MUSIC GENERATION FOR SCENE EMOTION USING
GENERATIVE AND CNN MODEL

D.I.D.D. Jayawardena

168285U

Degree of Master of Science in Artificial Intelligence

Department of Computational Mathematics

University of Moratuwa

Sri Lanka

March 2019

MUSIC GENERATION FOR SCENE EMOTION USING
GENERATIVE AND CNN MODEL

D.I.D.D. Jayawardena

168285U

Thesis submitted in partial fulfilment of the requirements for the degree of Master of Science
in Artificial Intelligence

Department of Computational Mathematics

University of Moratuwa

Sri Lanka

March 2019

Declaration

I declare that this is my own work and this thesis does not incorporate without
acknowledgement any material previously submitted for a Degree or Diploma
in any other University or institute of higher learning and to the best of my
knowledge and belief it does not contain any material previously published or
written by another person except where the acknowledgement is made in the
text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to re-
produce and distribute my thesis, in whole or in part in print, electronic or
other medium. I retain the right to use this content in whole or part in future
works (such as articles or books).

Name of Student:
D.I.D.D.Jayawardena.

Signature of Student: Date:

The above candidate has carried out research for the Master’s Dissertation un-
der my supervision.

Name of Supervisor:
Dr. Subha Fernando.

Signature of Supervisor: Date:

Abstract

Generate music using emotional semantics of an image is quiet challenging
task due to the complexity of extracting emotional features of an image and
generate music according to the emotion.This paper proposes an enhanced
deep neural network backed by Generative adversarial network for scene emo-
tion categorization and LSTM based music generator for music generation. In
developed system system functions in three parts.Initially we have generated
take images which more looks like real images using the generator of gener-
ative adversarial network which will help to enrich the dataset and increase
the size of the dataset.Our dataset contains mainly three emotion categories
(Happy,Angry,Sad). Second part of the system is image classifier developed
using convolutional neural network which is trained using enhanced image
dataset of scene emotions.Image classifier helps to identify the probabilities of
the input scene which fed in to music generator for creation of training mu-
sic dataset for each uploaded scene.Third and the last part of the system is
the music generator which is developed using convolutional neural network
with Long short term memory model.With the use of LSTM model developed
deep neural network model got the capability of remember and predict next
step.MIDI dataset from raw music files of songs created for each category
to train the music generator. Since music composing is more human centric
task,best way to evaluate the system is using musicians.So we have tested
the system with two musicians and single listener.And also we have compare
the image classifier using dataset which contains GAN generated images and
without GAN generated images. After improving the dataset using generated
images by GAN,we were able to achieve 80% of categorical accuracy and 85%
of validation accuracy in image classification.Based on the evaluation done by
musicians on generated sounds more than 50% of the sounds were in good
quality and they have confirmed the musics were appealing to hear.

ii

Acknowledgements

It is quiet a long journey to learn and successfully complete a research.So lot of
people from academic side and family end helped to succeed in this work.First
I would like to thank my supervisor for giving me full freedom to do the work
as my way and guiding me when I need help. Then I have thank my parents
and sister helping me and encouraging me to go for success.My friends were
always with me to help when I really need motivation to work on research
with the hectic work life in this country.

1ii

Contents

Declaration i
Abstract ii
Acknowledgements iii
1 Introduction 1
1.1 Prolegomena, 1
1.2 Objectives 1
1.3 Background and Motivation 2
14 Probleminbrief oL oo o 3
1.5 Proposedsolution, 3
1.6 Resourcerequirements 4
1.7 Structureof thethesis 4
1.8 Summary 4
2 Issues and Challenges 5
21 Introduction 5
2.2 Gestation of music generation for scene emotion 5
2.3 Major developments in music generation 6
2.4 Major development in image sentiment identification 9
241 Problems In Image Classification 10
2.5 Problem definition 13
26 Summary 13
3 Technology For Scene Emotion Detection And Music Generation 14
3.1 Introduction 14
3.2 Convolution Neural Networks(CNN) 14
3.2.1 Convolution Neural Networks performance Improvement 15
3.3 Generative Adverserial Networks(GANs) 16
3.3.1 Wasserstein Generative Adverserial Networks(WGANs) 16

3.3.2 How Generative Adverserial Networks used in image
classification Lo oL 17
3.4 Long Short Term Memory(LSTM) based music generation . .. 17
3.5 Other libraries and technologies 18
3.6 Summary 18
4 Approach 19
41 Introduction Lo o L 19
42 Hypothesis L 19
43 Process e 19
44 Input 20
45 Output 20
46 Features oo 0. 21
47 Users 21

iv

48 summary
Design
51 Imtroduction o L.
5.2 Architecture of the project 0L
5.3 Image classifier for emotion detection
53.1 GAN fakeimage generator
54 Musicgeneration L
55 Summary
Implementation
6.1 Introduction o o L
6.2 Dataset preparation L
6.3 GAN implementation.
6.4 Image classifier implementation.
6.5 Music generator implementation
6.6 Web Apiimplementation.
6.7 Summary
Evaluation
71 Introduction
7.2 Evaluation Procedure
7.2.1 Evaluation Procedure of music files
7.2.2 Evaluation Procedure of Image classifier
7.3 Image Classification Results
74 Sound GenerationResults
75 summary

Conclusion and Future Work

8.1 Introduction
82 Conclusion
83 Futurework
8.4 summary

Code Implementations

A1 Image Classifier Implementation
A2 MusicGenerator. oL o
A3 GANImplementation

List of Figures

1.1

3.1
3.2
3.3

4.1

51
52
53

6.1

7.1
7.2
7.3
74

Overview e 3
Convolution Neural Network Architecture 14
ReLU activation function 15
WGAN algorithmo oo oo 17
Proposed solution 20
Architecture L o o 22
Sequence Diagram of mainflow 23
GAN architecture oo oL 24
WGAN image generation flow chart 26
Generated images forangry. 34
Generated images forhappy 34
Generated imagesforsad 34
Results of music evaluation 36

Vi

List of Tables

7.1 Test results of the generated sound files by tester 1. 35
7.2 Test results of the generated sound files by tester2. 35
7.3 Test results of the generated sound files by tester 3. 35

vii

List of Abbreviations

CNN

GAN
WGAN
LSTM
RNN
RNN-RBM
ASC
ACGAN

Convolution Neural Network

Generative Adverserial Network

Wasserstein Generative Adverserial Network

Long Short Term Memory

Recurrent Neural Network

Recurrent Neural Network Restricted Boltsman Machine
Acoustic Scene Classification

Auxiliary Generative Adverserial Network

viii

Chapter 1

Introduction

1.1 Prolegomena

Music is coming from prehistoric era of humans as entertainment medium
as well as communication medium.Music has direct relation with our biolo-
gies as well as our social interactions which lead to evolution of modern hu-
man mind[1].Due to this reason people use music to express emotional feel-
ings via music and also it is very much closer to human mind and heart.So
in modern world music became very powerful and huge industry.Many re-
searchers were involved in making novel systems for increasing business re-
quirements of this huge entertainment industry.Another concern of many re-
searchers and the industry is how to build more realistic machines which could
imitate the human behaviors.So they are more curious about the fact of could
machines be creative.To achieve this researchers are trying to computationally
model existing man made models which were used in day today works.Some
of these models were golden ratio (used in graphic designing), color theory,
Emotional models.To model these computationally people use multi agent sys-
tems,genetic algorithms,deep convolution networks(CNN)[2, 3, 4].In this re-
search project main intention is to generate a model which is capable of clas-
sifying a scenery in to appropriate emotional category(description) and using
that information to generate novel music that did not exist accordingly.As per
the requirement,plan is to to use generative model and CNN model condi-
tioned with long short term memory(LSTM) which which are capable of gen-
erating new knowledge that did not exist.

1.2 Objectives

The aim of this study is to build an entertainment application which could
generate music by identifying the emotional qualities of the scenery which is
provided as input.

e Critical study on generative models and CNN models and its applicabil-
ity in this research topic.

e Critical study on current solutions which are available in the market for
this issue.

e Design a system and algorithm to handle the research problem and de-
velop the full functional application.

e Evaluate the system with generated data by the system.

e Producing the final documentation.

1.3 Background and Motivation

image classification and vision based information retrieval are the major ar-
eas in vision based systems.Lots of work going on to develop better model to
classify the images and information retrieval.Most of the researchers were us-
ing traditional basic models to design systems.one of the major model used by
them is color descriptors.One of the work done by Sande explains how color
descriptors were used to increase the power of illumination invariance and
discrimination[5].Szabolcs sergyan’s work also describe how color descriptors
could be used to analyze images.As author mention color is an important fac-
tor in content base image retrieval. And also author describes which are the
possible color descriptors which could use to classify images.And also de-
scribes which color descriptor could be used in which color spaces[6].Visual
auditory associations to music was the main focus in work done by Xiaoy-
ing Wu and his team.They have mapped primitive visual qualities like con-
tours,colors and texture to musical elements such as pitch,duration and chords.
According to them the results that they got were impressive but the draw
back was only small sound clips were able to generate.Generating complete
piece of music is more challenging task[4].Hye-Rin and his team also worked
on recognizing image emotions through deep neural networks.They describes
a feed forward network model and the outputs were valence-arousal values
which express the emotion and they used image sentiments of background,
color models and objects to decide the emotion category of an input image.But
they have faced major issue in their work. That is object recognition accuracy
directly impact on the performance of the emotion recognition model[7].So as
these works researchers were working more towards the basic color theory
concepts to retrieve image information and categorize them. Bolei Zhou in his
work also tried to classify images using convolutional neural network(CNN).
They used scene-centric database called palces with over 7 million labeled pic-
tuures of scenes whichis more diversified dataset than other datasets.They
have shown that the differences in internal representation of object-centric
and scene-centric networks using the visualization of CNN layers[8]. Most
of the image categorization models fails due to lack of dataset which are rel-
evant to the required categories.Most novel way of solving this kind of prob-
lem is models like generative adversarial networks(GANs) where we use set
of labeled images and using the generator and discriminator model to gen-
erate non existed data which could be predicted to be appear in future oc-
currences. As mentioned above Xinyue Zhu and the team used GAN with
data augmentation to classify emotional images.They used convolution neu-
ral network(CNN) model to classify the emotions and used GAN to gener-
ate lacking images to provide supplement to existing dataset[9]. Matic and

Dragon worked on genetic algorithms to make computational model to gener-
ate music.Position based representation of rhythm and pitches used by them
to encode music composition.And they were able to generate beautiful compo-
sitions which is one of their objectives.And also author mentioned that rhythm
was meaningful and compositions were pleasant to hear[2].Using wave forms
as genetic codes Manzolli and the team generated sounds. So by crossover and
mutation done to the waveform lead to create new waveform[3]. As this way
music and sound generation task taken seriously by many researchers.

1.4 Problem in brief

Generating music on a given scenery using it’s embedded qualities is more
human centric creative task. Most of the tasks related to creativity such as
designing, drawing, musical activities were human centric. And there are lot of
discussions and researches going on to bring these human centric capabilities
to machines. Identifying an emotion embedded in an image or scenery is quite
challenging task for a machine. And there is no exact rules defined in this
matter. And using those ingredients included in the image and generating
music accordingly involve creative thinking which also does not have hard
and fast rules. As a conclusion both these tasks need more human thinking
and creativity.

1.5 Proposed solution

LSTM based
:(> GAN and CNN > CNN Music :(>
Image classifier Generator
Emotional
Values
Input Scene Generated
Image Sound file

FIGURE 1.1: Overview of proposed solution.

We have hypothesized that the problem of generating music for scene emotion
could be solved using combination of generative adversarial networks with
deep convolution neural networks for image sentiment analysis and generate
music without intervention of human other than the provided scene image. In
this project system is developed basically in two phases. First phase is to iden-
tify the emotional categories of the input scenery image. Expected categories
are happy, sad, angry. For this task conditional generative adversarial network
implementation and deep CNN used. To train the network we use freely avail-
able data set with emotional description embedded to it. And the input to the

3

system will be a random image of a scenery. Since we need huge computing
power to process the images this implementation require cloud instance like
amazon or google.

Second part will be using the generated probability output from first phase and
generate music accordingly. For this purpose we use LSTM based deep convo-
lution neural network solution. To train the model using a self prepared midi
data set. So the final output of this phase is set of novel music clips. Finally the
input and music clips were integrated as one output as an application. Users
of the system will be Administrator, who is responsible for the labeled image
database and labeled sounds database and application users.

1.6 Resource requirements

Following are the resource requirements for this work,
e Google cloud based instance.
e Computer with high processing power.
e Several libraries such as tesorflow, keras,numpy.

¢ python programming language based tools(Ipython notebook).

