EFFECTIVENESS OF EMULSION EXPLOSIVES IN QUARRYING IN HIGH GRADE METAMORPHIC ROCKS IN SRI LANKA

Karagoda Pathiranage Rohana Pathirana

(138456T)

Degree of Master of Science

Department of Earth Resources Engineering

University of Moratuwa Sri Lanka

June 2017

EFFECTIVENESS OF EMULSION EXPLOSIVES IN QUARRYING IN HIGH GRADE METAMORPHIC ROCKS IN SRI LANKA

Karagoda Pathiranage Rohana Pathirana

(138456T)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Mining and Mineral Exploration

Department of Earth Resources Engineering

University of Moratuwa Sri Lanka

June 2017

DECLARATION

I declare that this my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person expect where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part, in future works (such as articles or books).

Signature of the candidate:

.....

K.P.R.Pathirana

The above candidate has carried out research for the Masters under my supervision.

i

Signature of the supervisors:

..... Senior Lecturer, Sarath Weerawarnakula

Date

..... Senior Lecturer, Eng.P.V.A.Hemalal

Date

..... Date

Abstract

In mining, blasting is the predominant method adopted for breaking consolidated rocks with the main objectives being extraction of minerals at minimum cost with minimum damage to the environment.

Explosive is a compound or a mixture of compound which is capable of undergoing extremely rapid decomposition with deflagration or detonation. When the explosive reaction takes place radial cracks are form by as a result of detonation pressure with fragmentations followed by gas pressure.

The optimization of explosive usage in Sri Lankan metamorphic rock is the main objective of this research. The detonation velocity of the explosive should match, as closely as possible, the sonic velocity of the rock to be blasted of rock. The rock's sonic velocity is a reliable indicator of its structural integrity and resistance to fragmentation. With varying rock types, sonic velocities vary with varying structural formations.

Aggregate impact value is one parameter of hardness of rock. This study is conducted by considering the aggregate impact value as the indicator of hardness of rock. Test is planned, keeping blasting parameters constant namely hole diameter, explosives charge, burden, spacing and stemming against the different rock types with different aggregate impact values. The efficient use of explosives, along with the proper selection, will be the key to a successful blasting program. After comparison of the results of production rock volume and fragmentation formulate the explosives usage to get the optimum results that how explosives behave with the different rock types with different aggregate impact values or hardness.

Dautrich method is the first time practically used in Sri Lankan field to determine the velocity of detonation of emulsion explosives in this research. This method is indirect field test method for suggesting VOD of explosives and the determination of the VOD is based on the fact that processes that propagate at different linear velocities travel different distance, in the same time interval.

According to the blast results harder rocks fragmented with emulsion explosives, higher production volume were obtained than less hardness rocks. Increasing the hardness, increasing the production rock volume. Therefore, the relationship with hardness of rock and emulsion explosives usage is observed. Fly rock throw is more important to safety of blasting. This research indicates that fly rock distance is higher with AIV values more than 27. This result clearly indicates that emulsion explosives is very suitable for Sri Lankan metamorphic hard rocks.

ACKNOWLEDGMENT

I would like to express my sincere gratitude to my research project supervisors, Senior lecturer Mr. Sarath Weerawarnakula and Senior lecturer Eng. P.V.A.Hemalal Panagoda for giving generous instructions, extending continuous support, sharing immense knowledge, motivation and correcting the M.Sc. thesis and related studies. They guided me to final path to find correct way during the time of the study and the research period. I could not have imagined having a better advisors and mentors for my MSc study.

Besides being my research project supervisors, I would like to thank the course coordinator Dr.A.M.K.B.Abesinghe and other academic staff members, Prof.P.G.A.Dharmarathne, Prof.U.G.A.Puswawala, Dr.Ranjith Premasiry, Dr.N.P.Rathnayaka, Dr.O.K.Dissanayka, Dr.Shirom Karunarathna, and Eng.L.P.S.Rohitha for their valuable comments and suggestions.

