

WORD LEVEL LANGUAGE IDENTIFICATION OF CODE-

MIXING TEXT IN SOCIAL MEDIA USING NLP

Kasthuri Shanmugalingam

168287D

Degree of Master of Science in Artificial Intelligence

Department of Computational Mathematics

University of Moratuwa

Sri Lanka

April 2019

WORD LEVEL LANGUAGE IDENTIFICATION OF CODE-

MIXING TEXT IN SOCIAL MEDIA USING NLP

Kasthuri Shanmugalingam

168287D

Thesis submitted in partial fulfilment of the requirements for the degree of Master of Science

in Artificial Intelligence

Department of Computational Mathematics

University of Moratuwa

Sri Lanka

April 2019

i

Declaration

I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any other

University or institute of higher learning and to the best of my knowledge and belief it does

not contain any material previously published or written by another person except where the

acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and

distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I

retain the right to use this content in whole or part in future works (such as articles or books).

Name of Student

Kasthuri Shanmugalingam

Signature of Student: Date:

The above candidate has carried out research for the Master’s Dissertation under my

supervision.

Name of Supervisor

Dr. Sagara Sumathipala

Signature of Supervisor: Date:

ii

Acknowledgements

I would like to make this opportunity to express my sincere gratitude to my supervisor Dr.

Sagara Sumathipala for his valuable guidance extended throughout the research. This research

would not have been completed to success without his immense support and guidance. Further,

I would like to thank prof. Asoka Karunananda to gave valuable guidance to the documentation

of the work during the lectures. And I would like to thank all academic staff of the Department

of Computational Mathematics to gave sufficient knowledge to complete this research.

I wish to express my sincere thanks to my family members and colleagues who stood beside

me whenever I need and helped me always with support, advice, and encouragement to

complete my research work successfully.

iii

Abstract

Automatic analyzing and extracting useful information from the noisy social media content are

currently getting more attention from the research community. Recent days people easily

mixing their native language along with the English language together to express their thoughts

in social media, using the Unicode characters written in Roman Scripts. Thus these types of

noisy code-mixed text are characterized by a high percentage of spelling mistakes with

phonetic typing, wordplay, creative spelling, abbreviations, Meta tags, and so on. Identification

of languages at word level become as necessary part for analyzing the noisy content in social

media. It would be used as an intimidate language identifier for chatbot application by using

the native languages.

For this study used Tamil-English and Sinhala-English code-mixed text from social media.

Natural Language Processing (NLP) and Machine Learning (ML) technologies used to identify

the language tags at the word level. A novel approach proposed for this system implemented

as machine learning classifier based on features such as Tamil Unicode characters in Roman

scripts, dictionaries, double consonant, and term frequency used for Tamil-English code-mixed

text and features such as Sinhala Unicode characters written in Roman scripts, dictionaries,

and term frequency used for Sinhala-English code-mixed text.

Different machine learning classifiers such as Support Vector Machines (SVM), Naive Bayes,

Logistic Regression, Random Forest and Decision Trees used in the model evaluation process.

Ten-fold cross-validation used to evaluate the performance based on language tags at the word

level. Among that the highest accuracy of 89.46% was obtained in SVM classifier and 90.5%

was obtained in Random Forest classifier for Tamil-English (Tanglish) and Sinhala-English

(Singlish) code-mixed text respectively.

In the testing process of Tanglish model with SVM and Singlish model with Random Forest

gave accuracy as 93.87% and 95.83% respectively for the testing unseen data. Tanglish model

with SVM gave F-Measure for ‘tam’ and ‘eng’ tags were 0.965 and 0.894 respectively. Singlish

model with Random Forest gave F-Measure for ‘sin’ and ‘eng’ tags were 0.975 and 0.929

respectively. So this the evidence that most of the times the Tanglish model with SVM and

Singlish model with Random Forest predict the language labels correctly at word level.

iv

Table of Contents

Declaration i

Acknowledgements ii

Abstract iii

List of Figures vii

List of Tables viii

Chapter 1 Introduction 1

1.1 Prolegomena 1

1.2 Objectives 2

1.3 Background and Motivation 2

1.4 Code Mixing Problem in Brief 3

1.5 Proposed Solution 4

1.6 Resource Requirements 4

1.7 Structure of the Thesis 4

1.8 Summary 5

Chapter 2 Code Mixing in Social Media – Practices and Issues 6

2.1 Introduction 6

2.2 State of the art of language identification of code-mixed text in social media 6

2.2.1 Code Mixing 6

2.2.2 Language Identification 8

2.3 Future Trends 12

2.4 Summary 13

Chapter 3 Natural Language Processing and Machine Learning 14

3.1 Introduction 14

3.2 Artificial Intelligence 14

3.3 Natural Language Processing 15

3.3.1 Natural Language Tool Kit (NLTK) 16

3.3.2 Pandas 16

3.3.3 Numpy 17

3.4 Machine Learning 17

3.4.1 Supervised Learning 17

3.4.2 Weka and Classifiers used in development of models 18

v

3.4.2.1 Support Vector Machine (SVM) 19

3.4.2.2 Logistic Regression 20

3.4.2.3 Naïve Bayes 20

3.4.2.4 Decision Tree 22

3.4.2.5 Random Forest 23

3.5 Summary 24

Chapter 4 Novel Approach to Language Identification of Code-Mixing Text 25

4.1 Introduction 25

4.2 Hypothesis 25

4.3 Process 25

4.4 Input 26

4.5 Output 27

4.6 Users 27

4.7 Summary 27

Chapter 5 Design 28

5.1 Introduction 28

5.2 Language Identification System for Tamil-English Code-Mixed Text 28

5.2.1 Dataset Description 29

5.2.2 Preprocessing 29

5.2.3 Feature identification of Tamil-English code-mixed text 29

5.2.3.1 Tamil Unicode characters in Roman scripts 29

5.2.3.2 Language-specific dictionaries 31

5.2.3.3 Double consonants 31

5.2.3.4 Term Frequency 31

5.3 Language Identification System for Sinhala-English Code-Mixed Text 31

5.3.1 Dataset Description 32

5.3.2 Preprocessing 33

5.3.3 Feature identification of Sinhala-English code-mixed text 33

5.3.3.1 Sinhala Unicode Characters in Roman Scripts 33

5.3.3.2 Language-Specific Dictionaries 35

5.3.3.3 Term Frequency 35

5.4 Summary 35

vi

Chapter 6 Implementation 36

6.1 Introduction 36

6.2 Language Identification System for Tamil-English Code-Mixed Text 36

6.2.1 Preprocessing 36

6.2.2 Feature identification of Tamil-English code-mixed text 38

6.2.3 Model Development for Tamil-English code-mixed text 40

6.3 Language Identification System for Sinhala-English Code-Mixed Text 41

6.3.1 Preprocessing 41

6.3.2 Feature identification of Sinhala-English code-mixed text 43

6.3.3 Model Development for Sinhala-English code-mixed text 45

6.4 Summary 45

Chapter 7 Evaluation 46

7.1 Introduction 46

7.2 Experimental design 46

7.2.1 Experimental design for Model Evaluation 46

7.2.1.1 Evaluation Strategy for predictive Models 47

7.2.2 Experimental design for Testing of Models 48

7.2.2.1 Evaluation Strategy for Testing Models 49

7.3 Experimental Results 49

7.3.1 Experiment Results for Model Evaluation 49

7.3.2 Experiment Results for Model Testing 53

7.4 Summary 53

Chapter 8 Conclusion and Future Work 54

8.1 Introduction 54

8.2 Concluding remarks 54

8.3 Limitation and Future work 55

8.4 Summary 56

References 57

Appendix A 60

Appendix B 67

vii

List of Figures

Figure 2.1: The selection of optimal hyperplane with linear SVM 10

Figure 2.2: Bags of Words Example 12

Figure 3.1: Workflow of the Supervised Learning 18

Figure 3.2: Structure of a Decision Tree 22

Figure 4.1: Design Diagram of Language Identification System for

 Code-Mixed Text 26

Figure 5.2: Design Diagram of Language Identification System for

 Tamil-English Code-Mixed Text 28

Figure 5.3: Design Diagram of Language Identification System for

 Sinhala-English Code-Mixed Text 32

Figure 6.1: Sample of Tamil-English Code-Mixed Data 36

Figure 6.2: Sample of Tamil-English Code-Mixed words 37

Figure 6.3: Sample of Unique Tamil-English Code-Mixed words with Term Frequency 37

Figure 6.4: Sample of Annotated Tamil-English Code-Mixed Words with Language Tags 38

Figure 6.5: Sample Tamil word with features 39

Figure 6.6: Sample Tamil word with identified features with values 39

Figure 6.7: Sample of Sinhala-English Code-Mixed Data 41

Figure 6.8: Sample of Sinhala-English Code-Mixed words 42

Figure 6.9: Sample of Unique Sinhala-English Code-Mixed words with Term Frequency 42

Figure 6.10: Sample of Annotated Sinhala-English Code-Mixed Words

 with Language Tags 43

Figure 6.11: Sample of Sinhala word with features 44

Figure 6.12: Sample of Sinhala word with identified features with values 44

Figure 7.1: The knowledge flow of experiment process for model evaluation 46

Figure 7.2: The User Interface for testing finalized model for language identification

 of code-mixed text 48

Figure 7.3: Evaluation of features impotency for Tamil-English code-mixed text 52

Figure 7.4: Evaluation of features impotency for Sinhala-English code-mixed text 52

viii

List of Tables

Table 1.1: Example Comment and language-tagged sentence for

 Tamil-English code-mixed text 3

Table 1.2: Example Comment and language-tagged sentence for

 Sinhala-English code-mixed text 3

Table 5.1: Statistics of Tamil- English Code-Mixed Dataset 29

Table 5.2: Tamil Unicode Characters 30

Table 5.3: Statistics of Sinhala-English Code-Mixed Dataset 32

Table 5.4: Sinhala Unicode Characters 34

Table 6.1: The parameter used in model development by different classifiers for

 Tamil-English code-mixed text 40

Table 6.2: The parameter used in model development by different classifiers for

 Sinhala-English code-mixed text 45

Table 7.1: The statistics of the dataset used for testing of models 49

Table 7.2: Overall results obtained from different classifiers for

 Tamil-English code-mixed text 50

Table 7.3: Overall results obtained from different classifiers for

 Sinhala-English code-mixed text 51

Table 7.4: Testing results obtained from Tanglish model and Singlish model 53

1

Chapter 1

Introduction

1.1 Prolegomena

Automatic analyzing and extracting useful information from the noisy social media content are

currently getting more attention from the research community for NLP [1]. The type of noisy social

media text is characterized by a high percentage of spelling mistakes with phonetic typing (“how

is your amma and appa”; since ‘amma’, ‘appa’ are Tamil words), wordplay (‘helloooo’ for ‘hello’),

creative spelling (‘Gud 9t’ for ‘good night’), abbreviations (‘TC’ for ‘Take Care’), Meta tags

(URLs), and so on. Currently, bilingual speakers use Unicode characters or Unicode characters

written in Roman scripts to write in their own language and use phonetic typing, frequently add

English elements through the combination of native languages to express their thoughts. These

type of text is called code-mixed text.

Make automatic language identification a precondition for the complete process of text analysis

on social media. Although language identification is considered an almost solved problem in

different applications [2], language detectors fail within the context of social media such as code-

mixing, phonetic typing and lexical borrowing [3]. For this reason, the complexity of the analysis

and understanding of information will increase within the context of social media. The most reason

for this limitation is due to the correct corpus acquisition. Automatically detect the boundaries of

the language in a code-mixed social media text, for English-Bengali and English-Hindi has been

proposed [3], [4].

This study focuses on effectively detect the language boundaries at word level of Tamil-English

and Sinhala-English code-mixed noisy text. Natural language processing and machine learning

techniques proposed to provide a solution. This study proposed a novel approach by adding Tamil

Unicode characters in Roman scripts as new feature including dictionaries, double consonant, and

term frequency as other features for Tamil-English code-mixed text and Sinhala Unicode

characters written in Roman scripts as new features including dictionaries, and term frequency as

other features for Sinhala-English code-mixed text.

2

1.2 Objectives

The objectives of this study are listed below:

 Critical study to understand the characteristics of code-mixed languages in the social media

context

 Critical study of existing approaches in automatic language identification

 Design and develop a system for automatic language identification

 Evaluation of the proposed system

1.3 Background and Motivation

New forms of communication have greatly changed the types of traditional spoken and written

languages [5]. These new forms are the result of the internet and social media in particular -

Facebook, Twitter, etc. Typically, written languages tends towards a formal and defined structure,

while spoken language is more casual and context dependent. With the advancement of technology

in social media, the distinction between written and spoken languages has faded.

Scholars observed that the language across the internet, especially in synchronous communication

resembled spoken communication. It was observed to be less formal, simpler and very similar to

speech. This is the result of the conversion of casual vernacular to written form. People use words

and symbols to express emotions, which results in inconsistent language generation across users

since there is no defined structure for this usage [4].