1.7 Structure of the thesis

This thesis has been structured with 8 chapters. Chapter 1 gave an overall
introduction the project. Chapter 2 provides a critical review of the develop-
ments and issues in the area of music generation for scene emotion by defin-
ing the research problem and identification of technologies. Chapter 3 is on
technology adapted to building the GAN and CNN based solution for Scene
emotion detection and music generation. Chapter 4 presents our approach to
music generation for scene emotion using GANs and deep CNN. Chapter5 De-
sign of the solution. Chapter 6 Implementation of the designed system. And in
Chapter 7 Evaluation of the system created after training the algorithm. Finally
Chapter 8 concludes the thesis with a note on the possible further work.

1.8 Summary

This chapter provided an introduction the entire project. For this purpose, we
have presented our research problem, objectives, technlogy dapoted, proposed
solution and resource requirements. Next chapter provides a detailed critcal
review of Music generation based on scene emotion.

Chapter 2

Issues and Challenges

2.1 Introduction

Chapter 1 gave an introduction to overall project. This chapter presents a crit-
ical review of literature on music generation for scene emotion. Here we for-
mulate our research problem and highlight the technology adopted towards
a solution. In doing so, this chapter has been structured with four sections,
namely, gestation, major developments in image sentiment identification, ma-
jor developments in music generation and problem definition.

2.2 Gestation of music generation for scene emo-
tion

Image Classification and vision based information retrieval are the major ar-
eas in visioned base systems. Lots of work going on to develop better model
to classify images and information retrieval. To address these issues people are
using more basic models and make systems.Most of them were using color
based classification models.One of the work done by Szabolcs Sergyan ex-
plains how color descriptors could be used to analyze images and which de-
scriptors could be used according to the color space.As author mentioned the
best results could be achieved by using the moments and color coherence vec-
tors. And also he mentioned that for similarity retrieval tasks histogram based
classification does not work well [6]. Xiaoying Wu and the team worked on vi-
sual auditory associations to music generation.They have implemented several
methods to convert visual features to music elements like pitch,duration and
code.They have used 3 steps to compose music.Those steps were partitioning
step,sequencing step and mapping step.In first step they partition the image
features and in second step decide the sequence of the partitioned pieces.They
used contour, color and texture to partition images.After that in mapping step
they convert each piece to music note.Melodic anchoring principals used in
mapping the notes together because if the same sequence of partitioning will
not match with music sequencing.As per the authors they were able to gen-
erate pleasant music but the quality of the music generated completely de-
pend on quality of the images used.They also suggest to use tonal hierarchies
and emotional models to generate music in future works [4].The work done
by Hye-Rin and team on image emotion detection.They have used two fea-
tures in emotion detection.Those were the objects in an image and the what
background the object is in.Based on these kind of semantics they developed
emotion based feed forward deep neural network. The output generated by

the model was in 2 dimensional space which contains valance and arousal val-
ues.As author mentioned there were huge impact on prediction of emotion
with the object detection if the system identifies the object as a wrong one then
the emotion prediction completely get mess up [7].

2.3 Major developments in music generation

Music generation and composing is hot topics lot of researchers interested
in.Graves in his work used recurrent nural network with LSTM model to gen-
erate more realistic hand writting.Chung in his work extended Graves recur-
rent neural network(RNN) model with long short term memory by adding
gated recurrent unit with LSTM for polyphonic music generation and speech
signal modeling.Both the LSTM units and GRU units capable of keeping the
existing content and add new content preserving old one which is not possible
in recurrent units.As author mentioned both LSTM and GRU based systems
perform well than traditional models [10, 11].

Boulanger-lewandowski introduced a Recurrent neural network restricted boltz-
man machine(RNN-RBM) model which is a probabilistic approach.By using
RTRBM which is energy based model they were able to predict next step eas-
ily for high dimensional objects.With that conditional distribution of previous
time step and next time step is predicted.This helped author to discover tem-
poral dependencies in a high space model.[12].

NatashaJaques and the team worked on a research about fine tuning sequence
generation model with KL-control which was named as Sequence Tutor. Author
has created off policy reinforcement learning (RL) model from KL-control. This
model is used for generation novel music melodies and computational molecu-
lar generation and represented the effectiveness.The author’s intention was to
tune some properties of the model without interfearing the original probabil-
ity distribution of the data. so they proposed this sequence tutor solution.As
author mentioned they were able to generate quality sequences as expected
[13].

Jonatas and the team explains how waveforms could be used with genetic al-
gorithms to generate new music. Further they describe how wave forms could
be used as genetic codes.They have used method called ESSynth which inte-
grates the Mathematical Approximation Theory to the Genetic Algorithms.With
this wavetable synthesizer is used to instruct the wavetable to play the sound
pattern.As author mentioned quality of the generated waveforms depend on
waveforms of target set[3].

Ramanto and the team used markov chain based procedural music generation
method which is a stochastic model used in modeling the component of music
composition.They used Tellegen-Watson-Clark circumplex model to represent

mood in relation to music.By their work they were able to generate music for
given mood[14].

Interactive genetic algorithm used by Sung Bae Cho to generate music as well.In
their work users could add manual inputs to the fitness function. But the issue
was every user do not have music knowledge to interact with the system.Since
image retrieval process done using content-based image retrieval the image
database creation.The author used two ways to music retrieval, One way is us-
ing IGA and the other one is using a query from music database[15].

Saber Malekzadeh and the team used auxiliary generative adverserial deep
neural network(ACGAN) for categorical music generation.They used hybrid
architecture which had different kind of layers of neural networks.First they
have transformed the input data from time domain to time frequency domain
using Short-Time Fourier Transform(STFT).Using those time frequency do-
mains the GAN is trained.After that generated frequency domains converted
using inverse STFT. They were able to achieve 75.6% of sucess rate in generated
music after given to musicians to evaluate the quality [16].

Sandr Dielema and team used auto-regressive discrete auto encoders(ADAs)
in their attempt to model music using raw audio domain.This ADAs enabled
the capability of capturing the long range correlations in wave forms and they
were able to generate piano music by using raw audio domain[17].

Segment concatination methods and hash learning algorithms were the inspi-
rational models for the novel approach introduced by the Kevin Joslyn and the
team.They used an approach called Deep segmentation hash learning. Which is
the first end to end segment hash learning method for music generation.They
used pair wise training system to train the model.In this case algorithm can
say that a segment is suitable to compose as the next segment of the com-
posing music by matching similar occurance in the dataset.They were able to
generate original and enjoyable music as well[18].

Stefan Lattner and team used convolutional restricted boltzman machine(C-
RBM) as a generative model to generate polyphonic music. With their model
they could control the higher -level self similarity structure, The meter and the
tonal properties of the generated musical piece[19].

Jay A Henning proposed an extention of the VAE framework.They combined
RNN with VAE to model sequential data which is like LSTM[20] Kratarth Goel
and the team proposed a system which is a combination of a RNN and a deep
belief network.By using their system they were able to represent more complex
data than an RBM[21].

Mason Bretan and his team worked on a project where unit selection and
concatenation used for music generation.They first created deep autoencoder
which could be used to encode the musical input and using the encoded data
library recreate the input structure.After that they created deep structured se-
mantic model with LSTM to predict next units.Where deep structured seman-
tic model is used to get sementic relevance score and concatenation cost is

7

calculated by the LSTM.These scores used to rank the units of the library.The
useful part of this solution is that directly previously composed music could be
used and concatenate.But in here finding the exact unit length was challeng-
ing.As author explain the evaluation process also challenging due to musical
variance and still the concatenated music is valid music.So author suppose
subjective listening test for evaluation[22].

Deep Artificial composer (DAC) which is capable of composing monophonic
melodies with compositional structures created by Florian Colombo and the
team.They were able to compose music which were similar to human com-
posers and also consistent. DAC was implemented using multi-layer (deep)
neural networks with LSTM units.They have converted symbolic notations to
midi notes using music21 python library before entering to the system.As per
the author mentioned they were able to achieve high accuracy in average pre-
dictive performance of the duration model.The values were between 80% to
85%.And also the author has shown the capability of DAC to learn similarities
and differences in music styles.Novelty measurements to classify the styles of
melodies were used in evaluation process[23].

Huanru Henry Mao and the team developed a model called Deep] where the
users or composers could add inputs to system while composing the melodies.
In their work they have used biaxial LSTM architecture with some changes to
the representation using data augmentation with music dynamics.They trained
the model with three styles of music (baroque, classical and romantic) using
midi music files.They have evaluated the model in quality by using subjective
experiment and style by using 20 individuals with music back ground.By us-
ing this model the author was able to solve style consistency issue as well.In
this model the problem faced was lack of long term structure.So the author

suggest to use adversarial methods or combining reinforcement learning meth-
ods[24].

Jambot is also a LSTM based polyphonic music generator developed by Gino
Brunner and the team which designed to generate music in two steps.The first
step is use of chord LSTM to predict a chord progression based on a chord em-
bedding and then the second step is to using generated code progression gen-
erate polyphonic music using LSTM.They used Lakh MIDI Dataset for training
the model. As author mentioned the model itself learned music theory related
principals by observing the dataset.Since this model is simple and they use
midi data it could provide fast results[25].

Vasanth Kalingeri and team also worked on music generation using LSTM
based deep learning techniques.They used raw audio data with several LSTM
architectures to generate music.Not like using midi data from raw audio gen-
erating musiic is challenging task because you are not using data related to
music structures.They have used Multilayer LSTM where LSTMs stacked to
store more features in every time step and LSTMs in bi-linear alignment.Such

that several LSTM aproaches used in generating music.As per the author bi-
linear architecture and LSTM with 2D convolution layers generated good out-
puts.Author also suggest to use adversarial networks which could be used to
model the lose function by the algorithm itself[26].

Another neural network model(LSTM-RTRBM) by Qi Lyu and team were able
to compose polyphonic music.In their approach also they used LSTM for mem-
orizing and retrieving important history information.They also integrated Re-
stricted Boltzmann Machine which could perform in high dimensional data
modeling. Since the polyphonic music sequence having high dimensions it
is challenging to predict next valu step by using just LSTM based RNN.So
to get rid of this issue energy based model could be used.In his work au-
thor used RTRBM which is capable of log the likelihood of a given configura-
tion.As per author they were able to achieve state-of-the-art results on various
datasets[27].

Another model suggested by Hang chu and team using hierarchical Recurrent
Neural Network to compose pop music.They encode the prior knowledge in
layers and the structure of the hierarchy.They have used scale type generation
which allowed the model to pick regularities in the music.They have encode
the melody with which key is being pressed and how long it was pressed in
each time step. A recurrent neural network is used to generate key condi-
tioned on scale and using that second recurrent neural network generate the
duration of key pressed.They have used midi man dataset in training process.
As the author mentioned they were able to generate multi track music and the
model perform well.So in our work we are providing fully automated deep
CNN and LSTM based solution for music generation[28]. In our work by us-
ing above mentioned solutions we are using LSTM based deep neural network
architecture to generate music.

2.4 Major development in image sentiment identi-
fication

Emotion of an image can be evoked by many factors.For the emotion predic-
tion problem many researchers used various types of color statistics of art and
psychological features.Machajdi proposed image classifiaction system which
used psychology and art theory based features.Ltten’s color contrast and rule
of third are some of these features[29].

Zhou and the team also proposed the same principal for emotion extraction
of an image.They have proposed new new mechanism to compare the density
(data concentration) and diversity (variability of appearance) of a dataset. They
used densities of nearest neighbors of an image in dataset to compare with
other dataset and used a measure inspired by Simpson index for diversity cal-
culation.This mechanism helps to identify the dataset biases which will help

in making making more generalize classification model [8].Similarly Xin lu
computed the shape based features in natural images[30]. Chen used CNN to
achieve better performance in classification problem[31].

Yongli Zhu and team presents work related to power grid disturbace classi-
fication by using deep learning.Image embedding technique called Gramian
Angular field is used by the author to transform each time of event data to a
2 dimensional image for learning.And they have achieved good results than
other methods in power system transient disturbance classification[32].

Arindam Das and the team used a region based deep convolutional neural
network framework for document stucture learning and theey were able to
achieve accuracy if 92.21% on the dataset of RVL-CDIP[33].Roshan Gopalakr-
ishnan and the team used neuromorphic learning algorithms in classification
problem.They trained a deep learning network using CALTECH101 dataset
and a collapsed version of neuromorphic CALTECH101 dataset[34].

2.4.1 Problems In Image Classification

In many classification problems the main issue researchers come up is insuffi-
cient data to train the system in accurate and make the classifier robust one.So
many researchers working on finding proper solution for this issue.One of the
solution is to increase the training data set set but in many cases practically
it really impossible to find sufficient data.By having this issue people came
up with the idea of data augmentation.So in this section we review some of
the provided solutions for data augmentation.Alhussein fawzi and his team
suggested an adaptive data augmentation method for image classification.As
per their proposal,they use new automatic and adaptive algorithm for choos-
ing most appropriate transformation of each sample data.In detail they try to
find small transformation in data that could lead to maximal classification er-
ror. In finding this they used trust region optimization strategy and they have
used sample of 5000 images from MINST hand written digit dataset to train a
CNN which has 3 layers.They have critically compared the system with other
systems and according to the evaluation the new system perform more accu-
rately.In case of more complex images than hand written images,we need more
accurate way of image classification[35].