My sincere thanks also go to the non-academic staff of Earth Resource Engineering Department and the quarry owners, Mr.H.P.S.K.Hettiarachchi, Mr.W.S.Ranasinghe, Mr.R.C.P.Senevirathne, Mr.L.D.Indika ranasinghe, Mining engineer Tushara Kurunayaka (Senok Mine), and Mr.Namal Gunathilaka for their immense support in completing the field works to this research.

Finally, I must express my very profound gratitude to my family, wife, two sons for providing me with unfailing support and continuous encouragement throughout my years of study.

TABLE OF CONTENTS

Declaration of the candidate and the supervisors	i
Abstract	ii
Acknowledgements	iii
Table of content	iv
List of figures	viii
List of tables	xii
List of abbreviations	XV

CHAPTER - 01

1.	Introduction	1
	1.1. Introduction to Research	1
	1.2. Problem Statement	1
	1.3. Aims and Objectives	2
	1.3.1. Study aims at evaluating	2
	1.4. Limitations	3

1

4

CHAPTER -02

2.	Literature Survey	4
	2.1. History of rock blasting	4
	2.1.1. Explosives history	5
	2.1.2. Blasting Process	7
	2.1.2.1. Detonation	8
	2.1.2.2. Shock and stress wave propagation	9
	2.1.2.3. Gas pressure	11
	2.1.2.4. Mass movement	12
	2.2. Emulsion usage	12
	2.2.1. What is Emulsion	12
	2.2.2. Properties of emulsion	15
	2.3. Sri Lankan Rocks types	16

CHAPTER -03

3.	Research Methodology	19
	3.1. Quarry selections	20
	3.2. Blasting parameters	22
	3.2.1. Bore hole charging	23
	3.2.2. Detonation velocity(VOD) of Emulsion	24
	3.2.3. Dautriche (D'Autriche) method	24
	3.2.3.1. The preparation to the test	25
	3.2.3.2. Calculation of Velocity of Detonation (VOD)	26
	3.2.3.3. Test Results of Emulsion VOD	27
	3.3. Laboratory strength tests for selected rock types	27
	3.3.1. Aggregate impact value (AIV) test	28
	3.3.2. Uniaxial compression test	30
	3.3.2.1. Core sample preparing to test	32
	3.3.3. Point load test	37
	3.3.4. Brazilian tensile strength	39
	3.3.5. Los Angeles Abrasion Value test (LAAV)	40
	3.3.6. Specific Gravity test	43
	3.3.7. Porosity of rock	44
	3.4. Issues of Significance	45

19

47

CHAPTER -04

4.	Field application of emulsion explosives in hard rock formation	47
	4.1. Selected quarry location - 01	47
	4.1.1. Selection of rock surface and preparation for testing	48
	4.1.2. Field Application Details at location-01	48
	4.1.3. Comparison of the blast location - 01	61
	4.2. Selected quarry location - 02	62
	4.2.1. Selection of rock surface and preparation for testing	63
	4.2.2. Field application details at location-02	63
	4.2.3. Comparison of the blast location-02	76

	4.3. Selected quarry location-03	77
	4.3.1. Selection of rock surface and preparation for testing	78
	4.3.2. Field application details at location-03	78
	4.3.3. Comparison of the blasted location-03	91
	4.4. Selected quarry location - 04	92
	4.4.1. Selection of rock surface and preparation for testing	93
	4.4.2. Field Application Details at location - 04	93
	4.4.3. Comparison of the blasted location-04	106
	4.5. Selected quarry location-05	107
	4.5.1. Selection of rock surface and preparation for testing	108
	4.5.2. Field Application Details at location-05	108
	4.5.3. Comparison of the blasted location-05	121
	4.6. Selected quarry location-06	122
	4.6.1. Selection of rock surface and preparation for testing	123
	4.6.2. Field Application Details at location-06	123
	4.6.3. Comparison of the blasted location-06	136
СН	APTER - 05	137
5.	Fragmentation Summary	137
	5.1. Selected quarry location-01	137
	5.1.1. Brief summary of fragmentation analysis of	
	Blast 01 to Blast 06 (From table 8.1 to table 8.6)	137
	5.2. Selected quarry location-02	138
	5.2.1. Brief summary of fragmentation analysis of	
	Blast 01 to Blast 06 (From table 10.1 to table 10.6)	138
	5.3. Selected quarry location-03	139
	5.3.1. Brief summary of fragmentation analysis of	
	Blast 01 to Blast 06 (From table 12.1 to table 12.6)	139
	5.4. Selected quarry location-04	140

