish model and Singlish model presented in this section.

The confusion matrix, overall accuracy and F-Measures of ‘tam’, ‘sin’, and ‘eng’ tags obtained

from testing process of Tanglish model and Singlish model shown in Table 7.4.

Table 7.4 Testing results obtained from Tanglish model and Singlish model

7.4 Summary

F-Measure F-Measure
Models Confusion Matrix Accuracy
(a=tam) (b=eng)
F1 b C
: 07 7 0
Tanglish model . == . 93.87% 0.985 0.334
[svna) 7 1 0
F-Measure F-Measure
Confusion Matrix Accuracy
(a=sin) (b=eng)
Singlish Model 177 1 1
(Random Fnr\est} 3 | 26 o 95.83% 0.975 0929
a | 0 4

In this chapter, evaluation strategy, experimental study, datasets used and the results are discussed.

Next chapter discusses the interpretation of the experimental results given in this chapter along

with the conclusion and future work.
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Chapter 8

Conclusion and Future Work

8.1 Introduction

In the previous chapter we discussed about the evaluation strategy along with the obtained
results of the proposed solution. This chapter focuses on interpreting the results given in
evaluation, discussing the limitations and future work of the solution.

8.2 Concluding remarks

This paper discusses problems with code mixed data and proposed a feature-based embedded
methodology to automatic language identification of Tamil-English and Sinhala-English code
mixed data. The methodology used for this system is a novel approach implemented as machine
learning classifier based on features such as Tamil Unicode characters in Roman scripts,
dictionaries, double consonant, and term frequency for Tamil-English code-mixed text and
features such as Sinhala Unicode characters in Roman scripts, dictionaries, and term frequency for
Sinhala-English code-mixed text. Different machine learning classifiers such as SVM, Random

Forest, Naive Bayes, Logistic Regression, and Decision Tree used to evaluate the performance.

Among the predictive models for Tamil-English code-mixed text, SVM with a linear kernel gave
89.46% accuracy for language identification system for Tamil-English code-mixed text at the word
level. This model is good for identifying Tamil and English language tags. Because the F-Measure
for ‘tam’ and ‘eng’ tags were 0.947 and 0.806 respectively. But this model not much identified
‘rest’ tags properly. This was seen that most words belong to ‘rest’ tag incorrectly classified in
‘tam’ and ‘eng’ tags. This was happened because of some words were mixed with Tamil and
English language. For example “ricela” word “rice” belongs to English language and “la” belongs

to the Tamil language.

Among the predictive models for Sinhala-English code-mixed text, Random forest classifier gave
90.5% accuracy for language identification system for Sinhala-English code-mixed text at the
word level. This model is good for identifying Sinhala and English language tags. Because the F-

Measure for ‘sin’ and ‘eng’ tags were 0.949 and 0.758 respectively. But Random forest model not
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much identified ‘rest’ tags properly. The F-measure of ‘rest’ for Random forest classification
model were 0.513. This was seen that most words belong to ‘rest’ tag incorrectly classified in
‘sin” and ‘eng’ tags. This was happened because of some words were mixed with numbers, Sinhala
and English language. For example “containerlka” word “container” belongs to English language,
“ka” belongs to the Sinhala language and ‘1’ belongs to number. Also name entities identified

wrongly in ‘sin’ and ‘eng’ tags.

In the testing process of Tanglish model with SVM and Singlish model with Random Forest gave
accuracy as 93.87% and 95.83% respectively. Tanglish model with SVM gave F-Measure for
‘tam’ and ‘eng’ tags were 0.965 and 0.894 respectively for the testing process. Singlish model with
Random Forest gave F-Measure for ‘sin’ and ‘eng’ tags were 0.975 and 0.929 respectively for the
testing process. So this the evidence that the Tanglish model with SVM and Singlish model with

Random Forest most of the times predict the language labels correctly at word level.

8.3 Limitation and Future work

In this research mainly focused with language identification of noisy code-mixed social media
data. Because of spelling mistakes and different forms of writing styles the code-mixed data
becomes noisy. So it was challenged to identify the language tags of those word. Since some of
the word were correctly identifies using some rules like eliminating wordplay characters appears
in the word. Also LEXNORM corpus used to identify the spelling variation appears in English
words. But there were some words mixed with two languages at word level. For example in the
“studentskku” word “’student” belongs to English language and “kku” belongs to Tamil language.
So these kind of word incorrectly classified to “tam” and “eng” tags. As a future work code-mixing
within word can be detecting by segment the word as smaller units. The word composed of
sequences of subunits associated with different languages, then the language tags can be detected

for the subunits of word.

As further to improve the performance of language identification system more features can be
added into the system. For example context information of the current word, like previous and
after word language tags can be add as the features. Also can evaluate the features importance of
the model by pruning some features by parameter tuning. By changing the parameters option in

classifiers can able to identify the most dominating features for the dataset. Also, the performance
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of the model can be evaluated with neural network techniques like multi-layer perception,

recurrent neural networks and modern Deep Learning approaches.

8.4 Summary

In chapter 1, aim and objectives were defined for this research project. First, we need to get a
comprehensive background knowledge on the selected research area namely, word level language
identification of code-mixing text in social media. Once the importance of the research problem is
identified in chapter 1, study is performed on the current approaches for language identification of
code-mixed text to address the word level language identification of code-mixed text problem in
chapter 2. Word level language identification system for code-mixed text is designed and
developed using technologies such as natural language processing and machine learning as given
in chapter 3, chapter 4 and chapter 5. Extensive evaluation that is conducted for the proposed
solution is given along with the experimental setup and the obtained results in chapter 6.
Accordingly, it is evident that all the objectives defined at the beginning of the project are

successfully met in this research.
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Appendix A

Sample of datasets used in evaluation process

Thank you periyappa

Happy birthday akka .Be happy forever ;) J)
HBD Sister

Happy birthday to my daughter. Valga valamudan
Nalla thane d iruntha. . Sudden a ennachu

Own creation. nammala kalakkeraloo 77

Thambi appa nenga antha tym yara parthiddu erunthinga -P

Engada faculty cricket maich )

it than complete aakalave....