Wu Ren and the team presents state of art image recognition system.Another
issue of in image classification is if the size of the model is higher more compu-
tational power is required.As a result author used dedicated super computer
in classification problem. Even though they have more computational power
they have the issue previously mentioned. because if you have less training
data the network will over fit to the data. So still the data augmentation mech-
anism required for them to train the system. They have used ten thousand
times larger dataset in training the system. The author tries to improve the ca-
pability of finding important features in classifying objects rather than other ar-
tifacts in the image.So they have used several data augmentation mechanisms

10

to achieve this. Author used color casting to alter the RGB channel intensities of
training data. And also author has used vignetting effect of images and Lens
distortion to augment the data.Other than that author used high resolution im-
ages in classifying which helped his identifying small objects in images.To use
this kind of approach we need higher computational power and if the dataset
differ from object classification the approach may not suitable[36].

Saining Xie and his team introduced a solution for above mentioned senti-
ment extraction issue.Their proposed new framework named as hyper-class
augmented and regularized deep learning or Fine-grained Image Classifica-
tion.They propose new data augmentation method.where they used fine-grained
data to identifying inherent and easily annotated hyper-classes(easily anno-
tated inherent attributes) and collecting huge amount of similar images with
same hyper class labeling. And also they have proposed regularization tech-
nique to improve the capability of handling the generalization.They were able
to achieve 86% accuracy in classifying task with the new approach.Even though
this hyper class approach perform well still the sentiment extraction related to
lighting and embedded feeling is quiet challenging[37].

The work done by Taylor and Nitschke also used geometric and photo-metric
methods of data augmentation to address the small dataset for deep learning
issue. They used geometric methods like flipping,rotating and cropping tech-
niques to augment the data and photo-metric methods like color jittering, edge
enhancement and fancy PCA.So this lead them to identify lighting related and
color related changes in images.As per the authors by all these augmentation
techniques the accuracy of classification improved.And also they mentioned
that geometric method outperformed photo metric methods . As per them
greatest performance acquired by the using cropping method.By this work
also it proves increasing the dataset using data augmentation could improve
the performance of the deep learning tasks[38].

Zhun Zhong and the team also worked on a project where data augmentation
is used to improve CNN performance but their model used for object identifi-
cation tasks.What they have done was randomly occludes an arbitrary regions
region of the training image in every iteration. Which helps to reduce the risk
of over-fitting the model. By using their model they were able to increase the
performance of the object detection and person re-identification[39].

Data wrapping and synthetic over sampling used by Sebastien C. Wong and
his team to achieve data augmentation in data space and feature space respec-
tively. Data augmentation of data space achieved by method called elastic de-
formation other than the existing transformation methods.Synthetic Minority
Over-Sampling Technique (SMOTE) was used by the author to achieve feature
space data augmentation.As per the authors both techniques could be used to
improve performance of the system.If we required to do label preserving data
space transformation could be used and in other cases feature space transfor-
mation is suitable[40].

11

By using above mentioned traditional data augmentation techniques we could
only augment the data for certain level.But if generative models used to do
data augmentation broader set of augmentation could be achieved.Antreas
Antoniou and the team used date augmentation generative adverserial net-
works(DAGAN) to generate augmented data.As the authors mentioned this
method is more powerful to generate data for unseen classes and also really
help full in law data setup[41].

To achieve segmentation in heterogeneous and limited amount of data set in
medical imaging solutions, Mina Rezaei and team propose conditional GAN
based solution.In their model they use descriminator of GAN to descriminate
segmentation maps generated by the segmentation CNN.As per the authors
they were able to provide more affective brain tumor segmentation and sur-
vival day prediction solution using conditional GANJ[42].

Hojjat Salehinejad and his team also used GAN based solution for pathology
image classification task.In this case they used GAN as a data augmentation
method as well as missing or lacking data set generator. The author used DC-
GAN for chest X-ray images generation and used deep convolutional neural
network for image classification.As author mentioned using synthesized im-
ages they were able to get more generalized performance of unseen data clas-
sification and get diversified data set other than the data augmentation.Since
GAN can generate unseen data it helps to balance the data set and improve
the quality of training data set.Work done by Jelmer M. Wolterink and team
also confirms the capabilty of improving the bio medical image analysis and
segmentation by using generative adverserial networks[43].

Another bio medical research done by Xin Yi and team used categorical gener-
ative adversarial network for detection of skin cancer called Melanoma.Which
they used to automatic feature extraction in dermoscopy images under super-
vised and semi supervised environment.And also they were able to generate
real world like data by using the GAN.In normal generative adverserial net-
works there is an issue of descriminator becoming more powerful in that case
the generator fails to learn any more. So to avoid this issue WGAN can be used
where Wasserstein distance is used to calculate the distance between generated
dirstribution and sample real distribution.As per the user model provide good
result than using auto encoders and hand crafted features.So as per many re-
searchers mentioned the novel and more powerful way of augmentation is
using a GAN based solution. In our work we use Wasserstein generative ad-
versarial network to create rich dataset to train classifier which could work
with different unidentified scene before[44].

12

2.5 Problem definition

Generating music on a given scenery using it's embedded qualities is more
human centric creative task. Most of the tasks related to creativity such as de-
signing, drawing, musical activities were human centric. And there are lot of
discussions and researches going on to bring these human centric capabilities
to machines. Identifying an emotion embedded in an image or scenery is quite
challenging task for a machine. And there is no exact rules defined in this mat-
ter. And using those ingredients included in the image and generating music
accordingly involve creative thinking which also does not have hard and fast
rules. As mentioned earlier in this chapter lots of work going on to bring these
human centric capabilities to the machines. Still there is lot of gaps in gener-
ated models to achieve this task. Generating a model that can manage a situa-
tion that was unknown earlier is quiet challenging. Extraction of the semantics
in a scenery is require more accurate model than extraction of semantics in a
face image. So the model should be trained with more data. Sound genera-
tion models should also be more accurate to generate music according to the
emotional input. So a better model should be designed to address this kind of
matter.

2.6 Summary

In this chapter we have described the problem what we are going to address
in detailed manner and we have analyzed the previous works critically to sup-
port our problem. Brief history on related researches, and the major trends in
music generation and image classification is described in detail.

13

Chapter 3

Technology For Scene Emotion Detection And
Music Generation

3.1 Introduction

In Chapter 2 detailed introduction to the problem domain is provided. This
section will provide more information about the technologies which could be
used to solve the problem. There are many technologies which we could use
but the accuracy of the algorithm needs to be taken in to account when de-
ciding which technology must be used.So main technologies focused on this
chapter were deep convolutional neural networks,Generative adversarial net-
works and long short term memory(LSTM) based music generation.Other than
those main technologies further information about programming languages,
libraries provided.

3.2 Convolution Neural Networks(CNN)

Main Technology used in this study is convolutional neural networks. So it
is important to understand basic concepts related to convolutional neural net-
works.The natural inspiration of convolutional neural networks comes from
visual cortex.Which has small regions of cells that are sensitive to selected re-
gions of the visual field.In a CNN input image pass through several layers
and finally get a single classified class or a vector of probabilities relative to
each class.Such layers are convolutional,nonlinear,pooling and fully connected
layer.

fc_3 fc_4

Fully-Connected Fully-Connected
Neural Network Neural Network
Conv_1 Conv_2 RelU activation
Convolution Convolution A /—M
(5 X 5) kerr.)el Max-Pooling (5 X 5) kerr_\el Max-Pooling (with
valid padding 2x2) valid padding (2x2) dropout)
T ® @0
@01
3; " we
INPUT nl channels nl channels n2 channels n2 channels s ' 9
(28x28x 1) (24x24xn1) (12x12xnl) (8 x8xn2) (4x4xn2) O S——

n3 units

FIGURE 3.1: Convolution Neural Network Architecture.

14

First layers of a CNN is convolutional layers.In this layer a filter (or kernel)
convolve through the input image and create an activation map or feature
map.There are two paramenters which comes into play when the filter con-
volving through the input image.Those are stride and padding.Stride is the
number of units that filter should convolve at a time(one step).The padding is
used to increase increase the size of input image and keep the resulting output
feature map in same size as the input image which will help to preserve more
important data for next layer. After convolutional layer data passed through
a nonlinear layer(or activation layer).which will bring non linearity to the sys-
tem.As per the researchers ReLU activation function is more faster and accu-
rate comparing with tanh and sigmoid functions. Mathematically the ReLU
function can be represented as y=max(0,X) and the visual representation is il-

lustrated bellow.
/ y=x

/

FIGURE 3.2: ReLU activation function.

After the ReLU activation layers data passed through pooling layer and the
most popular pooling layer is maxpooling layer where largest value value
taken from each segment when filter convole through the data.By using pool-
ing layer the cost of the algorithm could be reduced and it will solve the prob-
lem of overfitting. Another layer called dropout layer also used to reduce the
overfitting and generalize the algorithm by setting random set of activation to
zero. As the last layer of the network fully connected layer works.It takes the
output of previous layer and checks the correlation to which class the output
more related.With that data an output vector will be created.The length of the
vector decided by the number of classes in the classification task.

3.2.1 Convolution Neural Networks performance Improvement

Image classification and object detection is the major requirement to vision
based solutions.Huge amount of work going on this subject area.Ouyang used
multistage and deformable deep convolution neural network for object de-
tection.Author has used region based convolution neural network in several
stages. The approach was to use easy to hard samples as the stages increased.

15

As per author this architecture improved image classification and object de-
tection[45]. Another work done by Cimpoi and team used two convolution
neural network based on the classification and object detection problem.The
descriptors were FC-CNN and FV-CNN and they have found that orderless
pooling of CNN features is quiet good descriptor which could be used in ob-
ject detection[46].Zhouin his work used technique called class activation map-
ping(CAM) for CNN with global average pooling CNNs[47].As this many re-
searchers try to improve CNN to use in image classification and object detec-
tion.If rich dataset used we could improve the performance of the CNN.To
address this it is possible to use a generative model like GAN.

3.3 Generative Adverserial Networks(GANSs)

The next important technology used in this music generator is generative ad-
versarial network. GAN contains generative model G and a discriminative
model D where generator G tries to fool the discriminator D. In this model gen-
erator captures the data distribution while discriminator estimates the proba-
bility of a sample came from training data rather than from generator.In here
the generator and discriminator plays two player minmax game.In simple
term if GAN used for image generation.From a noise vector generator gen-
erates a fake image and try to pass it to the discriminator as a real image.Then
the discriminator identifies whether the input image is fake or real [48].

3.3.1 Wasserstein Generative Adverserial Networks(WGANSs)

Wasserstein GAN is an improved version of the traditional GAN.With this new
model the stability of learning is improved as well as algorithm can get rid
of mode collapse.Mode collapse is a scenario where the generator generates
limited diversity in sample data or generate same data without considering
the input data.Wasserstein distance is used to measure the distance between
two probability distributions.This measurement also called as Earth Mover’s
distance (EM distance).Due to it’s capability to represent smooth distance be-
tween two distributions(which were in lower dimensional manifolds without
overlaps),it is better than Js or KL divergence.So this EM distance used as the
loss function of WGAN. The formula is shown bellow.

W(prpg) = = sup Exop, [F(X)] — Brmp [£()] (3.1)
Kfiu<x

Where sup(Supremum) and I1(p;, p) is all possible join probability distribu-
tions between p,and p, [49].In this work also WGAN is used to generate new
images for the image classification dataset. WGAN pseudo code is illustrated
bellow.

16

Algorithm 1 WGAN, our proposed algorithm. All experiments in the paper used
the default values o = 0.00005, ¢ = 0.01, m = 64, ncritic = 5.

Require: : ¢, the learning rate. ¢, the clipping parameter. m, the batch size.
Neritic, the number of iterations of the critic per generator iteration.
Require: : wy, initial critic parameters. 6, initial generator’s parameters.
1: while 6 has not converged do
2: for t =0,..., Neritic do
3: Sample {z()}™, ~ P, a batch from the real data.
4 Sample {2}, ~ p(2) a batch of prior samples.
5 G + Vu [350 fule®) = T 552 fule(z9)]

6 w + w + a - RMSProp(w, g,)

7: w + clip(w, —¢, ¢)

8: end for

9: Sample {z()}7, ~ p(2) a batch of prior samples.

