
DESIGN AND DEVELOPMENT OF AN INTERACTIVE

ROBOTIC CONVERSATIONAL COMPANION FOR

ELDERLY PEOPLE

Gonapinuwala Withanage Malith Manuhara

149357H

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa

Sri Lanka

April 2019

 i

DESIGN AND DEVELOPMENT OF AN INTERACTIVE

ROBOTIC CONVERSATIONAL COMPANION FOR

ELDERLY PEOPLE

Gonapinuwala Withanage Malith Manuhara

149357H

Dissertation submitted in partial fulfillment of the requirements for the degree Master

of Science

Department of Electrical Engineering

University of Moratuwa

Sri Lanka

April 2019

 ii

Declaration of the Candidate & Supervisor

I declare that this is my own work and this dissertation does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my dissertation, in whole or in part in print, electronic or other

medium. I retain the right to use this content in whole or part in future works (such as

articles or books).

Signature: Date:

The supervisor should certify the dissertation with the following declaration.

The above candidate has carried out research for the Masters dissertation under my

supervision.

Signature of the supervisor: Date:

 iii

Abstract

The ageing of population is rapidly accelerating worldwide and as a result

countries are facing social and economic challenges. Hence, the majority of the

elderly population all around the world is facing difficulties.

The loss of ability is typically associated with ageing and the elders require

special attention in both physical and mental concerns. The requirement of a suitable

caretaker becomes very important in caring for an elderly person. A human caretaker

would be the ideal solution. But the availability of such genuine resource is a very

rare luxury in the modern society. Hence the society and the elderly population are in

need of a suitable alternate solution. Introduction of service robots has become a very

promising development in addressing problems faced by elderly population in the

world. This research work proposes a robotic conversational companion capable of

vocal interaction with elderly users in human like dialogues, during service

assistance.

A Finite State Interaction Module (FSIM) and a regular expression based

language identification method have been introduced for facilitating this task. A

Knowledge Database (KDB) containing specific data has been designed,

implemented and connected with the robot system to enable more meaningful and

natural dialogue creation. State transition diagram and event flow diagrams

explaining the functionality of the states are presented. The robots performance has

been evaluated by user rating.

Experimental results including a selected segment of conversation are

presented with an analysis including the change of FSIM states. Human user has

been asked to interact with the experimental setup and rate the user experience

varying from “Very Bad” to “Excellent”. The evaluation results have indicated a

high user satisfaction rate close to “Good”, validating the robots capability to interact

in a human friendly manner during service assistance.

 iv

Acknowledgement

A great many people have contributed the completion of this dissertation. I owe my

sincere gratitude to all those people who have made this dissertation possible. My

supervisor Dr. Buddhika Jayasekara has given me the greatest support and guidance

throughout the research project. His patience and support helped me in many difficult

situations. I am also thankful not only for his technical advice but also for advice on

my writings, carefully reading and commenting on revisions of this manuscript. I

would also like to acknowledge the support provided by Mr. Viraj Muthugala.

Especially I would like to thank all the academic staff of the Department of Electrical

Engineering, Faculty of Engineering, University of Moratuwa for their guidance. I

would also like to acknowledge for technical assistant staff of the Department for

their support for laboratory work.

None of this would have been possible without the love and patience of my family.

 v

Table of Content

Declaration of the Candidate & Supervisor ... ii

Abstract ... iii

Acknowledgement... iv

Table of Content ... v

List of Figures .. vii

List of Tables... viii

List of Abbreviations... ix

CHAPTER 1: Introduction ... 1

1.1 Service Robot for Elderly People ... 1

1.2 Human Robot Interaction ... 1

1.3 Importance of Natural Language ... 2

1.4 Objective of the Research .. 2

1.5 Human – Robot Communication for Service Robots .. 3

1.6 Research Methodology... 8

1.7 Organization of the Dissertation .. 9

CHAPTER 2: System Overview .. 10

2.1 Software and Tools .. 11

2.2 Voice Recognition .. 12

2.3 String Conditioning .. 14

2.4 Interaction Management Module (IMM) ... 15

2.4.1 Finite State Interaction Module (FSIM) ... 15

2.4.2 Scheduler Engine (SE) ... 16

2.5 Knowledge Database (KDB) ... 16

2.6 Voice Generation ... 17

CHAPTER 3: Finite State Interaction Module .. 18

3.1 Finite State Machine .. 18

3.2 Functionality of States ... 19

CHAPTER 4: User Interaction... 23

4.1 Regular Expression Based Language Patterns ... 23

4.2 Information Source... 26

4.2.1 Question Feedback ... 27

 vi

4.2.2 General Feedback ... 28

4.3 User Reminders .. 28

CHAPTER 5: The Experimental Setup and Results .. 30

5.1 Moratuwa Intelligent Robot (MIRob) .. 32

5.2 Experiments and Results .. 33

CHAPTER 6: Conclusion and Future Works .. 43

6.1 Conclusion ... 43

6.2 Future Works .. 44

References .. 45

Publications .. 48

Appendix A: Python Programme Code ... 49

 vii

List of Figures

Fig. 2.1 : Functional overview of the system. .. 11

Fig. 2.2 : Symbol of Python programming language ... 11

Fig. 2.3 : Symbol of Anaconda open source distribution ... 12

Fig. 2.4 : Symbol of PyCharm IDE .. 12

Fig. 2.5 : Voice to text conversion process .. 13

Fig. 2.6 : Example of a State Diagram ... 15

Fig. 3.1 : The finite state transition diagram of finite state interaction module. 18

Fig. 3.2 : The event flow of the “Main” state .. 19

Fig. 3.3 : The event flow of the “Question Feedback” state 21

Fig. 3.4 : (a) The event flow of the “Scheduler” state (b) The event flow of the

“Update Scheduler” state ... 22

Fig. 4.1 : Mettacharacters of Regular Expression Language 23

Fig. 4.2 : Terminal output during a live conversation between the robot system and

the human user ... 26

Fig. 4.3 : Terminal output during a live conversation between the robot system and

the human user ... 27

Fig. 4.4 : Terminal output during a reminder execution .. 29

Fig. 5.1 : The system being tested with Moratuwa Intelligent Robot (MIRob) 32

Fig. 5.2 : (a) and (b) Terminal output of the conversation indicating transfer of states

 .. 37

Fig. 5.3 : Graphical view of the evaluation form ... 38

Fig. 5.4 : Gender variation of the population volunteered for the survey 39

Fig. 5.5 : English proficiency variation of the population volunteered for the survey

 .. 39

Fig. 5.6 : User evaluation results obtained during the experiment. The box plot has

the standard notation. ... 41

Fig. 5.7 : Rating given by the population volunteered for the survey 42

 viii

List of Tables

Table 5.1 : Change of state through the dialogue segment .. 40

 ix

List of Abbreviations

ABNF Augmented Backus-Naur Form

API Application Programming Interface

DOF Degree of Freedom

FSIM Finite State Interaction Module

HMM Hidden Markov Model

IDE Integrated Development Environment

MFCC Mel-frequency Cepstral Coefficients

NLP Natural Language Processing

ROS Robot Operating System

TTS Text to Speech

 1

CHAPTER 1: INTRODUCTION

1.1 Service Robot for Elderly People

One of the major problems faced by majority of the elderly population in the

world is inability to live independently. Ageing makes it harder for them to cope with

day to day activities such as health care, mobility and fulfilling personal needs [1].

Not only these physical difficulties but also difficulties related to maintaining

interpersonal interactions & relationships are regularly experienced. Hence, lack of

companionship, loneliness, depression and social isolation are common issues to

elderly population. Anyhow, caring assistance from a genuine human care taker is

not an easy option always [2] [3].

As a result, elders are seeking for some sort of assistance through technology

for the activities that they are unable to perform independently [4]. With

technological advancements and new research and developments, service robotics is

becoming a very promising development in addressing the above issue [5][6].

However, it is important to know the perspective of the society regarding the idea of

machine taking care of their loved ones; it shows that the society is well prepared to

adopt this new method [7][8]. Further, researches indicate that robots can take care of

elderly while improving social relations without making negative effect on elderly

person’s dignity [9].

1.2 Human Robot Interaction

In order to achieve these, robots should be carefully developed with human

friendly intelligence. Robots should have better social behavior and special social

skills beyond just the functional capabilities [10]. Hence, communication skills of the

robot play a critical role in enabling more natural Human Robot Interactions (HRI).

HRI is a field with high attention from both academic and industrial community. It

 2

focuses in understanding, designing, and evaluating robotic systems pertaining

specially to humans [11].

1.3 Importance of Natural Language

An ideal service robot designed for elderly should be capable of conducting

natural human like communication since vocal instructions being the most sensed

and preferred communication method practiced by humans [12]-[14]. The elderly

community is looking forward for technological assistance in their day today service

requirements without feeling any difference to having a human caretaker. Therefor

human friendly intelligent service robot designed for assisting such elderly

community should have the ability of understanding human vocal instructions and

appropriately responding with natural human to human like communication.

1.4 Objective of the Research

Many researches have been conducted on improving the vocal

communication between robots and humans. However, it still remains an unresolved

quest of finding the perfection in human robot interactive communication [26].

Keeping that in mind the objectives of this research work are defined as,

 Propose a suitable architecture for developing a service oriented

conversational companion robot for elderly people.

 Design and develop a conversational companion robot that is capable of

interacting with elderly user with human like interactive dialogues for

assisting them during service requests.

 Propose a suitable method for validating the proposed system and validate the

developed system to determine the robots capability to interact in a human

friendly manner during service assistance.

 3

1.5 Human – Robot Communication for Service Robots

Method of developing a human - robot communication model based on

multimodal and multisensory human behavior analysis has been presented. The

model makes use of both verbal and nonverbal behavioral patterns of elderly to

analyze and provide mobility assistance through human interactions. The researchers

highlight the essential requirement of an interactive robot system capable of

employing service capability improved through communicative actions and to enable

a strong and competent communication with the service recipient. Technological

fields of speech recognition, gesture interpretation, dialogue management, speech

synthesis, and generation, face detection, recognition and detection of human

activities have been used to correspond or to mimic human communicative

capabilities in the developed communication model. The model considers several

communicative functions that incorporates knowledge from natural human-human

interactions. The communicative functions are action-directives, information-

requests, assertions and meta-communicative actions. The communication model

proposed is a mix of a state and frame-based model and the mix is in line of

McTear’s categorization. Observations from human communication behaviors and

patient-care interactions have been abstracted into human-robot communication

patterns. Recording scenarios and measurements close to real life situations have

been collected for developing the HRI model. [15]

Details on communication model that needs to be integrated into the robotic

platform in order to allow a more natural human-robot interaction through a

multimodal architecture has been discussed. Natural communication has been

implemented based on activity detector and a Hidden Markov Model (HMM). The

spoken command recognition system uses activity detector as the first step to detect

time segments in the audio stream containing spoken commands. Then, a set of

HMM models are trained as the second step. A study has been conducted to identify

natural multimodal interactions. These interactions corresponds to core activities of

the addressed audience. Information with respect to human to human

communications during the performance of day to day activities in between elderly

 4

people and their human caretakers are been analyzed by the study. Improvement to

the proposed communication model by addition of enhanced set of audio-gestural

commands is suggested as future work. In addition, the researchers suggests to

finalize the proposed communication scheme by developing an algorithmic flow

diagram of all possible interaction states pertaining to the communication model.

Further the researchers highlight the fact that development of safe systems specially

designed for indoor mobility assistance must include effective and natural interaction

between the particular system and the operator. [16]

Researchers highlight the fact that determining the success in developing

assistive robots is considered to be majorly based on user evaluation and acceptance.

Implementation has been evaluated with end users and promising results are

available for the navigational assistance in real-world scenarios. The evaluation has

been performed in two phases. During the first phase, a participants group of 36

patients have been selected according to well-defined criteria. The group members

have been selected from various environments under the supervision of a medical

institution. In respect of evaluating communicational aspects during the first phase,

users native language, German, has been used to repeat a sequence of five commands

three. The final phase of evaluation has been conducted with the participation of

more than 30 subjects. Audio-gestural human-robot communication and cognitive

(navigation) assistance system has been validated by this study of evaluation. Two

specific test scenarios has been developed. The developed test scenarios consist of

tailored assessment methods and performance metrics of qualitative as well as

quantitative analysis. The researchers identify that standard methodology or a

standard scale has not been developed for measuring the user satisfaction based on

user experience of interacting and receiving services from an assistive robot or any

technology similar to that. Hence the researchers categorize the evaluation process as

rather difficult. Therefore, a custom questionnaire has been used by the researchers

to measure the user satisfaction level. The researchers have failed to use validated

scale or a questionnaire resulting limitations in comparing the final results with any

other previous work conducted by other researchers. [17]

 5

Robot Operating System (ROS) has been based for designing a robot capable

of object sorting. ROS is a distributed processing framework used for development

of robots. The robot is capable of communicating with human beings. One out of

three embedded computers in the robot system; a microphone and a speaker is

connected to one of them in order to implement natural language interaction and

reasoning. This implementation of natural language interaction and reasoning aspects

act as the brains of the system. The overall system consist of multiple nodes. Out of

which the input speech is used by speech recognition node for generating a text

string. Following processers are used by speech recognition node

I. Input speech signal noise reduction

II. Mel-frequency cepstral coefficients (MFCC) feature extraction

III. Speech decoding by combining the Hidden Markov Model (HMM)

acoustic model and Ngram language model.

The speech synthesis node receives the output text. The speech synthesis node

utilizes text-to-speech (TTS) technology. TTS process the recieved text. The

researchers propose a human-robot-environment interactive reasoning mechanism.