Ena soluwrenka? appa pass a7

(@jasi knowledge is constant da.._P.__[@naga unna mathiri ellam ennala mudiyathudi. .
interesting aa erukldrathuklku... P

engadi exam hall la iminthaa?

nerave paper aa parkka mudivathu... ithila different pespective la... P

kaanum d poai assignments a sei ‘P

Eai intha post ku evalo cmnt thevayadi

Inga paannm Purple toffee um pack la fmkku ... Ne ennai emaathiitte :'(

athaaan avahiklu kovam vanthitukku P ne purple kelda D

Packet la brown color erukkadi _purple than brown aa mardiddu_ ;)

nanga Robotics lecture neram nala taste ana toffee sapiteme .. neer miss paniteerappaaa D D
aloo nanga Maths neram chokkave saapdame.. enna Darsha and Kasthuri?? D D

illati.. unmalaive Maathangi niraja chocolate kondu vanthaaaa 37) 3:) ... Kasthuri ne apa Mnday kondu vaaa D
mm nanga ungala mathiri fast illa_p

Mm thx di next vear nan samaiika num endu kadayapaduthakooda ok

Marupadi oru meeting poduvamaa

ethellam shape illa.._p Thank vou da..

Sis treat venum.__

great akka

thank vou machchi...;}

valamaya color-matching ah poduveengal profile pic ku cover pic_. intha murai enna anathu 7
Mm muthal profile pic poddudu cover thedum pothu entha words nalla erunthuchu._;)

entha kuddy da glass frame color kku match aakum endu than...
ennoda uni Number

2days back tinnanu nenu

Aanai varukkum an manamarintha valththulklal .
Adanga Tamilan super

Figure A.1 Sample of Tamil-English code-mixed dataset
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Meka wath ehenam damu e man kivanna

Ehakota lakshan inne kohomada

Den meke man ko ?

Honda prashnayak akke. @ blouse eka thama tag kare

e phone 1ke prashnavak screen 1ke kawruth penniwa nathnam kawruhari crop karala
Onna mama nm newel

screen eke pena okkoma photo ekata wadinawa

Metchara mahathata indalath math nane e 4to eke_

ayvage phone lka ..

balanna api dennata karana wenaskam. Api dennawama photo eken kapala

eka galen kurullo denneloma maranawa kivanne mehema scene walata wenna athi
Nihapul aivage ara gorilla glass effect ekenda mokadda ekenda danne na api dennawa kepune. .
ahaka inna rilaw | gorillo allanna epa okata | gaanata cut karala tivenne

Ow man hitanne e gorilla glass eken gorillo tika witarak filter karala aranda koheda.
Anna hari _eka thamai wela thivenne

Wow....good job putha.

kolla goda vamin sitina bawa penawa,

Ova colombo gihin karana ewa anith ava karane na bro

Mana ube kathawa neh oke tivenne

Matath tama matakai uncle issara ovawa iskoleta ekkaragena ena widiva vas..
Mama ovage wedding eke photos balala mata ae kale matak una vas..

Ara balance karana ekatanam jehan one na man hitanne

Meka livanna hethuva mokakda danne ne neda

Athi yantham Nalika innawa hodata

Ova maha katha vada Vasana akke, Sambolai bathu hari hadala denava
Ammo nalka sathivak vanakan naanna epa..

Ape akka kohomath nanne nane@ . akke

Me taram lagata awa nam mawa balannath enna tibbane walasmulle nangoooo
Shah mam mar kattiva set wela

Avye amataka nowena plain t ekak dunn ooon

ayve ai ochoma.

ubath warenko ban!!

Adoooo nena mnm treat dela

Hik hik hee.... tawa podden 22> 2 wena ledak hedenwa! Paw

awa podden Nisal aivata heart attack hedenwal!

Thibila Api danne na neh. ..

Ekath narakama ne

ekanam hoda wedak malli

Figure A.2 Sample of Sinhala-English code-mixed dataset
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Detailed experiment results of models obtained by different classifiers for
Tamil-English code-mixed text

mam Stratified cross-validation me=
mmm SUMMArY ===

Correctly Classified Instances 7700 89.4621 %
Incorrectly Classified Instances 07 10,5374 %
Kappa statistic 0.655¢€

Mean absolute error 0.2518

Root mean squared error 0.321¢6

Relative absolute error 108,163 %

Root relative squared error 94,2785 %

Total Number of Instances 8607

mam Detailed Accuracy By Class mmm

TP Rate FP Rate FPrecision Recall F-Measure MCC ROC Area PRC Area Class

0.983 0.35€ 0.913 0.983 0.947 0.719 n.821 0.914 tam

0.78€ 0.025 0.826 0.78€ 0.808€ 0.777 0.823 0.717 eng

0.154 0.010 0.546 0.154 0.240 0.263 0.567 0.149 rest
Weighted Avg. 0.885 0.28€ 0.874 0.885 0.875 0.682 0.81%5 0.831

=== Confusion Matriy se=

a b ¢ <== classified as

€705 82 32 | a = tam
193 885 51 | b = &ng
443 loe 100 | c = rest

Figjure A.3 Results obtained by SVM classifier for Tamil-English code-mixed text

=== Stratified cross-validation ===
mmm  SUFmA ry mmm

Correctly Classified Instances TE€8 89.0903 %

Incorrectly Classified Instances 939 10,9097 %

Happa statistic 0.€542

Mesan absolute error 0.1028

Root mean sguared error 0.2328

Relative absolute error 44.1404 %

Root relative squarsed srror €8.2502 %

Total Humber of Instances 8€07

=m=m Detailed Accuracy By Class smm=
TP Rate FP Rate Precision Recall F-Measure MCC ROC Area FPRC Area Class
0.975 0.322 0.920 0.975 0.947 0.722 0.934 0.973 tam
0.783 0.02% 0.805 0.783 0.7%4 0.7€3 0.5962 0.843 eng
0.1%4 0.019 0.4€0 0.194 0.273 0.264 0.815 0.341 rest