10: go+ —Vok 1) fulge(z"))
11: 0 < 0 — o - RMSProp(6, go)
12: end while

FIGURE 3.3: WGAN algorithm.

3.3.2 How Generative Adverserial Networks used in image clas-
sification

Jonas Natten in his work used GANSs to improve the training dataset of face
recognition.And the author has achieved 99.42% accuracy which is an im-
provement of 1.74% compaired to the non improved dataset by GAN[50].Alec
Radford and his mates also used deep convolution generative adversarial net-
work for unsupervised learning of image datasets[51]. Dwarikanath Mahapa-
tra and team used conditional GAN for medical image classification task.They
used the GAN to generate realistic chest X-ray images[52].Stowell and the team
also used GAN to get additional database created for training the network
of image classification.According to author acoustic scene classification (ASC)
performance using GAN shown impressive performance improvement[53].By
going through these works we could use GAN to improve our scene dataset to
perform well in scene emotion capturing.

3.4 Long Short Term Memory(LSTM) based music
generation

Recurrent neural networks having a problem in preserving memory of last
step when stepping in to next step.LSTM can be used as a solution for above
mentioned issue where the model can preserve data in a long sequence.Allen
Huang and the team used 2 layered LSTM RNN architechture to predict next
note of the sequence. And they were able to generate meaning full music[54].Nikhil
Kotecha and teamm also used Bi-axial LSTM probabilistic model with neural
network to predict and generate polyphonic music[55].So as this researchers
have proven that LSTM based solutions could be used in music generation.

17

3.5 Other libraries and technologies

Since muisc files contain long sequence of data it is better to have a library to
handle the basic operations related to musicology. Music21 is such a toolkit
for python where we can process sound files easily.Flask is a micro frame-
work which could be used to develop web interface easily.It is extremely flex-
ible framework and contains small core which will reduce cost.Other than
these application need more powerful environment to work with.Google cloud
platform provide many machine learning related resources and provide easy
deployment and maintainability.And also the Google code lab environment
could be used in any processing which is done before final deployment.It pro-
vide GPU enabled environment to work with.

3.6 Summary

In this chapter I have given detailed information related to the technologies
which could be used for this research. That included about convolutional
neural networks which could be used with generative adversarial networks to
classify scene emotion. And also I have explained how the genetic algorithm
could be used in music generation.

18

Chapter 4

Approach

41 Introduction

In chapter 3, detailed introduction about the technologies what could be used
in this research is presented . And in this chapter, discuss about the methodol-
ogy which is followed to achieve the final output of the research. This chapter
provides the novel approach to music generation for scene emotion with the
use of Generative adversarial technology and LSTM based deep CNN. As such
structured subsections namely hypothesis, process, input, output, features of
the system presented to explain the approach.

4.2 Hypothesis

Generative adversarial network can be used to improve scene emotion clas-
sification. And music can be generated accordingly to the output of classi-
tier using LSTM based CNN. As mentioned earlier chapters music generation
completely depends on the output of the image classifier.The requirement of a
highly accurate image classifier is high in this project to generate accurate mu-
sic for the embedded emotion in an input image.According to previous works
by researchers that GANs could improve the performance of the classifier it is
possible to hypothesize that GANs could be used to improve the performance
of the scene emotion classifier.The main drawback of the traditional recurrent
neural network is the incapability of preserving important data for future pro-
cessing of the network(Short memory).So by using LSTM based network it is
possible to preserve data in a long sequence.So by using LSTM based model,it
is possible to hypothesize that music generation could be done using the avail-
able dataset created according to the output of the image classifier.

4.3 Process

The initial process of the system is training the image classifier.To train the
image classifier requires a rich dataset which contain high density of qual-
ity images for each category(Happy,Sad,Angry).So as a preprocessing task,the
Generative adversarial component generates synthetic images and fed those in
to the main image dataset which is created using freely available databases in
the internet. Then using this database the deep convolutional neural network is
trained to classify the images.In the process of classifying images this trained
model is used.

19

GAN

Predicted probability
values

Generated Dataset |:{>
Image Cassifier Sound Generator
Train the classifier ﬁ

DataSet

In.png out.midi

Input Image OQutput midi file

FIGURE 4.1: Proposed solution.

In the main process of the system end user upload an image of a scenery which
is randomly selected for music generation as the user preference via the web
interface.Using this input image the image classifier classify the image rela-
tionships with each category of emotion classes and outputs a vector with the
probabilities showing the relatedness for each category. By using this proba-
bility vector system extracts sample music dataset for the training and genera-
tion process of the music.The music dataset is a midi dataset which is created
using songs available in the internet for each category. Then the music gener-
ator which is a deep convolutional neural network with LSTM model gener-
ates music according to the newly created dataset and outputs a midi sound
tile.which will be automatically downloaded to the user machine.Due to the
high amount of data processing requirement the system is hosted in google
cloud environment to achieve high performance.

4.4 Input

Input to the system will be randomly selected image to analyze the Emotion.

4.5 Output

Input image with music clip generated according to the scene emotion as an
output which is graphically represented in an application developed.

20

4.6 Features

Desktop Entertainment Application. User can upload an image and generate
music according to the emotion of the image. Fully automated music genera-
tion according to scene.

4.7 Users

Administrators who is responsible to train the system with databases and other
administrative work on the system. Application end users who are benefited
with an entertainment application.

4.8 summary

This chapter described the approach followed to achieve the high performance
image classification task and music generation task.And also the details related
to users,features of the system,inputs and outputs of the system is presented
and described clearly.

21

Chapter 5

Design

5.1 Introduction

In this chapter explains the high level architecture of the system with details
about each component of the project. As explained in chapter 2 the project is
developed with 2 phases. First one is the image classifier and the second one
is music generator. This chapter will explain all the details about these two
component separately.

5.2 Architecture of the project

GAN DataSet
Predicted probability
values
Sound Generator
C C
oflp o]l ®IIS|]P O O
N o N o
] N
j|> v o v o —
|| [{2o] [0 |]! L L O
i ! i s{|Lfls i
n n n T S T !
] 9 9 RN :
Train the classifier
DataSet
In.png
out.midi
Input Image
Output midi file

FIGURE 5.1: Architectural Design.

In this design there are two main parts and one supplementary part. The main
two parts are image classifier and the music generator and the supplementary
part is GAN based image generator.Main data flow has several paths first one
is the new scene image generation using GAN.Then image classifier training
path.After that comes image prediction and sound generation path. Sound
generator also consists training path and generation path.Bellow sequence di-
agram explains the main flow of the application.

22

Music Geﬂ
APP
Web Interface Image Classifier Sound Generator
End User Insert Scene image E f :
Upload image to classiﬁerz '
vector of probabilities E
Generated sound file
<--22und fe downioaded : :

FIGURE 5.2: Sequence Diagram of main flow.

In here user uploads an image using the provided web interface and using the
uploaded image image classifier predicts probability values related to each cat-
egory.Then this output probability vector is passed to music generator and in
music generator all the processing parts such as new dataset creation accord-
ing to probability values,train the system and generating the music takes place
after that the final output midi file downloaded to the user machine.

5.3 Image classifier for emotion detection

Image classification model consists of three groups of layers. Those are con-
volution layers (conv 2D), non linear layer (softmax) and pooling layer (Max
pooling 2D).Other than these layers this model consists of two fully connected
(Dense) layers. At the first stage we generate supplementary images for our
emotions classes and store the output in image database. Then we train the
model to classify scene emotions and save the model and using that model
we classify the input image.Since we are using softmax activation function the
tinal output will be an array of probabilities for each class.

23

5.3.1 GAN fake image generator

In here the supplementary part of image classifier is explained which is a
WGAN synthetic image generator.Initially the generator starts with noise im-
age and iteration to iteration the image is improved to imitate real image based
on the output of the discriminator.In here discriminator always try to identify
the input image is a real one or fake one.Basically the training data is related
to one category while generating the images. Images generated in this process
were fed in to the image classification dataset for classification training task
later by the administrator of the application manually.High level architecture
of the GAN is illustrated bellow.

Training Set
Descriminator

B ,
- =

Generator |
-2 o

Fake Image

Noise

FIGURE 5.3: GAN architecture.

5.4 Music generation

As mentioned above the probability values of image classifier used to decide
the dataset which required to use for sound generation.By using probabilities
extract dataset randomly from each class and train the LSTM based neural
network and using the generated model itis possible to generate music.So the
tinal output is generated after all these processes.

24

Real

Fake

5.5 Summary

In this chapter provided the overall picture of the design of the project. Main
technologies used were generative adversarial networks(GANSs) and convolu-
tional neural networks(CNNs). In next chapter the implementation informa-
tion described in detail.

25

Chapter 6

Implementation

6.1 Introduction

In this chapter the implementation of the music generator for scene emotion is
described. Implementation is done using python programming language and
used tensorflow, keras libraries to design image classifier.

6.2 Dataset preparation

In this project two dataset were used for image classification and music gener-
ation.Image dataset consists scene images which are related to three categories
(Sad,Angry,Happy). Combination of several datasets and downloaded images
from google used for the project implementation.Used existing datasets were
named as UnBiasedEmo and Emotion 6. All the images were color images and
we used generative adversarial network to generate more images for all cate-
gories as a supplement for the existing dataset. Sound dataset also consist of
sound clips for each category in image dataset. All the sound clips extracted
from existing songs and converted to 10 seconds midi clips for ease of process-

ing.

6.3 GAN implementation

@

Insert Emotion type

Generated Images

Google cloud bucket

upload Generated Dataset

Emotion
Dataset

FIGURE 6.1: WGAN image generation flow chart.

26

1000

1004

1006

1014

1016

1020

1022

As above flow chart initial step of the system is to generate new images for the
image classification dataset. When administrator insert the type of the emo-
tion, the system use the dataset related to the emotion and generate new im-
ages.Then the images were stored in the database and as the final stage the
dataset will be uploaded to the google cloud bucket for the classification task.In
here dataset upload is done by administrator manually.Generative adversar-
ial network developed for generation of more images to support each cate-
gory of the emotions.In here python programming language and several exist-
ing libraries as mentioned in introduction used. Generator starting with fake
data try to fool the discriminator and using the discriminator output genera-
tor learns to generate new images accurately.The code implementation for the
generator and discriminator depicted bellow. WGAN implementation used as
the image generator for this project specifically.

generator (input, random_dim, is_train , reuse=False)
flat_convl = tf.add(tf.matmul(input, wx), bx, name='flat_convl’)

o convl = tf.reshape(flat_convl, shape=[—1, s4, s4, c4], name='convl’)

bnl = tf.contrib.layers.batch_norm(convl, is_training=is_train,
epsilon=1e—5, decay = 0.9, wupdates_collections=None, scope="bnl’
)
actl = tf.nn.relu(bnl, name="actl”)
conv2 = tf.layers.conv2d_transpose(actl, c8, kernel_size=[5,
5], strides=[2, 2], padding="SAME",
kernel_initializer=tf.
truncated_normal_initializer (stddev=0.02),
name="conv2)
bn2 = tf.contrib.layers.batch_norm(conv2, is_training=
is_train , epsilon=1e—5, decay = 0.9, updates_collections=None,
scope="bn2")
act2 = tf.nn.relu(bn2, name="act2’)
conv3 = tf.layers.conv2d_transpose(act2, cl6, kernel_size
=[5, 5], strides=[2, 2], padding="SAME",
kernel_initializer=tf.
truncated_normal_initializer (stddev=0.02),
name="conv3 ")

bn3 = tf.contrib.layers.batch_norm(conv3, is_training=
is_train , epsilon=1e—5, decay = 0.9, updates_collections=None,
scope="bn3")

act3 = tf.nn.relu(bn3, name="act3 ")

conv4 = tf.layers.conv2d_transpose(act3, c32, kernel_size
=[5, 5], strides=[2, 2], padding="SAME",
kernel_initializer=tf.
truncated_normal_initializer (stddev=0.02),
name="conv4 ")

bn4 = tf.contrib.layers.batch_norm(conv4, is_training=
is_train , epsilon=1e—5, decay = 0.9, updates_collections=None,
scope="bn4")

act4 = tf.nn.relu(bn4, name="act4d’)

convb = tf.layers.conv2d_transpose(act4, c64, kernel_size
=[5, 5], strides=[2, 2], padding="SAME",
kernel _initializer=tf.
truncated_normal_initializer (stddev=0.02),
name="conv5 ")