This mechanism is based on traditional CBR-BDI mechanism. Further they have

proposed a “dialogue and 3D scene interaction module” to improve the performance

of traditional CBR-BDI mechanism. Desire analysis is an additional function

achieved by the interaction module in addition to realizing the traditional function of

map matching. The robot has been designed in such manner where it is capable of

analyzing user’s desire. The robot can take the initiative to guide users through

dialogue when the user’s desire is incomplete and the user’s former desire can be

replenished by using input information. The guidance base is constructed based on

dialogue generating function corresponded by each node. [18]

 A conversation architecture based on Grice’s maxims has been used for

developing chatter bot for customer service applications. Researchers identify that

existing well performing conversation generation approaches exchanges pairwise

utterances only and doesn’t perform well in longer conversations. Further these

platforms utilize linguistic and stochastic principles and have low grammatical and

structural aspects.

 6

 The aim of this research is to develop chatter robots that can perform long

conversations with more meaningful human-like behavior. In order for robot to

represent the behavior of a human representative, chatter agents capable of

continuing longer conversations have been designed and the robots have been

utilized with capabilities to perform conversations beyond just question and answer

sessions. Chatter bot conversations with more meaningful content and context has

been simulated using the proposed architecture by the research team. The

conversation development module is made of Knowledge Engine and the

Conversation Engine. A speech acts hash table and topics hash table creates the

Knowledge Engine where a context map defines each topic. The Conversation

Engine is made up with the conversation planner module and automated probabilistic

finite state machine. The evaluation mechanism is based on the Grice’s cooperative

maxims. Grice’s cooperative maxims is the most basic idea behind theory of

pragmatics. Artificial conversation capabilities of several other existing chatter bots

have been compared against actual conversations. The results describes that sample

conversations grade well against Grice’s four maxims by satisfying quality maxim,

quantity maxim, relation maxim and manner maxim. The results exhibits that the

chatter bot can hold meaningful conversations and develop long conversations. [19].

An interactive dialog system capable of continuing a conversation with the

user for retrieving user’s personal details has been developed. Natural Language

Processing has been utilized for extracting user’s personal information and

developing a detailed user dataset. The main goal of natural language processing is to

give a computer with the ability to interact with people the way people interact with

each other. This user profile has been used to customize and adopt conversations to

make the relationship between the user and robot more trustworthy and comfortable.

The user profile has been designed to update automatically whenever new knowledge

is extracted from dialogues. The proposed system platform has been developed using

python. Personal details and keywords are extracted by the Rapid Automatic

Keyword Extraction (RAKE) and search for text functions. Both these technologies

are python implementations. This developed system has been tested using college

 7

students. Ten students in the age group of 20 to 30 years representing both

sexualities. The survey group had been asked to grade the robots performance in

terms of relevancy and capability to identify the user. [20] [21]

The research paper presents a review conducted on service robots that

requires to engage with uncertain information in natural language vocal interactions.

It highlights the use of fuzzy systems as a method of decoding uncertain information.

The existing systems developed for decoding uncertain information in vocal

interactions could not match the human cognitive capabilities pertaining to decoding

uncertain information. [22] A method has been proposed to successfully decode

uncertain information pertaining to navigational instructions. The proposed method

is effective and it uses robots knowledge in uncertain information. Robot gathers

knowledge on uncertain information by analyzing the environment and refereeing

user descriptions. Certain functional modules such as Uncertain Information

Understanding Module (UIUM), Feedback Evaluation Module (FEM), Interaction

Management Module (IMM) and Robot Experience Model (REM) have been

introduced in the proposed method. The UIUM module is made up of fuzzy based

neural networks. All the information pertaining to robots understanding on

surrounding environment, actions being taken place and context are organized in the

REM. Language memory is used to analyzed and identify the vocal commands. The

language memory consist of various keywords, lexical symbols and basic grammar

components. The developed system is capable of updating the REM with the facts

learned through interactive conversations. The vocal interactions in between the

robot and the user are managed by means of a finite state module. The success of the

developed interactive robot system has been measured through a user study. An

artificially created indoor environment has been used to conduct the said user study.

The performance results of the study is based on an index. Study results based on this

“satisfactory level” index shows that the performance of this proposed method is

better than existing methods. [23] [24].

 8

An overview of research in human–robot interactive communication has been

presented. Research advancements in both verbal and nonverbal aspects have been

discussed [25].

 In summary, it is evident that Research and developments on Human – Robot

Vocal interaction for Service Robots is a live topic at present among academia.

Various algorithms and methods have been experimented in developing vocal

interaction mechanisms suitable for different applications. Available literature

expose service robots with vocal interaction capability designed for different

applications such as,

 Navigational Assistant

 Object Sorting

 Customer Service

 Information Extraction

Development of an Interactive Robotic Conversational Companion for Elderly

People is a new addition to the above list.

1.6 Research Methodology

First step is to clearly identify the inputs, outputs and main components of the

desired robot system. Then, a suitable mechanism has to be proposed to design the

core of the robot system to cater the service oriented human like communication

requirement. There is a very vast scope for service oriented applications and related

communication requirements when assisting elders in their day to day activities,

hence the development scope of this research required to be limited to satisfy the

testing and evaluation process to complete the research within time limitations.

Identification and recording of natural human like dialog patterns pertaining to

service oriented requests and responses is the next important step. Since the proposed

robot system should conduct human like natural communication, it is required to

collect sufficient amount of data for identifying natural human like dialog patterns.

The Next step is to design the core of the robot system and develop it to operate on

 9

real word hardware with input and output mechanisms. For this, appropriate

hardware and software requirements has to be identified and the designed robot

system has to be developed on them.

Finally, the developed robot system need to be validated to determine the robots

capability to interact in a human friendly manner during service assistance. For this,

a rating based evaluation method is to be used. The robot system is put into interact

with real human users and the user rating is recorded for final evaluation.

1.7 Organization of the Dissertation

This is the introductory chapter explaining the requirement for initiation this

research work and the scope of the work being done. This chapter also describes

related research work conducted by other researches. It presents background

information required for understanding latest advancements of the field and makes

familiar with existing developments. The rest of this dissertation is organized as

follows.

Chapter Two elaborates on functional overview of the robot system.

Implementation of Finite State Interaction Module (FSIM) is explained in Chapter

Three. Chapter Four describes special architectures used in the robot system to

enable more human like dialogue interactions. Robot hardware and software

structure with implementation methodology of the experimental setup is explained in

Chapter Five. Finally, the chapter Six concludes the research work with results and

conclusion.

 10

CHAPTER 2: SYSTEM OVERVIEW

Input and output of the designed robot communication system shall be human

voice and machine voice respectively. The elderly user may utter service requests

and the robot shall be capable of understanding and providing meaningful responses

while developing a natural dialogue.

The complete functional overview of the system is illustrated in Fig. 2.1 in a

modular format. The basic function of the illustrated system is to interact with the

elderly user through human like dialogues as an assistive conversation companion.

The system capacity mainly covers service assistance where it is capable of

recognizing and understanding user utterances and responding to assist the elderly

user. Recognition and understanding of the user utterance is performed by the Voice

Recognition and Understanding module where the user utterance is ultimately

converted into a raw text. Matching the user voice input and production of a raw text

transcription is performed with the help of Google Speech Recognition Application

Programming Interface (API). Recognized raw text is then processed to comply with

the Interaction Management Module (IMM) through String Conditioning. All the

interactions are managed by the IMM which consist of a Finite State Interaction

Module (FSIM) and a Scheduler Engine (SE). SE sub module is responsible for

invoking reminders for the user. It enables the system to bring the attention of the

elderly user towards scheduled tasks and provide further instructions. A particular

recognized text pertaining to a particular user utterance is processed through the

IMM and a relevant response is generated in text format. This text is then fed to the

Voice Response Generation module where the Voice Output is generated with the

help of Python Text to Speech (TTS) library. In order to generate more user friendly

dialogues, the system consist of a Knowledge Database (KDB). KDB is designed for

storing information related to language patterns, user specific information and object

specific information. The three sub databases of KDB are referred by the IMM for

generating more user friendly responses. The system is capable of updating the KDB

with reference to the user interactions.

 11

Fig. 2.1 : Functional overview of the system.

2.1 Software and Tools

The proposed system has been implemented using Python. Python is a

programming language developed by Guido van Rossum available in 1991 for the

first time. It is customary in use as a general-purpose programming language where

high-level core interpreted to suit the purpose. Python code is readable and use large

amount of whitespaces. It is a core design philosophy of this language. Python

version 3.5.2 has been used in this development.

Fig. 2.2 : Symbol of Python programming language

As the source of Python, Anaconda has been used. Anaconda is a distribution

of Python and R programming languages. It is free and open source. This distribution

 12

of Python and R is mainly used for developing applications requiring data science

and machine learning aspects. Since, it simplify deployment and package

management. Anaconda version 4.2.0 64 bit version has been used in this

development.

Fig. 2.3 : Symbol of Anaconda open source distribution

PyCharm is a source code editor or Integrated Development Environment

(IDE). This IDE is customary designed for the Python language by the Czech

company JetBrains.

Fig. 2.4 : Symbol of PyCharm IDE

2.2 Voice Recognition

Voice or speech recognition plays a key role in this development. The robot

should be able to clearly identify and recognize voice content from the elderly user in

order to reply with a proper respond. Voice recognition take place in several steps.

Ultimate target of these steps is to convert the vocal information into machine

understandable and easily processable format, in simple words it is the process of

converting spoken words into text. Human user’s voice is the first component of the

 13

process. This physical energy is transferred into an electrical signal using a

microphone. The result is an analog electrical signal, representing the original voice

data. Next the analog signal is digitized to make it a machine understandable and

easily processable signal. An analog to digital converter module is used for this

conversion. Still the vocal data is available as a digital signal which is a very easily

processable format. This digital signal is converted into a text string using several

software modules. A text string is a very suitable format for information extraction

and manipulation.

Fig. 2.5 : Voice to text conversion process

A typical digital audio signal to text string conversion process consist of a

complex methodology, involving simplification algorithms and efficient computation

methods. In general, the process would involve identification of audio segments of

utterances by splitting the waveform by audio segments of silences. Then the

selected audio portions have to be further sliced to form smaller pieces of voice

segments, such as audio wave segments of as long as 10 ms duration. Finally, extract

information from the smallest piece to select the best matching combination from a

database.

Python supports many speech recognition engines and Application Programming

Interfaces (API) such as,

 14

i. Google Speech Recognition API

ii. Google Cloud Speech API

iii. Microsoft Bing Voice Recognition

iv. IBM Speech to Text

v. Wit.ai

vi. Houndify

vii. CMUSphinx

viii. Snowboy Hotword Detection

These different engines and APIs use different technologies and architectures to

determine the text equivalent of a vocal signal. Therefore, the final outcome of each

engine or API differs with respect to performance (speed, accuracy ect.). Most

modern speech recognition systems rely on a model known as Hidden Markov

Model. It has been proven to be really practical for speech recognition. However it

should be noted that speech to text translation is never 100% accurate due to

probabilistic nature of the speech and immense potential exist in that focused area of

research and development.

Google Speech Recognition API has been used in this conversation robot

development due to its free availability. However, changeover to any other API or

Engine does not affect the core development.

2.3 String Conditioning

Next stages of the robot system process the speech text generated from the

Voice Recognition module. Since, this text is generated from Google Speech

Recognition API; it is required to format and generate a suitable text input required

by the robot system. Any special characters are removed and letters are converted in

to lower case in formatting the speech text.

 15

2.4 Interaction Management Module (IMM)

This is the core module of the robot system consisting of astate machine and

a scheduler engine. Voice output text or the responses from the robot system are

generated based on the voice text input and the knowledge database. General

functions that are required for the generation of robot response and understanding of

the input voice text are linked to this core module.

2.4.1 Finite State Interaction Module (FSIM)

Finite State Interaction Module consist of a Finite State Machine (FSM)

which controls the core functionality of the robot system. A FSM consist of finite

number of states, inputs and outputs. The active state can change from one state to

another in response to change of external inputs, such change of state is called a state

transition. A FSM can be represented by state diagrams as shown in Fig. 2.6. Every

state is represented by a circle and an arrow marks the transition from one state to the

other based on the current state and the input to the state machine. Transition from

one state can happen to one or multiple other states in response to external inputs.

Fig. 2.6 : Example of a State Diagram

 16

The FSM of the robot system is developed in a software environment with six

number of states. An instance is created for each state inherited from the state class.

Each state has specific function calls which is capable of rendering the assigned

functionality.

2.4.2 Scheduler Engine (SE)

Information on routine scheduled events can be inserted in to the system for

the invocation of reminders of those events time to time. It enables the system to

bring the attention of the elderly user towards scheduled events and provide further

instructions. Specific time and an event tag is available as system information. The

robot system will continuously check with the current time for any possible

occurrence of the event and change the current functional state after informing the

elderly user regarding the event. Then the elderly user can further interact with the

robot system for taking necessary actions regarding the routine scheduled event that

has been reminded of.

2.5 Knowledge Database (KDB)

KDB is a predefined information set available for robot system for generating

more human like and meaning full responses. It consist of three type of information,

i. Regular Expressions Library

ii. User Parameters

iii. Object Parameters

All these information relevant to the particular elderly user are preloaded to the

robot system. But it is possible to modify, insert new or delete any existing record of

information later without making any changes to the system code. Further it is

 17

possible for the elderly user to update any particular information while

communicating with the robot system.

2.6 Voice Generation

The robots vocal output is generated by a Text to Speech (TTS) engine. IMM in

combination with the KDB and general functions generates a text string as the robot

output. This text is then converted or synthesized into audible voice by this engine.