5.4.1. Brief summary of fragmentation analysis of Blast 01 to Blast 06 (From table 14.1 to table14.6) 140

	5.5. Selected quarry location-05	141
	5.5.1. Brief summary of fragmentation analysis of	
	Blast 01 to Blast 06 (From table 16.1 to table 16.6)	141
	5.6. Selected quarry location-06	142
	5.6.1. Brief summary of fragmentation analysis of	
	Blast 01 to Blast 06 (From table 18.1 to table 18.6)	142
CHAPTER -06		144
6.	Discussion	144
	6.1. Comparison of rock characteristics with emulsion explosives	144
	6.2. Comparison of experimental results	145
CH	APTER-07	147
7.	Conclusions and Recommendations	147

REFERENCES :

149

LIST OF FIGURES

<i>Figure-1</i> : Sketch of detonation head.	9
Figure-2 : Schematic illustration of tension crack length and density around	
single shot blasthole.	10
<i>Figure-3</i> : Water in the oil disperse emulsifier.	14
Figure-4 : Schematic of Water-in-oil emulsion.	14
<i>Figure-5</i> : Blast hole charging method.	22
<i>Figure-6</i> : Blast hole parameters.	23
Figure-7.1: Sketch for the preparation to test the VOD by Dautriche method	25
Figure-7.2 : The distance from middle mark of detonating cord to collision ma	ırk
on the plate. (ΔL = off centre distance of plate)	26
Figure-8 : Aggregate impact tester.	29
<i>Figure-9</i> : Applied loads with materials deformations.	31
Figure-10 : Typical stress-strain curve (Hook's law).	32
Figures-11.1-11.13 : Core samples preparation -	33 - 35
Figure - 11:1 to 11:6	33
Figure - 11:7 to 11:12	34
Figure - 11:13	35
Figure-12 : Uniaxial unconfined compression tester.	36
Figure-13 : Point load test.	38
<i>Figure-14</i> : Load applied for indirect tensile strength test.	39
Figure-15 : Los Angeles Abrasion Testing Machine.	42
Figure-16 : Rock Sample, Quartz feldspar fine grain, light colourbiotite rock	
with banding(leucocratic rock).	48
Figure-16.1 : Location -01, Blast- 01.	49
Figure-16.1.1 : Location -01, Blast- 01, Fragmentation Analysis.	50
Figure-16.2 : Location -01, Blast -02.	51
Figure-16.2.1 : Location -01, Blast -02, Fragmentation Analysis.	52
<i>Figure-16.3</i> : Location -01, Blast -03.	53
<i>Figure-16.3.1</i> : Location -01, Blast -03, Fragmentation Analysis.	54