27

1026

1030

1038

1040

1042

1046

1048

1050

bn5 = tf.contrib.layers.batch_norm(conv5, is_training=
is_train , epsilon=1e—5, decay = 0.9, updates_collections=None,
scope="bn5")
acts = tf.nn.relu(bn5, name="act5")
convé = tf.layers.conv2d_transpose(act5, output_dim,
kernel_size=[5, 5], strides=[2, 2], padding="SAME",
kernel_initializer=tf.
truncated_normal_initializer (stddev=0.02),
name="conv6 ")
act6 = tf.nn.tanh(conv6, name="act6”)
return acté6

discriminator (input, is_train , reuse=False)
convl = tf.layers.conv2d(input, c2, kernel_size=[5, 5], strides=[2,
2], padding="SAME",
kernel_initializer=tf.
truncated_normal_initializer (stddev=0.02),
name="convl’)
bnl = tf.contrib.layers.batch_norm(convl, is_training =
is_train , epsilon=1e—5, decay = 0.9, updates_collections=None,
scope = 'bnl”)
actl = lrelu(convl, n="actl”)
conv2 = tf.layers.conv2d(actl, c4, kernel_size=[5, 5],
strides=[2, 2], padding="SAME",
kernel_initializer=tf.
truncated_normal_initializer (stddev=0.02),
name="conv2’)
bn2 = tf.contrib.layers.batch_norm(conv2, is_training=
is_train , epsilon=1e—5, decay = 0.9, updates_collections=None,
scope="bn2")
act2 = lrelu(bn2, n="act2”)
conv3 = tf.layers.conv2d(act2, c8, kernel_size=[5, 5],
strides=[2, 2], padding="SAME",
kernel_initializer=tf.
truncated_normal_initializer (stddev=0.02),
name="conv3’)
bn3 = tf.contrib.layers.batch_norm(conv3, is_training=
is_train , epsilon=1e—5, decay = 0.9, updates_collections=None,
scope="bn3")
act3 = lrelu(bn3, n="act3”’)
conv4 = tf.layers.conv2d(act3, cl6, kernel_size=[5, 5],
strides=[2, 2], padding="SAME",
kernel_initializer=tf.
truncated_normal_initializer (stddev=0.02),
name="conv4 ")
bn4 = tf.contrib.layers.batch_norm(conv4, is_training=
is_train , epsilon=1e—5, decay = 0.9, updates_collections=None,
scope="bn4")
act4d = lrelu(bn4, n="act4d’)
dim = int(np.prod(act4.get_shape()[1:]))
fcl = tf.reshape(act4, shape=[—1, dim], name="fcl")
w2 = tf.get_variable(’'w2’, shape=[fcl.shape[—1], 1], dtype=
tf.float32,
initializer=tf.
truncated_normal_initializer (stddev=0.02))
b2 = tf.get_variable(’b2’, shape=[1], dtype=tf.float32,

28

initializer=tf.constant_initializer

(0.0))
1058 logits = tf.add(tf.matmul(fcl, w2), b2, name="logits ")
acted_out = tf.nn.sigmoid(logits)

1060 return logits

6.4 Image classifier implementation

Image classifier also developed using python programming language and us-
ing keras library modeled the classifier.The model contains three convolution
layers and max pooling layers.The flattened output of above mentioned layers
used as input to two fully connected layer.Since we are using softmax activa-
tion function the final output of the classifier is an array of probability val-
ues.Image classifier model implementation depicted bellow.

1000 model = Sequential ()

model.add (Conv2D (32, (3, 3), input_shape=input_shape))
1002 model.add (Activation (“softmax”))

model . add (MaxPooling2D (pool_size=(2, 2)))

1004
model.add (Conv2D (32, (3, 3)))

1006 model.add (Activation (“softmax”))

model . add (MaxPooling2D (pool_size=(2, 2)))

model.add (Conv2D (32, (3, 3)))

1010 model.add (Activation (“softmax”))

model . add (MaxPooling2D (pool_size=(2, 2)))
1012
model.add (Conv2D (32, (3, 3)))

1014 model.add (Activation ("softmax”))

model . add (MaxPooling2D (pool_size=(2, 2)))

model.add (Conv2D (64, (3, 3)))
1018 model.add (Activation ("softmax”))

model . add (MaxPooling2D (pool_size=(2, 2)))

model.add (Flatten ())

1022 model .add (Dense (64))
model.add (Activation ("softmax”))
1024 model . add (Dropout (0.5))
model . add (Dense (4))
1026 model.add (Activation (“softmax”))

29

1000

1004

1008

1012

1014

1000

1006

1010

6.5 Music generator implementation

Using the output of image classifier system randomly select music clips for
each category from music dataset. For the selection process system use proba-
bility value of each category.For the ease of handling music related data music
21 library for processing midi clips used in the implementation.Other than that
same keras, tensorflow, numpy libraries were used for implementation.In mu-
sic generator implementation several LSTM layers and 2 fully connected layers
used.The model implementation is depicted bellow.

model = Sequential ()
model . add (LSTM(
256,
input_shape=(network_input.shape[1l], network_input.shape

[21),

))
model . add (Dropout (0.3))

model.add (LSIM(512, return_sequences=True))

model . add (Dropout (0.3))

model . add (LSTM(256))

model .add (Dense (256))

model . add (Dropout (0.3))

model .add (Dense (n_vocab))

model.add (Activation ("softmax”))

model. compile(loss="categorical_crossentropy’, optimizer="’
rmsprop)

return_sequences=True

6.6 Web Apiimplementation

As the final implementation,created a web api and a web interface to increase
the quality of user experience .In web api implementation python and flask
library used and hosted it on Google cloud instance to get higher performance
and increase accessibility. So the final implementation of main sever file as
bellow.

app = Flask(__name__)

app . config["SESSION_TYPE’] = ’‘memcached’
o|app . config ["SECRET_KEY'] = ’'super secret key’
app.config["PROJECT_ID’] = 'musicgen’

app . config ["CLOUD_STORAGE_BUCKET’ |= "musicgenbkt

sess = Session ()
model = None

s| image=None

@app.route(’/’, methods=['GET’, "POST’])

30

1016

1020

1022

1026

1030

1034

1036

1040

1042

1044

1046

1050

1052

1056

1060

1062

def home() :
if request.method == "GET":
return render_template ("home.html”)
if request.method == "POST":
if ’image’ not in request.files:
flash(’No file was uploaded. ”)
return redirect(request.url)
image_file = request. files[image’]
if image_file.filename == "’:
flash (’'No file was uploaded.”)
return redirect(request.url)
gw=trainfiles ('trainmidi/Angry/”)
check if the file is "legit"
if image_file:

passed = False
public_url=""
try:

passed = True
public_url = upload_file(
image_file.read (),
image_file.filename,
image_file.content_type)
except Exception:
print("gggg")
passed = False
if passed:
print("call")
return redirect(url_for(’predict’, filename=
image_file.filename), code=307)
else:
flash (’An error occurred, try again.’)
return redirect(request.url)

@app . route ('/predict/<filename>’, methods=['POST’])
def predict(filename):
data = {"success": False}
print ("open")
url="https://storage.googleapis.com/musicgenbkt/"+filename
print (url)
image = imread(url)[:, :, :3]
image = prepare_image (image, target=(150, 150,3))
load_modelq ()
with graph.as_default():
preds = model. predict(image)
data["predictions"] = []
a = threading.Thread(target=generate_music(preds), name=’
Thread—a’, daemon=True)
a.start ()
print(preds)
predictions = preds
render_template ('predict.html’,plot_script=
predictions ,image_url=filename
)
@app . errorhandler (500)
def server_error(error):
return render_template(’error.html”), 500

"o "on

,plot_div="",preds=

31

106+| def load_modelq () :

print("load model func called")

1066 global model

model = load_model(’./models/first_try .model")
1068 global graph

graph = tf.get_default_graph ()

def prepare_image(image, target):

1072 image=np.resize (image, target)
image = img_to_array (image)
1074 image = image.reshape((1, image.shape[0], image.shape[1l], image.

shape[2]))
image = preprocess_input(image)
1076 return image

ws| def trainfiles (prefixa):
filesarray =[]

1080 client = get_storage_client()
bucket = client.bucket(app.config['CLOUD STORAGE BUCKET"])
1082 blobs = bucket.list_blobs (prefix=prefixa, delimiter="/")
for blob in blobs:
1084 filesarray .append(blob .name)
filename = random.choice(filesarray)
1086 return filesarray

w0ss| def generate_music(predictions):
//Music generation implementation
1090 midi_stream . write('midi’, fp='./midigen/test_output.mid”)

02| def get_storage_client():
return storage.Client(
1094 project=app.config|["PROJECT_ID"])

| def upload_file (file_stream , filename, content_type):
//file upload implementation

1098 return url

if __name__ == "__main__
1100 sess.init_app (app)
load_modelq ()

1102 app.run(host="127.0.0.1" ,port=8080,debug=True)

"

6.7 Summary

In this chapter, presented implementation details about the image classifier
and music generator in detailed manner. We have used numpy, tensorflow,keras,flask
python libraries to support the implementation.

32

Chapter 7

Evaluation

7.1 Introduction

In this chapter provide all the details about the result what were achieved and
how the evaluation procedure what used in this work.And also the outputs of
each process.

7.2 Evaluation Procedure

7.2.1 Evaluation Procedure of music files

To evaluate the model a rating system for each sound file generated com-
paring with scene image used.Sixteen images and sound files generated for
them provided and asked the testers to rate the output in 5 categories based
on the music quality and relevance to image.The rating categories were excel-
lent,good, fair,poor and bad. Well trained musician and normal listener used
to rating process. After they have rated the sound files the mean value of the
opinions taken.

7.2.2 Evaluation Procedure of Image classifier

To evaluate the image classifier two sets of image dataset used and calculated
the accuracy of using each dataset. The two data sets were raw data set which
is having the original images and the other one was dataset which is supple-
mented by the GAN generated images.

7.3 Image Classification Results

When trying to classify the data with raw dataset system achieved the cate-
gorical accuracy of 78% and 80% of validation accuracy after training the net-
work for 1500 iterations.Similar number of iterations were ran to the GAN
supplemented data set as well. After creating images for each category to im-
prove learning process. 80% of categorical accuracy and 85% of validation
accuracy in image classification task achieved after improving the system with
new dataset. Some of the image that were generated as bellow.

33

FIGURE 7.3: Generated images for sad.

34

7.4 Sound Generation Results

Sixteen randomly selected images with sound generated by the system pro-
vided to the musicians and normal listener.They have rated each image sound
combination with quality values. Since the rating is completely depend on
listeners knowledge of music and personal preference this value could get
changed.But as a overall idea musician was impressed with generated mu-
sic and confirmed that generated music is pleasing to hear. The results of each
tester is depicted in following table.

TABLE 7.1: Test results of the generated sound files by tester 1.

Test Category Number of files

Excellent 0
Good 7
Fair 7
Poor 2
Bad 0

TABLE 7.2: Test results of the generated sound files by tester 2.

Test Category Number of files

Excellent 2
Good 6
Fair 5
Poor 2
Bad 1

TABLE 7.3: Test results of the generated sound files by tester 3.

Test Category Number of files

Excellent 1
Good 7
Fair 6
Poor 0
Bad 2

By analyzing above results it is visible that more than 50% of the generated
sounds categorized by the testers under Excellent , Good and Fair. So these
results confirm that the music generation process provide average good results
even though the excellent level of sound files were law. And the final overall

35

results were depicted in bellow chart to get more generalized idea using the
mean values of the results.

Bad: 6.25% Excellent: 6.25%

Poor: 8.31%

Good: 41.67%

Fair: 37.51%

FIGURE 7.4: Results of music evaluation.

As per the mean value results it confirms that the most of the generated data
falls under good and fair category.Which also confirms the success of the gen-
erated model.

7.5 summary

In this chapter described the test results of generated sound files and provide
detailed information about outputs of each part of the system.As per the re-
sults the generated sounds were in good quality and the image classifier per-
formance was improved by using supplement dataset created using GAN.

36

Chapter 8

Conclusion and Future Work

8.1 Introduction

In this chapter provide overall conclusion about the system developed based
on evaluated results and suggest future improvements which could be take
place.

8.2 Conclusion

In this paper critically studied about the generative models and CNN models
and its applicability in the domain of music generation.So generative adver-
sarial networks as a supplement to the existing real image dataset to enhance
the classification accuracy used and achieved good results with higher perfor-
mance.And also critically studied about the existing systems to generate music
and acquired relevant knowledge required for the design of the system.

Design of the system done to achieve the performance as well as implemen-
tation time constrains.Then the implementation of the system done in two
phases. First image classification related implementation and then sound gen-
eration related implementation.In here further step taken and created an API
to access the implementation.A simple web GUI created to illustrate the re-
sults.

Then as next step the system was evaluated with several testers and elaborated
the results.Sixteen sound files with the corresponding image provided to the
musicians and told them to rank the sound image relationship with the quality
of the generated sound.There the system was able achieve 80% of categorical
accuracy for the image classifier after using dataset improved by GAN gener-
ated images for each category.Since music generated based on the probability
values generated by image classifier,the resulting music completely depends
on classification capability of classifier. Even though GAN used to improve
the dataset,some times the system failed to generate the expected amount of
quality in sound file. But as an overall picture system perform well and gen-
erated pleasing sounds.As per the testers opinion on generated images more
than 50% of the generated sounds were ranked under good and fair.Since the
quality check depends on human testers some times the results may bias to
some constraints.So even a sound file ranked as bad could be ranked by an-
other tester as fair or good.And as the final stage documented the all the details
and produced the final documents.