In the 1940s and 1950s, code-mixing was often considered a sub-standard use of language.

However, since the 1980s it has generally been recognized as a natural part of bilingual and

multilingual language use. In social media communication, more than half of the users are

bilingual speakers who often switch from one language to another to express their thoughts,

especially in messages and comments on Facebook [6]. This language interchanging involves

complex grammar complications in social media data itself. Code-mixing refers to the use of

linguistic units from different languages in a single utterance or sentence.

Information retrieval deals with the issues of storing and retrieving information from all types of

resources including social media which is very tough with regard to tokenizing and text processing.

The impact of code mixing, creative spelling, phonetic typing, wordplay, abbreviations, Meta tags,

and so on, social media contents become noisy. So automatic language identification become as

necessary part for analyzing the content in social media [3].

3

As social media contains valuable information, due to the presence of above-mentioned problems,

the complexity in analyzing the data increases. Even today there are no proper tools that deal with

this type of data. So language identification at word level for code-mixing text became an as

necessary and challenging task. The language identification system at word level of code-mixing

text can be used as intimidate for chatbot application where the text written in native languages by

using Roman scripts.

1.4 Code Mixing Problem in Brief

In social media bilingual speakers often mixed two languages to express their thoughts. When we

consider the Sri Lanka local languages such as Sinhala and Tamil, most of the native speakers

often mixed English with native languages. Most of the time people find it easily chat with other

people in native language written in Roman scripts with the English word. The example Tamil-

English and Sinhala- English code-mixed comment is shown in Table 1 and Table 2 respectively.

For this reason, language identification at word level become a challenging task.

Table 1.1 Example Comment and language-tagged sentence for Tamil-English code-mixed text

Table 1.2 Example Comment and language-tagged sentence for Sinhala-English code-mixed text

Also code-mixed noisy text is characterized by a high percentage of spelling mistakes with creative

spelling (‘2morrw’ for ‘tomorrow’), phonetic typing (“how is your amma and appa”; since

‘amma’, ‘appa’ are Tamil words), wordplay (‘wooooow’ for ‘wow’), abbreviations (‘H R U’ for

‘How Are You’) and Meta tags (URLs). Because of the spelling mistakes the complexity in

identifying language tags of code-mixed text at word level increases.

4

1.5 Proposed Solution

Effectively detect the language boundaries at word level of Tamil-English and Sinhala-English

code-mixed noisy text identified as a research problem. Natural language processing and machine

learning techniques proposed to provide a solution. Tamil-English and Sinhala-English code-

mixed data from popular social media posts and comments took as input for this study. This study

includes (a) Feature identification and feature selection of language identification system for

Tamil-English and Sinhala-English code mixed data at word level; (b) Creation of annotated data

set for collected Tamil-English and Sinhala-English code-mixed data; (c) implementing the

language identification system for the Tamil-English and Sinhala-English code-mixed data, and

(d) Evaluation of language identification with Tamil-English and Sinhala-English code-mixed

data.

1.6 Resource Requirements

 Tamil-English and Sinhala-English code-mixed data from popular social media

 PC/Laptop with minimum 8GB of RAM and Intel i5 or i7 Processor

 The software is expected to run on platforms above Microsoft Windows 7

1.7 Structure of the Thesis

This thesis is divided into 8 chapters. Chapter 1 gave an overall introduction to the project. Chapter

2 critically reviews critically reviews the work done on code-mixing and language identification

with background information and defining the research problem and identification of technologies.

Chapter 3 is on technology adapted to building the natural language processing and machine

learning based solution for language identification of code-mixing text in social media. Chapter 4

presents our approach to for language identification of code-mixing text in social media in terms

of input, output, process, users and features of the system. Chapter 5 demonstrates the detailed

design of the system. Chapter 6 contains the implementation of the components of modules given

in the design stage. Chapter 7 reports on evaluation strategy with respect to the objectives of the

project, experimental setup, and experimental results. Finally, Chapter 8 concludes the thesis with

a note on the possible further work.

5

1.8 Summary

This chapter provided an introduction to the entire project. For this purpose, we have presented

our research problem, objectives, technology adapted, proposed solution and resource

requirements. Next chapter provides a detailed critical review of the work done on code-mixing

and language identification with background information.

6

Chapter 2

Code Mixing in Social Media – Practices and Issues

2.1 Introduction
Chapter 1 gave an introduction to the overall project. To start with the research, it is important to

find out the current state of the research in the world by reviewing other’s work. This chapter

presents a critical review of Language identification of code mixing text in social media with

background information. This chapter formulate research problem and highlight the technology

adopted towards a solution. In doing so, this chapter has been structured with two main sections,

namely, State of the art of language identification of code-mixed text in social media and future

trends.

2.2 State of the art of language identification of code-mixed text in social

media
Code-mixing being a relatively new phenomenon has only attracted the attention of researchers in

the last two decades. In the context of code-mixed social media data, new complications have been

added to the Language Identification process. This section is described overall idea of code-mixing

and critically review the work done on language identification of code-mixed text.

2.2.1 Code Mixing

Social media creates social interaction among people in which they share information and ideas in

virtual communities and networks. One of social media features that are updated any time by users

is status. Through status, the user can inform all activity, news, opinions, exchange ideas, business,

and so on. In addition, they also are able to comment or respond to the latest status of their fellow

social media users. The user of the social media sometimes mixes and uses several languages to

update their status or comment to their friends’ status, for example when they chat with other

people at Facebook or web chat. The sociological and conversational needs behind the code-

mixing and its linguistic nature were mainly focused on the linguistic efforts in the field [7].

Code-mixing is a process in which lexical items and grammatical features of two or more

languages exists in the same sentence [8]. Spolsky commented that, it is common that people

develop some knowledge and ability in a second language and so become bilingual [9]. The

7

simplest definition of a bilingual is a person who has some functional ability in a second language.

This may vary from a limited ability in one or more domains, to very strong command of both

languages.

The researcher concluded that the abbreviation like ‘CD’, ’DVD’, ’SMS’, ’VIP’ were used to make

sentences simple and easy to understand. Furthermore, some adjectives like hot, cool, high etc.

were used to produce stylish effect in sentences. Whereas duplication of words like ‘cute cute’,

‘high high’ pattern, it is not allowed in English grammar [10].

Two types of code-mixing can be categorized, namely Intra-sentential code-mixing and Inter-

sentential code-mixing [4]. The code-mixing that takes place within sentence with no superficial

change in topic is Intra-sentential code-mixing. An Intra-sentential code-mixing can occur in three

processes: - Firstly, noun insertion: This code mixing involves the mixing of noun in one code in

a sentence which is another code. Secondly, Verb insertion: This code mixing involves the mixing

of verb in a sentence from one code and remaining parts are from another code. And finally, Clause

and sentence insertion: complex sentence with different clause of another code reflects this code-

mixing. The code-mixing that takes place when switching between native and second language to

explain an incident is known as Inter-sentential code-mixing [11]. It was observed that word level

code mixing occurred most of the times and at phrasal level it’s happened rarely. Also noted that

the nouns were code-mixed mostly [12].

The users of Facebook have a tendency to use inter-sentential code mixing over intra-sentential

code-mixing, and reported that 45% of the code mixing was initiated by real lexical needs, 40%

was to talk about a particular topic, and 5% to clarify the content [13].

The major reasons for code mixing in Facebook explain here:

 45% : Real lexical needs

For instance someone is thinking of some object but is not able to recall the word in the

language he/she is using already, then he/she will tend to switch to a language where he/she

knows the appropriate word.

 40% : Talking about a particular topic

People tend to talk about some topics in their native language (like food) and generally while

discussing science people tend to switch to English.

8

 5% : For content clarification

While explaining something, for better clarification of the audience, to make the audience more

clear about the topic, code mixing is used.

Problems of storing and retrieving information from all types of data including social media, which

is very difficult for tokenization and text processing are dealt by information retrievals [11].

Generally it is difficult to understand and analyze texts written in multiple languages. An

evaluation metric was proposed to determine the complexity which occurs due to code-mixed

social media texts which get developed rapidly due to multilingual interference [14].

Code-mixing for online data focused on the use of English and Arabic in e-mail communication

by a group of young professionals and concluded that English was used more frequently for search

on the Web. It was also discovered that a Romanized version of Egyptian-Arabic was used more

often in informal e-mails, conversations and even to express personal content as opposed to

classical Arabic [15]. Most of the people used Romanized version of native language script to

express their thoughts in social media.

2.2.2 Language Identification

The first work on code-mixing processing was done by Joshi more than 30 years ago, in 1982 [16],

while efforts to develop automatic language identification tools began earlier [17]. In its standard

formulation, language identification assumes monolingual documents and attempts to classify

each document according to its language from some closed set of known languages. Nevertheless,

the solving of the problem of applying the language identification process to texts mixed in several

languages, has only recently begun.

Automatic identification of word-level boundaries of different languages used in social media

texts, illustrated by mixed English-Bengali and English-Hindi Facebook messages with standard

techniques such as n-gram characters, dictionaries and, SVM classifiers[1]. Also, some different

techniques were used, including a simple unsupervised dictionary-based approach, supervised

word-level classification with and without contextual clues, and sequence labeling using

Conditional Random Fields. The dictionaries-based approach is surpassed by supervised

classification and sequence labeling, and it is important to consider contextual clues [3].

Classification of Hindi-English code-mixed data was performed to categorize the data into English,

9

Hindi, Mixed, Named Entity, Acronym, Universal, and undefined tags. Two types of embedding

features were considered; character-based embedding features and word-based embedding

features with the addition of context information. Support Vector Machine was used to train and

test the system [18].

A word-based language identification system on mixed Turkish-Dutch messages randomly

sampled from an online forum by comparing dictionary-based methods with language models and

with logistic regression and conditional random fields with linear chain. This system achieved a

high level of accuracy at the word level (97.6%), but with significantly lower accuracy at the post

level (89. 5%), although 83% of the messages were actually monolingual [19]. Similarly, using a

bilingual case using Spanish-English Twitter messages, uses only the ratio of the probability of

words as a source of information and obtain good results, with a 96.9% accuracy at the word-level.

However, the corpora are almost monolingual, so the result was obtained with a baseline of up to

92.3% [20].

The use of the most frequent word dictionaries is an established method in language identification.

In this method, efficient and automatic segmentation of the input text in individual language

blocks, in the case of multi-language documents [21]. But this method has a number of challenges,

especially for social media, the text is full of noise. The general trend in dictionary-based methods

is to keep only high-frequency words is for longer texts, and for the code-mixing situations it

cannot be applicable. Because most of the times code-mixing text are short texts. In this situation

avoid the most-frequent word lists and instead uses of the full-length dictionaries are better.

The probably most well-known language detection system is TextCat, which utilizes character-

based n-gram models [22]. The method generates language specific n-gram profiles from the

training corpus sorted by their frequency. A similar text profile is created from the text to be

classified, and a cumulative “out-of-place” measure between the text profile and each language

profile is calculated. The measure determines how far an n-gram in one profile is from its place in

the other profile. Based on that distance value, a threshold is calculated automatically to decide the

language of a given text. This approach has been widely used and is well established in language

identification.

10

Word-level language detection from code-mixed text can be defined as a classification problem.

Support vector machines (SVMs) are one of the most popular methods for text classification,

largely because of the automatic weighing of a large number of functions [23]. SVM is currently

the most successful machine learning technique across multiple domains [24].

A support vector machine (SVM) is a supervised learning technique which incorporates a learning

algorithm for like gradient descent and is used for tasks like classification, pattern recognition and

regression. The objective of the support vector machine algorithm is to find a hyperplane in an n-

dimensional space (n - number of features) that distinctly classifies the data points. To separate the

two classes of data points, there are many possible hyperplanes that could be chosen. The objective

is to find a plane that has the maximum margin (the maximum distance between data points of

both classes). Maximizing the margin distance provides some reinforcement so that future data

points can be classified with more confidence. Figure 2.1 shown the selection of optimal

hyperplane with linear SVM.

Support vectors are data points that are closer to the hyperplane and influence the position and

orientation of the hyperplane. Using these support vectors, able to maximize the margin of the

classifier. Deleting the support vectors will change the position of the hyperplane. These are the

points that help to build the SVM.

Figure 2.1 The selection of optimal hyperplane with linear SVM

Support

Vectors

11

Hyperplanes are decision boundaries that help classify the data points. Data points falling on either

side of the hyperplane can be attributed to different classes. Also, the dimension of the hyperplane

depends upon the number of features. If the number of input features is two, then the hyperplane

is just a line. If the number of input features is three, then the hyperplane becomes a two-

dimensional plane. It becomes difficult to imagine when the number of features exceeds three.

Weakly semi-supervised methods are used to build the word level language identifier which

considered the problem sequence labeling where monolingual text is used as samples data. The

model which was performed well for this approach is continuous random field [25]. This classifier

was used by Vyas in English-Hindi code-mixed text to calculate the confidence probability for

each word [26].