<i>Figure-16.4</i> : Location -01, Blast	- 04.	55
Figure-16.4.1 : Location -01, Blast	-04, Fragmentation Analysis.	56
<i>Figure-16.5</i> : Location -01, Blast	- 05.	57
Figure-16.5.1 : Location -01, Blast	-05, Fragmentation Analysis.	58
<i>Figure-16.6</i> : Location -01, Blast	- 06.	59
Figure-16.6.1 : Location -01, Blast	- 06,Fragmentation Analysis.	60
<i>Figure-17</i> : Rock Sample or loca	ation - 02 - Massive charnockite	
(fine grain) rock.		62
<i>Figure-17.1</i> : Location - 02, Blast	-01.	64
Figure-17.1.1 : Location-02,Blast-0	1-Fragmentation Analysis.	65
<i>Figure-17.2</i> : Location - 02, Blast	-02.	66
Figure-17.2.1 : Location-02,Blast-0	2-Fragmentation Analysis.	67
<i>Figure-17.3</i> : Location - 02, Blass	t -03.	68
Figure-17.3.1 : Location-02, Blast-	03-Fragmentation Analysis.	69
<i>Figure-17.4</i> : Location - 02, Blass	t -04.	70
Figure-17.4.1 : Location-02, Blast-	04 -Fragmentation Analysis.	71
Figure-17.5 : Location - 02, Blas	st -05.	72
Figure-17.5.1 : Location - 02, Blass	t -05-Fragmentation Analysis.	73
<i>Figure-17.6</i> : Location - 02, Blass	t -06.	74
Figure-17.6.1 : Location - 02, Blas	st -06 -Fragmentation Analysis.	75
<i>Figure-18</i> : Sample rock, Band	led charnockite (fine grain) rock.	
(Charnockite with o	beccasional banding and $5\% > \text{garnet.}$)	77
<i>Figure-18-1</i> : Location - 03, Blas	st -01.	79
Figure-18.1.1 : Location-03,Blast-	01-Fragmentation Analysis.	80
Figure-18-2 : Location - 03, Bla	.st -02.	81
Figure-18-2.1 : Llocation-03, Blas	t-02-Fragmentation Analysis.	82
<i>Figure-18-3</i> : Location - 03, Blas	st -03.	83
<i>Figure-18-3.1</i> : Location-03, Blast	-03-Fragmentation Analysis.	84
Figure-18-4 : Location-03, Blas	t -04.	85
Figure-18-4.1 : Location-03, Blast	-04 -Fragmentation Analysis.	86
Figure-18-5 : Location - 03, Bl	ast -05.	87
Figure-18-5.1 : Location - 03, Bla	st-05-Fragmentation Analysis,	88

Figure-18-6	: Location - 03, Blast -06.	89
Figure-18-6.1	: Location - 03, Blast-06 - Fragmentation Analysis.	90
Figure-19	: Sample rock - Medium grain size charnockite rock	
	with banded appearance.	92
Figure-19.1	: Location - 04, Blast -01.	94
Figure-19-1.1	: Location - 04, Blast -01-Fragmentation Analysis.	95
Figure-19.2	: Location - 04, Blast -02.	96
Figure-19.2.1	: Location - 04, Blast -02-Fragmentation Analysis.	97
Figure-19.3	: Location - 04, Blast - 03.	98
Figure-19-3.1	: Location - 04, Blast -03-Fragmentation Analysis.	99
Figure-19-4	: Location - 04, Blast -04.	100
Figure-19-4.1	: Location - 04, Blast -04 - Fragmentation Analysis.	101
Figure-19-5	: Location - 04, Blast - 05.	102
Figure-19-5.1	: Location - 04, Blast -05-Fragmentation Analysis.	103
Figure-19-6	: Location - 04, Blast -06.	104
Figure-19-6.1	: Location - 04, Blast -06-Fragmentation Analysis.	105
Figure-20	: Sample rock -Banded biotite gneiss rock with 5% > garnet.	
	Foliations are not well developed.	107
Figure-20-1	: Location -05, Blast -01.	109
Figure-20.1.1	: Location -05, Blast -01 -Fragmentation Analysis.	110
Figure-20.2	: Location -05, blast -02 .	111
Figure-20.2.1	: Location -05, Blast -02-Fragmentation Analysis.	112
Figure-20.3	: Location -05, blast - 03.	113
<i>Figure-20-3.1</i>	: Location -05, Blast -03- Fragmentation Analysis.	114
Figure-20-4	: Location -05, Blast -04.	115
Figure-20-4.1	: Location -05, Blast -04 -Fragmentation Analysis	116
Figure-20-5	: Location -05, Blast -05.	117
<i>Figure-20-5.1</i>	: Location -05, Blast -05 -Fragmentation Analysis.	118
Figure-20.6	: Location -05, Blast-06.	119
Figure-20.6.1	: Location-05, Blast-06-Fragmentation Analysis.	120
Figure-2	: Sample rock, Banded biotite gneiss rock with	
	well developed foliation.	122