37

8.3 Future work

since the music data contain large amount of data it is quiet challenging to pro-
cess long music clips so if more powerful resources available in time to come
the processing time could be reduced and also the length of the clips generated
and trained can be increased.So expecting to improve the algorithm and add
more processing power and test the model. And also most of the available data
is on wave and mp3 formats if it is possible to improve the system to use that
kind of raw data it will be more useful.

8.4 summary

In this chapter provided the overall conclusion about the system and sug-
gested future enhancements to the system which are open research areas.

38

1000

1004

1008

1010

1012

1014

1016

1024

1026

1028

1030

1036

1040

1042

Appendix A

Code Implementations

A.1 Image Classifier Implementation

from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential

o| from keras.layers import Conv2D, MaxPooling2D

from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K

dimensions of our images.
img_width, img_height = 150, 150

train_data_dir = ’'/Users/dushanjayawardena/Documents/msc/train ’
validation_data_dir = ’/Users/dushanjayawardena/Documents/msc/
validation’

nb_train_samples = 414
nb_validation_samples = 280
epochs = 1000

batch_size = 16

if K.image_data_format() == ’“channels_first’:
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)

»|model = Sequential ()

model.add (Conv2D (32, (3, 3), input_shape=input_shape))
model.add (Activation (“softmax”))
model . add (MaxPooling2D (pool_size=(2, 2)))

model.add (Conv2D (32, (3, 3)))
model.add (Activation (“softmax”))

model . add (MaxPooling2D (pool_size=(2, 2)))

model.add (Conv2D (32, (3, 3)))

>lmodel.add (Activation ("softmax "))

model . add (MaxPooling2D (pool_size=(2, 2)))

model.add (Conv2D (32, (3, 3)))
model.add (Activation ("softmax”))
model . add (MaxPooling2D (pool_size=(2, 2)))

model .add (Conv2D (64, (3, 3)))
model.add (Activation ("softmax”))
model . add (MaxPooling2D (pool_size=(2, 2)))

39

1046

1048

1050

1054

1056

1058

1060

1062

1064

1066

1068

1070

1074

1080

1082

1084

1088

1000

1002

model.add (Flatten ())

model .add (Dense (64))

model.add(Activation ("softmax”))
model.add (Dropout(0.5))
model . add (Dense (3))

model.add (Activation ("softmax”))

model. compile (loss="categorical_crossentropy’,
optimizer="rmsprop’,
metrics=["categorical_accuracy’])

this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator (

rescale=1. / 255,

shear_range=0.2,

zoom_range=0.2,

horizontal_flip=True)

this is the augmentation configuration we will use for testing:
only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)

train_generator = train_datagen.flow_from_directory (
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode="categorical ")

validation_generator = test_datagen.flow_from_directory (
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode="categorical ")

model . fit_generator (
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size)

model.save_weights (’/Users/dushanjayawardena/Documents/first_try .h5’

)

model.save (’/Users/dushanjayawardena/Documents/first_try .model ")

A.2 Music Generator

from music21 import converter, instrument, note, chord, stream
from keras.models import Sequential

from keras.layers import Dense

from keras.layers import Dropout

40

1004

1006

1008

1010

1012

1014

1016

1018

1020

1022

1026

1030

1032

1036

1038

1040

1042

1046

1050

1054

from keras.layers import LSIM

from keras.layers import Activation

from keras.utils import np_utils

from keras.callbacks import ModelCheckpoint

from keras.models import load_model

from keras.preprocessing.image import load_img
from keras.preprocessing.image import img_to_array
from keras.applications.vgglé import preprocess_input
from keras.applications import imagenet_utils
import tensorflow as tf

from PIL import Image

import numpy as np

import flask

import os, random

import io

import glob

import pickle

initialize our Flask application and the Keras model
app = flask.Flask(__name__)
model = None

def load_modelq():

load the pre—trained Keras model (here we are using a model

pre—trained on ImageNet and provided by Keras, but you can

substitute in your own networks just as easily)
global model
model = load_model(’/Users/dushanjayawardena/Documents/first_try
.model ")
global graph
graph = tf.get_default_graph()

def prepare_image (image, target):
if the image mode is not RGB, convert it
if image.mode != "RGB":
image = image.convert("RGB")

resize the input image and preprocess it

image = image.resize (target)

image = img_to_array (image)

image = image.reshape((1, image.shape[0], image.shape[l], image.
shape[2]))

image = preprocess_input(image)

return the processed image
return image
def generate_music(predictions):
notes = []
print(’start of file read’);
for x in range(int(predictions[0][0]*1000)):
#for file in glob.glob("/content/driverl/My Drive/msc/trainmidi/
trainmidi /*.mid") :
#print(file);
filename = random.choice (o0s.listdir ("/Users/
dushanjayawardena/Documents/msc/Angry"))

41

1056

1060

1062

1064

1066

1068

1072

1074

1076

1078

1080

1084

1086

1088

1090

1094

1096

1098

1100

print (filename) ;

file = os.path.join("/Users/dushanjayawardena/Documents/msc/
Angry", filename)
midi = converter.parse(file)
notes_to_parse = None
parts = instrument. partitionBylnstrument (midi)
if parts: # file has instrument parts
notes_to_parse = parts.parts[0].recurse ()

else: # file has notes in a flat structure
notes_to_parse = midi. flat.notes
for element in notes_to_parse:
if isinstance (element, note.Note):
notes.append(str (element. pitch))
elif isinstance (element, chord.Chord):
notes.append(’. .join(str (n) for n in element.
normalOrder))
HH##SHHHHHHH A A AR R
for x in range(int(predictions[0][1]%*1000)):
#for file in glob.glob("/content/driverl/My Drive/msc/trainmidi/
trainmidi /*.mid") :
#print(file);
filename = random.choice (o0s.listdir ("/Users/
dushanjayawardena/Documents/msc/Happy"))
print (filename) ;
file = os.path.join("/Users/dushanjayawardena/Documents/msc/
Happy" , filename)
midi = converter.parse(file)
notes_to_parse = None
parts = instrument. partitionByInstrument (midi)
if parts: # file has instrument parts
notes_to_parse = parts.parts[0].recurse ()
else: # file has notes in a flat structure
notes_to_parse = midi. flat.notes
for element in notes_to_parse:
if isinstance (element, note.Note):
notes.append(str (element. pitch))
elif isinstance (element, chord.Chord):
notes.append(’. .join(str(n) for n in element.
normalOrder))
H#HHHHH A H R R R
for x in range(int(predictions[0][2]%1000)):
#for file in glob.glob("/content/driverl/My Drive/msc/trainmidi/
trainmidi /*.mid") :
#print(file);
filename = random.choice (o0s.listdir ("/Users/
dushanjayawardena/Documents/msc/Happy"))
file = os.path.join("/Users/dushanjayawardena/Documents/msc/
Happy", filename)
midi = converter.parse(file)
notes_to_parse = None
parts = instrument. partitionByInstrument (midi)
if parts: # file has instrument parts
notes_to_parse = parts.parts[0].recurse ()
else: # file has notes in a flat structure
notes_to_parse = midi. flat.notes
for element in notes_to_parse:

42

1104

1106

1108

1110

1114

1116

1118

1120

1122

1124

1126

1128

1132

1134

1136

1140

1144

1146

1148

1150

if isinstance (element, note.Note):
notes.append(str (element. pitch))
elif isinstance (element, chord.Chord):
notes.append(’. .join(str(n) for n in element.
normalOrder))
HAHHHAHHHAHHHAHHHAHHH AR HH AR HHHHHHHAHHHAHH
for x in range(int(predictions[0][3]%*1000)):
#for file in glob.glob("/content/driverl /My Drive/msc/trainmidi/
trainmidi /*.mid") :
#print(file);
filename = random. choice(os.listdir ("/Users/
dushanjayawardena/Documents/msc/Sad"))
print (filename) ;
file = os.path.join("/Users/dushanjayawardena/Documents/msc/
Sad", filename)
midi = converter.parse(file)
notes_to_parse = None
parts = instrument. partitionByInstrument (midi)
if parts: # file has instrument parts
notes_to_parse = parts.parts[0].recurse ()
else: # file has notes in a flat structure
notes_to_parse = midi. flat.notes
for element in notes_to_parse:
if isinstance (element, note.Note):
notes.append(str (element. pitch))
elif isinstance (element, chord.Chord):
notes.append(’. .join(str(n) for n in element.
normalOrder))
print(’end of file read’);
sequence_length = 100
n_vocab = len(set(notes))
#print(n_vocab);
get all pitch names
pitchnames = sorted(set(item for item in notes))
create a dictionary to map pitches to integers
note_to_int = dict((note, number) for number, note in enumerate (
pitchnames))
network_input = []
network_output = []
create input sequences and the corresponding outputs
for i in range(0, len(notes) — sequence_length, 1):
sequence_in = notes[i:i + sequence_length]
sequence_out = notes[i + sequence_length]
network_input.append ([note_to_int[char] for char in
sequence_in])
network_output.append(note_to_int[sequence_out])
#print (len (network_output))
n_patterns = len(network_input)
reshape the input into a format compatible with LSIM layers
network_input = np.reshape(network_input, (n_patterns,
sequence_length , 1))
normalize input
network_input = network_input / float(n_vocab)
print (len (network_output))
network_output = np_utils.to_categorical (network_output)

43

1152

1156

1160

1164

1166

1176

1180

1182

1186

1188

1190

1192

1194

1196

1198

model = Sequential ()
model . add (LSTM(
256,
input_shape=(network_input.shape[1], network_input.shape

[21),

))
model . add (Dropout (0.3))

model.add (LSIM(512, return_sequences=True))

model . add (Dropout (0.3))

model .add (LSTM(256))

model . add (Dense (256))

model . add (Dropout (0.3))

model . add (Dense (n_vocab))

model.add (Activation ("softmax”))

model. compile(loss="categorical_crossentropy’, optimizer="’
rmsprop ")

return_sequences=True

filepath = "/Users/dushanjayawardena/Documents/msc/trainmodel/
weights—improvement—{epoch:02d}—{loss:.4 f}—bigger.hdf5"
checkpoint = ModelCheckpoint(
filepath , monitor="1oss’,
verbose=0,
save_best_only=True,
mode="min’
)
callbacks_list = [checkpoint]
model. fit (network_input, network_output, epochs=20, batch_size
=64, callbacks=callbacks_list)
model. save_weights ("/ Users/dushanjayawardena/Documents/msc/
trainmodel/weights.hdf5")
model.load_weights(’/Users/dushanjayawardena/Documents/msc/
trainmodel/weights.hdf5")

start = np.random.randint(0, len(network_input)—1)
int_to_note = dict ((number, note) for number, note in enumerate (
pitchnames))
pattern = network_input[start]
prediction_output = []
generate 500 notes
for note_index in range(500):
prediction_input = np.reshape(pattern, (1, len(pattern), 1))
prediction_input = prediction_input / float(n_vocab)
prediction = model. predict(prediction_input, verbose=0)
index = np.argmax(prediction)
result = int_to_note[index]
prediction_output.append(result)
pattern=np.append(pattern ,index)
#pattern.append(index)
pattern = pattern[1:len(pattern)]

offset = 0

output_notes = []

create note and chord objects based on the values generated by
the model

44

1200

1204

1206

1208

1210

1214

1216

1220

1224

1226

1228

1234

1236

1238

1240

1242

1246

1248

1252

for pattern in prediction_output:
pattern is a chord
if (7.’ in pattern) or pattern.isdigit():
notes_in_chord = pattern.split(’.")
notes = []
for current_note in notes_in_chord:
new_note = note.Note(int(current_note))
new_note.storedInstrument = instrument.Piano ()
notes.append (new_note)
new_chord = chord.Chord(notes)
new_chord. offset = offset
output_notes.append (new_chord)
pattern is a note

else:
new_note = note.Note(pattern)
new_note. offset = offset
new_note. storedInstrument = instrument.Piano ()

output_notes.append (new_note)
increase offset each iteration so that notes do not stack
offset += 0.5

midi_stream = stream.Stream (output_notes)
midi_stream . write('midi’, fp='/Users/dushanjayawardena/Documents
/msc/test_output.mid”)