By using a large Swahili-English internet corpus word-level language identification and prediction

of code switch points for Swahili-English code-mixed done. Features such as tagging the language

of words using char n-grams and capitalization set are taken and combined with label probabilities

on the adjacent words [27].

Recognizing language from English, French, Dutch, German and Spanish microblog posts work

was accomplished. This features like the content of attached links, language of blogger etc. and so

forth was demonstrated to develop the accuracy of the system [28].

Language identification for four Twitter code-mixed languages such as Spanish-English, Nepali-

English, Mandarin-English, and Modern Standard Arabic-Dialectal Arabic was organized as a

shared task [29]. A CRF-based approach which uses stylometric features like word length, the

presence of numbers, index, punctuations etc. was implemented by a team for the same shared task

for which were used [30].

A feature-based system which obtained accuracy of 76% had the features like punctuations,

prefixes, suffixes and so on along with SVM classifier was implemented with MSIR 2015 shared

task data [31].

12

Bag of Words is a method to extract features from text documents. These features can be used for

training machine learning algorithms. It creates a vocabulary of all the unique words occurring in

all the documents in the training set [32]. A bag of words example shown in figure 2.2.

Figure 2.2 Bags of Words Example

2.3 Future Trends

Currently some of the researches focused on some language pairs like English-Bengali, Hindi-

English, Telugu-English and so on, language identification of code mixed content in social media

[1], [3], [4], [18]. But it is reasonable to experiment with other language pair like Tamil-English,

Sinhala-English and so on with different types of social media content such as tweets, Facebook

posts and messages. Also possible to do the sentiment analysis in code mixed content by using

different language pairs. For the language identification incorporating other techniques and

information sources are obvious targets for future work. In particular, to look at other machine

learning methods, for example, to use a sequence learning method such as Conditional Random

Fields and deep learning approaches [1], [4] . Also could be focus on cases with more than two

languages, and languages that are typologically less distinct from each other or dialects [19].

13

2.4 Summary

This chapter provides a detailed critical review of analyzing the meaning of code mixing text in

online social media with background information. Also formulate research problem and highlight

the technology adopted towards a solution. Next chapter provides technology adapted to building

the natural language processing based solution for analyzing the meaning of Tamil-English code

mixing text in online social media.

14

Chapter 3

Natural Language Processing and Machine Learning

3.1 Introduction

Chapter 2 provides a detailed critical review of language identification of code mixing text in

social media with background information. This chapter provides detail description of technology

adapted to building the natural language processing and machine learning based solution for

language identification of code mixing text in social media.

3.2 Artificial Intelligence

Artificial intelligence (AI) is an area of computer science that emphasizes the creation of intelligent

machines that perform and react like humans which is concerned with automation of intelligent

behavior. It is the simulation of intelligent behavior in computers and imitate intelligent human

behavior. AI is accomplished by studying how human brain thinks, and how humans learn, decide,

and work while trying to solve a problem [33]. It has become an essential part of the technology

industry.

AI strives to build intelligent entities as well as understand them. AI can be defined in four ways.

Those are as a system that: thinks like humans; acts like humans; thinks rationally; and acts

rationally. In thinking like humans, it is the effort of making computers to think; machines with

minds. In acting like humans, AI is the art of creating machines that perform functions that require

intelligence when performed by people. AI as the study of the computations that make it possible

to perceive, reason, and act is defined as thinking rationally. AI acting rationally is seeking to

explain and emulate intelligent behavior in terms of computational processes [33].

Artificial Intelligence may be subdivided into two main branches or aspects. One aspect is

cognitive science which has a strong affiliation with psychology. The aim of cognitive science is

to construct programs for testing theories that describe and explain human intelligence. The other

is machine intelligence which is more computer oriented and studies how to make computers

behave intelligently [33].

15

Some of the core applications that artificial intelligence with computers are designed for include

 Knowledge

 Reasoning

 Problem solving

 Perception

 Learning

 Planning

 Ability to manipulate and move objects

Major areas of artificial intelligence categorize as

 Expert systems

 Neural networks

 Fuzzy logic

 Genetic algorithms

 Case-based reasoning

 Natural language processing

 Machine learning

 Computer vision

 Robotics

 Multi agent system

 In this project two major areas of AI such as natural language processing and machine learning

were used in development process. The description of natural language processing and machine

learning technologies is explained in below sections.

3.3 Natural Language Processing

Natural language processing (NLP) is a technique which can be said as interaction between

computers and human language. The ultimate goal of NLP is to enable computers to understand

human language (English, Tamil, Sinhala, and etc.). NLP began in the 1950s as the intersection of

artificial intelligence and linguistics. NLP was originally distinct from text information retrieval

(IR), which employs highly scalable statistics-based techniques to index and search large volumes

of text efficiently [34].

The two terms, Computational Linguistics (CL) and NLP, have often been used interchangeably.

The difference is that CL tends more towards Linguistics, and answers linguistic questions using

computational tools. Natural Language Processing involves applications that process language and

tends more towards Computer Science. NLP is the art of solving engineering problems that need

16

to analyze the natural language. NLP is mainly used to help people navigate and digest large

quantities of information that already exist in text form. It is also used to produce better user

interfaces so that humans can better communicate with computers and with other humans. NLP is

the driving force behind things like virtual assistants, speech recognition, language identification,

sentiment analysis, automatic text summarization, machine translation and much more.

This mechanism of NLP comprises three processes which are natural language understanding,

natural language generation and natural language interaction [34]. Natural Language

Understanding (NLU) is a process which endeavors to understand the meaning of given text, nature

and structure of each word by trying to resolve the ambiguity present in natural language and the

meaning of each word is understood by using lexicons (vocabulary) and a set of grammatical rules.

In the natural language generation process, the text is produced automatically from structured data

in a readable format with meaningful phrases and sentences. The problem of natural language

generation is tough to deal with.

Natural language interaction is somewhat a conflation of the technologies in which users

communicate and evoke responses from systems via natural language. Humans are able to give a

command either by typing it or speaking it. An automated voice back or a typed response from the

computer or machine is the interaction piece that is generated in natural language interaction. In

this research mainly focus on natural language interaction and identify the mixing of natural

languages at word level which used to communicate in the social media.

3.3.1 Natural Language Tool Kit (NLTK)

NLTK is a leading platform for building Python programs to work with human language data. It

provides text processing libraries for classification, tokenization, stemming, tagging, parsing,

semantic reasoning and etc. [35]. In the implementation process nltk.word_tokenize() used to split

the word from the input sentences.

3.3.2 Pandas

Pandas is an open source library providing high-performance, easy-to-use data structures and data

analysis tools for the Python programming language [35]. In the implementation process pandas

DataFrame structure used to store the two-dimensional labeled data structures with columns of

potentially different types.

17

3.3.3 Numpy

This is a scientific computing library with support for multidimensional arrays and linear algebra,

required for certain probability, tagging, clustering and classification tasks [35]. In the

implementation process numpy savetxt() function was used to save the feature matrix values into

a text file.

 3.4 Machine Learning

Machine learning is a core part of AI which focused on algorithms that “learn” from data to

construct models that can be used to make predictions and decisions. Data plays a vital role in

machine learning and the learning algorithm is used to discover and learn properties of data. The

quality and quantity of the training dataset will affect the learning and prediction performance on

unseen data samples (test data) or future events.

Machine learning is generally composed of two important factors, modelling and optimization.

Modelling means how to model the separating boundary or probability distribution of the given

training set, and then the optimization techniques are used to seek the best parameters of the chosen

model. Machine learning is also related to other disciplines such as artificial neural networks,

pattern recognition, information retrieval, artificial intelligence, data mining, and function

approximation, etc. [36].

There are mainly three categories of machine learning based on the problem and the dataset. Those

categories are supervised learning, unsupervised learning and reinforcement learning. In this

project focused on supervised learning method.

3.4.1 Supervised Learning

Supervised learning is learning with adequate supervision. The training set given for supervised

learning is a labelled dataset. Supervised learning tries to find the relationships between the feature

set and the label set, which represent the knowledge and properties of the dataset. The supervised

learning work flow shown in figure 3.1. Classification and regression are the two types of

supervised learning. Classification determines the category an object belongs to and regression

deals with obtaining a set of numerical input or output examples, thereby discovering functions

enabling the generation of suitable outputs from respective inputs [36].

18

Figure 3.1 Workflow of the Supervised Learning

3.4.2 Weka and Classifiers used in development of models

Weka was developed at the University of Waikato in New Zealand; the name stands for Waikato

Environment for Knowledge Analysis The system is written in Java and distributed under the terms

of the GNU General Public License [37]. It provides a uniform interface to many different learning

algorithms, along with methods for pre and post processing and for evaluating the result of learning

schemes on any given dataset. Weka provides implementations of learning algorithms that can be

easily apply to dataset.

Weka supports several standard data mining tasks, more specifically, data preprocessing,

clustering, classification, regression, visualization, and feature selection. All of Weka's techniques

are predicated on the assumption that the data is available as a single flat file or relation, where

each data point is described by a fixed number of attributes.

In the terminology of machine learning, classification is considered an instance of supervised

learning, learning where a training set of correctly identified observations is available. An

algorithm that implements classification, especially in a concrete implementation, is known as a

classifier. In this research different machine learning Classifiers such as Support Vector Machine,

Naïve Bayes, Logistic Regression, Random Forest and Decision Tree used to evaluate the

performance of models.

19

3.4.2.1 Support Vector Machine (SVM)

In Weka support vector machine implements the sequential minimal optimization (SMO)

algorithm for training a support vector classifier [38]. SMO is an algorithm for solving the

quadratic programming (QP) problem that arises during the training of support vector machines

(SVM). SMO breaks this large QP problem into a series of smallest possible QP problems. These

small QP problems are solved analytically, which avoids using a time-consuming numerical QP

optimization as an inner loop. The amount of memory required for SMO is linear in the training

set size, which allows SMO to handle very large training sets. SMO is fastest for linear SVMs and

sparse data sets. This implementation globally replaces all missing values and transforms nominal

attributes into binary ones. It also normalizes all attributes by default. SMO solved multi-class

problems using pairwise classification.

Consider a binary classification problem with a dataset (x1, y1), ..., (xn, yn), where xi is an input

vector and yi ∈ {-1, +1} is a binary label corresponding to it. A soft-margin support vector machine

is trained by solving a quadratic programming problem, which is expressed in the dual form as

follows:

Where C is an SVM hyperparameter and K(xi, xj) is the kernel function, and the variables

αi are Lagrange multipliers.

SMO is an iterative algorithm for solving the optimization problem. SMO breaks the problem into

a series of smallest possible sub-problems, which are then solved analytically. Because of the

linear equality constraint involving the Lagrange multipliers αi, the smallest possible problem

involves two such multipliers. Then, for any two multipliers α1 and α2, the constraints are reduced

to:

20

And this reduced problem can be solved analytically: one needs to find a minimum of a one-

dimensional quadratic function. k is the negative of the sum over the rest of terms in the equality

constraint, which is fixed in each iteration.

So in the SMO algorithm the complexity parameter(c) and the kernel parameter are the important

parameters.

3.4.2.2 Logistic Regression

Logistic regression using a multinomial logistic regression model with a ridge estimator [39].

Logistic regression capable to deals with binary class, missing class values and nominal class.

If there are k classes for n instances with m attributes, the parameter matrix B to be calculated will

be an m*(k-1) matrix. The probability for class j with the exception of the last class is

Pj(Xi) = exp(XiBj)/((sum[j=1..(k-1)]exp(Xi*Bj))+1)

The last class has probability

1-(sum[j=1..(k-1)]Pj(Xi)) = 1/((sum[j=1..(k-1)]exp(Xi*Bj))+1)

The (negative) multinomial log-likelihood is thus:

So in the logistic regression ridge parameter is the most important parameter, which uses log-

likelihood to assign the ridge value.

3.4.2.3 Naïve Bayes

Naive Bayes is a simple, yet effective and commonly-used, machine learning classifier. Naive

Bayes classifier using estimator classes. Numeric estimator precision values are chosen based on

analysis of the training data [40]. Naïve Bayes implements the probabilistic Naïve Bayesian

21

classifier based on applying Bayes' theorem with strong (naive) independence assumptions

between the features [41].

Bayes’ theorem states the following relationship, given class variable y and dependent feature

vector x1 through xn:

Using the naive conditional independence assumption that

For all i, this relationship is simplified to

Since P(x1,…,xn) is constant given the input, can able to use the following classification rule:

This is referred to as the Maximum A Posteriori decision rule. It can be used to

estimate P(y) and P(xi∣y), the former is then the relative frequency of class y in the training set.

22

3.4.2.4 Decision Tree

The C4.5 algorithm is used as a Decision Tree Classifier which can be employed to generate a

decision, based on a certain sample of data [42]. This is a standard algorithm that is widely used

for practical machine learning. Part is a more recent scheme for producing sets of rules called

“decision lists”; it works by forming partial decision trees and immediately converting them into

the corresponding rule. C4.5 uses Information gain. A decision tree consists of four parts named,

root, internal nodes, branches and leaf nodes as represented in Figure 3.2.