Figure-21.1	: Location - 06, Blast -01.	124
Figure-21.1.1	: Location - 06, Blast -01- Fragmentation analysis.	125
Figure-21.2	: Location - 06, Blast -02.	126
<i>Figure-21.2.1</i>	: Location - 06, Blast -02 - Fragmentation analysis.	127
Figure-21.3	: Location - 06, Blast -03.	128
Figure-21.3.1	: Location - 06, Blast-03, Fragmentation analysis.	129
Figure-21.4	: Location - 06, Blast -04.	130
<i>Figure-21.4.1</i>	: Location - 06, Blast -04, Fragmentation analysis.	131
Figure-21.5	: Location - 06, Blast -05.	132
<i>Figure-21.5.1</i>	: Location - 06, Blast -05, Fragmentation analysis.	133
Figure-21.6	: Location - 06, Blast -06.	134
<i>Figure-21.6.1</i>	: Location - 06, Blast-06, Fragmentation analysis.	135

LIST OF TABLES

Table-1: Metamorphic rocks by texture.	18
Table-2: Field application measurements and results are as follows.	20
Table-3: Selected quarry locations and rock types are as fallows.	21
Table-4: Parameters of bore hole charging.	23
Table-5: VOD of Emulsion.	27
Table-6: LAAV grading and abrasive charge weight of number of balls.	41
Table-7: Grading of test samples.	42
Table-8.1 : Fragmentation Analysis of Location-01, blast-01 of Figure-16.1.1	50
Table-8.2 : Fragmentation Analysis of Location-01, blast-02 of Figure-16.2.1	52
Table-8.3 : Fragmentation Analysis of Location-01, blast-03 of Figure-16.3.1	54
Table-8.4 : Fragmentation Analysis of Location-01, blast -04 of Figure-16.4.1	56
Table-8.5 : Fragmentation Analysis of Location-01, blast -05 of Figure-16.5.1	58
Table-8.6 : Fragmentation Analysis of Location-01, blast -06 of Figure-16.6.1	60
Table-9: The summary of Six boreholes blasting at Location-01.	61
Table-10.1: Fragmentation Analysis of Location-02, blast- 01 of Figure-17.1.1	65
Table-10.2: Fragmentation Analysis of Location-02, blast- 02 of Figure-17.2.1	67
Table-10.3: Fragmentation Analysis of Location-02, blast- 03 of Figure-17.3.1	69
Table-10.4: Fragmentation Analysis of Location-02, blast- 04 of Figure-17.4.1	71
Table-10.5: Fragmentation Analysis of Location-02, blast- 05 of Figure-17.5.1	73
Table-10.6: Fragmentation Analysis of Location-02, blast- 06 of Figure-17.6.1	75
Table-11: The summary of Six boreholes blasting at location-02.	76
Table-12.1: Fragmentation Analysis of Location-03, blast- 01 of Figure-18.1.1	80
Table-12.2: Fragmentation Analysis of Location-03, blast- 02 of Figure-18.2.1	82
Table-12.3: Fragmentation Analysis of Location-03, blast- 03 of Figure-18.3.1	84
Table-12.4: Fragmentation Analysis of Location-03, blast- 04 of Figure-18.4.1	86
Table-12.5: Fragmentation Analysis of Location-03, blast- 05 of Figure-18.5.1	88
Table-12.6: Fragmentation Analysis of Location-03, blast- 06 of Figure-18.6.1	90
Table-13: The summary of Six boreholes blasting at Location-03.	91
Table-14.1: Fragmentation Analysis of Location-04, blast - 01 of Figure-19.1.1	95