Weighted Avg. 0.881 0.260 0.870 0.881 0.87€ 0.693 0.929 0.908

==m Confusion MACELIX =mwm

a b ¢ <—— classified as

€€50 93  7& | & = tam
175 882 T2 1 b = eng
400 123 126 | € = rest

Figure A.4 Results obtained by Logistic Regression classifier for Tamil-English code-mixed text
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mam Stratified cross-validation =m==
mmm SUMMALY ===

Correctly Classified Instances TL10 82.6072 %
Incorrectly Clasaified Instances 1487 17.3%928 %
Happa atatistic 0.5537

Mean abaclute error 0.1343

Root mean aquared error 0.2975

Relative absolute error 57.66€8 %

Root relative squared error 87.2188 %

Total Number of Instances 8607

=== Detailed Accuracy By Class mmm

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Claas

0.876 0.181 0.94¢€ 0.876 0.910 0.629 0.911 0.968 tam

0.783 0.05% 0.669 0.783 0.721 0.678 0.852 0.788 eng

0,376 0.080 0.255 0.376 0.304 0.241 0.766 0.225 rest
Weighted Avyg. 0.826 0.166 0.857 0.826 0.838 0.606 0.906 0.880

=== Confusion Matrix ssm=

a b c <-- classified as

5874 282 563 | a = tam
a7 892 150 | b = eng
245 leé0 244 | C = rest

Figure A.5 Results obtained by Naive Bayes classifier for Tamil-English code-mixed text

=== 5tratified cross-validation ===

=== SUmmary ===

Correctly Classified Instances 7651 58.8928 %

Incorrectly Classified Instances 456 11.1072 %

Kappa statistic 0.6508

Mean absolute error 0.1102

REoot mean squared error 0.2522

Relative absolute error 47.3194 3

Root relative sguared error 73.5234 %

Total Number of Instances 3607

=== Detailed Accuracy By Class ===
TF Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class
0.971 0.322 0.5920 0.5971 0.5945 0.713 0.364 0.931 tam
0.731 0.033 0.774 0.731 0.752 0.716 0.598 0.716 eng
0.2599 0.017 0.584 0.2589 0.3%68 0.386 0.891 0.323 rest

Weighted Awvg. 0.889 0.260 0.875 0.289 0.878 0.888 0.856 0.856

=== Confusion Matrix ===

a b c <-— classified as
G624 132 83 | a = Lam
231 833 75 1 b = eng
344 111 194 | c = rest

Figure A.6 Results obtained by Decision Tree classifier for Tamil-English code-mixed text
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wmm Stratified cross-validation wem
mmm SUNMMAFY m=-

Correctly Classified Instances 7407 B86.0579 %
Incorrectly Classified Instances 1200 13.9421 %
Kappa statistic 0.4704

Mean absolute error 0.159%4

Root mean squared srror 0.2619

Relative absolute error €8.4515 %

Root relative squared error 76.7781 %

Total Number of Instances BEOT

mmm Detailed Accuracy By Class smm

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area FRC Area Class

0.994 0.€1%9 0.860 0.5%%4 0.5%22 0.550 0.518 0.96% tam

0.510 0.011 .88 0.510 0.64€ 0.636 0.550 0.817 eng

0.06% 0.002 0.7€3 0.065% 0.127 0.216 0.784 0.352 rest
Weighted Avyg. 0.861 0.4%2 0.855 861 0.826 0.536 0.%812 0.902

wa= Confusion Matrix ==

a b c <-- classified as
€781 34 41 a = tam
548 581 10 | b = eng
559 45 45 | C = rest

Figure A.7 Results obtained by Random Forest classifier for Tamil-English code-mixed text

Detailed experiment results of models obtained by different classifiers for
Sinhala-English code-mixed text

=== Stratified cross-validation ===
mmm SUMMALY ===

Correctly Classified Instances 2575 88.9157 %
Incorrectly Clasaified Instances 321 11.0843 %
Kappa statistic 0.6154

Mean absolute error 0.255

Root mean squared error 0.32¢64

Relative absolute error 114.5306 %

Root relative squared error 97.8825 %

Total Number of Instances 2896

=== Detailed Accuracy By Class ===

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

0.878 0.404 0.808 0.878 0,842 0,669 0.747 0.80% sin

0.713 0.030 0.788 0.713 0.74% 0,712 0.874 0.625 eng

0.103 0.008 0.563 0.103 0.174 0.223 0.578 0.117 rest
Weighted Avg. 0.88% 0,328 0.871 0.88% 0,869 0,648 0.785 0.823

m=mm Confusion Matrix =e=

a =] c ¢== clasaified as

2274 44 € | a = sin
loe 283 g | b = eng
125 32 18 | ¢ = peat

Figure A.8 Results obtained by SVM classifier for Sinhala-English code-mixed text
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== Stratified cross—validation =—

== Summary —

Correctly Classified Instances 2558 88.3287 %
Incorrectly Classified Instances 338 11.6713 %
Kappa statistic 0.6208

Mean absolute error 0.0974

Root mean sguared error 0.23c4

Relative absclute error 43.73€1 %

Root relative sguarsed error T0.908¢ %

Total Humber of Instances 2896

== Detailed Accuracy By Class =—=

TP Bate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

0.5e4 0.325 0.923 0.9€4 0.543 0.&891 0.922 0.968 sin

0.705 0.037 0.751 0.705 0.727 0.686 0.528 0.782 eng

0.211 0.022 0.385 0.211 0.273 0.253 0.7%% 0.311 rest
Weighted Awg. 0.883 0.2&87 0.8&7 0.883 0.873 D.eE4 0.91& 0.903

=== (Confusion Matrix ===

a b c <— classified as
2241 55 8 1 a = sin

86 280 31 1 b = eng
100 38 37 1 Cc = rest

Figure A.9 Results obtained by Logistic Regression classifier for Sinhala-English code-mixed
text

mas Stratified cross-validation wem
mmm SUMMALY ===

Correctly Classified Instances 2514 86.8094 %
Incorrectly Classified Inatances kL-F 13,1906 &
Kappa statistic 0.594%9