Figure 3.2 Structure of a Decision Tree

Decision tree use a divide-and-conquer strategy in order to partition the instance space into

decision regions. A decision tree is drawn upside down with its root at the top. The root of the tree

asks one of the feature questions to splits datasets into multiple branches based on the answer of

the parent question. If all the subsets of data in the branch have the same label, that branch will. It

will not grow from that branch any further. Otherwise, the constructor algorithm can split the data

further with new conditions from other features of the data sets. The algorithm will recursively try

to create new branches of the tree based on the features of datasets. Basically algorithm try to

understand which features effect the decision for labelling. So, from the tree structure the

importance of the features and relations in between them can be clearly and easily viewed.

23

3.4.2.5 Random Forest

Random forest is a popular type of ensemble machine learning algorithm related with decision tree

algorithm which can be used for both classification and regression problems. Ensemble classifier

is a combination of weak classifiers in order to produce a strong classifier with the idea that the

predictions from multiple machine learning algorithms together to make more accurate predictions

than any individual model [43]. In this research, random forest algorithm was used as a supervised

classification algorithm. Same as, more trees in the forest makes the forest looks more robust, the

random tree classifier gives higher accuracy when there is higher number of trees. Random Forests

grows many classification trees. To classify a new object from an input vector, put the input vector

down each of the trees in the forest. Each tree gives a classification, and it is said to be tree "votes"

for that class. The forest chooses the classification having the most votes (over all the trees in the

forest).

In random forest algorithm, it starts with randomly selecting ‘k’ number of features out of the total

‘m’ features in the data set provided. In the next stage, find the root node using the selected ‘k’

features using the best split approach. Because randomly selecting the feature for the root node

may give the bad result with low accuracy. As the third stage, find the daughter nodes using the

same best fit approach. These first three stages are repeatedly done until a target value is obtained

as the leaf node. In the final stage, the above four stages are repeatedly done to create ‘n’ number

of randomly created trees hence it forms the random forest.

Information gain is a popular measures used in best fit approach when finding the most relevant

attributes for each nodes while constructing the tree in the RandomForest classifier in WEKA.

Information gain is how much information can be gained by doing the split using a particular

feature. Before calculating the Information Gain, entropy should be calculated. Entropy is a

measure of the uncertainty or impurity associated with a random variable.

For given a set of examples D, the original entropy of the dataset is computed as:

where c is the set of desired class.

24

If calculate entropy for attribute Ai, with v values thinking to put the Ai feature for the root of the

current tree, this will partition D into v subsets D1, D2 …Dv. The expected entropy if Ai is used

as the current root is given by

Therefore information gained by selecting attribute Ai to branch or to partition the data is given

by

𝐼𝐺(𝐷, 𝐴𝑖) = 𝐻[𝐷] − 𝐻𝐴𝑖[𝐷]

Likewise, after calculating information gain for all the attributes that are remaining in the hand,

the attribute with the highest gain is chosen to branch/split the current tree.

When do prediction from a random forest algorithm, it takes the input features and send through

every decision tree in the random forest while storing the output from each tree. Then votes to

different output will be calculated and this is called majority voting concept. Predicted output with

the highest votes will be the final prediction of the whole algorithm.

3.5 Summary

This chapter briefly discussed the technologies adopted in the development of word level language

identification of code-mixing text in social media. Natural language processing and machine

learning are the key technical factors that handled. Next chapter reveals about the novel approach

of word level language identification of code-mixing text in social media with the use of NLP and

ML technologies.

25

Chapter 4

Novel Approach to Language Identification of Code-Mixing

Text

4.1 Introduction

Chapter 3 presented a broad overview of the technologies that have been used for language

identification for Tamil-English and Sinhala-English code mixed text at word level in social media.

This chapter provides the novel approach to language identification of Tamil-English and Sinhala-

English code-mixing text at the word level in social media with the use of NLP and ML

technologies. As such the chapter structure with subsections namely, hypothesis, process, input,

output, and users of the solution. In the description, the section on process gives the overall

functionality of the system together with relevant technologies.

4.2 Hypothesis

This research hypothesized that the issue of effectively detect the language boundaries of Tamil-

English and Sinhala-English code-mixed noisy text at the word level, addressed by the use of NLP

and ML technologies.

4.3 Process

In the proposed solution firstly, raw Tamil-English and Sinhala-English code-mixed sentences led

to preprocessing steps. The preprocessing steps include tokenization, convert the word in

lowercase, removing wordplay characters, symbol removal and calculating the term frequency of

each word.

Then the pre-process data took as input for feature identification module for extracting features

from words. Feature identification plays a significant part of this study. This section analyzed the

pattern of the characters appears in the words from the Tamil- English and Sinhala-English code-

mixed dataset and identified relevant features among it. Tamil Unicode characters in Roman

scripts, dictionaries, double consonant, and term frequency used as features for Tamil-English

code-mixed text. Sinhala Unicode characters written in Roman scripts, dictionaries, and term

frequency used as features for Sinhala-English code-mixed text.

26

Figure 4.1 Design Diagram of Language Identification System for Code-Mixed Text

Then, the feature-based embedding model was created according to selected classifiers in Weka

with identified features. Different machine learning classifiers such as Support Vector Machine,

Naïve Bayes, Logistic Regression, Random Forest and Decision Tree used to create the models.

Ten-fold cross-validation used to evaluate the performance based on language tags at the word

level. The output was recorded based on accuracy and the F-Measure value of each tag. Based on

the accuracy and F-Measure values suitable machine learning models were selected for Tamil-

English and Sinhala-English code-mixed dataset. These suitable models were used to identify the

language tags at word level for the new Tamil-English and Sinhala-English code-mixed sentences.

The design diagram of language identification system for code-mixed text shown in figure 4.1.

Jupiter notebook 5.5.0 with Python 3.6.4 with Pandas, nltk and numpy libraries were used in

preprocessing and feature identification process. For the training, testing and model creation

process Weka 3.6 software was used. Java jdk 1.8, NetBeans IDE 8.0.2 and weka-stable-3.8.0

library were used to predict the language labels of new words for Tamil-English and Sinhala-

English sentences at word level.

4.4 Input

In the proposed system, Facebook comments and post with Tamil-English code-mixed text and

Sinhala-English code-mixed text were taken as separate inputs. All the posts and comments broke

down into sentences. Among that 2,000 Tamil-English code mixed sentences taken to the Tamil-

English code mixed dataset and 1,000 Sinhala-English code mixed sentences taken to the Sinhala-

Machine

Learning

Classifiers
Code

Mixed

Text

Feature

Identification

Pre

Processing

Training

Testing

Language

Labels

Predictive

Model

Expected

Language

Labels

Machine

Learning

Classifiers

27

English code mixed dataset. There were three language tags used to annotate the Tamil-English

code-mixed dataset. They are ‘tam’ for Tamil words, ‘eng’ for English words and ‘rest’ for other

words. Likewise for the Sinhala-English code-mixed dataset annotated with three language tags

‘sin’ for Sinhala words, ‘eng’ for English words and ‘rest’ for other words.

4.5 Output

The output of the proposed system is language identified sentences at word level both in Tamil

and English for Tamil-English code-mixed text and, language identified sentences at word level

both in Sinhala and English for Sinhala-English code-mixed text.

4.6 Users

Machine learning researchers who used Tamil-English and Sinhala-English code-mixed data for

researches and developers who use Tamil and English native languages text is written in the

Roman script as an input for chatbot application are the users of this system.

4.7 Summary

This chapter focuses on the hypothesis, the approach with input and output along with the process,

which will be carried upon. Users of the system also discussed. Next chapter discusses the system

design of the proposed system with a significant focus on elaborating the process mentioned in

this chapter.

28

Chapter 5

Design

5.1 Introduction

Chapter 4 focused on the novel approach to language identification of Tamil-English and Sinhala-

English code-mixing text at the word level in social media with the use of NLP and ML

technologies. The design of language identification system for Tamil-English code-mixed text and

Sinhala-English code-mixed text is explained in this chapter. The design diagram mainly focus on

preprocessing, feature identification, training and testing of predictive model with expected

language labels. The supervised learning used as machine learning methodology.

5.2 Language Identification System for Tamil-English Code-Mixed Text

The design diagram of language identification system for Tamil-English code-mixed text shown

in Figure 5.2. In this system raw Tamil-English code-mixed sentences led to preprocessing steps.

Then the pre-process data took as input for feature identification module for identifying features

from words. After that the predictive model created according to selected classifiers in Weka. Ten-

fold cross-validation used to evaluate the performance based on language tags at word level.

Figure 5.2 Design Diagram of Language Identification System for Tamil-English Code-Mixed

Text

29

5.2.1 Dataset Description

In the proposed system, Facebook comments and post with Tamil-English code mixed text taken

as input. All the posts and comments broke down into sentences. Among this 2,000 Tamil-English

code mixed sentences taken as training dataset. There were 17,603 tokens identified from the

sentences. Among that 8,607 unique words were identified in the training dataset. The statistics

of Tamil-English code-mixed dataset used for training shown in Table 5.1.

Table 5.1 Statistics of Tamil- English Code-Mixed Dataset

The Tamil-English code-mixed dataset annotated with three main language tags, “tam” for Tamil

words, “eng” for English words and “rest” for all other words. The “rest” tag includes Named

Entities, Acronyms, Universal, mixed and other language tags.

5.2.2 Preprocessing

In preprocessing raw Tamil-English code-mixed sentences led to preprocessing steps. The

preprocessing steps include tokenization, convert the word in lowercase, removing wordplay

characters, symbol removal and calculating the term frequency of each word.

5.2.3 Feature identification of Tamil-English code-mixed text

The below features identified for language identification system for Tamil-English code-mixed

text.

5.2.3.1 Tamil Unicode characters in Roman scripts

Tamil characters written in Roman scripts was taken as important features to identify Tamil words.

For example “க” in Tamil Unicode character written as “ka” in Roman scripts. There is totally 247

Unicode letters in the Tamil language. The Tamil Unicode characters like “ல” and “ள” written

same as “la” in Roman scripts. Among 247 Unicode characters repeating 39 characters with same

Roman script were remove and 208 characters were taken as features.

Tamil-English code-

mixed data

Train Data

Sentences 2,000

Tokens 17,603

Words 8,607

30

In addition to that there are some characters like “ஜ”, “ஷ”, “ஹ”, “ஸ்ரீ” used in the Tamil language

which are derived from other languages. Among that 53 Unicode characters also taken as features.

All together 261 Unicode characters were taken as 261 features. The features are taken from Tamil

Unicode characters shown in Table 5.2.

Table 5.2 Tamil Unicode Characters

Source: Tamil Alphabets - Tamilcube “http://tamilcube.com/learn-tamil/tamil-alphabets-

chart.aspx”

31

5.2.3.2 Language-specific dictionaries

In order to identify the English words, two corpora were used as dictionaries. The corpora are

British National Corpus (BNC) and LEXNORM corpus. Existence of a word in these two corpora

were taken as two features.

 BNC: A computer corpus of 100 million words of British English, written and spoken [44].

 LEXNORM: A lexical normalization dataset released by Han et al. (2012) [45] . This

dataset used to identify the spelling variations are expected in social media data.

5.2.3.3 Double consonants

By analyzed the words in collected Tamil-English code-mixed dataset some of the double

consonant pattern letter was identified as features. The 16 identified double consonants were 'nn',

'ee', 'll', 'kk', 'tt', 'pp', 'mm', 'yy', 'rr', 'oo', 'cc', 'ss', 'dd', 'ff', 'bb', 'gg'.

5.2.3.4 Term Frequency

The frequency of each unique word occurs in the Tamil-English code-mixed dataset was taken as

a feature.

Eventually, 280 features were taken for language identification system for Tamil-English code-

mixed text.

5.3 Language Identification System for Sinhala-English Code-Mixed Text

The design diagram of language identification system for Sinhala-English code-mixed text shown

in Figure 5.3. In this system raw Sinhala-English code-mixed sentences led to preprocessing steps.

Then the pre-process data took as input for feature identification module for identifying features

from words. After that the predictive model created according to selected classifiers in Weka. Ten-

fold cross-validation used to evaluate the performance based on language tags at word level.

32

Figure 5.3 Design Diagram of Language Identification System for Sinhala-English Code-Mixed

Text

5.3.1 Dataset Description

In the proposed system, Facebook comments and post with Sinhala-English code mixed text was

taken as input. All the posts and comments broke down into sentences. Among this 1,000 Sinhala-

English code mixed sentences was taken as training set. There were 6,640 tokens identified from

the sentences. Among that 2,896 unique words were identified in the training dataset. The

statistics of Sinhala-English code-mixed dataset used for training shown in Table 5.3.