@app.route("/predict”, methods=["POST"])

def predict():
initialize the data dictionary that will be returned from the
view
data = {"success": False}

ensure an image was properly uploaded to our endpoint
if flask.request.method == "POST":
if flask.request.files.get("image"):
read the image in PIL format
image flask .request. files["image"].read ()
image = Image.open(io.BytesIO (image))

preprocess the image and prepare it for classification
image = prepare_image (image, target=(150, 150))
with graph.as_default():

classify the input image and then initialize the list

of predictions to return to the client

preds = model. predict (image)

data["predictions"] = []

loop over the results and add them to the list of
returned predictions

r = {"probability": int(preds[0][0])}
data["predictions"].append(r)

r = {"probability": float(preds[0][1])}
data["predictions"].append(r)

r = {"probability": float(preds[0][2])}
data["predictions"].append(r)

45

1254 r = {"probability": float(preds[0][3])}
data["predictions"].append(r)
1256

indicate that the request was a success

1258 data["success"] = True
generate_music (preds)
2e0o| # return the data dictionary as a JSON response

return flask.jsonify(data)

1262

oes| # 1f this is the main thread of execution first load the model and
then start the server

6| if __name__ == "__main__"
print (("+ Loading Keras model and Flask starting server..."
1268 "please wait until server has fully started"))

load_modelq ()
70| app.run()

A.3 GAN Implementation

1000
def generator (input, random_dim, is_train , reuse=False):

1002 c4d, c8, cl6, 32, c64 = 512, 256, 128, 64, 32 # channel num
s4 =4
1004 output_dim = CHANNEL # RGB image
with tf.variable_scope(’gen’) as scope:
1006 if reuse:
scope.reuse_variables ()
1008 wx = tf.get_variable(’wx’, shape=[random_dim, s4 x s4 * c4],

dtype=tf.float32,

initializer=tf.
truncated_normal_initializer (stddev=0.02))
1010 bx = tf.get_variable(’bx’, shape=[c4 * s4 x s4], dtype=tf.

float32,
initializer=tf.constant_initializer
(0.0))
1012 flat_convl = tf.add(tf.matmul(input, wx), bx, name=’

flat_convl”)
#Convolution, bias, activation, repeat!

1014 convl = tf.reshape(flat_convl, shape=[—1, s4, s4, c4], name=
“convl’)
bnl = tf.contrib.layers.batch_norm(convl, is_training=

is_train , epsilon=1e—5, decay = 0.9, updates_collections=None,
scope="bnl")

1016 actl = tf.nn.relu(bnl, name="actl’)
8x8x256
1018 #Convolution, bias, activation, repeat!
conv2 = tf.layers.conv2d_transpose(actl, c8, kernel_size=[5,
5], strides=[2, 2], padding="SAME",
1020 kernel_initializer=tf.

truncated_normal_initializer (stddev=0.02),

46

1024

1026

1028

1030

1032

1036

1038

1040

1042

1044

1046

1050

1052

1056

name="conv2 ")
bn2 = tf.contrib.layers.batch_norm(conv2, is_training=

is_train , epsilon=1e—5, decay = 0.9, updates_collections=None,
scope="bn2")
act2 = tf.nn.relu(bn2, name="act2’)

16x16%128
conv3 = tf.layers.conv2d_transpose(act2, cl6, kernel_size
=[5, 5], strides=[2, 2], padding="SAME",
kernel_initializer=tf.
truncated_normal_initializer (stddev=0.02),
name="conv3’)
bn3 = tf.contrib.layers.batch_norm(conv3, is_training=

is_train , epsilon=1e—5, decay = 0.9, updates_collections=None,
scope="bn3")

act3 = tf.nn.relu(bn3, name="act3"’)

32x32x64

conv4 = tf.layers.conv2d_transpose(act3, c32, kernel_size

=[5, 5], strides=[2, 2], padding="SAME",
kernel_initializer=tf.
truncated_normal_initializer (stddev=0.02),
name="conv4 ")

bn4 = tf.contrib.layers.batch_norm(conv4, is_training=
is_train , epsilon=1e—5, decay = 0.9, updates_collections=None,
scope="bn4")

act4 = tf.nn.relu(bn4, name="act4d’)

64x64%x32

convs = tf.layers.conv2d_transpose(act4d, c64, kernel_size

=[5, 5], strides=[2, 2], padding="SAME",
kernel_initializer=tf.
truncated_normal_initializer (stddev=0.02),
name="conv5 ")

bn5 = tf.contrib.layers.batch_norm(conv5, is_training=
is_train , epsilon=1e—5, decay = 0.9, updates_collections=None,
scope="bn5")

actb = tf.nn.relu(bn5, name="act5")

#128%128%3

convé = tf.layers.conv2d_transpose(act5, output_dim,

kernel_size=[5, 5], strides=[2, 2], padding="SAME",
kernel_initializer=tf.
truncated_normal_initializer (stddev=0.02),
name="convé6 ")

bn6 = tf.contrib.layers.batch_norm(conv6, is_training=
is_train , epsilon=1e—5, decay = 0.9, wupdates_collections=None,
scope="bn6 ")

act6 = tf.nn.tanh(conv6, name="act6”)

return acté

def discriminator (input, is_train, reuse=False):
c2, c4, c8, cl6 = 64, 128, 256, 512 # channel num: 64, 128,
256, 512
with tf.variable_scope(’dis’) as scope:
if reuse:
scope.reuse_variables ()

47

1058

1060

1062

1064

1066

1068

1072

1080

1082

1084

1086

1090

1092

1094

#Convolution, activation, bias, repeat!
convl = tf.layers.conv2d(input, c2, kernel_size=[5, 5],
strides=[2, 2], padding="SAME",
kernel _initializer=tf.
truncated_normal_initializer (stddev=0.02),
name="convl ")
bnl = tf.contrib.layers.batch_norm(convl, is_training =

is_train , epsilon=1e—5, decay = 0.9, updates_collections=None,
scope = 'bnl’)
actl = lrelu(convl, n="actl”)

#Convolution, activation, bias, repeat!
conv2 = tf.layers.conv2d(actl, c4, kernel_size=[5, 5],
strides=[2, 2], padding="SAME",
kernel_initializer=tf.
truncated_normal_initializer (stddev=0.02),
name="conv2’)
bn2 = tf.contrib.layers.batch_norm(conv2, is_training=
is_train , epsilon=1e—5, decay = 0.9, updates_collections=None,
scope="bn2")
act2 = lrelu(bn2, n="act2")
#Convolution, activation, bias, repeat!
conv3 = tf.layers.conv2d(act2, c8, kernel_size=[5, 5],
strides=[2, 2], padding="SAME",
kernel_initializer=tf.
truncated_normal_initializer (stddev=0.02),
name="conv3’)
bn3 = tf.contrib.layers.batch_norm(conv3, is_training=
is_train , epsilon=1e—5, decay = 0.9, updates_collections=None,
scope="bn3")
act3 = lrelu(bn3, n="act3 ")
#Convolution, activation, bias, repeat!
conv4 = tf.layers.conv2d(act3, cl6, kernel_size=[5, 5],
strides=[2, 2], padding="SAME",
kernel_initializer=tf.
truncated_normal_initializer (stddev=0.02),
name="conv4)
bn4 = tf.contrib.layers.batch_norm(conv4, is_training=
is_train , epsilon=1e—5, decay = 0.9, updates_collections=None,
scope="bn4")
act4d = lrelu(bn4, n="act4d’)

start from act4
dim = int(np.prod(act4.get_shape()[1:]))
fcl = tf.reshape(act4, shape=[—1, dim], name="fcl")

w2 = tf.get_variable(’w2’, shape=[fcl.shape[—1], 1], dtype=
tf . float32,
initializer=tf.
truncated_normal_initializer (stddev=0.02))
b2 = tf.get_variable(’'b2’, shape=[1], dtype=tf.float32,
initializer=tf.constant_initializer

(0.0))

wgan just get rid of the sigmoid
logits = tf.add(tf.matmul(fcl, w2), b2, name="logits ")

48

1096

dcgan
acted_out = tf.nn.sigmoid(logits)
return logits #, acted_out

49

Bibliography

[1]
2]

3]
[4]

[5]

[6]
[7]

8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

IAN CROSS. “Music, Cognition, Culture, and Evolution”. In: (), p. 15.
Dragan Matic. “A genetic algorithm for composing music”. In: Yugoslav
Journal of Operations Research 20.1 (2010), pp. 157-177. 1SSN: 0354-0243.
DOI: 10 .2298/YJOR1001157M. URL: http://www . doiserbia.nb.rs/
Article.aspx?ID=0354-02431001157M (visited on 04/07/2018).

Jonatas Manzolli et al. “A METHOD FOR SOUND SYNTHESIS BASED
ON GENETIC ALGORITHMS”. In: (), p. 10.

Xiaoying Wu and Ze-Nian Li. “2-A study of image-based music compo-
sition”. In: IEEE, June 2008, pp. 1345-1348. 1SBN: 978-1-4244-2570-9. DOL:
10.1109/ICME. 2008 . 4607692. URL: http://ieeexplore. ieee . org/
document/4607692/ (visited on 04/07/2018).

Koen E. A. van de Sande, Theo Gevers, and Cees G. M. Snoek. Evaluating
Color Descriptors for Object and Scene Recognition. 2009.

Szabolcs Sergyan. 3-Color Content-based Image Classification.

Hye-Rin Kim et al. “1-Building Emotional Machines: Recognizing Im-
age Emotions through Deep Neural Networks”. In: arXiv:1705.07543 [cs]
(May 21, 2017). arXiv: 1705.07543. URL: http://arxiv.org/abs/1705.
07543 (visited on 05/14/2018).

Bolei Zhou et al. “5-Learning Deep Features for Scene Recognition using
Places Database”. In: (), p. 9.

Xinyue Zhu et al. “4-Data Augmentation in Emotion Classification Us-
ing Generative Adversarial Networks”. In: arXiv:1711.00648 [cs] (Nov. 2,
2017). arXiv: 1711 . 00648. URL: http://arxiv.org/abs/1711.00648
(visited on 04/03/2018).

Junyoung Chung et al. “Empirical Evaluation of Gated Recurrent Neu-
ral Networks on Sequence Modeling”. In: arXiv:1412.3555 [cs] (Dec. 11,
2014). arXiv: 1412 .3555. URL: http://arxiv.org/abs/1412.3555 (vis-
ited on 05/26/2018).

Alex Graves. “Generating Sequences With Recurrent Neural Networks”.
In: arXiv:1308.0850 [cs] (Aug. 4, 2013). arXiv: 1308 . 0850. URL: http://
arxiv.org/abs/1308.0850 (visited on 05/26/2018).

Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent.
“Modeling Temporal Dependencies in High-Dimensional Sequences: Ap-
plication to Polyphonic Music Generation and Transcription”. In: (), p. 8.
Natasha Jaques et al. “Sequence Tutor: Conservative Fine-Tuning of Se-
quence Generation Models with KL-control”. In: arXiv:1611.02796 [cs]
(Now. 8, 2016). arXiv: 1611.02796. URL: http://arxiv.org/abs/1611.
02796 (visited on 05/26/2018).

Adhika Sigit Ramanto and J1 Ganesha No. “Markov Chain Based Proce-
dural Music Generator with User Chosen Mood Compatibility”. In: (),
p- 6.

S.-B. Cho. “6-Emotional Image and Musical Information Retrieval With
Interactive Genetic Algorithm”. In: Proceedings of the IEEE 92.4 (Apr. 2004),

50

pp- 702-711. 1SSN: 0018-9219. DOI: 10. 1109/ JPROC . 2004 . 825900. URL:
http://ieeexplore.ieee.org/document/1278692/ (visited on 05/19/2018).

[16] Saber Malekzadeh et al. “Classical Music Generation in Distinct Dast-
gahs with AlimNet ACGAN”. In: (), p. 5.

[17] Sander Dieleman, Adron van den Oord, and Karen Simonyan. “The chal-
lenge of realistic music generation: modelling raw audio at scale”. In:
arXiv:1806.10474 [cs, eess, stat] (June 26, 2018). arXiv: 1806 . 10474. URL:
http://arxiv.org/abs/1806.10474 (visited on 01/25/2019).

[18] Kevin Joslyn, Naifan Zhuang, and Kien A. Hua. “Deep Segment Hash
Learning for Music Generation”. In: arXiv:1805.12176 [cs, stat] (May 30,
2018). arXiv: 1805 . 12176. URL: http://arxiv.org/abs /1805 . 12176
(visited on 01/25/2019).

[19] Stefan Lattner, Maarten Grachten, and Gerhard Widmer. “Imposing higher-
level Structure in Polyphonic Music Generation using Convolutional Re-
stricted Boltzmann Machines and Constraints”. In: Journal of Creative Mu-
sic Systems 2.1 (Mar. 31, 2018). ISSN: 23997656. DOI: 10.5920/ jcms . 2018.
01.arXiv: 1612.04742. URL: http://arxiv.org/abs/1612.04742 (visited
on 01/25/2019).