Mean absolute error 0.1013

Root mean squared error 0.261

Relative absolute error 45.5187 %

Root relative squared srror 78.2607 %

Total Number of Inatances 2896

mam Detailed Accuracy By Class mam

TP Rate FFP Rate Frecision Recall F-Measure MCC ROC Area FPRC Area Class

0.840 0,280 0.832 0.940 0.936 0.670 0.831 0.980 ain

0.804 0.070 0.644 0.804 0.715 0.€70 0,857 0.828 &ng

0,087 0,017 0.178 0.057 0.087 0.070 0,783 0.202 rest
Weighted RAvg. 0.868 0,235 0.847 0.868 0.854 0.634 0.926 0.a12

was Confusion Matrix =ew

a =] c C== classified as

2185 105 34 | a = sin
66 318 12 | b = eng
94 71 10 | C = rest

Figure A.10 Results obtained by Naive Bayes classifier for Sinhala-English code-mixed text
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=== Stratified cross-validation ===

Summary ===
Correctly Classified Instances 2586 89.2956 %
Incorrectly Classified Instances 310 10.7044 %
Kappa statistic 0.6472
Mean absolute error 0.1024
Root mean squared error 0.2487
Belative absclute error 45.594931 %
Root relative sguared error T4.3857 %
Total Number of Instances 2898

=== Detailed RAccuracy By Class =—=

TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Lrea Class
0.988 0.348 0.919 0.963 0.943 0.885 0.852 0.923 sin
0.875 0.027 0.793 0.675 0.731 0.696 0.354 0.710 eng
0.389 0.01l& 0.607 0.389 0.474 0.480 0.704 0.334 rest
Weighted RAvg. 0.893 0.282 0.384 0.393 0.888 0.873 0.343 0.858
=== Confusion Matrix ===
a <] c <—— classified as
2250 50 24 | a = zin
109 268 20 | I = eng
249 18 83 | c = rest

Figure A.11 Results obtained by Decision Tree classifier for Sinhala-English code-mixed text

=== Stratified cross-validation =—=
== Summary =—=

Correctly Classified Instances 2621 S0.5041 %

Incorrectly Classified Instances 275 5.4559 %

Kappa statistic 0.&789

Mean absolute error 0.1102

Root mean sguared error 0.2217

Relative absolute error 45,4502 %

Root relative sguared error €€.4%2¢ %

Total Number of Instances 28%¢6

== Detailed Accuracy By Class —
TP Rate FP Bate Precision BRecall F-Measure MCC ROC Area PRC Area Class
0.981 0.350 0.919 0.981 0.954% 0.717 0.94%9 0.983 3in
0.683 ).015 0.852 0.683 0.758 0.730 0.%€¢ 0.862 eng
0.40( 0.714 0.400 0.513 0.514 0.851 0.532 rest

Weighted Awg. 0.905 0.898 0.505 0.897 0.706 0.945 0.9359

=== Confusion Matrix ===

a b c <—— classified as
2280 24 20 | a = 3in
118 271 8 1 b = eng

82 23 70 | C = rest

Figure A.12 Results obtained by Random Forest classifier for Sinhala-English code-mixed text
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Appendix B

Code section for Identification of Features for a given Sentence

import re

from nltk.tokenize import word_tokenize
import json

import pandas as pd

import numpy as np

def preProcessing(sentence):
cleanData=re.sub({'[.@/]+ . ', sentence)
cleanDatalowar=cleanData.lower()

print(“\nTotal words in the sentence”)
sentenceWordList = word_tokenize(cleanDatalower)
print(len(sentencelordList))

words=[re.sub(r"(.)\1+", r'\1\L", x).strip() for x in sentencelWordList]
print("\nkords in the sentence™)
print(words)
return words
words=preProcessing("blouse eka thama tag kare")

Total words in the sentence
5

kords in the sentence
['blouse’, "eka', 'thama’, 'tag', 'kare']

def BNC_Corpus():
from nltk.corpus.reader.bnc import BNCCorpusReader
from nltk.collocations import BigramAssocMeasures, BigramCollocationFinder

# Instantiate the reader
bnc_reader = BNCCorpusReader(root="Corpora/bnc/Texts”, fileids=r'[A-K]/\w*/\w*\.xml")

list of _fileids = ['A/AB/AGB.xml", "A/AB/ABL.xml"]

#bigram_measures = BigramAssocMeasures()

#finder = BigramCollocationFinder.from words(bnc_reader.words(fileids=List of fileids))
#scored = finder.score _ngrams(bigram measures.raw freq)
bnc_words=bnc_reader.words(fileids=1ist of fileids, strip_space=True)

#print(bnc_words)

BncList=[]

for w in bnc_words:
BncList.append(w.lower())

return Bnclist

import json
def LexMorm_Corpus():
with open(’train_data_2015843@.json’) as f:
data = json.load(f)
#print(dataf1]["input”])
normalizelistInput=[]
normalizelistOutput=[]
normalizelistl=[]
key=0
for w in data:
normalizelistInput.extend(datalkey]["input"])
normalizelistOutput.extend(datalkey]["output"])
key+=1
normalizelistl=normalizelistInput+normalizelistOutput
normalizelist=[]
for w in normalizelistl:
normalizelist.append(w.lower())
return normalizelist
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def Tanglish_Corpus_Create():
with open('Taglish_corpus.txt’, encoding="utf8") as t:

Data=t.read()
clData=re.sub('[.@/]+", ' ', Data)
cleanData=clData.lower()
WordList = word_tokenize(cleanData)
words=[re.sub(r'(.)\1+', r'\1\1", x).strip() for x in WordList]
wordfreq = []

for w in Words:
wordfreq.append(Words. count(w))

for a,b in zip(Words,wordfreq):
WordFreqDict=dict(zip(Words,wordfreq))

with open('Tanglish Corpus.json’', ‘'w') as fp:
json.dump(WordFreqDict, fp)

Tanglish_Corpus_Create()

def Tanglish_Corpus():
with open('Tanglish Corpus.json', 'r') as fp:
data = json.load(fp)
return data

def Singlish_Corpus_Create():
with open('Singlish corpus.txt', encoding="utf8") as t:

