USE OF ELECTRIC VEHICLES AS A QUICK RESPONSE ENERGY STORAGE: CASE STUDY FOR SRI LANKA

Liyanage Samitha Neranjan Bambarawane

149276H

Dissertation submitted in partial fulfilment of the requirements for the degree Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

February 2019

Declaration

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature: L.S.N.Bambarawane Date:

The above candidate has carried out research for the Masters Dissertation under my supervision.

Signature of the supervisor: Dr.W.D.A.S.Rodrigo Date

Abstract

Use of Electric Vehicles as a Quick Response Energy Storage: Case Study for Sri Lanka

With the fossil fuels depleting, the non-conventional energy sources is taking the wheel I the field of electricity generation. Yet, their inconsistencies owing to reliance on intermittent energy sources such as wind and solar necessitate means of catering the dips in generation. V2G systems become instrumental is levelling out the load curve, facilitating charging of plugin vehicles during over generation and discharging at times of lack of generation.

The study was done to analyse the practicability of implementing plugin vehicle based energy storage in Sri Lanka.

A survey was done to identify the plugin electric demographic that included plugin patterns, distance driven, length of ownership and the willingness to remain in EV segment, traction battery degradation and overall attitude towards partaking in a V2G scheme. Main challenge is quantifying the battery degradation with extensive usage as a V2G source. In contrast, using EV batteries as quick response, low duration, low energy power source, it was understood that enormous financial and economic benefits can be yield merely by minimising un-served energy following load shedding caused by frequency violation events. With low count of average daily frequency violations battery discharge becomes minimal, alleviating the adverse effect on the vehicle range with remaining charge and cyclic ageing. Considering the cost benefit obtained from preventing load shedding versus the costs incurred by EV owners, using EVs as a fast response, low duration energy storage that can

incurred by EV owners, using EVs as a fast response, low duration energy storage that c cater system emergencies is profitable in utility perspective.

Keywords: V2G, plugin vehicle, EV, range anxiety

To my wife and my parents

Acknowledgments

Firstly I would like to extend my heartfelt gratitude towards Dr Asanka Rodrigo, my supervisor, for assisting me to complete the research within the deadline. His insights at the most crucial times have definitely been the pivotal points of the work done.

I am more than grateful to the academic staff of Department of Electrical Engineering of University of Moratuwa whose invaluable comments guided me to identify the lapses in the study and improve the overall quality of the research.

My work colleagues, thank you for covering for me the responsibilities and duties at work. If it were not for your support I would have not made it here. Your words of encouragement are always treasured.

I am immensely grateful to my loving wife and parents who stood by me at times of despair with their continuous encouragement. Thank you for believing in me when I myself could not the find energy to do it myself.

Finally, yet importantly, I would like to thank the Mr. B.W.P.B Eriyagama, who took time out of his busy schedules to provide me with the details I requested, and everyone who spared a minute of their schedules to fill in the online survey, and everyone else whose slightest yet kind gestures assisted me in many a way.

L.S.N.Bambarawane

CONTENTS

Declarat	ion of the supervisor and student	i
Abstract		ii
Dedicati	on	iii
Acknow	ledgments	iv
List of fi	igures	vi
List of ta	ables	vii
List of a	bbreviations	vii
List of A	Appendices	ix
CHAPT	ER 01 INTRODUCTION	1
1.1	Rise of Electric Vehicle Technology	1
1.2	Intermittency in Power Generation and Potential for Energy Storage	2
1.3	Factors that Involve Vehicle to Grid system (V2G)	4
1.4	Objective	5
CHAPT	ER 02 LITERATURE SURVEY	7
2.1	V2G	7
2.2	Deep Cycling vs. Shallow Cycling of Batteries	7
2.3	Techniques to Model Available Capacity	8
2.4	Duty of Aggregator	11
2.5	Quick Response Capacity of V2G	12
CHAPT	ER 03 GROWTH OF EV DEMOGRAPHIC IN SRI LANKA	14
3.1	EV Sales in Sri Lanka	14
3.2	Analysis of EV Composition	18
3.2.1	EV Sales Growth Scenarios	19
CHAPT	ER 04 MODELLING LOCAL EV DEMOGRAPHIC	22
4.1	Conducting an Online Survey	22
4.2	Survey Findings	23
4.2.2	Distance Travelled	23
4.2.3	Plugin and Unplug Times	24
4.2.3	Motivation to Partake in the Scheme	25
4.3	Modelling Car Connectivity	26
4.4	Modelling Energy Stored in EVs	27
CHAPT	ER 05 ANSLYSIS OF SYSTEM DISTURBANCE	32
5.1	Evaluation of Un-served Energy and Load Shedding	32
5.1.1	Background	32