Several such engines are available for developers,

i. Google Text to Speech (gTTS) API

ii. iOS Text to Speech and Speech Recognition.

iii. Microsoft speech engine developed for Microsoft Windows 10 users.

iv. IBM Watson Text to Speech API

In this robot system, Python Text to Speech library “pyttsx3” is used as the TTS

engine. It is an open platform TTS library which uses specific speech engines in

reference to running operating system as follows.

i. nsss - NS Speech Synthesizer on Mac OS

ii. sapi5 - SAPI5 on Windows

iii. espeak - eSpeak on any distribution or platform that it capable of hosting the

shared library

 18

CHAPTER 3: FINITE STATE INTERACTION MODULE

3.1 Finite State Machine

The proposed system is capable of understanding user utterances and

respond. When it comes to service oriented user input, the system is further capable

of interacting with the user through human like dialogues to obtain extended

clarifications of service request followed by suitable responses. In addition,

scheduler functionality is also handled by the system to be more meaningful in

elderly assistance. The IMM handles all these functionalities using FSIM and SE

modules. FSIM holds the major functional responsibilities. The functionality of

FSIM is depicted in Fig. 3.1 as a finite state transition diagram.

Fig. 3.1 : The finite state transition diagram of finite state interaction module.

 19

Fig. 3.2 : The event flow of the “Main” state

3.2 Functionality of States

The six finite states available in the FSIM is responsible for human like

response generation, user interactions pertaining to scheduled events and updating

information in the KDB. The default state of the FSIM is Main and transition to

Scheduler state is possible from any state. Each and every state has its own unique

functionality which has been modeled using event flow diagrams. The resulting

response or applicable state change for a particular user input is decided by the event

flows.

The functionality inside the “Main” state is depicted by the event flow

diagram shown in Fig. 3.2. The state input is first analyzed against the KDB and

forwarded for classification. Classification state differentiate between service

oriented user inputs and other. If some other state input is identified, then it is again

checked for any scheduler event and the state would be transitioned to “Scheduler”

 20

state if detected. The event flow would process any unrecognized event separately

and deliver a suitable response. User attempt to update the scheduler activities are

also treated as a service oriented request and handled separately after service oriented

classification stage. For a specific service oriented request, the event flow includes a

random behavior. The event flow would randomly select in between providing a

direct response or further extending the interaction between the user and the robot.

The extended interaction is for requesting further clarification or providing any

comment on the user service request. The action classifier would shift between an

extended dialogue requiring further clarifications and an extended dialogue involving

system responses with suitable and appropriate comments or feedbacks regarding the

user service request. It would enhance the human like interaction nature of the

dialogues. If any requirement for clarification is detected, a clarification response is

raised followed by a transition to the state “Question Feedback” where the event flow

for extended interaction involving service request clarification is handled. A

clarification response can be informative, based on the available information in

KDB. Since the clarification generator would refer the KDB for gathering of useful

information. Otherwise a suitable response is compiled by the feedback generator,

referring the KDB.

Fig. 3.3 shows the event flow diagram applicable to the “Question feedback”

state. Scheduled events are again handled in a similar manner as in “Main” state. The

core functionality of this state is to analyze user responses for the clarification

questions and respond accordingly. The desired user answers are identified and

categorized in to three sub categories for processing, 1) Answers with Boolean

response only 2) Answers with Boolean response and additional information 3)

Answer without Boolean response component. User is prompted randomly for an

attempt to update KDB when the user disagrees for a certain informative clarification

request. If not, all the other responses ultimately cause transition to the “Main” state.

This state transition take place with different types of state inputs to the next state.

The keyword detector, create phrase and create phrase with null tag stages will

generate the appropriate state inputs.

 21

Fig. 3.3 : The event flow of the “Question Feedback” state

 “Update” and “Confirm Update” states are responsible for updating the KDB

as per the user requirement. It is important to bring out the attention of the elderly

user towards scheduled events such as medicine intake, food intake etc. Event flows

pertaining to “Scheduler” and “Update Scheduler” states as shown in Fig. 3.4

handles interactions with the elderly user for communicating these pre-defined

scheduled tasks and performing any amendments for available scheduled events as

well. When the system reminds of a particular scheduled activity, user can either

acknowledge it by interacting with the. System or make an amendment for the

current scheduled event. It is very important to make sure that these elderly users

specifically follow their routine courses such as medicine and food intake. Hence, if

either of those acknowledgements to a scheduled event has not been recorded, the

warning alert stage will force the user to act accordingly.

 22

Fig. 3.4 : (a) The event flow of the “Scheduler” state (b) The event flow of the

“Update Scheduler” state

 23

CHAPTER 4: USER INTERACTION

One of the key aspects of this effort is to develop a conversation companion

that is capable of conducting service oriented conversations that are human like as

much as possible. In order to accomplish that requirement, several approaches has

followed. However, first we have to accurately recognize the user input. Voice input

recognition and categorization takes place based on a Regular Expression Based

Language Pattern matching method. The combined result of all of the following

approaches are set to render a more human like conversation capability by the service

robot.

4.1 Regular Expression Based Language Patterns

Voice input from the user is converted into a text by the speech recognition

mechanism. This text is then matched with a set of regular expressions to recognize

the content. Regular expressions are basically a miniature but highly specialized

programming language that can be embedded and used inside other programming

languages. Regular Expressions specify the rules for a set of possible strings that we

want to match. Rules can be defined using Regular Expressions to match specific

string patterns such as telephone numbers, email addresses and any other sentence

with special characters or pattern. Regular Expressions use a set of ordinary

characters in a special purpose, these special characters as named metacharacters.

Fig. 4.1 shows the metacharacters of Regular Expression Language.

Fig. 4.1 : Mettacharacters of Regular Expression Language

These metacharacters are used when defining rules and each of these character

has a defined functionality. For example, [^a] will match any character except ‘a’

and [a-c] will match any character ‘a’, ‘b’, ‘c’. The backslash character is used to

 24

escape metacharacters. Other special characters preceded by the backslash mean

unique signals resulting escape of metacharacters. Following are sample code

segments of such regular expressions available in programme code.

i. (?:can you |could you |)(?:please |)(turn|switch) off (a |an |the |that |this |)(.*)

ii. i would like to (?:have|take)(?: my|) ([a-z]+) ([0-9]{1,2}) (minutes|hours)

later(?: every day|)

iii. (i would like to |lets)(have |take)(?:a |an |the |this |that |some |my |)(.*)

iv. i would like to (?:have|take)(?: my|) ([a-z]*medicine) (?:at |by |)([0-9]{1,2})

([0-9]{1,2})(?: every day|)

User voice text is matched with one of such expressions and then relevant

information is extracted for providing a suitable response. These regular expressions

are available in combination with meaningful direct responses and the value pairs are

stored in dictionary data structure.

Regular Expression : (?:bye|goodbye|cheerio)

Responses : "bye", "goodbye", "cheerio", "take care", "bye take care",

"see you later", "catch you later"

regex_pair = (

(r'(?:bye|goodbye|cheerio)',

("bye", "goodbye", "cheerio", "take care", "bye take care",

"see you later", "catch you later")),

(r'(?:can you |could you |)(?:please |)(turn|switch) (a |an

|the |that |this |)(.*) off',

("ok", "sure", "sure i will", "ok give me a minute", "sure

give me a minute", "give me a minute ill %1 off %2%3", "just

give me a minute, I will turn off")),

 25

(r'(?:how are you|how do you do)',

("i am fine", "i am fine thank you", "i am doing great", "i am

doing fine")),

)

A dictionary is a mapping of unique key value pairs. Further, it is an indexed,

unordered data structure. In this dictionary structure, the value component is a data

array consisting of multiple entities. An array is another type of data structure which

can store multiple values.

robot_responses = pattern.match(user_input)

selected_response = random.choice(robot_responses)

The user input is matched with a regular expression pattern and the

corresponding set of responses are selected. One response out of the set is selected

randomly for generating a default robot feedback. Responding with a default

feedback is a basic level capability of the robot system. More methods of developing

meaningful and more human friendly responses are discussed below.

 26

4.2 Information Source

It is required to possess certain amount of subject information so that a person

can actively participate and add value to an ongoing dissuasion. It would be more or

less the similar when developing a response for continuing a service oriented

conversation. Hence, the robot system should have access and should be able to

properly handle certain amount of user specific information and object specific

information for it to participate in a more natural human friendly conversation. Fig.

4.2 and 4.3 depicts the terminal output during a live conversation. The shown

conversations carry special characteristic which will be discussed in next two

subsections.

Fig. 4.2 : Terminal output during a live conversation between the robot system and

the human user

 27

Fig. 4.3 : Terminal output during a live conversation between the robot system and

the human user

4.2.1 Question Feedback

The robot system may respond the user with a question, when a feedback is

required with further clarification to the initial service request. For example as shown

in Fig. 4.2; the robot will ask back a question [B] to clarify the service request [A]. In

order to ask the specific question and receive the confirmation [C], the robot should

possess certain knowledge pertaining to the user preferences or behaviors. These

information is available to the robot system through KDB as follows. These

parameters are preset, but provisions for altering based on any fresh knowledge is

possible during a conversation.

 28

TAG_DIC["novel_LRD_BOOK"] = "oliver twist"

TAG_DIC["magazine_MRD_BOOK"] = "ieee"

TAG_DIC["food_FAV_FOOD"] = "bread"

TAG_DIC["drink_MEA_FOOD"] = "coffee"

TAG_DIC["fruit_FAV_FOOD"] = "apple"

4.2.2 General Feedback

Referring [E] of Fig 4.2 and [J] of Fig. 4.3, indicates that the robot is capable

of providing general comments to the user. Robot system would detect a Key Word

from the user response and search the KDB for any information that can be shared

with the user. KDB consists of such information as follows.

TAG_DIC["oliver twist_AUT_BOOK"] = "charles dickens"

TAG_DIC["oliver twist_LAN_BOOK"] = "english"

TAG_DIC["oliver twist_TYP_BOOK"] = "novel"

TAG_DIC["apple_GOD_FOOD"] = "health"

TAG_DIC["apple_BAD_FOOD"] = "significantly nothing"

TAG_DIC["apple_NUT_FOOD"] = "vitamin"

4.3 User Reminders

Robot system is capable of making reminders on preset event times. Fig. 4.4

presents an instance where the robot is making a reminder of dinner event. However

the user can either act accordingly or make adjustments to the reminded time.

Programme code represents the events in a data array as follows.

REMIND_DIC = [[7, 31, "breakfast", 1], [12, 31, "lunch", 1],

[17, 51, "dinner", 1], [8, 30, "morning medicine", 1], [13,

30, "after noon medicine", 1], [18, 30, "evening medicine",

1]]

 29

Fig. 4.4 : Terminal output during a reminder execution

 30

CHAPTER 5: THE EXPERIMENTAL SETUP AND RESULTS

The proposed system has been implemented for supporting two types of

services

1) A service requiring bringing an object

2) A service requiring reading some material

and three object categories

1) Food

2) Reading Material

3) Medicine

However, the implemented system is still capable of responding to other service

types and object categories without involving in extended human to human like

dialogue interactions. In addition, general interaction phrases such as greetings are

understood and responded by the implemented system.

In between Google Speech Recognition API and Python TTS library, a literal

text processing task is performed. The textural format of the recognized speech is

identified against its context and fed into the FSIM for generating a suitable

response. A regular expression language based architecture is proposed and it is

implemented in Python programming environment for semantic identification. The

proposed method is capable of identifying multiple language patterns with respect to

a specific meaning. An example for the regular expression based recognition is given

below in Augmented Backus-Naur Form (ABNF) syntax.

$command1 = $action1 $object;

$command2 = $action2 $object;

$action1 = bring;

$action2 = read;

$object = [the | a | some] (book | water | bread | medicine);

 31

The $command1 represents several language patterns such as bring a book,

bring the medicine, bring some water etc. similarly the $command2 represents

language patterns pertaining to “read” action. This proposed method is implemented

using regular expression syntax and a data structure with complex regular

expressions and responses is referred in identifying user expressions. It is important

to find correct and most suitable language patterns applicable in service-oriented

tasks. Hence, a survey is conducted to identify language patterns practically

applicable for human interactions in accomplishing service-oriented tasks. The

participants were asked to fill out a form requesting basic information consisting

gender, age and proficiency in English. Proficiency in English has been specially

taken into validation through a 1-5 scale input. This scales enable the users to record

their proficiency level varying from “Very Bad” - “Excellent” respectively. English

not being the first language of most of the target participants, collected data would

have a direct effect by the survey participants’ capacity of handling English

language. Participants were asked to complete the form with dialogues that would

take place in between a human caretaker and an elderly person pertaining to a

various service oriented scenarios. Here, the participants were asked to imagine and

respond as both the human caretaker and the elderly person having the conversation.

This allows identifying human like language patterns applicable in both

understanding and responding service oriented dialogues. Data has been collected

from a population size of 20 varying in an age range of 25y – 55y, male population

percentage of 61.11% and mean English proficiency rating of 3.65. It would have

been better if more elderly community been participated for the survey to widen the

age variation, but altogether this can be identified as a promising data set for

identifying language patterns used in service oriented dialogues.

The proposed robotic design has been deployed with Moratuwa Intelligent

Robot (MIRob) [25]. The robot is running Microsoft Windows based operating

system with Python version 3.5. The inbuilt speaker system is accessed for voice

output and voice input been captured through a wireless microphone attached to the

user for minimizing the environmental noise mixing with the voice input.

 32

5.1 Moratuwa Intelligent Robot (MIRob)

Moratuwa Intelligent Robot (MIRob) has been developed as a domestic

service robot. The robot is made up of Pioneer 3DX mobile robot platform and Cyton

Gamma 300 manipulator. The mobile robot platform is capable of moving with a

maximum speed of 1.2 ms-1 and carrying a maximum weight of 17 kg. It is a

differential drive mobile robot with 500-tick encoders. The robot is equipped with

sonar sensor arrays, inbuilt gyroscope, a binocular vision system, front and rear

facing bumpers, an aluminum structure to facilitate other equipment and necessary

height requirement.