Data=t.read()
clDpata=re.sub('[.@/]+', ' ', Data)
cleanData=clData.lower()
WordList = word tokenize(cleanData)
Words=[re.sub(r"(.)\1+", r'\I\1", x).strip() for x in WordList]
wordfreq = []

for w in Words:
wordfreq.append(Words.count(w))

for a,b in zip(Words,wordfreq):
WordFregDict=dict(zip(Words,wordfreq))

with open('Singlish_Corpus.json’, 'w') as fp:
json.dump(WordFreqDict, fp)

Singlish_Corpus_Create()

def Singlish_Corpus():
with open('Singlish _Corpus.json’, 'r') as fp:
data = json.load(fp)
return data
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def featureExtraction_Tanglish(words):
features={"Words": "', 'TermFreq':

., 'gna

g ye yi': ",
'BNC_Corpus': "', 'LexMorm_Corpus’:

first_row=['Words', 'TermFreq', 'a', 'aa’, 'ae’, ‘'ai’', 'bb’, 'cc', 'dd', 'e’, ‘ee’', 'ff', 'gg', "gn’, 'gna’, 'gne', 'gni’,
‘gnu‘, ‘h*, ‘ha’, 'haa', 'hae", ‘hai’, "he", 'hi‘, 'hii‘, ‘ho’, 'how', ‘hu', ‘hwu*, 'i‘, "ii‘*, 'j', "ja', 'jea', 'jai’, ‘je', 'J
i', "jo', "ju', 'k', 'ka', 'kaa', 'kai', 'ke', 'kea', 'ki', 'kk', 'ko", ‘ksh', “ksha', 'ku', ‘kuu', '1°, 'la’, "laa’, 'lze’, 'la
i*, 'le’, "1i*, '11°, "lo', 'loa", 'low’, "lu', 'm", 'ma’, ‘maa’, 'mae’, ‘mai’, ‘me’, 'mi’, ‘mm’, 'mo’, 'mu’, 'n’, ‘na’, ‘naa’,
"nae’, 'nai’, 'me', 'ng’, 'nga", 'ngaa’, 'ngail’, °"nge', 'ngi’, ‘ngo’, ‘ngu’', 'nh", ‘nha’', 'ni’, 'nii’, ‘nn’, 'no’, ‘now’, ‘nu’,
“nuu’, ‘o', ', 'oo", 'ow', "p*, 'pa’, 'paa’', 'pae’, 'pai’, ‘pe', 'pi', 'po', 'poa’, 'pow’, 'pp', 'pu’, 'pw’, 'g', 'r', ‘ra’,
"raa', 'rae', 'rai', 're', 'ri", 'rii', 'ro', 'rea’, 'row', 'rr', 'ru', ‘ruu’', "s', 'sa', 'saa', 'sai', 'se', 'sh', 'sha', 'sha
a', 'she', 'shi', 'sho', 'shu', 'si', 'so', 'sri', 'ss', 'su', 'suu', 't", 'ta’', 'taa’, 'tae", 'tai’', "te', 'th', 'tha', "thaa’,
"thae', "thai’, ‘the", 'thi’, "thii', ‘tho", 'thu*, "thuu’, "ti', 'te", "tow', "tt", 'tu', “tuu’, v', 'va', "vaa’,
‘vae', 'vai', 'we', "vi', 'wii', 'wo', ‘voa', 'wu', ‘wuu', 'y', 'ya', 'yaa', 'yae', 'yai', 'ye', 'yi', 'yii', 'yo', 'wyu', 'wy',

z', 'za', 'zai', 'ze", 'zi', "zu', 'BNC_Corpus’, 'LexNorm Corpus’]

Bnclist=BNC_Corpus()
LexNorm=LexNorm_Corpus ()

Tanglish=Tanglish_Corpus()
data=[]

testIndex=@

for w in words:
featuresl = dict(features)
featuresi[“Words”]=w
#data.append(features)
data.insert(testIndex, featuresl)
testIndex+=1

newbDict={}

index=8

for 2 in data:
index+=1
newDict[index] = a

for 1 in newDict:
wordl=newDict[1l][ "Words"]
#print(wordl)

for 1 in newDict:

#print(L)

str=newDict[1][ "Words"]

#str=wordsfL-1]

#print(str)

index1 = 2

while indexl < len{first_row)-2:
searchString= first_row[index1l] in str
#print(first_row[index1])

#orint(searchstring)_
if(searchString==True):
newDict[1l][first_row[index1]]= 1
else:
newDict[1l][first_row[indexl1]]= @
indexl += 1

searchStringl= str.lower({) in BnclList
#print(searchStringl)
if(searchStringl==True):
newDict[1]["BHNC_Corpus™]= 1
else:
newnict[1]["BNC_Corpus"]-= @

searchString2= str.lower() in LexNorm
#print(searchString)
if(searchstring2==True):
newDict[1]["LexMorm_Corpus™]= 1
else:
newDict[1][“LexNorm_Corpus™]= @

if(str.lower() in Tanglish}):
newDict[1][“TermFreq”]= Tanglish[str]
else:
newDict[1]["TermFreq™]= 1
#print(newDict)
return newDict

Dictionary=FfeatureExtraction_Tanglish(words)

