DEVELOPMENT OF A ROBOTIC ORTHO-PROSTHESIS FOR TRANS-HUMERAL AMPUTEES

Rammuni Achintha Mihiran Abayasiri

(168041U)

Degree of Master of Science

Department of Mechanical Engineering

University of Moratuwa

Sri Lanka

January 2019

Development of A Robotic Ortho-prosthesis for Trans-humeral Amputees

Rammuni Achintha Mihiran Abayasiri

(168041U)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science by research in Biomedical Engineering

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

January 2019

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the MSc thesis under my supervision.

Signature of the Supervisor(s):

Date:

Prof. R. A. R. C. GopuraHead/Professor,Department of Mechanical Engineering,University of Moratuwa, Sri Lanka.

Abstract

Over the years trans-humeral prostheses have been developed as a remedy for transhumeral amputation: the amputation occurs between shoulder and elbow. For the best usage of the trans-humeral prostheses, amputee should have a strong residual arm (stump arm) after the amputation. Furthermore, the ranges of motions and also the full functionality of the prosthesis will be limited if the amputee has a weak stump arm. Moreover, prolonged applying of the loads on the stump arm can cause musculo-skeletal disorders.

In order to improve the dexterity of the prosthesis, they are developed with more joints and actuators. Hence, the weight of the prosthesis increases. There is a need for power assisting the weak stump arm while the prosthesis is at work. Trans-humeral ortho-prosthesis is a device which assists the power of stump arm from an orthosis while replacing the missing upper limb with trans-humeral prosthesis. This research is carried to develop a 9 Degrees of Freedom trans-humeral ortho-prosthesis. It consists of 4 DoF motions: shoulder horizontal flexion/extension, shoulder vertical flexion/extension, shoulder abduction/adduction and shoulder internal/external rotation, at the orthosis and 5 DoF motions: elbow flexion/extension, forearm supination/pronation, wrist ulnar/radial deviation, wrist flexion/extension and compound motion of thumb and index finger, at the prosthesis. Moreover, shoulder abduction/adduction is supported as a passive DoF in order to compensate the misalignments of the joints caused by the motions of clavicle and the scapula in the sagittal plane while enabling shoulder abduction/adduction. Even though the orthosis is designed to achieve 4 DoF motions, it contains 6 DoF motions. Therefore, the whole ortho-prosthesis becomes a redundant manipulator.

Simulation experiments have been carried out to determine the workspace of the hand of the ortho-prosthesis and to determine the manipulability of the ortho-prosthesis. Workspace plots show that it can reach the workspace of a human hand. Manipulability measures: manipulability index, minimum singular values, condition number and manipulability ellipsoids verify that the trans-humeral ortho-prosthesis would not reach singular configurations. Furthermore, it is confirmed that the ortho-prosthesis is capable of performing dexterous motions due to its high manipulability after carrying out experiments with the fabricated prototype of the trans-humeral ortho-prosthesis.

Keywords-Trans-humeral, ortho-prosthesis, manipulability measures, singular configurations, musculo-skeletal disorders, linear velocity jacobian

DEDICATION

To my loving family

who keeps lifting me up with unconditional love,

every time I fall down ...

ACKNOWLEDGMENTS

After immense ups and downs, I am writing this thanking note in remembrance of the great assistance provided by everyone who were there with myself for the successful completion of this research work. It has been a great run for me and it is time for myself to pay my sincere gratitude towards all these great people.

The long list of the people who have my unending homage, should be started with my thesis supervisor Prof. R. A. R. C. Gopura. For me choosing the path of higher studies was challenging and life changing. I am eternally grateful to him for accepting myself as his research student and for the continuous support given to reach great milestones which I would not have even imagined. Over the entire period of my research, his humane qualities left an example for me to look up to and I am honoured to be a student of him.

I wish to extend my gratitude to Dr.Thilina Lalitharatne and Dr.Buddhika Jayasekara for providing their valuable insights for the successful completion of this research work. Moreover, special thanks should go to Eng.Pubudu Ranaweera for the assistance given during the Computer Aided Design phase.

Doing a research alone can be tiresome and restless at most of the time. However, it is the people around you who make that feeling disappear. I am very grateful to all the members of Bionics Laboratory, Department of Mechanical Engineering, University of Moratuwa, who had my back in each step of the way. Among them I would like to appreciate the support Dr. Kanishka Madusanka in shaping my Master's Degree work. Moreover, I would like to recall the motivational advices of Mr. Tharindu Prabatha and Dr. Viraj Muthugala. My homage paid to the support of Bionics Laboratory will not be complete if I do not mention the fraternity displayed by Mr. Sanka Chandrasiri, Mr. Isuru Ruhunage, Mr. Chamika Perera, Mr. Thilina Weerakkody, Mr. Chathura Semasinghe, Mr. Chamara Herath, Mr. Chanaka Premarathna and Mr. Rancimal Arumathanthri, apart from the support as the Bionics Laboratory members.