5.1.2	Cost	t of Un-served Energy	33
5.2	Preventio	on of Load Shedding	34
5.3	Survey o	f Frequency Violation Events	35
5.4	Effect of	Discharge on EV Battery	36
5.5	Paying D	Dividends for EV Owners	37
CHAPTI	ER 06	CONCLUSION	38
Appendi	x – A	EV grid connectivity model (no's of cars at a given time)	44
Appendix – B		EV Sales Projections Under Two Scenarios	46
Appendi	x - C	Online Survey	48
Appendi	x - D	EV No.1 SOC change under 20 scenarios	51
Appendi	$\mathbf{x} - \mathbf{E}$	EV No.2 SOC change under 20 scenarios	52
Appendi	x - F	EV No.3 SOC change under 20 scenarios	53
Appendi	x - G	EV No.4 SOC change under 20 scenarios	54
Appendi	x – H	SOC of 35 No's of EVs randomised and reassigned to each othe to investigate 20 scenarios	r 55
Appendi	$\mathbf{x} - \mathbf{I}$	Effective combined result for SOC around the clock	56
Appendix – J		Request letter to Department of Motor Traffic to obtain EV registration details (Scanned copy)	57

List of Figures.	Page
Figure 1: Global EV Sales 2011-2017	2
Figure 2: EV vs PHEV Sales	2
Figure 3: Basic Configuration of V2G	4
Figure 4: Flowchart for EV scheduling algorithm	10
Figure 5: Demand Curve with and without V2G	11
Figure 6: Output current of a load is denoted by (a) and corresponding charger	
current	12
Figure 7 : Frequency Regulation with and without V2G	13
Figure 8: EV sales in Sri Lanka from 2013	14
Figure 9: Overall vehicle sales in Sri Lanka	16
Figure 10: Budget 2013 - Gazette No.1751/28 - 2012.03.30	17
Figure 11: 2015 Interim Budget Proposals - Excise (Special Provisions) Duty	17
Figure 12: Customs Imports Duty Changes Effective from 2015/02/27	17
Figure 13 : Excise (Special Provisions) Act, No. 13 of 1989 (Order under sectio	n 3)
21.11.2015	17
Figure 14: Extract from 2018 excise budget	17
Figure 15: Electric Vehicle Composition	19
Figure 16: EV sales growth projection - scenario 1	20
Figure 17: EV sales growth projection - scenario 2	20
Figure 18: Survey results - EV composition	23
Figure 19: Survey results - distance travelled in a day	24
Figure 20: Survey results - car plugin/out times	25
Figure 21: Interest in V2G	25
Figure 22: EV grid connectivity model	27
Figure 23: Randomisation of EV SOC	28
Figure 24: Cumulative SOC - scenario 1	29
Figure 25: Cumulative SOC - scenario 10	29
Figure 26: Cumulative SOC - scenario 16	29
Figure 27: Effective combined result for SOC around the clock	29
Figure 28: Effective p.u. power output per EV	30
Figure 29: Actual vs projected effective p.u. power curve	31
Figure 30: Frequency response of HPR	32

Figure 31: Frequency events of 2017	35
Figure 32: Sample sketch on depth of discharge per day	37

List of Abbreviations

Abbreviation	Description		
EV	Electric vehicle		
PEV	Plugin Electric Vehicle		
HPR	Hornsdale Power Reserve		
SOC	State of Charge		
SOH	State of Health		
CEO	Chief Executive Officer		
PV	Photo voltaic		
V2G	Vehicle to Grid		
BEV	Battery Electric Vehicle		
IEA	International Energy Authority		
PHEV	Plugin Hybrid Electric Vehicle		
APC	Available Power Capacity		
CPC	Contracted Power Capacity		
D.o.D	Depth of Discharge		
LKR	Sri Lankan Rupee		
USD	United State Dollars		
DMT	Department of Motor Traffic		

List of Appendices

Appendix	Description	Page
Appendix – A	EV grid connectivity model	44
Appendix – B	EV sales Projections under Two Scenarios	46
Appendix – C	Online survey	48
Appendix – D	EV No.1 SOC change under 20 scenarios	51
Appendix – E	EV No.2 SOC change under 20 scenarios	52
Appendix – F	EV No.3 SOC change under 20 scenarios	53
Appendix – G	EV No.4 SOC change under 20 scenarios	54
Appendix – H	SOC of 35 No's of EVs randomised and	55
	reassigned to each other to investigate 20 scenarios	
Appendix – I	Effective combined result for SOC around the clock	56
Appendix – J	Request letter to Department of Motor Traffic to	57
	obtain EV registration details (Scanned copy)	