69



def featureExtraction_Singlish(words):
features={ "Words" "s ‘TermFreq®:
"t ‘be': ', 'bea’ D 'bi': "', ‘bo’

r

w

S - 3 : : 7, ‘wyau

= > ‘wo': ", Twu
us‘: ", ‘LexMorm_Corpus’: "'}

first_row=[ 'Words', ‘TermFreq', 'a', ‘'aa’', 'ae’, "au’, "b’', 'ba’, 'baa’., 'bae’, 'bau’, 'be’, 'bea’, "bi', 'bo’, ‘bu’, ‘buu’,
ch*, °"cha’, °"chaa’, ‘che’, "chi*, ‘cho’, "chu’, °"d", 'da’, 'daa’, 'dau’, "de’, ’'dea’, "dh’, °'dha’, 'dhe’, ‘dhi*, ‘dhu", 'di’,
"dii*, "do’, ‘du’, ‘e’, ‘ea’, 'g’', 'ga’, 'gea’, ‘'gau’, °"ge’, 'gi’, "go’, 'gu’, 'h’, "ha’', 'haa’, 'he', "hea’, "hi’, "hii°, ‘ho’.
“hu*, "i°, "ii*, "j°, "ja’, "jaa", "je', "ji', "jo', "ju', 'k’', ‘ka’, ‘kaa’, 'kau’, "ke’, "ki', 'kii', 'ko', ‘'ku’,
*la*, "laa", "le', "lea', '1i', "lo', 'lu', 'm', 'ma', 'maa’, 'mae’, ‘me', 'mi’', 'mo', 'mu', '‘muu’, 'n°, na', "naa‘
a’, 'mi’, 'no’, ‘nu’, » 'oe’, ‘r’, 'ra', 'raa’, ‘rae’, ‘rau’, ‘'re’, ‘rea’, ‘'ri", ‘'rii", ‘ro-°,
'sau’, 'se', '"sea', 'si', 'sii', 'so', 'su', 't', 'ta', "taa', "te', "tea', 'th', "tha', "thaa', 'the', "thi®, 'th
hu', "ti", "to’, "tu’, "u’, ‘uu’, ‘W', ‘wa', 'waa', ‘we', ‘'wi', 'wo', ‘wu’', 'y, ‘ya’', ‘yaa', ‘yau', ‘ye", ‘yi’,
C_Corpus’, ‘LexNorm_Corpus-’]

Bnclist=BMNC_Corpus()
LexNorm=LexNorm_Corpus()}
Singlish=Singlish_Corpus()
data=[]

testIndex=8

for w in words:
featuresl dict(features)
featuresi[ “Words" ]=w
#data.append(features)
data.insert(testIndex, featuresl)
testIndex+=1

newDict={}

index=@6

for a in data:
indexs+=1
newDict[index] = a

for 1 in newDict:
wordl=newDict[1l][ "Words™]
#print (wordl)

for 1 in newDict:
#print(L)
#str=newDict[L][ "Words"]
str=words[1l-1]
# print({str)
indexl = 2
while index1l < len(first_row)-2:
searchString= first_row[index1] in str
#print(Ffirst_row[index1])

if{searchString==True):
newDict[1l][first_row[index1]]= 1
else:
newDict[1l][first_row[indexl]]= @
indexl += 1

searchStringl= str.lower() in Bnclist
#print(searchStringl)
if(searchStringl==True):
newDict[1]["BNC_Corpus™]= 1
else:
newDict[1]["BNC_Corpus™]= @

searchString2= str.lower() in LexNorm
#print(searchString)
if(searchString2-==True):
newDict[1]["LexNorm_Corpus™]= 1
else:
newDict[1]["LexNorm_Corpus”]= @

if(str.lower() in Singlish):
newDict[1]["TermFreq™” ]= Singlish[str]
else:
newDict[1]["TermFreq”]= 1
print(newDict)
return newDict

Dictionaryl=featureExtraction_Singlish{words)
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{l: {'Words': 'blouse', 'TermFreq': 1, 'a': 0, 'aa': 0, 'ae': 0, 'au': 0, 'b': 1, 'ba': 0, 'baa': 0, 'bae': 0,
'bau': 0, 'be': 0, 'bea': 0, 'bi': 0, 'bo': 0, 'bu': 0, 'buu': 0, 'ch': 0, 'cha': 0, 'chaa': 0, 'che': 0, 'chi'
0, 'cho': 0, 'chu': 0, 'd': 0, 'da': 0, 'daa': 0, 'dau': 0, 'de': 0, 'dea': 0, 'dh': 0, 'dha': 0, 'dhe': 0, '
dhi': 0, 'dhu': O, 'di': 0, 'dii': 0, 'do': O, 'du': 0, 'e': 1, 'ea': 0, 'g': 0, 'ga': 0, 'gaa': 0, 'gau': 0, '
ge': 0, 'gi': 0, 'go': O, 'gu': 0, 'h': 0, 'ha': O, 'haa': 0, 'he': 0, 'hea': 0, 'hi': 0, 'hii': 0, 'ho': 0, 'h
u': 0, 'i': 0, 'ii': 0, '3': 0, 'ja': 0, 'jaa': 0, 'je': 0, 'ji': 0, 'jo': 0, 'ju': 0, 'k': 0, 'ka': 0, 'kaa':
0, 'kau': 0, 'ke': O, 'ki': 0, 'kii': 0, 'ko': O, 'ku': 0, 'kuu': O, '1': 1, 'la': 0, 'laa': 0, 'le': 0, 'lea':
o, '1i': 0, 'lo': 1, 'lu': 0, 'm': 0, 'ma': 0, 'maa': 0, 'mae': 0, 'me': 0, 'mi': 0, 'mo': O, 'mu': O, 'muu': O
, 'n': 0, 'na': 0, 'naa': 0, 'ne': 0, 'nea': 0, 'ni': 0, 'no': 0, 'nu': 0, 'o': 1, 'oe': 0, 'r': 0, 'ra': 0, 'r
aa': 0, 'rae': 0, 'rau': O, 'ri': 0, 'rii': O, 'ro': O, 'ru': O, 's': 1, 'sa': 0, 'saa': O,
'sae': 0, 'sau': 0, 'se': 1 'sii': 0, 'so': O, 'su': O, 't': 0, 'ta': O, 'taa': 0, 'te': O,
'tea': 0, 'th': 0, 'tha': 0, 0, 'thi': 0, 'thii': 0, 'tho': 0, 'thu': 0, 'ti': 0, 'to': 0, 't
a': 0, 'u': 1, 'uu': 0, 'w' 0, 'we': 0, 'wi': O, 'wo': O, 'wu': 0, 'y': 0, 'ya': 0, 'yaa':
0, 'yau': 0, 'ye': 0, 'yi': , '"BNC Corpus': 0, 'LexNorm Corpus': 0}, 2: {'Words': 'eka', 'Te
rmFreq': 110, 'a': 1, ‘'aa': , '"b': 0, 'ba': 0, 'baa': 0, 'bae': 0, 'bau': 0, 'be': 0, 'bea':
0, 'bi': 0, 'bo': 0, 'bu': 0, 'cha': 0, 'chaa': 0, 'che': 0, 'chi': 0, 'cho': 0, 'chu': 0, '