Fig. 5.1 : The system being tested with Moratuwa Intelligent Robot (MIRob)

An embedded PC with 2GB RAM and Intel Core 2 Duo 2.26 GHz processor

has been integrated into the robot base for performing high level processing and

controlling such as, image processing, voice recognition and understanding, tasks

planning and decision making. A WLAN adapter capable of using IEEE 802.11a/b/g

 33

is available for communication. In addition to that, the robot consists with stereo

speakers and microphones to play sound and voice recognition.

5.2 Experiments and Results

The experimental setup implemented on Moratuwa Intelligent Robot has been

used for obtaining experimental results. As the experiment, a human user was asked

to interact with the experimental setup and provide an overall rating in 1 – 5 scale for

overall satisfaction. The 1 – 5 scales enable the user to express his or her user

experience varying from “Very Bad” - “Excellent” respectively. The MIRob and a

participant interacting with MIRob during the experiment is shown in Fig. 5.1. The

user inputs and robot responses were recorded for analysis. The human user details

consisting age, gender and proficiency in English has been recorded along with the

rating. A selected conversation segment between the human user and the robot is

given below. This dialogue segment shows various scenarios and language patterns

handled by the robot at the experimental setup. The PyCharm terminal output is

shown in Fig. 5.2. Terminal output indicates how the user input is read by the voice

recognition engine and the responses are generated by the FSIM. Change of FSIM

states through the dialogue segments is also illustrated in Table 5.1.

1) User : Hello

2) Robot : Hi how are you?

3) User : I am fine thank you

4) Robot : Nice to hear from you

5) User : What time is it?

6) Robot : It is 17 45

7) User : Can you turn that light on

8) Robot : Ok

9) Robot : It is time for your dinner

10) User : I would like to have my dinner 10 minutes later

11) Robot : Sure, Are you sure you want to change dinner time

 34

12) User : No

13) Robot : Sure, no worries

14) User : Can you bring me a newspaper

15) Robot : Shall I bring the last read newspaper “Sunday Observer”?

16) User : Yes

17) Robot : Sure

18) User : Can you bring me a book?

19) Robot : What book should I bring?

20) User : Bring “Oliver Twist”

21) Robot : Wow it is a god selection. “Oliver Twist” is written by “Charles

Dickens” and he is a wonderful author!

22) User : Can you bring me a book?

23) Robot : You read “Viragaya” again and again, shall I bring that book?

24) User : No

25) Robot : Is there a new most read book?

26) User : Yes

27) Robot : What is the new most read book?

28) User : “Gamperaliya”

29) Robot : Wow it is good to know your new most read book!

30) Robot : Shall I bring the last read book “Uganthaya”?

31) User : Yes

32) Robot : Wow it is a good selection! “Uganthaya” is written by “Martin

Wickramasinghe” and he is a wonderful author!

33) User : Can you read me the book?

34) Robot : Give me a minute I will read

Initially the robot was at the “Main” state. First eight lines of the conversation have

no impact for state change which consists of robot - user interactions with direct

responses to service oriented requests. A scheduled event had occurred and the robot

had stated “It is time for your dinner” in dialogue line number nine. Hence the state

has changed to “Schedular”. At this point, the user must acknowledge the scheduled

event. The user had acknowledged the scheduled event by requesting to postpone the

 35

event by dialogue line number ten. Robot had requested the confirmation by dialogue

line number 11 and had initiated the update process by changing the state to “Update

Schedular”. At the end of the update process, the state had moved back to “Main”

expecting a fresh user input. Robot has acknowledged the user input. Further, user

had made another service request at the “Main” state by stating “Can you bring me a

newspaper?” The request was not well specified and the robot was unable to decide

on what book the user was referring. Hence, the robot had moved to “Question

Feedback” state for getting clarifications from the user. With the users answer, the

robot had commented on the user’s selection by referring to the KDB. It is common

to add some comment or explain our own experiences during a conversation. This

makes the conversation more interesting and natural for participants. Then the robot

had again moved to “Question Feedback” state with the dialogue line number 19.

Robot has again requested for a clarification. During the dialog line number 23, the

state has again changed to “Question Feedback”. Here the robot had requested a

clarification by referring to a specific user parameter in the KDB “Most Read Book”.

With the user’s response in dialogue line number 24, the robot had identified a user

intent for updating a user parameter. The state had moved to “Confirm Update” for

obtaining an update confirmation. Robot had obtained the new value for the user

parameter and update the KDB by moving to “Update” state. The sample dialogue

has again moved to a “Question Feedback” at dialogue line umber 30 to confirm the

user preference and then at dialogue line umber 32 to the “Main” state.

 36

(a)

 37

(b)

Fig. 5.2 : (a) and (b) Terminal output of the conversation indicating transfer of states

 38

The setup has been experimented with a user population. All the participants

volunteered for the evaluation task were asked to interact with the robotic system for

a sufficient time and respond to a questioner containing following questions. The

participant’s feedback has been recorded. Prior to the user interaction; the users were

beforehand informed regarding the limitations of the developed system.

Q1. What is your gender?

Q2. How old are you?

Q3. How would you rate your proficiency in English language?

Q4. How would you rate the overall performance of the Robotic Companion?

Fig. 5.3 : Graphical view of the evaluation form

 39

A user population size of 24 varying in an age range of 24y – 55y, male

population percentage of 66.67% and average English proficiency rating of 3.625 for

a 1 – 5 scale has participated the evaluation. The statistics of the participated user

population can be represented in graphical forma as depicted in Fig. 5.4 and 5.5.

Evaluation results of the experiment (i.e., user rating) are illustrated in Fig.5.6 and

Fig. 5.7.

Fig. 5.4 : Gender variation of the population volunteered for the survey

Fig. 5.5 : English proficiency variation of the population volunteered for the survey

 40

The average user rating was 3.75 (σ = 0.72) and the median was 4.0. This

implies that the overall user rating stand close to “Good”. Considering the

experimented implementation where the services are limited to only two types, the

received average value lies in the positive side. Therefore this validates the proposed

robots capability to successfully interact with humans and express human like

dialogs during a service assistance scenario with high user satisfaction rate.

Table 5.1 : Change of state through the dialogue segment

Dialogue No. Corresponding FSIM state

1

“Main”

2

3

4

5

6

7

8

9
“Schedular”

10

11
“Update Schedular”

12

13
“Main”

14

15
“Question Feedback”

16

17
“Main”

18

19
“Question Feedback”

20

 41

Dialogue No. Corresponding FSIM state

21
“Main”

22

23
“Question Feedback”

24

25
“Confirm Update”

26

27

“Update Data” 28

29

30
“Question Feedback”

31

32

“Main” 33

34

Fig. 5.6 : User evaluation results obtained during the experiment. The box plot has

the standard notation.

 42

Fig. 5.7 : Rating given by the population volunteered for the survey

 43

CHAPTER 6: CONCLUSION AND FUTURE WORKS

6.1 Conclusion

A Finite State Interaction Module (FSIM), Knowledge Database (KDB) and a

regular expression based language identification method have been proposed for

implementing the Interaction Management Module (IMM). The FSIM consist of

number of finite states for handling different communication scenarios. Information

available in the Knowledge Database (KDB) is accessed by the IMM for interacting

with the user. Furthermore, the system is capable of updating the KDB as per user

requirements. Python is the main platform used in developing this robot system.

Further, Google Speech Recognition API has been used for voice to text conversion

and Python Text to Speech library has been used for text to speech conversion.

Regular expressions are used for identifying the voice inputs.

The systems has been tested with the experimental setup implemented on

MIRob. The overall user rating over a 1 – 5 scale has been recorded form an

experiment conducted using a sample user population in order to validate the

performance of the developed system. The experiment shows very promising results

indicating high user satisfaction rate, which validates the robots capability to interact

in a human friendly manner during service assistance.

Hence it concludes that, the proposed architecture including FSIM, KDB and

IMM is suitable for developing a service oriented conversational companion robot

for elderly people. The designed and developed conversational companion robot is

capable of interacting with elderly user with human like interactive dialogues for

assisting them during service requests. Proposed method for validating the system is

acceptable and it has validated the developed system in terms of the robots capability

to interact in a human friendly manner during service assistance.

 44

6.2 Future Works

 The proposed system has been implemented with a Knowledge Database

(KDB) only supporting two types of services and three object categories.

Supported Services

1. A service requiring bringing an object

2. A service requiring reading some material

Supported Object Categories

1. Food

2. Reading Material

3. Medicine for testing.

Hence, the user interaction scope would be limited. It is required to improve the

KDB to support more service types and object categories.

The self-learning capability of the robot can be improved. Current capability

addresses updating specific data in the KDB. The system can be improved to identify

and learn new language patterns and corresponding responses as well. Further, it can

be developed to update existing language patterns and corresponding responses with

new variations.

 45

References

[1] S. Bedaf et al., “Which activities threaten independent living of elderly when

becoming problematic: inspiration for meaningful service robot functionality,”

Disability and Rehabilitation: Assistive Technology, vol. 9, no. 6, pp. 445–452,

Nov. 2014.

[2] Jennifer Piatt et al., “Companionship with a Robot? Therapists’ Perspectives on

Socially Assistive Robots as Therapeutic Interventions in Community Mental

Health for Older Adults,” American Journal of Recreation Therapy, vol. Vol

15, No 4, 2016.

[3] World Health Organization, Ed., World report on ageing and health. Geneva:

WHO, 2015.

[4] S. Bedaf, G. J. Gelderblom, and L. de Witte, “Overview and Categorization of

Robots Supporting Independent Living of Elderly People: What Activities Do

They Support and How Far Have They Developed,” Assistive Technology, vol.

27, no. 2, pp. 88–100, Apr. 2015.

[5] T. Vandemeulebroucke, B. Dierckx de Casterlé, and C. Gastmans, “The use of

care robots in aged care: A systematic review of argument-based ethics

literature,” Archives of Gerontology and Geriatrics, vol. 74, pp. 15–25, Jan.

2018.

[6] R. Yu et al., “Use of a Therapeutic, Socially Assistive Pet Robot (PARO) in

Improving Mood and Stimulating Social Interaction and Communication for

People With Dementia: Study Protocol for a Randomized Controlled Trial,”

JMIR Research Protocols, vol. 4, no. 2, p. e45, May 2015.

[7] R. M. Agrigoroaie and A. Tapus, “Developing a healthcare robot with

personalized behaviors and social skills for the elderly,” in ACM/IEEE Int.

Conf. on Human-Robot Interaction (HRI), pp. 589–590, Mar. 2016.

[8] T. Vandemeulebroucke, B. D. de Casterlé, and C. Gastmans, “How do older

adults experience and perceive socially assistive robots in aged care: a

systematic review of qualitative evidence,” Aging & Mental Health, vol. 22,

no. 2, pp. 149–167, Feb. 2018.

 46

[9] J. Hudson, M. Orviska, and J. Hunady, “People’s Attitudes to Robots in Caring

for the Elderly,” Int. Journal of Social Robotics, vol. 9, no. 2, pp. 199–210,

Apr. 2017.

[10] S. Bedaf, P. Marti, and L. De Witte, “What are the preferred characteristics of a

service robot for the elderly? A multi-country focus group study with older

adults and caregivers,” Assistive Technology, pp. 1–11, Nov. 2017.

[11] M. A. Goodrich and A. C. Schultz, “Human-Robot Interaction: A Survey,”

Foundations and Trends® in Human-Computer Interaction, vol. 1, no. 3, pp.

203–275, 2007.

[12] T. Fong, I. Nourbakhsh, and K. Dautenhahn, “A survey of socially interactive

robots,” Robotics and Autonomous Systems, vol. 42, no. 3–4, pp. 143–166,

Mar. 2003.

[13] S. Huang, T. Tanioka, R. Locsin, M. Parker, and O. Masory, “Functions of a

caring robot in nursing,” in Int. Conf. on Natural Language Processing

andKnowledge Engineering, pp. 425–429, 2011.

[14] P. Menzel and F. D’Aluisio, Robo Sapiens: evolution of a new species.

Cambridge (Mass): MIT, 2001.

[15] S.-E. Fotinea et al., “The MOBOT human-robot communication model,” in Int.

Conf. on Cognitive Infocommunications, pp. 201–206, 2015.

[16] E. Efthimiou et al., “The MOBOT Platform – Showcasing Multimodality in

Human-Assistive Robot Interaction,” in Universal Access in Human-Computer

Interaction. Interaction Techniques and Environments, vol. 9738, M. Antona

and C. Stephanidis, Eds. Cham: Springer International Publishing, 2016, pp.

382–391.

[17] E. Efthimiou et al., “The MOBOT rollator human-robot interaction model and

user evaluation process,” in IEEE Symposium Series on Computational

Intelligence, pp. 1–8, 2016.

[18] Y. Lin, H. Min, H. Zhou, and F. Pei, “A Human-Robot-Environment

Interactive Reasoning Mechanism for Object Sorting Robot,” IEEE

Transactions on Cognitive and Developmental Systems, pp. 1–1, 2017.

 47

[19] C. Chakrabarti and G. F. Luger, “A semantic architecture for artificial

conversations,” in Int. Conf. on Soft Computing and Intelligent Systems, pp.

21–26, 2012.

[20] I. A. Hameed, “Using natural language processing (NLP) for designing socially

intelligent robots,” in IEEE Int. Conf. on Development and Learning and

Epigenetic Robotics, pp. 268–269, 2016.

[21] J. Shruthi, S. Swamy, and C. G. Sarika, “Survey on - Socially Intelligent

Robots by using NLP,” Inte. Journal of Computer Applications, vol. 171, no. 1,

pp. 19–21, Aug. 2017.