Table 5.3 Statistics of Sinhala-English Code-Mixed Dataset

The Sinhala-English code-mixed dataset annotated with three main language tags, “sin” for

Sinhala words, and “eng” for English words and “rest” for all other words. The “rest” tag includes

Named Entities, Acronyms, Universal, mixed and other language tags.

Sinhala-English code-

mixed data

Train Data

Sentences 1,000

Tokens 6,640

Words 2,896

33

5.3.2 Preprocessing

In preprocessing raw Sinhala-English code-mixed sentences led to preprocessing steps. The

preprocessing steps include tokenization, convert the word in lowercase, removing wordplay

characters, symbols removal and calculating the term frequency of each word.

5.3.3 Feature identification of Sinhala-English code-mixed text

The below features identified for language identification system for Sinhala-English code-mixed

text.

5.3.3.1 Sinhala Unicode Characters in Roman Scripts

Sinhala characters written in Roman scripts was taken as important features to identify Sinhala

words. For example “ග” in Sinhala Unicode character written as “ga” in Roman scripts. The most

common 284 Unicode characters used in writing convert to Roman script. The Sinhala Unicode

characters like “අ” and “ඇ” written same as “a” in Roman scripts in lower case. Also the “න්”and

“ණ්” characters written same as “n” in Roman scripts. So among 284 Sinhala Unicode characters

written in Roman script, repeating 51 characters with same Roman script were remove and 233

Sinhala Unicode characters written in Roman scripts were taken as features. The features are taken

from Sinhala Unicode characters shown in Table 5.4.

34

Table 5.4 Sinhala Unicode Characters

Source: Real Time Unicode Converter - UCSC – University of Colombo

35

5.3.3.2 Language-Specific Dictionaries

In order to identify the English words, two corpora were used as dictionaries. The corpora are

British National Corpus (BNC) and LEXNORM corpus. Existence of a word in these two corpora

were taken as two features.

 BNC: A computer corpus of 100 million words of British English, written and spoken [44].

 LEXNORM: A lexical normalization dataset released by Han et al. (2012) [45]. This

dataset used to identify the spelling variations are expected in social media data.

5.3.3.3 Term Frequency

The frequency of each unique word occurs in the Sinhala-English code-mixed dataset was taken

as a feature.

Eventually, 236 features were taken for language identification system for Sinhala-English code-

mixed text.

5.4 Summary

This chapter discussed the design of the system. Design for language identification system for

Tamil-English code-mixed text and design for language identification system for Sinhala-English

code-mixed text is discussed. Feature identification plays a significant part of this project. The

feature identification from Tamil-English code-mixed text and Sinhala-English code-mixed text

are discussed. Implementation of the proposed design is discussed in the next chapter.

36

Chapter 6

Implementation

6.1 Introduction

Chapter 5 discussed detailed design of language identification system for Tamil-English code-

mixed text and language identification system for Sinhala-English code-mixed text.

Implementation detail of each module of the system design is explained with the used algorithms,

software and tools in this chapter.

6.2 Language Identification System for Tamil-English Code-Mixed Text

Language identification system for Tamil-English code-mixed text developed by using Jupiter

notebook 5.5.0 with Python 3.6.4. Mainly Pandas, nltk and numpy libraries were used in

preprocessing and feature identification process. For the training, testing and model creation

process Weka 3.6 software was used. Java jdk 1.8, NetBeans IDE 8.0.2 and weka-stable-3.8.0

library were used to predict the language labels of unseen Tamil-English sentences at word level.

The detailed implementation of language identification system for Tamil-English code-mixed text

is explained in this section.

6.2.1 Preprocessing

In the preprocessing module raw Tamil-English code-mixed sentences was taken as input. A

sample of sentences taken for input shown in Figure 6.1.

Figure 6.1 Sample of Tamil-English Code-Mixed Data

37

 Tokenizer in NLTK used to tokenize input Tamil-English sentences as words. The lower()

function used to convert the words in lowercase. A sample of Tamil-English code-mixed words

shown in Figure 6.2.

Figure 6.2 Sample of Tamil-English Code-Mixed words

It was observe the some words contains wordplay characters. For example in the word

“maaaaaaaaaaaa” the character ‘a’ appears lot of times. So that word consider as wordplay word.

The regular expression used to remove the wordplay characters. The characters appears more than

two times were eliminated. So the regular expression used to replace the word “maaaaaaaaaaaa”

as “maa”. After that, the term frequency of each unique word was taken using count() function. A

sample unique word with term frequency shown in Figure 6.3.

Figure 6.3 Sample of Unique Tamil-English Code-Mixed words with Term Frequency

38

After that the unique Tamil-English code-mixed word annotated with language tags. There are

three language tags, “tam” for Tamil words, and “eng” for English words and “rest” for all other

words. The “rest” tag includes Named Entities, Acronyms, Universal, mixed and other language

tags. A sample of annotated Tamil-English code-mixed words with language tags shown in Figure

6.4.

Figure 6.4 Sample of Annotated Tamil-English Code-Mixed Words with Language Tags

6.2.2 Feature identification of Tamil-English code-mixed text

The annotated Tamil-English code-mixed word with languages tags was taken as the input for

feature identification module. In this process the features mentioned in section 5.2.3 was identified

for each words. The features are Tamil Unicode characters in Roman scripts, language specific

dictionaries, double consonant, and term frequency. A sample Tamil word with features shown in

Figure 6.5

39

Figure 6.5 Sample Tamil word with features

In the feature identification process of Tamil-English code-mixed text the below features

extracted from the words.

 Tamil Unicode characters in Roman scripts: The presence of 261 features in the words

were identified. This is a Boolean feature. Presence of each feature recorded as 1 otherwise

0.

 Language-specific dictionaries: Use to identify the presence of a word in dictionaries. This

is a Boolean feature. Presence of word will be 1 otherwise 0. The presence of words in

BNC and LEXNORM dictionaries was identified.

 Double consonant: The presence of 16 double consonant features in the words was

identified. This is a Boolean feature. Presence of each feature recorded as 1 otherwise 0.

A sample of Tamil word after the feature identification process shown in Figure 6.6.

Figure 6.6 Sample Tamil word with identified features with values

40

Among this embedded features there were some Tamil Unicode characters in Roman scripts

features had the mean value as zero. The below 77 features mean value identified as zero. These

features did not play a significant role in algorithm. So these features were removed from the

training dataset of Tamil-English code-mixed text.

['gnaa','gnae','gnai','gnii','gno','gnoa','gnow','gnuu','hoa','jae','jii','joa','jow','juu','kii','koa','kow','ksh

aa','kshae','kshai','kshe','kshi','kshii','ksho','kshoa','kshow','kshu','kshuu','lii','luu','mii','moa','mow','

muu','ngae','ngii','ngoa','ngow','nguu','nhaa','nhae','nhai','nhe','nhi','nhii','nho','nhoa','nhow','nhu','n

huu','noa','pii','sae','shae','shai','shii','shoa','show','shuu','sii','soa','sow','thoa','thow','tii','toa','vow','y

oa','yow','yuu','zaa','zae','zii','zo','zoa','zow','zuu'].

So now the training dataset consists of 203 features. In addition of corresponding language tags

totally 204 attributes included in training data of Tamil-English code-mixed text.

6.2.3 Model Development for Tamil-English code-mixed text

For the model development process, the Weka 3.9.2 tool was used. Different machine learning

classifiers such as Support Vector Machine, Naïve Bayes, Logistic Regression, Random Forest

and Decision Tree used to create the models in order to evaluate the model performance. The

feature-based model created based on identified features and languages labels as input. The dataset

subjected to 10 fold cross-validation in order to evaluate the predictive models. The overall

accuracy and F-Measure of different classifiers were recorded to identify the most suitable model

for perdition process. The parameter used in model development process for different classifiers

shown in Table 6.1.

Table 6.1 The parameter used in model development by different classifiers for Tamil-

 English code-mixed text

Classifiers Parameters Used

Support Vector Machine Linear Kernel, C=1

Logistics Regression Ridge = 1.0E-8

Decision Tree Confident Factor=0.25, Number of objects=2

Naive Bayes Use Kernel Estimator=False

Random Forest Number of iteration = 10

41

6.3 Language Identification System for Sinhala-English Code-Mixed Text

Language identification system for Sinhala-English code-mixed text developed by using Jupiter

notebook 5.5.0 with Python 3.6.4. Mainly Pandas, nltk and numpy libraries were used in

preprocessing and feature identification process. For the training, testing and model creation

process Weka 3.6 software was used. Java jdk 1.8, NetBeans IDE 8.0.2 and weka-stable-3.8.0

library were used to predict the language labels of unseen Sinhala-English sentences at word level.

The detailed implementation of language identification system for Sinhala-English code-mixed

text is explained in this section.

6.3.1 Preprocessing

In the preprocessing module raw Sinhala-English code-mixed sentences was taken as input. A

sample of sentences taken for input shown in Figure 6.7.

Figure 6.7 Sample of Sinhala-English Code-Mixed Data

 Tokenizer in NLTK used to tokenize input Sinhala-English sentences as words. The lower()

function used to convert the words in lowercase. A sample of Sinhala-English code-mixed words

shown in Figure 6.8.

42

Figure 6.8 Sample of Sinhala-English Code-Mixed words

It was observe the some words contains wordplay characters. For example in the word

“choooooty” the character ‘o’ appears lot of times. So that word consider as wordplay word. The

regular expression used to remove the wordplay characters. The characters appears more than two

times were eliminated. So the regular expression used to replace the word “choooooty” as

“chooty”. After that, the term frequency of each unique word was taken using count() function. A

sample unique Sinhala-English words with term frequency shown in Figure 6.9.

Figure 6.9 Sample of Unique Sinhala-English Code-Mixed words with Term Frequency

43

After that the unique Sinhala-English code-mixed word annotated with language tags. There are

three language tags, “sin” for Sinhala words, and “eng” for English words and “rest” for all other

words. The “rest” tag includes Named Entities, Acronyms, Universal, mixed and other language

tags. A sample of annotated Sinhala-English code-mixed words with language tags shown in

Figure 6.10.

Figure 6.10 Sample of Annotated Sinhala-English Code-Mixed Words with Language Tags

6.3.2 Feature identification of Sinhala-English code-mixed text

The annotated Sinhala-English code-mixed word with languages tags was taken as the input for

feature identification module. In this process the features mentioned in section 5.3.3 was identified

for each words. The features are Sinhala Unicode characters in Roman scripts, language specific

dictionaries, and term frequency. A sample of a Sinhala word with features shown in Figure 6.11.

44

Figure 6.11 Sample of Sinhala word with features

In the feature identification process of Sinhala-English code-mixed text the below features

extracted from the words.

 Sinhala Unicode characters in Roman scripts: The presence of 233 features in the words

were identified. This is a Boolean feature. Presence of each feature recorded as 1 otherwise

0.

 English language-specific dictionaries: Use to identify the presence of a word in

dictionaries. This is a Boolean feature. Presence of word will be 1 otherwise 0. The

presence of words in BNC and LEXNORM dictionaries was identified.

A sample of Sinhala word after the feature identification process shown in Figure 6.12.

Figure 6.12 Sample of Sinhala word with identified features with values

Among this embedded features there were some Sinhala Unicode characters in Roman scripts

identified features had the mean value as zero. The below 76 feature’s mean value identified as

zero. These features did not play a significant role in algorithm. So these features were removed

from the Sinhala-English training dataset.

[bii, boe, chae, chau, chea, chii, choe, chuu, dae, dhaa, dhae, dhau, dhea, dhii, dho, dhoe, dhuu,

doe, duu, gae, gea, gii, goe, guu, hae, hau, hoe, huu, jae, jau, jea, jii, joe, juu, kae, kea, koe, lae,

45

lau, lii, loe, luu, mau, mea, mii, moe, nae, nau, nii, noe, nuu, roe, ruu, soe, suu, tae, tau, thae, thau,

thea, thoe, thuu, tii, toe, tuu, wae, wau, wea, wii, woe, wuu, yae, yea, yii, yoe, yuu]

So now the training dataset consists of 160 features. In addition of corresponding language tags

totally 161 attributes included in training data of Sinhala-English code-mixed text.

6.3.3 Model Development for Sinhala-English code-mixed text

For the model development process, the Weka 3.9.2 tool was used. Different machine learning

classifiers such as Support Vector Machine, Naïve Bayes, Logistic Regression, Random Forest

and Decision Tree used to create the models in order to evaluate the model performance. The

feature-based model created based on identified features and languages labels as input. The dataset

subjected to 10 fold cross-validation in order to evaluate the predictive models. The overall

accuracy and F-Measure of different classifiers were recorded to identify the most suitable model

for perdition process. The parameter used in model development process for different classifiers

shown in Table 6.2.

Table 6.2 The parameter used in model development by different classifiers for Sinhala-English

 code-mixed text

Classifiers Parameters Used

Support Vector Machine Linear Kernel, C=1

Logistics Regression Ridge = 1.0E-8

Decision Tree Confident Factor=0.25, Number of objects=2

Naive Bayes Use Kernel Estimator=True

Random Forest Number of iteration = 100

6.4 Summary

In this chapter the implementation of the word level language identification system for Tamil-

English and Sinhala-English code-mixed text is discussed in detail. In the next chapter, evaluation

of the proposed solution is given with experimental results.