'
d': 0, 'da': 0, 'daa': 0, 'dau': : ea': 0, 'dh': 0, 'dha': 0, 'dhe': 0, 'dhi': 0, 'dhu': 0, 'di': O
, 'dii': 0, 'do': 0, 'du': 0, : 'g': 0, 'ga': 0, 'gaa': 0, 'gau': 0, 'ge': 0,

'gu': 0, 'h': 0, 'ha': 0, 'haa': : 0, 'hea': 0, 'hi': 0, 'hii': 0, 'ho': 0, 'hu': 0, '

'+ 0, 'ja': 0, 'jaa': 0, 'je': 0, 'ji': 0, 'jo': O, 'ju': 0, 'k': 1, 'ka': 1, 'kaa': 0, 'kau': 0, 'ke': 0, 'ki'
: 0, 'kii': 0, 'ko': O, 'ku': 0, 'kuu': O, '1': O, 'la': 0, 'laa': 0, 'le': 0, 'lea': 0, 'li': O, 'lo': 0, 'lu'
0, 'm': 0, 'ma': 0, 'maa': 0, 'mae': 0, 'me': 0, 'mi': 0, 'mo': O, 'mu': O, 'muu': O, 'n': O, 'na': 0, 'naa':
0, 'ne': 0, 'nea': 0, 'ni': 0, 'no': 0, 'nu': 0, 'o': 0, 'oe': 0, 'r': 0, 'ra': 0, 'raa': 0, 'rae': 0, 'rau': O
, 're': 0, 'rea': 0, 'ri': 0, 'rii': 0, 'ro': 0, 'ru': 0, 's': 0, 'sa': 0, 'saa': 0, 'sae': 0O,
0, 'sea': 0, 'si': 0, 'sii': O, 'so': 0, 'su': O, 't': O, 'ta': O, 'taa': 0, 'te': 0, 'tea': 0, 'th': 0, 'tha':
0, 'thaa': 0, 'the': 0, '"thi': 0, 'thii': 0, 'tho': O, 'thu': 0, 'ti': 0, 'to': O, 'tu': 0, 'u'
': 0, 'wa': 0, 'waa': 0, 'we': O, 'wi': O, 'wo': O, 'wu': O, 'y': 0, 'ya': 0, 'yaa': 0, 'yau': O,
: 0, 'yo': 0, 'yu': 0, 'BNC Corpus': 0, 'LexNorm Corpus': 1}, 3: {'Words': 'thama', 'TermFreq': 20, 'a': 1, 'aa
'+ 0, 'ae': 0, 'au': 0, 'b': 0, 'ba': 0, 'baa': 0, 'bae': 0, 'bau': 0, 'be': 0, 'bea': 0, 'bi': 0, 'bo': 0, 'bu
'+ 0, 'buu': 0, 'ch': 0, 'cha': 0, 'chaa': 0, 'che': 0, 'chi': 0, 'cho': 0, 'chu': 0, 'd': 0, 'da': 0, 'daa': O
, 'dau': 0, 'de': 0, 'dea': 0, 'dh': 0, 'dha': 0, 'dhe': 0, 'dhi': 0, 'dhu': O, 'di': 0, 'dii': 0, 'do': 0, 'du
': 0, 'e': 0, 'ea': 0, 'g': O, 'ga': 0, 'gaa': O, 'gau': 0, 'ge': 0, 'gi': 0, 'go': 0, 'gu': 0, 'h': 1, 'ha': 1
, 'haa': 0, 'he': 0, 'hea': 0, 'hi': 0, 'hii': O, 'ho': O, 'hu': O, 'i': 0, 'ii': 0, 'j': O, 'ja': 0, 'jaa': 0,
'je': 0, 'ji': 0, 'jo': O, 'ju': O, 'k': 0, 'ka': 0, 'kaa': 0, 'kau': 0, 'ke': 0, 'ki': O, 'kii': 0, 'ko': 0, '
ku': 0, 'kuu': 0, '1': 0, 'la': 0, 'laa': 0, 'le': 0, 'lea': O, '"1i': 0, 'lo': O, '"lu': 0, 'm': 1, 'ma': 1, 'ma
a': 0, 'mae': 0, 'me': 0, 'mi': 0, 'mo': 0, 'mu': O, 'muu': O, 'n': 0, 'na': 0, 'naa': 0, 'ne': 0, 'nea': 0, 'n
i': 0, 'no': 0, 'nu': 0, 'o': 0, 'oe': O, 'r': 0, 'ra': 0, 'raa': 0, 'rae': O, 'rau': 0, 're': 0, 'rea': 0, 'ri
'+ 0, 'rii': 0, 'ro': 0, 'ru': 0, 's': 0, 'sa': 0, 'saa': 0, 'sae': 0, 'sau': 0, 'se': 0, 'sea': 0, 'si': 0, 's
ii': 0, 'so': 0O, 'su': O, 't': 1, 'ta': O, 'taa': 0, 'te': 0, 'tea': 0, 'th': 1, 'tha': 1, 'thaa': 0, 'the': 0,
'thi': 0, 'thii': 0, 'tho': O, 'thu': 0, 'ti': 0, 'to': 0, 'tu': 0, 'u': 0, 'uu': 0, 'w': 0, 'wa': 0, 'waa': O,
'we': 0, 'wi': 0, 'wo': O, 'wu': O, 'y': 0, 'ya': 0, 'yaa': 0, 'yau': 0, 'ye': O, 'yi': O, 'yo': O, 'yu': O, 'B
NC Corpus': 0, 'LexNorm Corpus': 0}, 4: {'Words': 'tag', 'TermFreq': 3, 'a': 1, 'aa': 0, 'ae': 0, 'au': 0, 'b':
0, 'ba': 0, 'baa': 0, 'bae': 0, 'bau': 0, 'be': 0, 'bea': 0, 'bi': 0, 'bo': 0, 'bu': 0, 'buu': 0, 'ch': 0, 'cha