I wish to express my sincere thanks to Mr. Dashanka De Silva, Mr. Ravindu Thalagala and all my fellow batch mates from 11^{th} batch who are currently pursuing academic career in University of Moratuwa for their friendly and insightful feedbacks during my research work.

I wish to dearly mention the unwavering support and the trust I had from Ms. Gayeshi Jayakody throughout the times where the hope was bleak for myself.

Finally, this thanking note will be incomplete if I do not mention the unconditional support, love and motivation provided by my loving family. I would pay my sincere homage to them, with heavy heart for being the reason to keep moving forward when the things get hard.

Achintha Abayasiri achintha.mihiran@ieee.org

TABLE OF CONTENTS

Declaration	i
Abstract	ii
Dedication	iii
Acknowledgments	iv
Table of Contents	vi
List of Figures	xv
List of Tables	xvi
List of Abbreviations	xvii
1 Introduction	1
1.1 Motivation	. 2
1.1.1 Trans-humeral ortho-prosthesis	. 3
1.2 Contributions of the Thesis	. 4
1.3 Thesis Overview	. 5

2 Literature Review

2.1	Biome	echanics of the human upper limb	7
2.2	Kinem	natics of the human upper limb	11
2.3	Kinem	natic redundancy of robot manipulators	13
	2.3.1	Class of tasks	13
	2.3.2	Kinematic redundancy	13
2.4	Kinem	natic Performance analyzing of robot manipulators	14
	2.4.1	Manipulability Measures	14
2.5	Should	der orthoses/exoskeletons	17
	2.5.1	Recent shoulder orthoses/exoskeleton designs $\ldots \ldots \ldots$	17
	2.5.2	Degrees of Freedom of shoulder orthoses/ exoskeletons $\ .$.	23
2.6	Trans-	-humeral prostheses	25
	2.6.1	Recent trans-humeral prosthesis designs	25
	2.6.2	Fixing trans-humeral prostheses to human body \hdots	28
	2.6.3	Load application by the prosthesis	28
	2.6.4	Musculo-skeletal disorders vs trans-humeral prostheses	29
	2.6.5	Effect of the stump arm motions toward the motion gener-	20
		ation of trans-humeral prostheses	29
2.7	Trans-	-humeral ortho-prostheses	32
	2.7.1	Lower limb ortho-prostheses	32

 $\mathbf{7}$

3	Me	chanica	al Design of the trans-humeral ortho-prosthesis	34
	3.1	Design	n specifications	36
	3.2	Design	n of the shoulder orthosis	37
		3.2.1	Motion generation of the proposed redundant orthosis	41
	3.3	Major	changes added to should er orthosis from initial design $\ . \ .$	43
	3.4	Ratio	nale behind Passive DoF in the shoulder orthosis	44
	3.5	Design	n of the trans-humeral prosthesis	46
	3.6	The p	rototype of the proposed trans-humeral ortho-prosthesis $\$.	48
4	Res	ulte		51
4	nes	uns		91
	4.1	Valida	tion of the existing trans-humeral prosthesis	52
		4.1.1	Experimental setup	53
		4.1.2	Joint angle responses according to the PID controller	54
		4.1.3	Effectiveness of the EMG based proportional controller	57
		4.1.4	Spatial motion comparison between actual arm and MoBio	58
	4.2	Valida	tion of the shoulder orthosis	60
		4.2.1	Redundancy of the shoulder orthosis	60
		4.2.2	Manipulability comparison between conventional 4 DoF shoul-	
		4.2.2	der orthosis and the proposed 6 DoF shoulder orthosis	61
	4.3	Valida	ation of the proposed trans-humeral ortho-prosthesis	73
		4.3.1	Simulation Experiments	74

		4.3.2 Experiments on the fabricated prototype	86
5	Con	clusion and Future Directions	90
	5.1	Conclusion	90
	5.2	Future Directions	92
\mathbf{Li}	st of	Publications	94
Re	efere	nces 1	107
Aj	ppen	dix	i
A		ulation program for manipulability measures comparison of F manipulator and 6DoF manipulator	i
	A.1	Trajectory generation and calculation of manipulability measures of 4DoF manipulator	i
	A.2	Trajectory generation and calculation of manipulability measures of 6DoF manipulator	v
	A.3	Trajectory generation and calculation of manipulability measures of proposed trans-humeral ortho-prosthesis	ix
		A.3.1 Shoulder Vertical F/E	ix
		A.3.2 Shoulder Horizontal F/E	xiii
		A.3.3 Shoulder Abd/Add	xvi