[20] Jay A.Hennig, Akash Umakantha, and Ryan C. Williamson. “A Classify-
ing Variational Autoencoder with Application to Polyphonic Music Gen-
eration”. In: arXiv:1711.07050 [cs, stat] (Nov. 19,2017). arXiv: 1711.07050.
URL: http://arxiv.org/abs/1711.07050 (visited on 01/25/2019).

[21] Kratarth Goel, Raunaq Vohra, and J. K. Sahoo. “Polyphonic Music Gen-
eration by Modeling Temporal Dependencies Using a RNN-DBN”. In:
arXiv:1412.7927 [cs] 8681 (2014), pp. 217-224. DOIL: 10.1007/978-3-319-
11179-7_28. arXiv: 1412.7927. URL: http://arxiv.org/abs/1412.7927
(visited on 01/25/2019).

[22] Mason Bretan, Gil Weinberg, and Larry Heck. “A Unit Selection Method-
ology for Music Generation Using Deep Neural Networks”. In: arXiv:1612.03789
[cs] (Dec. 2016). arXiv: 1612.03789. URL: http://arxiv.org/abs/1612.
03789 (visited on 03/22/2019).

[23] Florian Colombo, Alexander Seeholzer, and Wulfram Gerstner. “Deep
Artificial Composer: A Creative Neural Network Model for Automated
Melody Generation”. en. In: Computational Intelligence in Music, Sound,
Art and Design. Ed. by Jodo Correia, Vic Ciesielski, and Antonios Liapis.
Vol. 10198. Cham: Springer International Publishing, 2017, pp. 81-96.
ISBN: 978-3-319-55749-6 978-3-319-55750-2. DOI: 10.1007/978-3-319-
55750-2_6. URL: http://1link. springer.com/10.1007/978-3-319-
55750-2_6 (visited on 03/22/2019).

[24] Huanru Henry Mao, Taylor Shin, and Garrison W. Cottrell. “Deep]: Style-
Specific Music Generation”. In: 2018 IEEE 12th International Conference on
Semantic Computing (ICSC) (Jan. 2018). arXiv: 1801.00887, pp. 377-382.
DOI: 10.1109/ICSC.2018.00077. URL: http://arxiv.org/abs/1801.
00887 (visited on 03/22/2019).

[25] Gino Brunner et al. “JamBot: Music Theory Aware Chord Based Gener-
ation of Polyphonic Music with LSTMs”. In: arXiv:1711.07682 [cs, eess,

51

math, stat] (Nov. 2017). arXiv: 1711.07682. URL: http://arxiv.org/abs/
1711.07682 (visited on 03/22/2019).

[26] Vasanth Kalingeri and Srikanth Grandhe. “Music Generation with Deep
Learning”. In: arXiv:1612.04928 [cs] (Dec. 2016). arXiv: 1612.04928. URL:
http://arxiv.org/abs/1612.04928 (visited on 03/22/2019).

[27] Qi Lyu, Zhiyong Wu, and Jun Zhu. “Polyphonic Music Modelling with
LSTM-RTRBM”. en. In: Proceedings of the 23rd ACM international confer-
ence on Multimedia - MM '15. Brisbane, Australia: ACM Press, 2015, pp. 991-
994. 1SBN: 978-1-4503-3459-4. DOI: 10.1145/2733373.2806383. URL: http:
//dl.acm.org/citation. cfm?doid=2733373 . 2806383 (visited on
03/22/2019).

[28] Hang Chu, Raquel Urtasun, and Sanja Fidler. “Song From PI: A Musi-
cally Plausible Network for Pop Music Generation”. In: arXiv:1611.03477
[cs] (Nov. 2016). arXiv: 1611.03477. URL: http://arxiv.org/abs/1611.
03477 (visited on 03/22/2019).

[29] Jana Machajdik and Allan Hanbury. “5-Affective image classification us-
ing features inspired by psychology and art theory”. In: ACM Press,
2010, p. 83. ISBN: 978-1-60558-933-6. DOI: 10 . 1145 /1873951 . 1873965.
URL: http://dl.acm.org/citation.cfm?doid=1873951. 1873965 (vis-
ited on 05/19/2018).

[30] Xin Lu et al. “On shape and the computability of emotions”. In: ACM
Press, 2012, p. 229. 1SBN: 978-1-4503-1089-5. DOI: 10 . 1145 / 2393347 .
2393384. URL: http://dl.acm. org/citation.cfm?doid=2393347 .
2393384 (visited on 05/26/2018).

[31] Tao Chen et al. “DeepSentiBank: Visual Sentiment Concept Classifica-
tion with Deep Convolutional Neural Networks”. In: arXiv:1410.8586 [cs]
(Oct. 30, 2014). arXiv: 1410.8586. URL: http://arxiv.org/abs/1410.
8586 (visited on 05/26/2018).

[32] Yongli Zhu, Chengxi Liu, and Kai Sun. “Image Embedding of PMU Data
for Deep Learning Towards Transient Disturbance Classification”. In:
2018 IEEE International Conference on Energy Internet (ICEI). 2018 2nd IEEE
International Conference on Energy Internet (ICEI). Beijing: IEEE, May
2018, pp. 169-174. 1SBN: 978-1-5386-4131-6. DOI: 10.1109/ICEI . 2018.
00038. URL: https://ieeexplore. ieee.org/document /8403446/ (Vis-
ited on 01/25/2019).

[33] Arindam Das et al. “Document Image Classification with Intra-Domain
Transfer Learning and Stacked Generalization of Deep Convolutional
Neural Networks”. In: arXiv:1801.09321 [cs] (Jan. 28, 2018). arXiv: 1801.
09321. URL: http://arxiv.org/abs/1801.09321 (visited on 01/25/2019).

[34] Roshan Gopalakrishnan, Yansong Chua, and Laxmi R. Iyer. “Classifying
neuromorphic data using a deep learning framework for image classifi-
cation”. In: arXiv:1807.00578 [cs] (July 2, 2018). arXiv: 1807 . 00578. URL:
http://arxiv.org/abs/1807.00578 (visited on 01/25/2019).

[35] Alhussein Fawzi et al. “Adaptive data augmentation for image classifica-
tion”. en. In: 2016 IEEE International Conference on Image Processing (ICIP).

52

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Phoenix, AZ, USA: IEEE, Sept. 2016, pp. 3688-3692. 1SBN: 978-1-4673-
9961-6. DOI: 10.1109/ICIP.2016.7533048. URL: http://ieeexplore.
ieee.org/document/7533048/ (visited on 03/22/2019).

Ren Wu et al. “Deep Image: Scaling up Image Recognition”. en. In: (),
p- 12.

Saining Xie et al. “Hyper-class augmented and regularized deep learn-
ing for fine-grained image classification”. en. In: 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Boston, MA, USA: IEEE,
June 2015, pp. 2645-2654. 1SBN: 978-1-4673-6964-0. DOI: 10.1109/CVPR.
2015.7298880. URL: http://ieeexplore.ieee.org/document/7298880/
(visited on 03/22/2019).

Luke Taylor and Geoff Nitschke. “Improving Deep Learning with Generic
Data Augmentation”. en. In: 2018 IEEE Symposium Series on Computa-
tional Intelligence (SSCI). Bangalore, India: IEEE, Nov. 2018, pp. 1542-
1547. 1SBN: 978-1-5386-9276-9. DOI: 10.1109/SSCI.2018.8628742. URL:
https://ieeexplore.ieee.org/document/8628742/ (visited on 03/22/2019).
Zhun Zhong et al. “Random Erasing Data Augmentation”. In: arXiv:1708.04896
[cs] (Aug. 2017). arXiv: 1708.04896. URL: http://arxiv.org/abs/1708.
04896 (visited on 03/22/2019).

Sebastien C. Wong et al. “Understanding data augmentation for classifi-
cation: when to warp?” en. In: arXiv:1609.08764 [cs] (Sept. 2016). arXiv:
1609.08764. URL: http://arxiv.org/abs/1609.08764 (visited on 03/22/2019).
Antreas Antoniou, Amos Storkey, and Harrison Edwards. “Data Aug-
mentation Generative Adversarial Networks”. In: arXiv:1711.04340 [cs,
stat] (Nov. 2017). arXiv: 1711.04340. URL: http://arxiv.org/abs/1711.
04340 (visited on 03/22/2019).

Mina Rezaei et al. “Conditional Adversarial Network for Semantic Seg-
mentation of Brain Tumor”. en. In: arXiv:1708.05227 [cs] (Aug. 2017).
arXiv: 1708.05227. URL: http://arxiv.org/abs /1708 . 05227 (visited
on 03/22/2019).

Hojjat Salehinejad et al. “Generalization of Deep Neural Networks for
Chest Pathology Classification in X-Rays Using Generative Adversarial
Networks”. In: arXiv:1712.01636 [cs] (Nov. 2017). arXiv: 1712.01636. URL:
http://arxiv.org/abs/1712.01636 (visited on 03/22/2019).

Xin Yi, Ekta Walia, and Paul Babyn. “Unsupervised and semi-supervised
learning with Categorical Generative Adversarial Networks assisted by
Wasserstein distance for dermoscopy image Classification”. In: arXiv:1804.03700
[cs] (Apr. 2018). arXiv: 1804.03700. URL: http://arxiv.org/abs/1804.
03700 (visited on 03/22/2019).

Wanli Ouyang et al. “3-DeepID-Net: multi-stage and deformable deep
convolutional neural networks for object detection”. In: arXiv:1409.3505
[cs] (Sept. 11, 2014). arXiv: 1409 . 3505. URL: http://arxiv . org/abs/
1409.3505 (visited on 05/19/2018).

Mircea Cimpoi, Subhransu Maji, and Andrea Vedaldi. “Deep filter banks
for texture recognition and segmentation”. In: IEEE, June 2015, pp. 3828-

53

3836. ISBN: 978-1-4673-6964-0. DOI: 10.1109/CVPR. 2015 .7299007. URL:
http://ieeexplore.ieee.org/document/7299007/ (visited on 05/19/2018).

[47] Bolei Zhou et al. “Learning Deep Features for Discriminative Localiza-
tion”. In: arXiv:1512.04150 [cs] (Dec. 13, 2015). arXiv: 1512 . 04150. URL:
http://arxiv.org/abs/1512.04150 (visited on 03/01/2018).

[48] Ian Goodfellow et al. “Generative Adversarial Nets”. In: Advances in
Neural Information Processing Systems 27. Ed. by Z. Ghahramani et al.
Curran Associates, Inc., 2014, pp. 2672-2680. URL: http : / / papers .
nips . cc/paper /5423 - generative - adversarial - nets . pdf (visited
on 04/19/2019).

[49] Martin Arjovsky, Soumith Chintala, and Leon Bottou. “Wasserstein Gen-
erative Adversarial Networks”. en. In: (), p. 10.

[50] Jonas Natten. “Generative Adversarial Networks for Improving Face Clas-
sification.pdf”. PhD thesis. URL: https : //brage . bibsys . no/xmlui/
bitstream/handle/11250/2454822/Natten’,2C%20Jonas . pdf?sequence=
1 (visited on 02/22/2019).

[61] Alec Radford, Luke Metz, and Soumith Chintala. “2-Unsupervised Rep-
resentation Learning with Deep Convolutional Generative Adversarial
Networks”. In: arXiv:1511.06434 [cs] (Nov. 19, 2015). arXiv: 1511.06434.
URL: http://arxiv.org/abs/1511.06434 (visited on 05/19/2018).

[52] Dwarikanath Mahapatra et al. “Efficient Active Learning for Image Clas-
sification and Segmentation using a Sample Selection and Conditional
Generative Adversarial Network”. In: arXiv:1806.05473 [cs] (June 14, 2018).
arXiv: 1806.05473. URL: http://arxiv.org/abs/1806.05473 (visited on
02/22/2019).

[53] Dan Stowell et al. “Detection and Classification of Acoustic Scenes and
Events”. In: IEEE Transactions on Multimedia 17.10 (Oct. 2015), pp. 1733—
1746. 1SSN: 1520-9210, 1941-0077. DOIL: 10 . 1109 / TMM . 2015 . 2428998.
URL: http: //ieeexplore . ieee . org/document / 7100934/ (visited on
05/19/2018).

[54] Allen Huang and Raymond Wu. “Deep Learning for Music.pdf”. In:
arXiv:1606.04930 (). URL: https://arxiv. org/pdf /1606 . 04930 . pdf
(visited on 02/23/2019).

[55] Nikhil Kotecha and Paul Young. “Generating Music using an LSTM Net-
work”. In: arXiv:1804.07300 [cs, eess] (Apr. 18, 2018). arXiv: 1804 .07300.
URL: http://arxiv.org/abs/1804.07300 (visited on 02/22/2019).

54