Table-14.2: Fragmentation Analysis of Location-04, blast - 02 of Figure-19.2.1	97
Table-14.3: Fragmentation Analysis of Location-04, blast-03	
of Figure-19.3.1	99
Table-14.4: Fragmentation Analysis of Location-04, blast-04	
of Figure-19.4.1	101
Table-14.5: Fragmentation Analysis of Location-04, blast-05	
of Figure-19.5.1	103
Table-14.6: Fragmentation Analysis of Location-04, blast-06	
of Figure-19.6.1	105
Table-15 : The summary of Six boreholes blasting at Location-04.	106
Table-16.1: Fragmentation Analysis of Location-05, blas-01	
of Figure-20.1.1	110
Table-16.2: Fragmentation Analysis of Location-05, blast-02	
of Figure-20.2.1	112
Table-16.3: Fragmentation Analysis of Location-05, blast-03	
of Figure-20.3.1	114
Table-16.4: Fragmentation Analysis of Location-05, blast-04	
of Figure-20.4.1	116
Table-16.5: Fragmentation Analysis of Location-05, blast-05	
of Figure-20.5.1	118
Table-16.6: Fragmentation Analysis of Location-05, blast-06	
of Figure-20.6.1	120
Table-17 : The summary of Six boreholes blasting at Location-05.	121
Table-18.1: Fragmentation Analysis of Location-06, blast-01	
of Figure-21.1.1	125
Table-18.2: Fragmentation Analysis of Location-06, blast-02	
of Figure-21.2.1	127
Table-18.3: Fragmentation Analysis of Location-06, blast-03	
of Figure-21.3.1	129
Table-18.4: Fragmentation Analysis of Location-06, blast-04	
of Figure-21.4.1	131

Table-18.5: Fragmentation Analysis of Location-06, blast-05	
of Figure-21.5.1	133
Table-18.6: Fragmentation Analysis of Location-06, blast-06	
of Figure-21.6.1	135
Table-19: The summary of Six boreholes blasting at Location-06.	136
Table-20: Fragmentation Summary of Location-01, table 8.1 to 8.6	137
Table-21 : Fragmentation Summary of Location-02, table10.1 to 10.6	138
Table-22: Fragmentation Summary of Location-03, table12.1 to 12.6	139
Table-23: Fragmentation Summary of Location-01, table14.1 to 14.6	140
Table-24 : Fragmentation Summary of Location-01, table16.1 to 16.6	141
Table-25 : Fragmentation Summary of Location-01, table18.1 to 18.6	142
Table-26 : Fragmentation summary of above six blasts of	
Location01 to location 06.	143
Table-27 : Comparison of six rock types blasted with emulsion explosives.	145
Table-28 : Table-28. Average summary of blasting results.	
(Summarize of table-26 and table-27)	146

LIST OF ABBREVIATIONS

AIV	-	Aggregate Impact Value
AN	-	Ammonium Nitrate
ANFO	-	Ammonium Nitrate - Fuel Oil
BC	-	before crist
^{0}C	-	Celsius Degree
CEA	-	Central Environmental Authority
CJ	-	Chapman - Jouguet
DC	-	Detonating Cord
Ε	-	East
ft	-	feet
ftsec ⁻¹	-	feet per second
g	-	gram
gcm ⁻³	-	gram per cubic centimeter
GSMB	-	Geological Survey And Mines Bureau
kg	-	kilo gram
kgm ⁻³	-	kilogram per cubic meter
kPa	-	kilo Pascal
LAAV	-	Los Angeles Abrasion Value
m	-	meter
m^2	-	square meter
mm	-	millimeter
ms ⁻¹	-	meter per second
Ν	-	Newton
Ν	-	North
NMAS	-	Nominal Maximum Aggregate Size
Pasm ⁻³	-	Pascal second per cubic meter
Pd	-	detonation pressure
SSD	-	Saturated Surface Dry
UCS	-	Uniaxial Compressive Strength

UK	-	United Kingdom
USA	-	United State of America
VOD Emulsion	-	Velocity of Detonation of Emulsion
VOD	-	Velocity of Detonation
VOD	-	Velocity of Detonation
VSO	-	Sonic Velocity
Z	-	Acoustic impedance