[22] M. A. V. J. Muthugala, and A. G. B. P. Jayasekara, “A Review of Service

Robots Coping With Uncertain Information in Natural Language Instructions,”

IEEE Access, vol. 6, pp. 12913 - 12928, Feb. 2018.

[23] M. A. V. J. Muthugala and A. G. B. P. Jayasekara, “MIRob: An intelligent

service robot that learns from interactive discussions while handling uncertain

information in user instructions,” In Moratuwa Engineering Research Conf.,

2016, pp. 397–402.

[24] M. A. V. J. Muthugala, and A. G. B. P. Jayasekara, “Enhancing User

Satisfaction by Adapting Robot’s Perception of Uncertain Information Based

on Environment and User Feedback,” IEEE Access, vol. 5, pp. 26435 - 26447,

Nov. 2017.

[25] N. Mavridis, “A review of verbal and non-verbal human–robot interactive

communication,” Robotics and Autonomous Systems, vol. 63, pp. 22–35, Jan.

2015.

 48

Publications

[1] G. W. M. Manuhara, M. A. V. J. Muthugala, and A. G. B. P. Jayasekara,

“Design and Development of an Interactive Service Robot as a Conversational

Companion for Elderly People,” in Moratuwa Engineering Research Conf., pp.

378-383, 2018.

Date of Conference: 30 May-1 June 2018

Date Added to IEEE Xplore: 31 July 2018

ISBN Information:

Electronic ISBN: 978-1-5386-4417-1

Print on Demand (PoD) ISBN: 978-1-5386-4418-8

INSPEC Accession Number: 17962776

DOI: 10.1109/MERCon.2018.8421933

Publisher: IEEE

Conference Location: Moratuwa, Sri Lanka

 49

Appendix A: Python Programme Code

File Name : main.py

import speech_recognition as sr

import datetime

from chatbot import Chatbot

from chatOut import chat_speak

from functionalParameters import REMIND_DIC

r = sr.Recognizer()

CB = Chatbot()

t_now = datetime.datetime.now()

print("Reminder Activated at ", t_now)

while 1:

 # Check time for reminder

 t_now = datetime.datetime.now()

 for i in REMIND_DIC:

 if t_now.hour == i[0] and t_now.minute == i[1] and i[3] == 1:

 # current alarm is disabled for restricting one time

occurrence

 i[3] = 0

 print("reminder for ", i[2])

 chat_out = CB.run("789alarm987" + "_" + i[2])

 chat_speak(chat_out)

 elif t_now.hour == 0 and t_now.minute == 0:

 # enable all alarms at 12 midnight

 i[3] = 1

 # get audio from the microphone

 with sr.Microphone() as source:

 #r.adjust_for_ambient_noise(source)

 #r.energy_threshold = 3000

 print("USER:")

 audio = r.listen(source)

 try:

 print("Listening....")

 audio_text = r.recognize_google(audio)

 chat_out = CB.run(str(audio_text))

 chat_speak(chat_out)

 except sr.UnknownValueError:

 print("Could not understand audio")

 except sr.RequestError as e:

 print("Could not request results; {0}".format(e))

 50

File Name : chatbot.py

"""

 ##

 chatbot

"""

from generalFunctions import make_lower

from stateMachine import StateMachine

"""

 ##

 initiate chatbot

"""

class Chatbot(object):

 SM = StateMachine()

 def run(self, chat_in):

 chat_out = self.SM.event(make_lower(chat_in))

 return chat_out

File Name : chatOut.py

import pyttsx3

def chat_speak(chat_out):

 print("ROBOT : ", chat_out)

 engine = pyttsx3.init()

 rate = engine.getProperty('rate')

 engine.setProperty('rate', rate - 50)

 volume = engine.getProperty('volume')

 engine.setProperty('volume', volume - 0.25)

 voices = engine.getProperty('voices')

 engine.setProperty('voice', voices[0].id)

 engine.say(chat_out)

 engine.runAndWait()

 51

File Name : generalFunctions.py

"""

 ##

 Common functions required by other modules

"""

import re

from flask import flash

from regexPairs import regex_pairs

from regexPairs import keyword_regex_pairs

regex_pairs = [(re.compile(x, re.IGNORECASE), y) for (x, y) in

regex_pairs]

keyword_regex_pairs = [(re.compile(x, re.IGNORECASE), y) for (x, y) in

keyword_regex_pairs]

"""

 ##

 Classify chat input

"""

def classifier(chat_in):

 count = 0

 for (pattern, response) in regex_pairs:

 match = pattern.match(chat_in)

 count += 1

 if match:

 return match, response, count

 return "no-match-available", "no-response-available", "no-count-

available"

"""

 ##

 Detect key words

"""

def keyword_detector(match_group_1):

 for (pattern, response) in keyword_regex_pairs:

 match = pattern.match(match_group_1)

 if match:

 # Assign the only response as keyword_type_category

 keyword_type_category = response

 keyword_type, keyword_category =

keyword_type_category.split("_")

 return match.group(1), keyword_type, keyword_category

 return "no-key-word-available", "NULL", "NULL"

"""

 ##

 Condition regular expression respond

 Replace wild cards with block of user input

"""

def set_wildcard_strings(response, match):

 52

 # find the position of the first regex replacement pattern

 pos = response.find('%')

 # check for multiple patterns

 while pos >= 0:

 # convert position of first regex replacement pattern to numerical

value

 num = int(response[pos + 1:pos + 2])

 # find the substitution from the match and store

 regex_obj_str = match.group(num)

 response = response[:pos] + regex_obj_str + response[pos + 2:]

 # find the position of the next regex replacement pattern

 pos = response.find('%')

 return response

"""

 ##

 Convert chat input to lower case

"""

def make_lower(chat_in):

 chat_in_lower = chat_in.lower()

 return chat_in_lower

"""

 ##

 Tokenize chat input

"""

def tokenize(chat_in):

 chat_in_tokenize = chat_in.split(" ")

 return chat_in_tokenize

File Name : stateMachine.py

"""

 ##

 We define the state machine.

"""

from states import MainState

"""

 ##

 A simple state machine

"""

class StateMachine(object):

 next_state_data = "null-action", "null-object", "null-tag"

 def __init__(self):

 """

 Initialize the components.

 """

 53

 # Start with a default state.

 self.state = MainState()

 def event(self, event):

 """

 Incoming chats are delegated to the given states which then handle

the event. The result is

 then assigned as the new state. resulting chat out is returned.

 """

 # The next state will be the result of the on_event function.

 next_state, self.next_state_data = self.state.event(event,

self.next_state_data)

 chat_out = self.state.chat_out

 self.state = next_state

 return chat_out

File Name : regexPairs.py

"""

 ##

 Regular expressions response pairs matching language patterns and

responses

"""

"""

 ##

 Identifying keywords for initiating extended chat

"""

keyword_regex_pairs = (

 (r'(gamperaliya|oliver twist|harry potter|madol doova|uganthaya)',

 "BOOK_ITM"),

 (r'(book|story book|novel|short story|magazine|newspaper)',

 "BOOK_TYP"),

 (r'(apple|tea|bread|water|coke|chocolate|ice cream)',

 "FOOD_ITM"),

 (r'(food|drink|sweet|fruit|candy|desert|fruit)',

 "FOOD_TYP"),

 (r'(paracitamol|piriton|zitrecine|metfomin)',

 "MEDI_ITM"),

 (r'(medicine|drugs)',

 "MEDI_TYP")

)

"""

 ##

 Extended chat feedback responses

"""

feedback_regex_pairs = (

 54

 (r'BRING_FOOD_ITM_(.*)',

 ("it is a really good choice %1 contains <NUT_FOOD> it is good for

you to have them",

 "%1 is good <GOD_FOOD> you should have them",

 "%1 is not good <BAD_FOOD> you should not have them")),

 (r'BRING_BOOK_ITM_(.*)',

 ("wow it is a good selection %1 is written by <AUT_BOOK> and he is a

wonderful author",

 "%1 is a <LAN_BOOK> <TYP_BOOK> by <AUT_BOOK> any way it is a good

choice of read")),

 (r'BRING_MEDI_ITM_(.*)',

 ("it seems you are not feeling well today",

 "%1 will make you feel better",

 "you better rest and take care of your self")),

 (r'READ_BOOK_ITM_(.*)',

 ("wow it is a good selection %1 is written by <AUT_BOOK> and he is a

wonderful author",

 "%1 is a good <LAN_BOOK> <TYP_BOOK> by <AUT_BOOK> any way it is a

nice choice of read"))

)

"""

 ##

 Extended chat question responses

"""

question_regex_pairs = (

 (r'BRING_FOOD_TYP_(.*)',

 ("shall i bring your favorite %1 <FAV_FOOD> ",

 "you regularly eat <MEA_FOOD> shall i bring some",

 "what %1 should i bring",

 "sure it is good to have <FAV_FOOD> now"

 "sure it is good to have <MEA_FOOD> now"

 "shall i bring <MEA_FOOD>")),

 (r'BRING_BOOK_TYP_(.*)',

 ("what %1 should i bring",

 "shall i bring your favorite %1 <FAV_BOOK>",

 "you read <MRD_BOOK> again and again shall i bring that %1",

 "shall i bring the last read %1 <LRD_BOOK>")),

 (r'BRING_MEDI_TYP_(.*)',

 ("what medicine should i bring",

 "how are you feeling now shall i bring all the medicine",

 "are you getting better now what medicine shall i bring ")),

 (r'READ_BOOK_TYP_(.*)',

 ("what %1 should i read",

 "shall i read <FAV_BOOK>",

 "you like <MRD_BOOK> shall i read that %1",

 "shall i read <LRD_BOOK> the last read %1"))

)

"""

 ##

 55

 Chat inputs and responses

"""

regex_pairs = (

 # 1

 (r'(?:good morning)',

 ("good morning", "good morning to you")),

 # 2

 (r'(?:good afternoon)',

 ("good afternoon", "good afternoon to you")),

 # 3

 (r'(?:good evening)',

 ("good evening", "good evening to you")),

 # 4

 (r'(?:good night)',

 ("good night", "good night to you")),

 # 5

 (r'(?:hi|hey|hello|how are you|hello how are you|hi how are you|hey

how are you)',

 ("hello", "hi", "hey", "hello how are you", "hi how are you", "hey

how are you")),

 # 6

 (r'(?:bye|goodbye|cheerio)',

 ("bye", "goodbye", "cheerio", "take care", "bye, take care", "see you

later", "catch you later")),

 # 7

 (r'(?:can you |could you |)(?:please |)bring (?:me |)(?:a |an |the

|this |that |some |my |)(.*)',

 ("ok", "sure", "sure i will", "just give me a minute, i will bring",

"ok give me a minute", "sure give me a minute",

 "give me a minute i will bring", "i will be right back")),

 # 8

 (r'(?:can you |could you |)(?:please |)(turn|switch) off (a |an |the

|that |this |)(.*)',

 ("ok", "sure", "sure i will", "ok give me a minute", "sure give me a

minute", "give me a minute i will %1 off %2%3",

 "just give me a minute, i will turn off")),

 # 9

 (r'(?:can you |could you |)(?:please |)(?:turn|switch) on (a |an |the

|that |this |)(.*)',

 ("ok", "sure", "sure i will", "ok give me a minute", "sure give me a

minute", "give me a minute i will %1 on %2%3",

 "just give me a minute, i will turn on")),

 # 10

 (r'(?:can you |could you |)(?:please |)(turn|switch) (a |an |the |that

|this |)(.*) off',

 ("ok", "sure", "sure i will", "ok give me a minute", "sure give me a

minute", "give me a minute i will %1 off %2%3",

 "just give me a minute, i will turn off")),

 # 11

 (r'(?:can you |could you |)(?:please |)(?:turn|switch) (a |an |the

|that |this |)(.*) on',

 ("ok", "sure", "sure i will", "ok give me a minute", "sure give me a

minute", "give me a minute i will %1 on %2%3",

 "just give me a minute, i will turn on")),

 # 12

 (r'(?:can you |could you |)(?:please |)move (?:the|this|that) (.*)',

 ("ok", "sure", "sure i will", "ok give me a minute", "sure give me a

minute", "give me a minute i will move",

 "just give me a minute, i will move")),

 # 13

 (r'(?:can you |could you |)(?:please |)call (?:the |this |that

|)(.*)',

 ("ok", "sure", "sure i will", "ok give me a minute", "sure give me a

 56

minute", "give me a minute i will call",

 "just give me a minute, i will call")),

 # 14

 (r'(?:can you |could you |)(?:please |)(take|walk) me to

(?:a|an|the|this|that) (.*)',

 ("ok", "sure", "sure i will", "ok give me a minute", "sure give me a

minute", "give me a minute i will %1 you",

 "just give me a minute, i will %1 you")),

 # 15

 (r'(?:can you |could you |)(?:please |)wash (?:a|an|the|this|that)

(.*)',

 ("ok", "sure", "sure i will", "ok give me a minute", "sure give me a

minute", "give me a minute i will wash",

 "just give me a minute, i will wash")),

 # 16

 (r'(?:can you |could you |)(?:please |)clean (?:a|an|the|this|that)