46

Chapter 7

Evaluation

7.1 Introduction

Evaluation strategy, experimental design and results are discussed in this chapter. Experiment

results of model development for Tamil-English code-mixed text and Sinhala-English code-mixed

text is discussed in this chapter. Also sample based evaluation results of predictive models for

Tamil-English code-mixed text and Sinhala-English code-mixed text is discussed in this chapter.

7.2 Experimental design

Experiments designed to evaluate the performance of the models developed based on Tamil-

English feature set and Sinhala-English feature set. Also another experiment designed to evaluate

the model prediction for test data based on sample based analysis.

7.2.1 Experimental design for Model Evaluation

For the model evaluation process, the Weka 3.9.2 tool was used. Different machine learning

classifiers such as Support Vector Machine, Naïve Bayes, Logistic Regression, Random Forest

and Decision Tree used to evaluate the performance of models developed based on Tamil-English

code-mixed text and Sinhala-English code-mixed text. The knowledge flow of experiment process

for model evaluation shown in Figure 7.1.

Figure 7.1 The knowledge flow of experiment process for model evaluation

47

7.2.1.1 Evaluation Strategy for predictive Models

Models were tested using 10 fold cross-validation. Cross-validation is a technique to evaluate

predictive models by partitioning the original sample into a training set to train the model, and a

test set to evaluate the model.

In k-fold cross-validation, the original sample is randomly partitioned into k number of

subsamples. Of the k subsamples, one subsample is retained as the validation data for testing the

model, and the remaining k-1 subsamples are used for training. The cross validation process is

then repeated k times (the folds), with each of the k subsamples used exactly once as the validation

data. The k results from the folds is then averaged (or otherwise combined) to produce a single

answer. The advantage of this method is that all observations are used for both training and

validation, and each observation is used for validation exactly once.

When comparing the models and evaluating performance of them with each other, different

measures like Accuracy (%), and F-Measure were considered in the evaluation process.

Accuracy is how close a measured value is to the actual (true) value. Accuracy retrieves the

percentage of correctly classified instances.

Precision is a value of the accuracy provided by a unique class that was predicted.

Recall is a measure of the ability of a prediction model to select instances of a certain class

from a data set. It is c also called sensitivity, and points to the true positive rate.

Where, TP = True Positive

TN = True Negative

FP = False Positive

FN = False Negative

48

The F score, also called the F1 score or F measure, is a measure of a test’s accuracy. The F score

is defined as the weighted harmonic mean of the test’s precision and recall. This score is calculated

with the precision and recall of a test taken into account. Precision, also called the positive

predictive value, is the proportion of positive results that truly are positive. Recall, also called

sensitivity, is the ability of a test to correctly identify positive results to get the true positive rate.

The F score reaches the best value, meaning perfect precision and recall, at a value of 1. The worst

F score, which means lowest precision and lowest recall, would be a value of 0.

7.2.2 Experimental design for Testing of Models

A system is developed to test the finalized Tamil-English code-mixed model (Tanglish model with

SVM) and Sinhala-English code-mixed model (Singlish model with Random Forest). The User

Interface of the testing of finalized model shown in Figure 7.2.

Figure 7.2 The User Interface for testing finalized model for language identification of code-

mixed text

49

In this testing process identified word from a Tamil-English code-mixed sentence was taken as

input for testing the Tanglish model (SVM), likewise Sinhala-English code-mixed sentence was

taken as input for testing the Singlish model (Random Forest). After that for each word of Tamil-

English code-mixed sentence the features such as Tamil Unicode characters in Roman scripts,

language specific dictionaries, double consonant, and term frequency was identified and that

features compared with Tanglish model and for each word the language labels was predicted using

the Tanglish model. Likewise for each word of Sinhala-English code-mixed sentence the features

such as Sinhala Unicode characters in Roman scripts, language specific dictionaries, and term

frequency was identified and that features compared with Singlish model and for each word the

language labels was predicted using the Singlish model. The statistics of the dataset used for

testing of models shown in Table 7.1.

Table 7.1 The statistics of the dataset used for reevaluation of models

7.2.2.1 Evaluation Strategy for Testing Models
 In the testing process 50 sentences from Tamil-English code-mixed text and 50 sentences from

Sinhala-English code-mixed sentences were taken. The sentences were annotated using language

labels by human annotators at word level. After that Tanglish words feature matrix and Singlish

words feature matrix compared with Tanglish model (SVM) and Singlish model (Random Forest)

respectively. The accuracy and the F-measure for each tags were recorded.

7.3 Experimental Results

7.3.1 Experiment Results for Model Evaluation
The model evaluation results obtained from different machine learning classifiers such as Support

Vector Machine, Naïve Bayes, Logistic Regression, Random Forest and Decision Tree by using

10 fold cross validation for Tamil-English code-mixed text and Sinhala-English code-mixed text

is presented in this section.

Test Data Tamil-English

code-mixed data

Sinhala-English

code-mixed data

Sentences 50 50

Tokens 312 273

Words 261 216

50

The confusion matrix, overall accuracy and F-Measures of ‘tam’, ‘eng’, and ‘rest’ tags obtained

from different classifiers for Tamil-English code-mixed text shown in Table 7.2.

Table 7.2 Overall results obtained from different classifiers for Tamil-English code-mixed text

Among this results for Tamil-English code-mixed text SVM with a linear kernel gave 89.46%

accuracy for language identification system for Tamil-English code-mixed text at the word level.

This model is good for identifying Tamil and English language tags. Because the F-Measure for

‘tam’ and ‘eng’ tags were 0.947 and 0.806 respectively. So this SVM model was taken as finalized

model as Tanglish data for testing process.

The confusion matrix, overall accuracy and F-Measures of ‘sin’, ‘eng’, and ‘rest’ tags obtained

from different classifiers for Sinhala-English code-mixed text shown in Table 7.3.

51

Table 7.3 Overall results obtained from different classifiers for Sinhala-English code-mixed text

Among this results for Sinhala-English code-mixed text, Random forest classifier gave 90.5%

accuracy for language identification system for Sinhala-English code-mixed text at the word level.

This model is good for identifying Sinhala and English language tags. Because the F-Measure for

‘sin’ and ‘eng’ tags were 0.949 and 0.758 respectively. So this Random forest model was taken as

finalized model as Singlish data for testing process.

In order to identify the important features from feature set, feature evaluation was done with

different classifiers by adding and removing the features. The accuracy obtained from different

classifiers for different feature set was recorded. The features evaluation chart for Tamil-English

code-mixed text and Sinhala-English code-mixed text illustrated in Figure 7.3 and Figure 7.4

respectively.

52

Figure 7.3 Evaluation of features impotency for Tamil-English code-mixed text

Figure 7.4 Evaluation of features impotency for Sinhala-English code-mixed text

76
78
80
82
84
86
88
90
92

Support Vector
Machine

Logistics
Regression

Dicision Tree Random Forest Naive Bayes

A
cc

u
ra

cy
 (

 %
)

Classifiers

Features Evaluation for Tamil-English Code-Mixed Text

Tamil Unicode characters in Roman scripts

Tamil Unicode + Double Consonants(DC)

Tamil Unicode+DC+Term Frequency(TF)

Tamil Unicode+DC+TF+Language specific dictionaries

76
78
80
82
84
86
88
90
92

Support Vector
Machine

Logistics Regression Dicision Tree Random Forest Naive Bayes

A
cc

u
ra

cy
 (

 %
)

Classifiers

Features Evaluation for Sinhala-English Code-Mixed Text

 Sinhala Unicode in Roman Script

Sinhala Unicode in Roman Script + Term Frequency (TF)

Sinhala Unicode in Roman Script + Term Frequency (TF) + Dictionaries

After removed Features with Mean zero value

53

7.3.2 Experiment Results for Model Testing

The testing results obtained from Tanglish model and Singlish model presented in this section.

The confusion matrix, overall accuracy and F-Measures of ‘tam’, ‘sin’, and ‘eng’ tags obtained

from testing process of Tanglish model and Singlish model shown in Table 7.4.

Table 7.4 Testing results obtained from Tanglish model and Singlish model

7.4 Summary

In this chapter, evaluation strategy, experimental study, datasets used and the results are discussed.

Next chapter discusses the interpretation of the experimental results given in this chapter along

with the conclusion and future work.

54

Chapter 8

Conclusion and Future Work

8.1 Introduction

In the previous chapter we discussed about the evaluation strategy along with the obtained

results of the proposed solution. This chapter focuses on interpreting the results given in

evaluation, discussing the limitations and future work of the solution.

8.2 Concluding remarks

This paper discusses problems with code mixed data and proposed a feature-based embedded

methodology to automatic language identification of Tamil-English and Sinhala-English code

mixed data. The methodology used for this system is a novel approach implemented as machine

learning classifier based on features such as Tamil Unicode characters in Roman scripts,

dictionaries, double consonant, and term frequency for Tamil-English code-mixed text and

features such as Sinhala Unicode characters in Roman scripts, dictionaries, and term frequency for

Sinhala-English code-mixed text. Different machine learning classifiers such as SVM, Random

Forest, Naive Bayes, Logistic Regression, and Decision Tree used to evaluate the performance.

Among the predictive models for Tamil-English code-mixed text, SVM with a linear kernel gave

89.46% accuracy for language identification system for Tamil-English code-mixed text at the word

level. This model is good for identifying Tamil and English language tags. Because the F-Measure

for ‘tam’ and ‘eng’ tags were 0.947 and 0.806 respectively. But this model not much identified

‘rest’ tags properly. This was seen that most words belong to ‘rest’ tag incorrectly classified in

‘tam’ and ‘eng’ tags. This was happened because of some words were mixed with Tamil and

English language. For example “ricela” word “rice” belongs to English language and “la” belongs

to the Tamil language.

Among the predictive models for Sinhala-English code-mixed text, Random forest classifier gave

90.5% accuracy for language identification system for Sinhala-English code-mixed text at the

word level. This model is good for identifying Sinhala and English language tags. Because the F-

Measure for ‘sin’ and ‘eng’ tags were 0.949 and 0.758 respectively. But Random forest model not

55

much identified ‘rest’ tags properly. The F-measure of ‘rest’ for Random forest classification

model were 0.513. This was seen that most words belong to ‘rest’ tag incorrectly classified in

‘sin’ and ‘eng’ tags. This was happened because of some words were mixed with numbers, Sinhala

and English language. For example “container1ka” word “container” belongs to English language,

“ka” belongs to the Sinhala language and ‘1’ belongs to number. Also name entities identified

wrongly in ‘sin’ and ‘eng’ tags.

In the testing process of Tanglish model with SVM and Singlish model with Random Forest gave

accuracy as 93.87% and 95.83% respectively. Tanglish model with SVM gave F-Measure for

‘tam’ and ‘eng’ tags were 0.965 and 0.894 respectively for the testing process. Singlish model with

Random Forest gave F-Measure for ‘sin’ and ‘eng’ tags were 0.975 and 0.929 respectively for the

testing process. So this the evidence that the Tanglish model with SVM and Singlish model with

Random Forest most of the times predict the language labels correctly at word level.

8.3 Limitation and Future work

In this research mainly focused with language identification of noisy code-mixed social media

data. Because of spelling mistakes and different forms of writing styles the code-mixed data

becomes noisy. So it was challenged to identify the language tags of those word. Since some of

the word were correctly identifies using some rules like eliminating wordplay characters appears

in the word. Also LEXNORM corpus used to identify the spelling variation appears in English

words. But there were some words mixed with two languages at word level. For example in the

“studentskku” word “”student” belongs to English language and “kku” belongs to Tamil language.

So these kind of word incorrectly classified to “tam” and “eng” tags. As a future work code-mixing

within word can be detecting by segment the word as smaller units. The word composed of

sequences of subunits associated with different languages, then the language tags can be detected

for the subunits of word.

 As further to improve the performance of language identification system more features can be

added into the system. For example context information of the current word, like previous and

after word language tags can be add as the features. Also can evaluate the features importance of

the model by pruning some features by parameter tuning. By changing the parameters option in

classifiers can able to identify the most dominating features for the dataset. Also, the performance

56

of the model can be evaluated with neural network techniques like multi-layer perception,

recurrent neural networks and modern Deep Learning approaches.

8.4 Summary

In chapter 1, aim and objectives were defined for this research project. First, we need to get a

comprehensive background knowledge on the selected research area namely, word level language

identification of code-mixing text in social media. Once the importance of the research problem is

identified in chapter 1, study is performed on the current approaches for language identification of

code-mixed text to address the word level language identification of code-mixed text problem in

chapter 2. Word level language identification system for code-mixed text is designed and

developed using technologies such as natural language processing and machine learning as given

in chapter 3, chapter 4 and chapter 5. Extensive evaluation that is conducted for the proposed

solution is given along with the experimental setup and the obtained results in chapter 6.