'+ 0, 'chaa': 0, 'che': O, 'chi': 0, 'cho': 0, 'chu': 0, 'd': 0, 'da': 0, 'daa': 0, 'dau': 0, 'de': 0, 'dea': 0
, 'dh': 0, 'dha': 0, 'dhe': 0, 'dhi': 0, 'dhu': O, 'di': 0, 'dii': 0, 'do': O, 'du': 0, 'e': 0, 'ea': 0, 'g':
, 'ga': 0, 'gaa': 0, 'gau': 0, 'ge': 0, 'gi': 0, 'go': 0, 'gu': 0, 'h': O, 'ha': O, 'haa': 0, 'he': 0, 'hea': 0
, 'hi': 0, 'hii': 0, 'ho': O, 'hu': O, 'i': O, 'ii': O, 'j': O, 'ja': 0, 'jaa': 0, 'je': 0, 'ji': 0, 'jo': 0, '
ju': 0, 'k': 0, 'ka': 0, 'kaa': O, 'kau': 0, 'ke': 0, 'ki': O, 'kii': O, 'ko': O, 'ku': O, 'kuu': O, '1': 0, '
a': 0, 'laa': 0, 'le': 0, 'lea': O, '1i': 0, 'lo': O, 'lu': 0, 'm': 0, 'ma': 0, 'maa': 0, 'mae': 0, 'me': O
i': 0, 'mo': 0, 'mu': O, 'muu': 0, 'n': 0, 'na': 0, 'naa': 0, 'ne': 0, 'nea': 0, 'ni': 0,
0o, 'oe': 0, 'r': 0, 'ra': 0, 'raa': 0, 'rae': 0, 'rau': 0, 're': 0, 'rea': 0, 'ri': O, 'rii': 0, 'ro': O,
'+ 0, 's': 0, 'sa': 0, 'saa': 0, 'sae': 0, 'sau': 0, 'se': 0, 'sea': 0, 'si': 0, 'sii': 0, 'so': 0, 'su': 0, 't
'+1, 'ta': 1, 'taa': 0, 'te': 0, 'tea': O, 'th': O, 'tha': 0, 'thaa': 0, 'the': 0, 'thi': 0, 'thii': 0, 'tho':
0, 'thu': 0, 'ti': 0, 'to': O, 'tu': 0, 'u': 0, 'vu': 0, 'w': 0, 'wa': 0, 'waa': 0, 'we': 0, 'wi': 0, 'wo': O,
'wa': 0, 'y': 0, 'ya': 0, 'yaa': 0, 'yau': 0, 'ye': 0, 'yi': O, 'yo': 0, 'yu': 0, 'BNC Corpus': 0, 'LexNorm Cor
pus': 1}, 5: {'Words': 'kare', 'TermFreq': 2, 'a': 1, 'aa': 0, 'ae': 0, 'au': 0, 'b': 0, 'ba': 0, 'baa': 0, 'ba
e': 0, '"bau': 0, 'be': 0, 'bea': 0, 'bi': 0, 'bo': 0, 'bu': 0, 'buu': 0, 'ch': 0, 'cha': 0, 'chaa': 0, 'che': 0
, 'chi': 0, 'cho': 0, 'chu': 0, 'd': 0, 'da': 0, 'daa': 0, 'dau': 0, 'de': 0, 'dea': 0, 'dh': 0, 'dha': 0, 'dhe
'+ 0, 'dhi': 0, 'dhu': O, 'di': 0, 'dii': O, 'do': O, 'du': O, 'e': 1, 'ea': 0, 'g': 0, 'ga': 0, 'gaa': 0, 'gau
': 0, 'ge': 0, 'gi': O, 'go': O, 'gu': O, 'h': O, 'ha': O, 'haa': 0, 'he': 0, 'hea': 0, 'hi': 0, 'hii': 0, 'ho'
o, 'hu': 0, 'i': 0, 'ii': 0, 'j3': O, 'ja': 0, 'jaa': 0, 'je': 0, 'ji': 0, 'jo': O, 'ju': O, 'k': 1, 'ka': 1,
'kaa': 0, 'kau': 0, 'ke': O, 'ki': O, 'kii': O, 'ko': O, 'ku': O, 'kuu': O, '1': O, 'la': O, 'laa': 0, 'le': O,
'lea': 0, '1i': 0, 'lo': O, '"lu': 0, 'm': 0, 'ma': 0, 'maa': 0, 'mae': 0, 'me': 0, 'mi': 0, 'mo': O, 'mu': O, '
muu': 0, 'n': O, 'na': 0, 'naa': 0, 'ne': 0, 'nea': 0, 'ni': 0, 'no': 0O, 'nu': 0, 'o': 0, 'oe': O, 'r': 1, 'ra'
0, 'raa': 0, 'rae': 0, 'rau': 0, 're': 1, 'rea': O, 'ri': 0, 'rii': 0, 'ro': 0, 'ru': 0, 's': 0, 'sa': 0, 'sa
a': 0, 'sae': 0, 'sau': O, 'se': O, 'sea': 0, 'si': O, 'sii': 0, 'so': O, 'su': 0, 't': 0O, 'ta': 0, 'taa': 0, '
te': 0, 'tea': O, 'th': O, 'tha': 0, 'thaa': 0, 'the': 0, 'thi': 0, 'thii': 0, 'tho': 0O, 'thu': 0, 'ti': 0, 'to
'+ 0, 'tu': 0, 'u': 0, 'vu': 0, 'w': 0, 'wa': 0, 'waa': 0, 'we': O, 'wi': O, 'wo': O, 'wu': O, 'y': 0, 'ya': 0,
'yaa': 0, 'yau': 0, 'ye': 0, 'yi': 0, 'yo': O, 'yu': 0, 'BNC_Corpus': 0, 'LexNorm Corpus': 0}}
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