(.*)',

 ("ok", "sure", "sure i will", "ok give me a minute", "sure give me a

minute", "give me a minute i will clean",

 "just give me a minute, i will clean")),

 # 17

 (r'(?:can you |could you |)(?:please |)brush my (.*)',

 ("ok", "sure", "sure i will", "ok give me a minute", "sure give me a

minute", "give me a minute i will brush",

 "just give me a minute, i will brush")),

 # 18

 (r'(?:can you |could you |)(?:please |)comb (?:the |this |that |my

|)(.*)',

 ("ok", "sure", "sure i will", "ok give me a minute", "sure give me a

minute", "give me a minute i will comb",

 "just give me a minute, i will comb")),

 # 19

 (r'(?:can you |could you |)(?:please |)read (?:me

|)(?:a|an|the|this|that|)(.*)',

 ("ok", "sure", "sure i will", "ok give me a minute", "sure give me a

minute", "give me a minute i will read",

 "just give me a minute, i will read")),

 # 20

 (r'(?:can you |could you |)(?:please |)rub (?:the |this |that |some

|)(.*) on (?:the |this |that |my |)(.*)',

 ("ok", "sure", "sure i will", "ok give me a minute", "sure give me a

minute", "give me a minute i will rub",

 "just give me a minute, i will rub")),

 # 21

 (r'(?:can you |could you |)(?:please |)help (?:me |)to (.*)',

 ("ok", "sure", "sure i will", "ok give me a minute", "sure give me a

minute")),

 # 22

 (r'(?:can you |could you |what is |what |do you know |)(?:please

|)(?:tell |)(?:me |)(?:the |)time(?: now| is it| is it now|)',

 ("ok", "sure")),

 # 23

 (r'i would like to (?:have|take)(?: my|) ([a-z]+) ([0-9]{1,2})

(minutes|hours) later(?: every day|)',

 ("ok are you sure you want to change %1 time", "sure are you sure you

want to change %1 time")),

 # 24

 (r'i would like to (?:have|take)(?: my|) ([a-z]+) (?:at |by |)([0-

9]{1,2}) ([0-9]{1,2})(?: every day|)',

 ("ok are you sure you want to change %1 time", "sure are you sure you

want to change %1 time")),

 # 25

 (r'i would like to (?:have|take)(?: my|) ([a-z]*medicine) ([0-

9]{1,2}) (minutes|hours) later(?: every day|)',

 57

 ("ok are you sure you want to change %1 time", "sure are you sure you

want to change %1 time")),

 # 26

 (r'i would like to (?:have|take)(?: my|) ([a-z]*medicine) (?:at |by

|)([0-9]{1,2}) ([0-9]{1,2})(?: every day|)',

 ("ok are you sure you want to change %1 time", "sure are you sure you

want to change %1 time")),

 # 27

 (r'i would like to (?:have|take) my ([a-z]+)(?: now|)',

 ("ok", "sure", "i will bring your %1", "sure i will bring your %1")),

 # 28

 (r'(?:how are you|how do you do)',

 ("i am fine", "i am fine thank you", "i am doing great", "i am doing

fine")),

 # 29

 (r'(i would like to |lets)(have |take)(?:a |an |the |this |that

|some |my |)(.*)',

 ("ok", "sure", "sure i will", "just give me a minute, i will bring",

"ok give me a minute", "sure give me a minute",

 "give me a minute i will bring", "i will be right back")),

 # 30

 (r'(?:can you |could you |what is |do you know |what |)(?:please

|)(?:tell |)(?:me |)(?:the |todays |)date(?: today|is today|)',

 ("ok", "sure")),

 # 31

 (r'(please|ok|okay|sure|of course|certainly)',

 ("ok", "sure", "sure i will", "ok give me a minute", "sure give me a

minute")),

 # 32

 (r'(?:can you |could you |)(?:please |)charge (a |an |the |that |this

|my |)(.*)',

 ("ok", "sure", "sure i will", "ok give me a minute", "sure give me a

minute", "give me a minute i will charge %2%3",

 "just give me a minute, i will charge")),

 # 33

 (r'(?:can you |could you |)(?:please |)give (?:me |)(?:a |an |the

|this |that |some |my |)(.*)',

 ("ok", "sure", "sure i will", "ok give me a minute", "sure give me a

minute"))

)

File Name : states.py

"""

 ##

 We define states based on the state object with unique functionality

"""

from stateObject import State

from chatEngine import run_chat_engine

from questionFeedbackEngine import run_question_feedback_engine

from confirmUpdateUserDataEngine import

run_confirm_update_user_data_engine

from updateUserDataEngine import run_update_user_data_engine

from alarmEngine import run_alarm_engine

from updateAlarmEngine import run_update_alarm_engine

"""

 ##

 Main state contain all the basic chat functionality.

"""

 58

class MainState(State):

 chat_out = "This is the default chat out for MainState"

 def event(self, chat_in, next_state_data):

 self.chat_out, next_sate_id, next_state_data =

run_chat_engine(chat_in, next_state_data)

 if next_sate_id == 0:

 return MainState(), next_state_data

 elif next_sate_id == 1:

 return QuestionFeedbackState(), next_state_data

 elif next_sate_id == 2:

 return ConfirmUpdateUserDataState(), next_state_data

 elif next_sate_id == 3:

 return UpdateUserDataState(), next_state_data

 elif next_sate_id == 4:

 return AlarmState(), next_state_data

 elif next_sate_id == 5:

 return UpdateAlarmState(), next_state_data

 else:

 return self

"""

 ##

 Requiring a feedback for a question

"""

class QuestionFeedbackState(State):

 chat_out = "This is the default chat out for QuestionFeedbackState"

 def event(self, chat_in, next_state_data):

 self.chat_out, next_sate_id, next_state_data =

run_question_feedback_engine(chat_in, next_state_data)

 if next_sate_id == 0:

 return MainState(), next_state_data

 elif next_sate_id == 1:

 return QuestionFeedbackState(), next_state_data

 elif next_sate_id == 2:

 return ConfirmUpdateUserDataState(), next_state_data

 elif next_sate_id == 3:

 return UpdateUserDataState(), next_state_data

 elif next_sate_id == 4:

 return AlarmState(), next_state_data

 elif next_sate_id == 5:

 return UpdateAlarmState(), next_state_data

 else:

 return self

"""

 ##

 Requiring to confirm to initiate the update

"""

class ConfirmUpdateUserDataState(State):

 chat_out = "This is the default chat out for

ConfirmUpdateUserDataState"

 59

 def event(self, chat_in, next_state_data):

 self.chat_out, next_sate_id, next_state_data =

run_confirm_update_user_data_engine(chat_in, next_state_data)

 if next_sate_id == 0:

 return MainState(), next_state_data

 elif next_sate_id == 1:

 return QuestionFeedbackState(), next_state_data

 elif next_sate_id == 2:

 return ConfirmUpdateUserDataState(), next_state_data

 elif next_sate_id == 3:

 return UpdateUserDataState(), next_state_data

 elif next_sate_id == 4:

 return AlarmState(), next_state_data

 elif next_sate_id == 5:

 return UpdateAlarmState(), next_state_data

 else:

 return self

"""

 ##

 Update user data

"""

class UpdateUserDataState(State):

 chat_out = "This is the default chat out for UpdateUserDataState"

 def event(self, chat_in, next_state_data):

 self.chat_out, next_sate_id, next_state_data =

run_update_user_data_engine(chat_in, next_state_data)

 if next_sate_id == 0:

 return MainState(), next_state_data

 elif next_sate_id == 1:

 return QuestionFeedbackState(), next_state_data

 elif next_sate_id == 2:

 return ConfirmUpdateUserDataState(), next_state_data

 elif next_sate_id == 3:

 return UpdateUserDataState(), next_state_data

 elif next_sate_id == 4:

 return AlarmState(), next_state_data

 elif next_sate_id == 5:

 return UpdateAlarmState(), next_state_data

 else:

 return self

"""

 ##

 Alarm

"""

class AlarmState(State):

 chat_out = "This is the default chat out for Alarm state"

 def event(self, chat_in, next_state_data):

 self.chat_out, next_sate_id, next_state_data =

run_alarm_engine(chat_in, next_state_data)

 if next_sate_id == 0:

 return MainState(), next_state_data

 60

 elif next_sate_id == 1:

 return QuestionFeedbackState(), next_state_data

 elif next_sate_id == 2:

 return ConfirmUpdateUserDataState(), next_state_data

 elif next_sate_id == 3:

 return UpdateUserDataState(), next_state_data

 elif next_sate_id == 4:

 return AlarmState(), next_state_data

 elif next_sate_id == 5:

 return UpdateAlarmState(), next_state_data

 else:

 return self

"""

 ##

 Update Alarm

"""

class UpdateAlarmState(State):

 chat_out = "This is the default chat out for UpdateAlarmState"

 def event(self, chat_in, next_state_data):

 self.chat_out, next_sate_id, next_state_data =

run_update_alarm_engine(chat_in, next_state_data)

 if next_sate_id == 0:

 return MainState(), next_state_data

 elif next_sate_id == 1:

 return QuestionFeedbackState(), next_state_data

 elif next_sate_id == 2:

 return ConfirmUpdateUserDataState(), next_state_data

 elif next_sate_id == 3:

 return UpdateUserDataState(), next_state_data

 elif next_sate_id == 4:

 return AlarmState(), next_state_data

 elif next_sate_id == 5:

 return UpdateAlarmState(), next_state_data

 else:

 return self

File Name : stateObject.py

"""

 ##

 Define a state object with general utility functions for the

 individual states.

"""

class State(object):

 chat_out = "This is the default chat out for state object"

 def __init__(self):

 print('Processing current state:', str(self))

 def event(self, read_in):

 """

 61

 Handle events that are delegated to this State.

 """

 pass

 def __repr__(self):

 """

 Leverages the __str__ method to describe the State.

 """

 return self.__str__()

 def __str__(self):

 """

 Returns the name of the State.

 """

 return self.__class__.__name__

File Name : chatEngine.py

"""

 ##

 Functionality supporting the MainState

"""

import random

import datetime

from functionalParameters import *

from generalFunctions import classifier

from generalFunctions import set_wildcard_strings

from generalFunctions import keyword_detector

from actionClassifier import action_classifier

from unrecognizedChat import reply_unrecognized_chat

"""

 ##

 Chat Engine

"""

def run_chat_engine(chat_in, current_state_data):

 print("run_chat_engine", chat_in)

 next_state_data = "null-action", "null-object", "null-tag", "null-tag-

object"

 match, response, count = classifier(chat_in)

 # No matching regular expression found for the chat input

 if match == "no-match-available" and response == "no-response-

available":

 # Lookout for alarms

 alarm_tag = chat_in.split("_")

 if alarm_tag[0].strip() == "789alarm987":

 alarm_event = str(alarm_tag[1].strip())

 next_state_id = 4

 next_state_data = "null-action", alarm_event, "null-tag",

"null-tag-object"

 chat_out = "it is time for your " + alarm_event

 return chat_out, next_state_id, next_state_data

 else:

 62

 print("unrecognized")

 next_state_id = 0

 chat_out = reply_unrecognized_chat()

 return chat_out, next_state_id, next_state_data

 else:

 if 22 < count < 27:

 print("reminder 22 < count < 27 - ", count)

 next_state_id = 5

 next_state_data = match, "null-object", count, "null-tag-

object"

 selected_response = random.choice(response)

 chat_out = set_wildcard_strings(selected_response, match)

 return chat_out, next_state_id, next_state_data

 elif count == 22:

 print("current time - ", count)

 next_state_id = 0

 t_now = datetime.datetime.now()

 if 3 < t_now.hour < 5:

 chat_out = "it is " + str(t_now.hour) + " " +

str(t_now.minute) + " too early in the morning"

 elif 5 < t_now.hour < 7:

 chat_out = "it is " + str(t_now.hour) + " " +

str(t_now.minute) + " good day to you"

 elif 11 < t_now.hour < 12:

 chat_out = "it is " + str(t_now.hour) + " " +

str(t_now.minute) + " almost noon"

 elif 21 < t_now.hour < 23:

 chat_out = "it is " + str(t_now.hour) + " " +

str(t_now.minute) + " time to sleep now"

 elif 23 < t_now.hour < 24:

 chat_out = "it is " + str(t_now.hour) + " " +

str(t_now.minute) + " in the midnight"

 else:

 chat_out = "it is " + str(t_now.hour) + " " +

str(t_now.minute)

 return chat_out, next_state_id, next_state_data

 elif count == 30:

 print("current date - ", count)

 next_state_id = 0

 t_now = datetime.datetime.now()

 chat_out = "it is " + str(t_now.strftime("%A")) + " " +

str(t_now.day) + " " + str(t_now.strftime("%B")) + " " +

str(t_now.strftime("%Y"))

 return chat_out, next_state_id, next_state_data

 else:

 selected_response = random.choice(response)

 print("other - ", count)

 # Random check for initiating a extended chat

 # Do not initiate an extended chat

 if random.randrange(0, 9) > RANDOM_CHECK:

 chat_out = set_wildcard_strings(selected_response, match)

 next_state_id = 0

 return chat_out, next_state_id, next_state_data

 # Initiate an extended chat

 else:

 # Check if known keywords are found

 try:

 keyword, keyword_type, keyword_category =

keyword_detector(match.group(1))

 except IndexError:

 keyword = "no-key-word-available"

 # No known key word found

 if keyword == "no-key-word-available":

 chat_out = set_wildcard_strings(selected_response,

 63

match)

 next_state_id = 0

 return chat_out, next_state_id, next_state_data

 # Known key word found

 else:

 print("Keyword detected - ", keyword_type, "-",

keyword_category, "-", keyword)

 action_classifier_phrase = ACTION_DIC[count] + "_" +

keyword_type + "_" + keyword_category + "_" + keyword

 # Classify and execute chat respond based on feedback

or questing

 chat_out, next_state_id, next_state_data =

action_classifier(action_classifier_phrase)

 return chat_out, next_state_id, next_state_data

File Name : questionFeedbackEngine.py

"""

 ##

 Provide the response for the reply given for question asked by the

 robot.