Accordingly, it is evident that all the objectives defined at the beginning of the project are

successfully met in this research.

57

References
[1] A. Das and B. Gambäck, “Code-mixing in social media text: the last language identification

frontier?,” 2015.

[2] P. McNamee, “Language Identification: A Solved Problem Suitable for Undergraduate

Instruction,” J Comput Sci Coll, vol. 20, no. 3, pp. 94–101, Feb. 2005.

[3] U. Barman, A. Das, J. Wagner, and J. Foster, “Code mixing: A challenge for language

identification in the language of social media,” in Proceedings of the first workshop on

computational approaches to code switching, 2014, pp. 13–23.

[4] A. Das and B. Gambäck, “Identifying languages at the word level in code-mixed indian social

media text,” 2014.

[5] D. Crystal, Language and the Internet. Cambridge [u.a.: Cambridge Univ. Press, 2008.

[6] T. Hidayat, An analysis of code switching used by facebookers. Sekolah Tinggi Keguruan

dan Ilmu Pendidikan (STKIP) Siliwangi Bandung, 2008.

[7] P. Muysken, “code-switching and grammatical theory,” p. 23.

[8] P. Muysken, Bilingual speech: a typology of code-mixing, Nachdr. Cambridge: Cambridge

Univ. Press, 2002.

[9] “Sociolinguistics by Bernard Spolsky,” p. 5.

[10] L. S. Kia, X. Cheng, T. K. Yee, and C. W. Ling, “Code-Mixing of English in the

Entertainment News of Chinese Newspapers in Malaysia,” Int. J. Engl. Linguist., vol. 1, no.

1, Mar. 2011.

[11] S. Ajita and K. Amit, “POS Tagging of Hindi-English Code Mixed Text from Social Media.”

[12] A. Ehsan and S. A. Aziz, “CODE-MIXING IN URDU NEWS OF A PRIVATE PAKISTANI

CHANNEL: A CASE STUDY,” vol. 5, no. 1, p. 10, 2014.

[13] T. Hidayat, An analysis of code switching used by facebookers. Sekolah Tinggi Keguruan

dan Ilmu Pendidikan (STKIP) Siliwangi Bandung, 2008.

[14] S. Ghosh, S. Ghosh, and D. Das, “Complexity Metric for Code-Mixed Social Media Text,”

ArXiv170701183 Cs, Jul. 2017.

[15] F. Fahmee and M. F. Yong, “Language Choice in Online Written Communication among

Maldivian Professionals,” 3L Lang. Linguist. Lit., vol. 22, no. 2, 2016.

[16] A. K. Joshi, “processing of sentences with intra-sentential code-switching,” in Coling 1982:

Proceedings of the Ninth International Conference on Computational Linguistics, 1982.

[17] E. M. GOLD, “Language Identification in the Limit,” p. 28.

[18] P. V. Veena, M. Anand Kumar, and K. P. Soman, “Character Embedding for Language

Identification in Hindi-English Code-mixed Social Media Text,” Comput. Sist., vol. 22, no.

1, Mar. 2018.

58

[19] D. Nguyen and A. S. Doğruöz, “Word Level Language Identification in Online Multilingual

Communication,” in Proceedings of the 2013 Conference on Empirical Methods in Natural

Language Processing, Seattle, Washington, USA, 2013, pp. 857–862.

[20] C. Lignos and B. E. Al, Toward Web-scale Analysis of Codeswitching.

[21] R. Řehŭřek and M. Kolkus, “Language identification on the web: Extending the dictionary

method,” in International Conference on Intelligent Text Processing and Computational

Linguistics, 2009, pp. 357–368.

[22] W. B. Cavnar and J. M. Trenkle, “N-gram-based text categorization,” Ann Arbor Mi, vol.

48113, no. 2, pp. 161–175, 1994.

[23] T. Joachims, “Svmlight: Support vector machine,” SVM-Light Support Vector Mach.

Httpsvmlight Joachims Org Univ. Dortm., vol. 19, no. 4, 1999.

[24] T. Baldwin and M. Lui, “Language identification: The long and the short of the matter,” in

Human Language Technologies: The 2010 Annual Conference of the North American

Chapter of the Association for Computational Linguistics, 2010, pp. 229–237.

[25] B. King and S. Abney, “Labeling the Languages of Words in Mixed-Language Documents

using Weakly Supervised Methods,” in Proceedings of the 2013 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, Atlanta, Georgia, 2013, pp. 1110–1119.

[26] Y. Vyas, S. Gella, J. Sharma, K. Bali, and M. Choudhury, “POS Tagging of English-Hindi

Code-Mixed Social Media Content,” in Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP), Doha, Qatar, 2014, pp. 974–979.

[27] M. Piergallini, R. Shirvani, G. S. Gautam, and M. Chouikha, “Word-Level Language

Identification and Predicting Codeswitching Points in Swahili-English Language Data,” in

Proceedings of the Second Workshop on Computational Approaches to Code Switching,

Austin, Texas, 2016, pp. 21–29

[28] S. Carter, W. Weerkamp, and M. Tsagkias, “Microblog language identification: overcoming

the limitations of short, unedited and idiomatic text,” Lang. Resour. Eval., vol. 47, no. 1, pp.

195–215, Mar. 2013.

[29] T. Solorio et al., “Overview for the First Shared Task on Language Identification in Code-

Switched Data,” in Proceedings of the First Workshop on Computational Approaches to Code

Switching, Doha, Qatar, 2014, pp. 62–72.

[30] G. Chittaranjan, Y. Vyas, K. Bali, and M. Choudhury, “Word-level Language Identification

using CRF: Code-switching Shared Task Report of MSR India System,” in Proceedings of

the First Workshop on Computational Approaches to Code Switching, Doha, Qatar, 2014,

pp. 73–79.

[31] R. Kumar, A. Kumar, K. P. Soman, and K. P. Soman, “AmritaCEN_NLP@ FIRE 2015

Language Identification for Indian Languages in Social Media Text,” 2015.

[32] S. Deepu and R. Pethuru, “A Framework for Text Analytics using the Bag of Words (BoW)

Model for Prediction,” Int. J. Adv. Netw. Appl. IJANA.

[33] E. Charniak, Introduction to Artificial Intelligence. Pearson Education India, 1985

59

[34] P. M. Nadkarni, L. Ohno-Machado, and W. W. Chapman, “Natural language processing: an

introduction,” J. Am. Med. Inform. Assoc., vol. 18, no. 5, pp. 544–551, Sep. 2011.

[35] S. Bird, E. Klein, and E. Loper, Natural Language Processing with Python: Analyzing Text

with the Natural Language Toolkit. O’Reilly Media, Inc., 2009.

[36] W.-L. Chao, “Machine Learning Tutorial,” p. 56.

[37] S. R. Kalmegh, “Comparative Analysis of WEKA Data Mining Algorithm RandomForest,

RandomTree and LADTree for Classification of Indigenous News Data,” vol. 5, no. 1, p. 11,

2015.

[38] F. Pérez-Cruz, P. L. Alarcón-Diana, A. Navia-Vázquez, and A. Artés-Rodríguez, “Fast

Training of Support Vector Classifiers,” in Advances in Neural Information Processing

Systems 13, T. K. Leen, T. G. Dietterich, and V. Tresp, Eds. MIT Press, 2001, pp. 734–740.

[39] S. le Cessie and J. C. van Houwelingen, “Ridge Estimators in Logistic Regression,” J. R.

Stat. Soc. Ser. C Appl. Stat., vol. 41, no. 1, pp. 191–201, Mar. 1992.

[40] George H. John, Pat Langley: Estimating Continuous Distributions in Bayesian Classifiers.

In: Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo, 338-345, 1995.

[41] I. H. Witten, E. Frank, L. Trigg, M. Hall, G. Holmes, and S. J. Cunningham, “Weka: Practical

Machine Learning Tools and Techniques with Java Implementations,” p. 5.

[42] S. L. Salzberg, “C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan

Kaufmann Publishers, Inc., 1993,” Mach. Learn., vol. 16, no. 3, pp. 235–240, Sep. 1994.

[43] L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, Oct. 2001.

[44] G. Nelson, “Guy Aston and Lou Burnard, The BNC handbook: exploring the British National

Corpus with SARA. Edinburgh Textbooks in Empirical Linguistics. Edinburgh: Edinburgh

University Press, 1998. Pp. 256. Hardback £43.50, ISBN 0 7486 1054 5; paperback £16.50,

ISBN 0 7486 1055 3,” Engl. Lang. Linguist., vol. 6, no. 1, pp. 197–221, May 2002.

[45] B. Han, P. Cook, and T. Baldwin, “Automatically constructing a normalisation dictionary for

microblogs,” in Proceedings of the 2012 joint conference on empirical methods in natural

language processing and computational natural language learning, 2012, pp. 421–432.

60

Appendix A

Sample of datasets used in evaluation process

Figure A.1 Sample of Tamil-English code-mixed dataset

61

Figure A.2 Sample of Sinhala-English code-mixed dataset

62

Detailed experiment results of models obtained by different classifiers for

Tamil-English code-mixed text

Figure A.3 Results obtained by SVM classifier for Tamil-English code-mixed text

Figure A.4 Results obtained by Logistic Regression classifier for Tamil-English code-mixed text

63

Figure A.5 Results obtained by Naïve Bayes classifier for Tamil-English code-mixed text

Figure A.6 Results obtained by Decision Tree classifier for Tamil-English code-mixed text

64

Figure A.7 Results obtained by Random Forest classifier for Tamil-English code-mixed text

Detailed experiment results of models obtained by different classifiers for

Sinhala-English code-mixed text

Figure A.8 Results obtained by SVM classifier for Sinhala-English code-mixed text

65

Figure A.9 Results obtained by Logistic Regression classifier for Sinhala-English code-mixed

text

Figure A.10 Results obtained by Naïve Bayes classifier for Sinhala-English code-mixed text

66

Figure A.11 Results obtained by Decision Tree classifier for Sinhala-English code-mixed text

 Figure A.12 Results obtained by Random Forest classifier for Sinhala-English code-mixed text

67

Appendix B

Code section for Identification of Features for a given Sentence

68

69

70

71

{1: {'Words': 'blouse', 'TermFreq': 1, 'a': 0, 'aa': 0, 'ae': 0, 'au': 0, 'b': 1, 'ba': 0, 'baa': 0, 'bae': 0,

'bau': 0, 'be': 0, 'bea': 0, 'bi': 0, 'bo': 0, 'bu': 0, 'buu': 0, 'ch': 0, 'cha': 0, 'chaa': 0, 'che': 0, 'chi'

: 0, 'cho': 0, 'chu': 0, 'd': 0, 'da': 0, 'daa': 0, 'dau': 0, 'de': 0, 'dea': 0, 'dh': 0, 'dha': 0, 'dhe': 0, '

dhi': 0, 'dhu': 0, 'di': 0, 'dii': 0, 'do': 0, 'du': 0, 'e': 1, 'ea': 0, 'g': 0, 'ga': 0, 'gaa': 0, 'gau': 0, '

ge': 0, 'gi': 0, 'go': 0, 'gu': 0, 'h': 0, 'ha': 0, 'haa': 0, 'he': 0, 'hea': 0, 'hi': 0, 'hii': 0, 'ho': 0, 'h

u': 0, 'i': 0, 'ii': 0, 'j': 0, 'ja': 0, 'jaa': 0, 'je': 0, 'ji': 0, 'jo': 0, 'ju': 0, 'k': 0, 'ka': 0, 'kaa':

0, 'kau': 0, 'ke': 0, 'ki': 0, 'kii': 0, 'ko': 0, 'ku': 0, 'kuu': 0, 'l': 1, 'la': 0, 'laa': 0, 'le': 0, 'lea':

0, 'li': 0, 'lo': 1, 'lu': 0, 'm': 0, 'ma': 0, 'maa': 0, 'mae': 0, 'me': 0, 'mi': 0, 'mo': 0, 'mu': 0, 'muu': 0

, 'n': 0, 'na': 0, 'naa': 0, 'ne': 0, 'nea': 0, 'ni': 0, 'no': 0, 'nu': 0, 'o': 1, 'oe': 0, 'r': 0, 'ra': 0, 'r

aa': 0, 'rae': 0, 'rau': 0, 're': 0, 'rea': 0, 'ri': 0, 'rii': 0, 'ro': 0, 'ru': 0, 's': 1, 'sa': 0, 'saa': 0,

'sae': 0, 'sau': 0, 'se': 1, 'sea': 0, 'si': 0, 'sii': 0, 'so': 0, 'su': 0, 't': 0, 'ta': 0, 'taa': 0, 'te': 0,

'tea': 0, 'th': 0, 'tha': 0, 'thaa': 0, 'the': 0, 'thi': 0, 'thii': 0, 'tho': 0, 'thu': 0, 'ti': 0, 'to': 0, 't

u': 0, 'u': 1, 'uu': 0, 'w': 0, 'wa': 0, 'waa': 0, 'we': 0, 'wi': 0, 'wo': 0, 'wu': 0, 'y': 0, 'ya': 0, 'yaa':