 This function is executed in QuestionFeedbackState

"""

import re

import random

from functionalParameters import RANDOM_CHECK

from functionalParameters import TAG_EXPANDER

from chatEngine import run_chat_engine

from generalFunctions import keyword_detector

from generalFunctions import make_lower

from functionalParameters import YES_TAG

from functionalParameters import NO_TAG

def run_question_feedback_engine(chat_in, current_state_data):

 next_state_data = "null-action", "null-object", "null-tag", "null-tag-

object"

 yes_no_pattern = re.compile(r'(yes|sure|ok|okay|no|nope|dont|do not|)(

.*|)')

 match = yes_no_pattern.match(chat_in)

 alarm_tag = chat_in.split("_")

 if alarm_tag[0].strip() == "789alarm987":

 alarm_event = str(alarm_tag[1].strip())

 next_state_id = 4

 next_state_data = "null-action", alarm_event, "null-tag", "null-

tag-object"

 chat_out = "it is time for your " + alarm_event

 return chat_out, next_state_id, next_state_data

 else:

 if match:

 # Response is YES/NO only

 if match.group(2) == "":

 # Response is YES only

 if match.group(1) in YES_TAG:

 print("Response is YES only")

 if current_state_data[3] == "null-tag-object":

 print("null-tag-object")

 64

 chat_in_phrase =

str(make_lower(current_state_data[0])) + " " + str(current_state_data[1])

 chat_out, next_state_id, next_state_data =

run_chat_engine(chat_in_phrase, next_state_data)

 return chat_out, next_state_id, next_state_data

 else:

 print("valid tag object")

 chat_in_phrase =

str(make_lower(current_state_data[0])) + " " + str(current_state_data[3])

 chat_out, next_state_id, next_state_data =

run_chat_engine(chat_in_phrase, next_state_data)

 return chat_out, next_state_id, next_state_data

 # Response is NO only

 elif match.group(1) in NO_TAG:

 print("Response is NO only")

 # Random check for updating user data or not

 # Update user data

 if random.randrange(0, 9) < RANDOM_CHECK and

current_state_data[3] != "null-tag-object":

 update_request = "is there a new " +

str(TAG_EXPANDER[current_state_data[2]])

 print("Update user data - ", update_request)

 chat_out = update_request

 next_state_id = 2

 return chat_out, next_state_id, current_state_data

 # Not update user data

 else:

 print("Not update user data")

 chat_in_phrase =

str(make_lower(current_state_data[0])) + " " + str(current_state_data[1])

 chat_out, next_state_id, next_state_data =

run_chat_engine(chat_in_phrase, next_state_data)

 return chat_out, next_state_id, next_state_data

 else:

 return pattern_mismatched(chat_in, current_state_data)

 # Response is YES/NO ++++

 else:

 # Response is YES ++++

 if match.group(1) in YES_TAG:

 print("Response is YES ++++")

 chat_out, next_state_id, next_state_data =

run_chat_engine(match.group(2).strip(), next_state_data)

 return chat_out, next_state_id, next_state_data

 # Response is NO ++++

 elif match.group(1) in NO_TAG:

 print("Response is NO ++++")

 chat_out, next_state_id, next_state_data =

run_chat_engine(match.group(2).strip(), next_state_data)

 return chat_out, next_state_id, next_state_data

 else:

 return pattern_mismatched(chat_in, current_state_data)

 else:

 print("No match found")

 return pattern_mismatched(chat_in, current_state_data)

"""

 ##

 If pattern mismatched

"""

def pattern_mismatched(chat_in, current_state_data):

 next_state_data = "null-action", "null-object", "null-tag"

 65

 if keyword_detector(chat_in):

 # Create response tag

 print("keyword detected for mismatch")

 chat_in_phrase = str(make_lower(current_state_data[0])) + " " +

str(chat_in)

 chat_out, next_state_id, next_state_data =

run_chat_engine(chat_in_phrase, next_state_data)

 return chat_out, next_state_id, next_state_data

 else:

 print("no keyword detected for mismatch")

 chat_out, next_state_id, next_state_data =

run_chat_engine(chat_in, next_state_data)

 return chat_out, next_state_id, next_state_data

File Name : confirmUpdateUserDataEngine.py

"""

 ##

 Confirm Update user data

"""

import re

from functionalParameters import YES_TAG

from functionalParameters import NO_TAG

from functionalParameters import TAG_EXPANDER

from chatEngine import run_chat_engine

from generalFunctions import make_lower

from chatOut import chat_speak

def run_confirm_update_user_data_engine(chat_in, current_state_data):

 next_state_data = "null-action", "null-object", "null-tag", "null-tag-

object"

 yes_no_pattern = re.compile(r'(yes|sure|ok|okay|no|nope|dont|do not|)(

.*|)')

 match = yes_no_pattern.match(chat_in)

 alarm_tag = chat_in.split("_")

 if alarm_tag[0].strip() == "789alarm987":

 alarm_event = str(alarm_tag[1].strip())

 next_state_id = 4

 next_state_data = "null-action", alarm_event, "null-tag", "null-

tag-object"

 chat_out = "it is time for your " + alarm_event

 return chat_out, next_state_id, next_state_data

 else:

 if match:

 if match.group(1) in YES_TAG:

 print("conf update yes")

 chat_out = "What is the new " +

str(TAG_EXPANDER[current_state_data[2]])

 next_state_id = 3

 return chat_out, next_state_id, current_state_data

 elif match.group(1) in NO_TAG:

 print("conf update no")

 chat_speak("ok that is fine")

 chat_in_phrase = str(make_lower(current_state_data[0])) +

" " + str(current_state_data[1])

 66

 chat_out, next_state_id, next_state_data =

run_chat_engine(chat_in_phrase, next_state_data)

 return chat_out, next_state_id, next_state_data

 else:

 print("conf update else, cant find any yes no input")

 chat_out, next_state_id, next_state_data =

run_chat_engine(chat_in, next_state_data)

 return chat_out, next_state_id, next_state_data

 else:

 print("conf update else")

 chat_out, next_state_id, next_state_data =

run_chat_engine(chat_in, next_state_data)

 return chat_out, next_state_id, next_state_data

File Name : updateUserDataEngine.py

"""

 ##

 Update user data

"""

from chatEngine import run_chat_engine

from generalFunctions import make_lower

from functionalParameters import TAG_EXPANDER

from functionalParameters import TAG_DIC

from chatOut import chat_speak

def run_update_user_data_engine(chat_in, current_state_data):

 next_state_data = "null-action", "null-object", "null-tag", "null-tag-

object"

 alarm_tag = chat_in.split("_")

 if alarm_tag[0].strip() == "789alarm987":

 alarm_event = str(alarm_tag[1].strip())

 next_state_id = 4

 next_state_data = "null-action", alarm_event, "null-tag", "null-

tag-object"

 chat_out = "it is time for your " + alarm_event

 return chat_out, next_state_id, next_state_data

 else:

 tag_string = current_state_data[1] + "_" + current_state_data[2]

 print("update - ", tag_string)

 TAG_DIC[tag_string] = chat_in

 chat_speak("wow that is great to know your new " +

str(TAG_EXPANDER[current_state_data[2]]))

 chat_in_phrase = str(make_lower(current_state_data[0])) + " " +

str(current_state_data[1])

 chat_out, next_state_id, next_state_data =

run_chat_engine(chat_in_phrase, next_state_data)

 return chat_out, next_state_id, next_state_data

 67

File Name : alarmEngine.py

"""

 ##

 Alarm

"""

import re

from chatEngine import run_chat_engine

from generalFunctions import classifier

def run_alarm_engine(chat_in, current_state_data):

 next_state_data = "null-action", "null-object", "null-tag", "null-tag-

object"

 update_alarm_pattern = re.compile(r'(?:can you |could you |)(?:please

|)remind (?:me |)(?:in |by |)([0-9]{1,2}) (minutes|hours)(?: later|)(?:

every day|)(?: please|)')

 # Alarm update is requested

 update_alarm_pattern_match = update_alarm_pattern.match(chat_in)

 alarm_tag = chat_in.split("_")

 if alarm_tag[0].strip() == "789alarm987":

 alarm_event = str(alarm_tag[1].strip())

 next_state_id = 4

 next_state_data = "null-action", alarm_event, "null-tag", "null-

tag-object"

 chat_out = "it is time for your " + alarm_event

 return chat_out, next_state_id, next_state_data

 elif update_alarm_pattern_match:

 # Alarm acknowledged

 print("update reminder direct")

 next_state_id = 5

 next_state_data = update_alarm_pattern_match,

str(current_state_data[1]), "null-tag", "null-tag-object"

 chat_out = "are you sure you want to chang " +

str(current_state_data[1]) + " time"

 print("are you sure you want to change " +

str(current_state_data[1]) + " time")

 return chat_out, next_state_id, next_state_data

 else:

 match, response, count = classifier(chat_in)

 if match == "no-match-available" and response == "no-response-

available":

 # force acknowledge

 next_state_id = 0

 chat_out = "you must take your " + str(current_state_data[1])

+ " on time"

 print("you must take your " + str(current_state_data[1]) + "

on time")

 return chat_out, next_state_id, next_state_data

 else:

 if count == 7:

 # Alarm acknowledged

 print("bring me some food")

 chat_out, next_state_id, next_state_data =

run_chat_engine(chat_in, next_state_data)

 return chat_out, next_state_id, next_state_data

 68

 elif 22 < count < 27:

 # Alarm acknowledged

 # next_state_id = 5

 # next_state_data = "null-action",

str(current_state_data[1]), "null-tag", "null-tag-object"

 # chat_out = "are you sure you want to update " +

str(current_state_data[1]) + " alarm time"

 # print("are you sure you want to update " +

str(current_state_data[1]) + " alarm time")

 # return chat_out, next_state_id, next_state_data

 print("update reminder 22 < count < 27")

 chat_out, next_state_id, next_state_data =

run_chat_engine(chat_in, next_state_data)

 return chat_out, next_state_id, next_state_data

 else:

 # force acknowledge

 next_state_id = 0

 chat_out = "you must take your " +

str(current_state_data[1]) + " on time"

 print("you must take your " + str(current_state_data[1]) +

" on time")

 return chat_out, next_state_id, next_state_data

File Name : updateAlarmEngine.py

"""

 ##

 Update Alarm

"""

import re

from unrecognizedChat import reply_unrecognized_chat

from functionalParameters import YES_TAG

from functionalParameters import REMIND_DIC

def run_update_alarm_engine(chat_in, current_state_data):

 next_state_data = "null-action", "null-object", "null-tag", "null-tag-

object"

 yes_no_pattern = re.compile(r'(yes|sure|ok|okay|no|nope|dont|do not)(

.*|)')

 match = yes_no_pattern.match(chat_in)

 alarm_tag = chat_in.split("_")

 if alarm_tag[0].strip() == "789alarm987":

 alarm_event = str(alarm_tag[1].strip())

 next_state_id = 4

 next_state_data = "null-action", alarm_event, "null-tag", "null-

tag-object"

 chat_out = "it is time for your " + alarm_event

 return chat_out, next_state_id, next_state_data

 elif match:

 print("conf rem update yes no match")

 if match.group(1) in YES_TAG:

 print("conf rem update yes")

 if current_state_data[1] == "null-object":

 print("conf rem update yes - 23 > count > 27")

 update_reminder_parameter(current_state_data[0],

 69

current_state_data[1], current_state_data[2])

 next_state_id = 0

 chat_out = "sure"

 return chat_out, next_state_id, current_state_data

 else:

 print("conf rem update yes - alarm direct update")

 update_reminder_parameter(current_state_data[0],

current_state_data[1], current_state_data[2])

 next_state_id = 0

 chat_out = "sure"

 return chat_out, next_state_id, current_state_data

 else:

 print("conf rem update no")

 if current_state_data[1] == "null-object":

 print("conf rem update no - 23 > count > 27")

 next_state_id = 0

 chat_out = "sure, no worries"

 return chat_out, next_state_id, current_state_data

 else:

 print("conf rem update no - alarm direct update")

 next_state_id = 4

 chat_out = "sure, no worries"

 return chat_out, next_state_id, current_state_data

 else:

 next_state_id = 0

 chat_out = reply_unrecognized_chat()

 return chat_out, next_state_id, next_state_data

"""

 ##

 Update Alarm Parameter

"""

def update_reminder_parameter(match, reminder_event, count):

 if reminder_event == "null-object":

 print("update request initiated from chat engine")

 for i in REMIND_DIC:

 if count == 23 or count == 25:

 if i[2] == str(match.group(1)) and str(match.group(3)) ==

"minutes":

 print("match found 23 25 m")

 i[1] += int(match.group(2))

 i[3] = 1

 print(REMIND_DIC)

 return

 elif i[2] == str(match.group(1)) and str(match.group(3))

== "hours":

 print("match found 23 25 h")

 i[0] += int(match.group(2))

 i[3] = 1

 print(REMIND_DIC)

 return

 else:

 print("no match found 23 25")

 if count == 24 or count == 26:

 if i[2] == str(match.group(1)):

 print("match found 24 26")

 i[0] = int(match.group(2))

 i[1] = int(match.group(3))

 i[3] = 1

 70

 print(REMIND_DIC)

 return

 else:

 print("no match found 24 26")

 else:

 print("no match found")

 else:

 print("update request initiated from alarm")

 for i in REMIND_DIC:

 if i[2] == reminder_event and str(match.group(2)) ==

"minutes":

 print("match found")

 i[1] += int(match.group(1))

 i[3] = 1

 print(REMIND_DIC)

 return

 elif i[2] == reminder_event and str(match.group(2)) ==

"hours":

 print("match found")

 i[0] += int(match.group(1))

 i[3] = 1

 print(REMIND_DIC)

 return

 else:

 print("no match found")

 return

File Name : functionalParameters.py

"""

 ##

 Parameters required for stating functional behaviors

"""

"""

 ##

 Random check for executing an extended chat with question or feedback

"""

RANDOM_CHECK = 9

"""

 ##

 YES NO identifiers

"""

YES_TAG = ("yes", "sure", "ok", "okay")

NO_TAG = ("no", "nope", "dont", "do not")

"""

 ##

 TAG Expander

"""

 71

TAG_EXPANDER = {}

TAG_EXPANDER["FAV_BOOK"] = "favorite book"

TAG_EXPANDER["LRD_BOOK"] = "last read book"

TAG_EXPANDER["MRD_BOOK"] = "most read book"

TAG_EXPANDER["FAV_FOOD"] = "favorite food"

TAG_EXPANDER["MEA_FOOD"] = "most eat food"

"""

 ##

 <TAG> Identification for feedback response generation

"""

TAG_DIC = {}

TAG_DIC["book_FAV_BOOK"] = "gamperaliya"

TAG_DIC["book_LRD_BOOK"] = "uganthaya"

TAG_DIC["book_MRD_BOOK"] = "viragaya"

TAG_DIC["novel_FAV_BOOK"] = "madoldoowa"

TAG_DIC["novel_LRD_BOOK"] = "oliver twist"

TAG_DIC["novel_MRD_BOOK"] = "harry potter"

TAG_DIC["short story_FAV_BOOK"] = "the red"

TAG_DIC["short story_LRD_BOOK"] = "the last one"

TAG_DIC["short story_MRD_BOOK"] = "geckos"

TAG_DIC["newspaper_FAV_BOOK"] = "sunday times"

TAG_DIC["newspaper_LRD_BOOK"] = "sunday observer"

TAG_DIC["newspaper_MRD_BOOK"] = "daily mirror"

TAG_DIC["magazine_FAV_BOOK"] = "iet"

TAG_DIC["magazine_LRD_BOOK"] = "airport review"

TAG_DIC["magazine_MRD_BOOK"] = "ieee"

TAG_DIC["food_FAV_FOOD"] = "bread"

TAG_DIC["food_MEA_FOOD"] = "cereals"

TAG_DIC["drink_FAV_FOOD"] = "tea"

TAG_DIC["drink_MEA_FOOD"] = "coffee"

TAG_DIC["sweet_FAV_FOOD"] = "chocolate"

TAG_DIC["sewwt_MEA_FOOD"] = "toffee"

TAG_DIC["candy_FAV_FOOD"] = "chocolate"

TAG_DIC["candy_MEA_FOOD"] = "toffee"

TAG_DIC["desert_FAV_FOOD"] = "cake"

TAG_DIC["desert_MEA_FOOD"] = "ice cream"

TAG_DIC["fruit_FAV_FOOD"] = "apple"

TAG_DIC["fruit_MEA_FOOD"] = "mango"

TAG_DIC["gamperaliya_AUT_BOOK"] = "martin wickramasinge"

TAG_DIC["gamperaliya_LAN_BOOK"] = "sinhala"

TAG_DIC["gamperaliya_TYP_BOOK"] = "novel"

TAG_DIC["oliver twist_AUT_BOOK"] = "charles dickens"

TAG_DIC["oliver twist_LAN_BOOK"] = "english"

TAG_DIC["oliver twist_TYP_BOOK"] = "novel"

TAG_DIC["harry potter_AUT_BOOK"] = "j k rowling"

TAG_DIC["harry potter_LAN_BOOK"] = "english"

 72

TAG_DIC["harry potter_TYP_BOOK"] = "novel"

TAG_DIC["madol doova_AUT_BOOK"] = "martin wickramasinge"

TAG_DIC["madol doova_LAN_BOOK"] = "sinhala"

TAG_DIC["madol doova_TYP_BOOK"] = "novel"

TAG_DIC["uganthaya_AUT_BOOK"] = "martin wickramasinge"

TAG_DIC["uganthaya_LAN_BOOK"] = "english"

TAG_DIC["uganthaya_TYP_BOOK"] = "novel"

TAG_DIC["apple_GOD_FOOD"] = "health"

TAG_DIC["apple_BAD_FOOD"] = "significantly nothing"

TAG_DIC["apple_NUT_FOOD"] = "vitamin"

TAG_DIC["tea_GOD_FOOD"] = "for health"

TAG_DIC["tea_BAD_FOOD"] = "for diabetes"

TAG_DIC["tea_NUT_FOOD"] = "minerals"

TAG_DIC["bread_GOD_FOOD"] = "to eat with curry"

TAG_DIC["bread_BAD_FOOD"] = "for diabetes and cholesterol"

TAG_DIC["bread_NUT_FOOD"] = "minerals"

TAG_DIC["water_GOD_FOOD"] = "for thirsty"

TAG_DIC["water_BAD_FOOD"] = "when taken too much"

TAG_DIC["water_NUT_FOOD"] = "minerals"

TAG_DIC["coke_GOD_FOOD"] = "for thirsty"

TAG_DIC["coke_BAD_FOOD"] = "for diabetes as it contain lots of sugar"

TAG_DIC["coke_NUT_FOOD"] = "lots of sugar"

TAG_DIC["chocolate_GOD_FOOD"] = "as an energizer"

TAG_DIC["chocolate_BAD_FOOD"] = "for diabetes as it contain lots of sugar"

TAG_DIC["chocolate_NUT_FOOD"] = "calories"

TAG_DIC["ice cream_GOD_FOOD"] = "during warm days"

TAG_DIC["ice cream_BAD_FOOD"] = "for diabetes as it contain lots of sugar"

TAG_DIC["ice cream_NUT_FOOD"] = "calories"

"""

 ##

 Action dictionary

"""

ACTION_DIC = {}

ACTION_DIC[1] = "SPEAK"

ACTION_DIC[2] = "SPEAK"

ACTION_DIC[3] = "SPEAK"

ACTION_DIC[4] = "SPEAK"

ACTION_DIC[5] = "SPEAK"

ACTION_DIC[6] = "SPEAK"

ACTION_DIC[7] = "BRING"

ACTION_DIC[8] = "SWITCH_OFF"

ACTION_DIC[9] = "SWITCH_ON"

ACTION_DIC[10] = "SWITCH_OFF"

ACTION_DIC[11] = "SWITCH_ON"

ACTION_DIC[12] = "MOVE"

ACTION_DIC[13] = "CALL"

ACTION_DIC[14] = "WALK"

ACTION_DIC[15] = "WASH"

ACTION_DIC[16] = "CLEAN"

ACTION_DIC[17] = "BRUSH"

ACTION_DIC[18] = "COMB"

 73

ACTION_DIC[19] = "READ"

ACTION_DIC[20] = "RUB"

ACTION_DIC[21] = "HELP"

ACTION_DIC[22] = "SPEAK"

ACTION_DIC[23] = "SPEAK"

ACTION_DIC[24] = "SPEAK"

ACTION_DIC[25] = "SPEAK"

ACTION_DIC[26] = "SPEAK"

ACTION_DIC[27] = "BRING"

ACTION_DIC[28] = "SPEAK"

ACTION_DIC[29] = "BRING"

ACTION_DIC[30] = "SPEAK"

ACTION_DIC[31] = "SPEAK"

ACTION_DIC[32] = "CHARGE"

ACTION_DIC[33] = "GIVE"

"""

 ##

 Reminders

"""

REMIND_DIC = [[8, 20, "breakfast", 1], [18, 29, "lunch", 1], [17, 51,

"dinner", 1], [8, 30, "morning medicine", 1], [13, 30, "after noon

medicine", 1], [20, 30, "evening medicine", 1]]

File Name : actionClasifier.py

"""

 ##

 Classify the next action based on input type; next action requires a

clarification

 or providing a feedback

"""

import re

import random

from regexPairs import feedback_regex_pairs

from regexPairs import question_regex_pairs

from functionalParameters import TAG_DIC

Create regex keyword pairs object

feedback_regex_pairs = [(re.compile(x, re.IGNORECASE), y) for (x, y) in

feedback_regex_pairs]

question_regex_pairs = [(re.compile(x, re.IGNORECASE), y) for (x, y) in

question_regex_pairs]

"""

 ##

 Classify based on keyword type

"""

def action_classifier(action_classifier_phrase):

 action, keyword_type, keyword_category, keyword =

action_classifier_phrase.split("_")

 if keyword_category == "ITM":

 chat_out, next_state_id, next_state_data =

 74

generate_respond_feedback(action_classifier_phrase)

 elif keyword_category == "TYP":

 chat_out, next_state_id, next_state_data =

generate_question_feedback(action_classifier_phrase)

 return chat_out, next_state_id, next_state_data

"""

 ##

 Generate a feedback response for the chat input

"""

def generate_respond_feedback(action_classifier_phrase):

 # check matching feedback response pattern

 for (pattern, response) in feedback_regex_pairs:

 match = pattern.match(action_classifier_phrase)

 if match:

 selected_response = random.choice(response)

 chat_out, tag, tag_object = expand_tags(selected_response,

match)

 print(chat_out)

 next_state_id = 0

 next_state_data = "null-action", "null-object", "null-tag"

 return chat_out, next_state_id, next_state_data

 # If no matching feedback response pattern found

 next_state_id = 0

 next_state_data = "null-action", "null-object", "null-tag", "null-tag-

object"

 return "feedback response - " + str(action_classifier_phrase),

next_state_id, next_state_data

"""

 ##

 Generate a question response for the chat input

"""

def generate_question_feedback(action_classifier_phrase):

 # check matching feedback response pattern

 for (pattern, response) in question_regex_pairs:

 match = pattern.match(action_classifier_phrase)

 if match:

 selected_response = random.choice(response)

 chat_out, tag, tag_object = expand_tags(selected_response,

match)

 # action_classifier_phrase =

 # ACTION_DIC[count] + "_" + keyword_type + "_" +

keyword_category + "_" + keyword

 split_action_classifier_phrase =

action_classifier_phrase.split("_")

 next_state_id = 1

 next_state_data = split_action_classifier_phrase[0],

split_action_classifier_phrase[3], tag, tag_object

 return chat_out, next_state_id, next_state_data

 # If no matching question response pattern found

 75

 next_state_id = 1

 next_state_data = "null-action", "null-object", "null-tag", "null-tag-

object"

 return "feedback response - " + str(action_classifier_phrase),

next_state_id, next_state_data

"""

 ##

 Condition the matched action_classifier_phrase

"""

def expand_tags(response, match):

 # Replace wild cards with block of user input

 wildcard_response, wildcard_object = set_wildcard_strings(response,

match)

 if wildcard_object == "no-wildcard_strings-available":

 return response, "null-tag", "null-tag-object"

 else:

 tagged_response, tag, tag_object = set_tags(wildcard_response,

wildcard_object)

 return tagged_response, tag, tag_object

"""

 ##

 find and replace feedback <> tags

"""

def set_tags(wildcard_resp, wildcard_object):

 # find the position of the tag

 pos = wildcard_resp.find('<')

 # check for multiple tags

 tag = "null-tag"

 tag_object = "null-tag-object"

 while pos >= 0:

 # select the tag without <>

 tag = wildcard_resp[pos + 1:pos + 9]

 # create the response with substituted tags

 tag_object = substitute_tags(tag, wildcard_object)

 wildcard_resp = wildcard_resp[:pos] + tag_object +

wildcard_resp[pos + 10:]

 pos = wildcard_resp.find('<')

 return wildcard_resp, tag, tag_object

"""

 ##

 Replace <> tags with suitable content available

"""

def substitute_tags(tag, wildcard_object):

 tag_string = wildcard_object + "_" + tag

 return TAG_DIC[tag_string]

"""

 ##

 Condition regular expression respond

 Replace wild cards with block of user input

"""

 76

def set_wildcard_strings(response, match):

 # find the position of the first regex replacement pattern

 pos = response.find('%')

 # check for multiple patterns

 if pos >= 0:

 # convert position of first regex replacement pattern to numerical

value

 num = int(response[pos + 1:pos + 2])

 # find the substitution from the match and store

 regex_obj_str = match.group(num)

 response = response[:pos] + regex_obj_str + response[pos + 2:]

 return response, regex_obj_str

 else:

 return response, "no-wildcard_strings-available"

File Name : unrecognizedChat.py

"""

 ##

 Reply for unrecognized chat input

"""

def reply_unrecognized_chat():

 chat_out = "pardon me"

 return chat_out

File Name : reminderBot.py

"""

 ##

 Handles all the reminders

"""

import datetime

from functionalParameters import REMIND_DIC

def reminder_bot():

 TEMP_REMIND_DIC = [12, 12, "temp_reminder", 0]

 t_now = datetime.datetime.now()

 for i in REMIND_DIC:

 if t_now.hour == i[0] and t_now.minute == i[1] and i[3] == 1:

 # current alarm is disabled for restricting one time

occurrence

 i[3] = 0

 # Store the current reminder time in temporary location.

 # Fix reminders are passed to temp register and then alarmed

from tmp register

 TEMP_REMIND_DIC[0] = i[0]

 TEMP_REMIND_DIC[1] = i[1]

 77

 TEMP_REMIND_DIC[2] = i[2]

 TEMP_REMIND_DIC[3] = 1

 print("reminder for ", i[2], " @ Hr ", i[0], " Mn ", i[1])

 elif t_now.hour == 0 and t_now.minute == 0:

 # enable all alarms at 12 midnight

 i[3] = 1

 # tmp register

 if t_now.hour == TEMP_REMIND_DIC[0] and t_now.minute ==

TEMP_REMIND_DIC[1] and TEMP_REMIND_DIC[3] == 1:

 # current alarm is disabled for restricting one time

occurrence

 TEMP_REMIND_DIC[3] = 0

 # alarm

 alarm_string = str(TEMP_REMIND_DIC[2])

 print(alarm_string)

 return alarm_string

 return "no-alarm"