0, 'yau': 0, 'ye': 0, 'yi': 0, 'yo': 0, 'yu': 0, 'BNC_Corpus': 0, 'LexNorm_Corpus': 0}, 2: {'Words': 'eka', 'Te

rmFreq': 110, 'a': 1, 'aa': 0, 'ae': 0, 'au': 0, 'b': 0, 'ba': 0, 'baa': 0, 'bae': 0, 'bau': 0, 'be': 0, 'bea':

0, 'bi': 0, 'bo': 0, 'bu': 0, 'buu': 0, 'ch': 0, 'cha': 0, 'chaa': 0, 'che': 0, 'chi': 0, 'cho': 0, 'chu': 0, '

d': 0, 'da': 0, 'daa': 0, 'dau': 0, 'de': 0, 'dea': 0, 'dh': 0, 'dha': 0, 'dhe': 0, 'dhi': 0, 'dhu': 0, 'di': 0

, 'dii': 0, 'do': 0, 'du': 0, 'e': 1, 'ea': 0, 'g': 0, 'ga': 0, 'gaa': 0, 'gau': 0, 'ge': 0, 'gi': 0, 'go': 0,

'gu': 0, 'h': 0, 'ha': 0, 'haa': 0, 'he': 0, 'hea': 0, 'hi': 0, 'hii': 0, 'ho': 0, 'hu': 0, 'i': 0, 'ii': 0, 'j

': 0, 'ja': 0, 'jaa': 0, 'je': 0, 'ji': 0, 'jo': 0, 'ju': 0, 'k': 1, 'ka': 1, 'kaa': 0, 'kau': 0, 'ke': 0, 'ki'

: 0, 'kii': 0, 'ko': 0, 'ku': 0, 'kuu': 0, 'l': 0, 'la': 0, 'laa': 0, 'le': 0, 'lea': 0, 'li': 0, 'lo': 0, 'lu'

: 0, 'm': 0, 'ma': 0, 'maa': 0, 'mae': 0, 'me': 0, 'mi': 0, 'mo': 0, 'mu': 0, 'muu': 0, 'n': 0, 'na': 0, 'naa':

0, 'ne': 0, 'nea': 0, 'ni': 0, 'no': 0, 'nu': 0, 'o': 0, 'oe': 0, 'r': 0, 'ra': 0, 'raa': 0, 'rae': 0, 'rau': 0

, 're': 0, 'rea': 0, 'ri': 0, 'rii': 0, 'ro': 0, 'ru': 0, 's': 0, 'sa': 0, 'saa': 0, 'sae': 0, 'sau': 0, 'se':

0, 'sea': 0, 'si': 0, 'sii': 0, 'so': 0, 'su': 0, 't': 0, 'ta': 0, 'taa': 0, 'te': 0, 'tea': 0, 'th': 0, 'tha':

0, 'thaa': 0, 'the': 0, 'thi': 0, 'thii': 0, 'tho': 0, 'thu': 0, 'ti': 0, 'to': 0, 'tu': 0, 'u': 0, 'uu': 0, 'w

': 0, 'wa': 0, 'waa': 0, 'we': 0, 'wi': 0, 'wo': 0, 'wu': 0, 'y': 0, 'ya': 0, 'yaa': 0, 'yau': 0, 'ye': 0, 'yi'

: 0, 'yo': 0, 'yu': 0, 'BNC_Corpus': 0, 'LexNorm_Corpus': 1}, 3: {'Words': 'thama', 'TermFreq': 20, 'a': 1, 'aa

': 0, 'ae': 0, 'au': 0, 'b': 0, 'ba': 0, 'baa': 0, 'bae': 0, 'bau': 0, 'be': 0, 'bea': 0, 'bi': 0, 'bo': 0, 'bu

': 0, 'buu': 0, 'ch': 0, 'cha': 0, 'chaa': 0, 'che': 0, 'chi': 0, 'cho': 0, 'chu': 0, 'd': 0, 'da': 0, 'daa': 0

, 'dau': 0, 'de': 0, 'dea': 0, 'dh': 0, 'dha': 0, 'dhe': 0, 'dhi': 0, 'dhu': 0, 'di': 0, 'dii': 0, 'do': 0, 'du

': 0, 'e': 0, 'ea': 0, 'g': 0, 'ga': 0, 'gaa': 0, 'gau': 0, 'ge': 0, 'gi': 0, 'go': 0, 'gu': 0, 'h': 1, 'ha': 1

, 'haa': 0, 'he': 0, 'hea': 0, 'hi': 0, 'hii': 0, 'ho': 0, 'hu': 0, 'i': 0, 'ii': 0, 'j': 0, 'ja': 0, 'jaa': 0,

'je': 0, 'ji': 0, 'jo': 0, 'ju': 0, 'k': 0, 'ka': 0, 'kaa': 0, 'kau': 0, 'ke': 0, 'ki': 0, 'kii': 0, 'ko': 0, '

ku': 0, 'kuu': 0, 'l': 0, 'la': 0, 'laa': 0, 'le': 0, 'lea': 0, 'li': 0, 'lo': 0, 'lu': 0, 'm': 1, 'ma': 1, 'ma

a': 0, 'mae': 0, 'me': 0, 'mi': 0, 'mo': 0, 'mu': 0, 'muu': 0, 'n': 0, 'na': 0, 'naa': 0, 'ne': 0, 'nea': 0, 'n

i': 0, 'no': 0, 'nu': 0, 'o': 0, 'oe': 0, 'r': 0, 'ra': 0, 'raa': 0, 'rae': 0, 'rau': 0, 're': 0, 'rea': 0, 'ri

': 0, 'rii': 0, 'ro': 0, 'ru': 0, 's': 0, 'sa': 0, 'saa': 0, 'sae': 0, 'sau': 0, 'se': 0, 'sea': 0, 'si': 0, 's

ii': 0, 'so': 0, 'su': 0, 't': 1, 'ta': 0, 'taa': 0, 'te': 0, 'tea': 0, 'th': 1, 'tha': 1, 'thaa': 0, 'the': 0,

'thi': 0, 'thii': 0, 'tho': 0, 'thu': 0, 'ti': 0, 'to': 0, 'tu': 0, 'u': 0, 'uu': 0, 'w': 0, 'wa': 0, 'waa': 0,

'we': 0, 'wi': 0, 'wo': 0, 'wu': 0, 'y': 0, 'ya': 0, 'yaa': 0, 'yau': 0, 'ye': 0, 'yi': 0, 'yo': 0, 'yu': 0, 'B

NC_Corpus': 0, 'LexNorm_Corpus': 0}, 4: {'Words': 'tag', 'TermFreq': 3, 'a': 1, 'aa': 0, 'ae': 0, 'au': 0, 'b':

0, 'ba': 0, 'baa': 0, 'bae': 0, 'bau': 0, 'be': 0, 'bea': 0, 'bi': 0, 'bo': 0, 'bu': 0, 'buu': 0, 'ch': 0, 'cha

': 0, 'chaa': 0, 'che': 0, 'chi': 0, 'cho': 0, 'chu': 0, 'd': 0, 'da': 0, 'daa': 0, 'dau': 0, 'de': 0, 'dea': 0

, 'dh': 0, 'dha': 0, 'dhe': 0, 'dhi': 0, 'dhu': 0, 'di': 0, 'dii': 0, 'do': 0, 'du': 0, 'e': 0, 'ea': 0, 'g': 1

, 'ga': 0, 'gaa': 0, 'gau': 0, 'ge': 0, 'gi': 0, 'go': 0, 'gu': 0, 'h': 0, 'ha': 0, 'haa': 0, 'he': 0, 'hea': 0

, 'hi': 0, 'hii': 0, 'ho': 0, 'hu': 0, 'i': 0, 'ii': 0, 'j': 0, 'ja': 0, 'jaa': 0, 'je': 0, 'ji': 0, 'jo': 0, '

ju': 0, 'k': 0, 'ka': 0, 'kaa': 0, 'kau': 0, 'ke': 0, 'ki': 0, 'kii': 0, 'ko': 0, 'ku': 0, 'kuu': 0, 'l': 0, 'l

a': 0, 'laa': 0, 'le': 0, 'lea': 0, 'li': 0, 'lo': 0, 'lu': 0, 'm': 0, 'ma': 0, 'maa': 0, 'mae': 0, 'me': 0, 'm

i': 0, 'mo': 0, 'mu': 0, 'muu': 0, 'n': 0, 'na': 0, 'naa': 0, 'ne': 0, 'nea': 0, 'ni': 0, 'no': 0, 'nu': 0, 'o'

: 0, 'oe': 0, 'r': 0, 'ra': 0, 'raa': 0, 'rae': 0, 'rau': 0, 're': 0, 'rea': 0, 'ri': 0, 'rii': 0, 'ro': 0, 'ru

': 0, 's': 0, 'sa': 0, 'saa': 0, 'sae': 0, 'sau': 0, 'se': 0, 'sea': 0, 'si': 0, 'sii': 0, 'so': 0, 'su': 0, 't

': 1, 'ta': 1, 'taa': 0, 'te': 0, 'tea': 0, 'th': 0, 'tha': 0, 'thaa': 0, 'the': 0, 'thi': 0, 'thii': 0, 'tho':

0, 'thu': 0, 'ti': 0, 'to': 0, 'tu': 0, 'u': 0, 'uu': 0, 'w': 0, 'wa': 0, 'waa': 0, 'we': 0, 'wi': 0, 'wo': 0,

'wu': 0, 'y': 0, 'ya': 0, 'yaa': 0, 'yau': 0, 'ye': 0, 'yi': 0, 'yo': 0, 'yu': 0, 'BNC_Corpus': 0, 'LexNorm_Cor

pus': 1}, 5: {'Words': 'kare', 'TermFreq': 2, 'a': 1, 'aa': 0, 'ae': 0, 'au': 0, 'b': 0, 'ba': 0, 'baa': 0, 'ba

e': 0, 'bau': 0, 'be': 0, 'bea': 0, 'bi': 0, 'bo': 0, 'bu': 0, 'buu': 0, 'ch': 0, 'cha': 0, 'chaa': 0, 'che': 0

, 'chi': 0, 'cho': 0, 'chu': 0, 'd': 0, 'da': 0, 'daa': 0, 'dau': 0, 'de': 0, 'dea': 0, 'dh': 0, 'dha': 0, 'dhe

': 0, 'dhi': 0, 'dhu': 0, 'di': 0, 'dii': 0, 'do': 0, 'du': 0, 'e': 1, 'ea': 0, 'g': 0, 'ga': 0, 'gaa': 0, 'gau

': 0, 'ge': 0, 'gi': 0, 'go': 0, 'gu': 0, 'h': 0, 'ha': 0, 'haa': 0, 'he': 0, 'hea': 0, 'hi': 0, 'hii': 0, 'ho'

: 0, 'hu': 0, 'i': 0, 'ii': 0, 'j': 0, 'ja': 0, 'jaa': 0, 'je': 0, 'ji': 0, 'jo': 0, 'ju': 0, 'k': 1, 'ka': 1,

'kaa': 0, 'kau': 0, 'ke': 0, 'ki': 0, 'kii': 0, 'ko': 0, 'ku': 0, 'kuu': 0, 'l': 0, 'la': 0, 'laa': 0, 'le': 0,

'lea': 0, 'li': 0, 'lo': 0, 'lu': 0, 'm': 0, 'ma': 0, 'maa': 0, 'mae': 0, 'me': 0, 'mi': 0, 'mo': 0, 'mu': 0, '

muu': 0, 'n': 0, 'na': 0, 'naa': 0, 'ne': 0, 'nea': 0, 'ni': 0, 'no': 0, 'nu': 0, 'o': 0, 'oe': 0, 'r': 1, 'ra'

: 0, 'raa': 0, 'rae': 0, 'rau': 0, 're': 1, 'rea': 0, 'ri': 0, 'rii': 0, 'ro': 0, 'ru': 0, 's': 0, 'sa': 0, 'sa

a': 0, 'sae': 0, 'sau': 0, 'se': 0, 'sea': 0, 'si': 0, 'sii': 0, 'so': 0, 'su': 0, 't': 0, 'ta': 0, 'taa': 0, '

te': 0, 'tea': 0, 'th': 0, 'tha': 0, 'thaa': 0, 'the': 0, 'thi': 0, 'thii': 0, 'tho': 0, 'thu': 0, 'ti': 0, 'to

': 0, 'tu': 0, 'u': 0, 'uu': 0, 'w': 0, 'wa': 0, 'waa': 0, 'we': 0, 'wi': 0, 'wo': 0, 'wu': 0, 'y': 0, 'ya': 0,

'yaa': 0, 'yau': 0, 'ye': 0, 'yi': 0, 'yo': 0, 'yu': 0, 'BNC_Corpus': 0, 'LexNorm_Corpus': 0}}