B Engineering Drawings of prosposed trans-humeral ortho-prosthesis xix

LIST OF FIGURES

1.1	Statistics on level of upper limb amputation in Italy and United	
	Kingdom	3
1.2	Summary of the research work	5
2.1	Human upper limb	8
2.2	Motions of the shoulder	8
2.3	Motions of elbow and wrist complexes	9
2.4	Taxonomy of grasps	9
2.5	Simplified kinematic model of the human upper limb	11
2.6	Classification of upper limb orthoses	17
2.7	Recently Developed shoulder orthoses	20
2.8	Existing trans-humeral prostheses	26
2.9	Lower limb ortho-prostheses for cosmetic purposes	32
2.10	CYBERLEGs Beta-Prosthesis	32
3.1	Proposed trans-humeral ortho-prosthesis	35
3.2	Components required for horizontal F/E	38

3.3	Components required for vertical F/E and Abd/Add $\ .$	39
3.4	Components required for I/E rotation	40
3.5	Redundant 6DoF shoudler orthosis	41
3.6	Major changes added to the shoulder orthosis	43
3.7	MoBio: The existing trans-humeral prosthesis	46
3.8	Simplified view of tapered roller bearings arrangement	47
3.9	Overview of the trans-humeral ortho-prosthesis	48
3.10	Fabricated prototype of the trans-humeral ortho-prosthesis $\ . \ .$.	48
3.11	Steps of the fabrication of the back brace	49
3.12	The test subject wearing the proposed trans-humeral ortho-prosthesis	49
4.1	Categorization of results	51
4.2	Summary of the motion sequence	53
4.3	Summary of the experimental setup	54
4.4	Angle Measurement Device	54
4.5	EMG signal acquisition system	55
4.6	Motion output of the S/P motor to a desired motion input $\ . \ . \ .$	56
4.7	Motion outputs of motors	57
4.8	Elbow motion comparison between actual human arm and pros- thetic arm	57

4.9	Spacial motion of MoBio along X and Y directions in reaching a	
	object and EMG signal pattern change with time $\ldots \ldots \ldots$	59
4.10	MoBio's reach towards an object	59
4.11	Kinematic Model of 4DOF orthosis	62
4.12	Kinematic Model of the proposed 6DOF orthosis	63
4.13	Generated Link Models inside the MATLAB Robotics Toolbox Environment	64
4.14	Summary of the experimental protocol	64
4.15	Link model of 4DoF orthosis during the trajectory	66
4.16	Link model of 6DoF orthosis during the trajectory	67
4.17	Manipulability index variation for the trajectories of both 4DoF and 6DoF orthoses	68
4.18	Minimum singular value variation for the trajectories of both 4DoF and 6DoF orthoses	69
4.19	Condition number variation for the trajectories of both 4DoF and 6DoF orthoses	70
4.20	Manipulability ellipsoids for the trajectories of both 4DoF and 6DoF orthoses: (a) 4DoF orthosis (b) 6DoF orthosis	72
4.21	Kinematics model of the trans-humeral ortho prosthesis \ldots .	74
4.22	Link model of the trans-humeral ortho-prosthesis generated in MAT- LAB (Robotics toolbox environment)	75
4.23	Summary of the experimental protocol	76

4.24	Manipulability Index variation for the trajectory during horizontal shoulder F/E	77
4.25	Manipulability Index variation for the trajectory during shoulder Abd / Add	77
4.26	Manipulability Index variation for the trajectory during shoulder vertical F/E	78
4.27	Minimum Singular value variation for the trajectory during shoul- der horizontal F/E	78
4.28	Minimum Singular value variation for the trajectory during shoul- der Abd / Add	79
4.29	Minimum Singular value variation for the trajectory during shoul- der vertical F/E	79
4.30	Condition number variation for the trajectory during shoulder horizontal F/E	80
4.31	Condition number variation for the trajectory during shoulder Abd / Add	81
4.32	Condition number variation for the trajectory during shoulder vertical F/E	81
4.33	(a)Motion of the ortho-prosthesis during Shoulder Horizontal F/E.(b)Manipulability ellipsoids for the trajectory during shoulder hor-	
	izontal F/E	82
4.34	(a)Motion of the ortho-prosthesis during Shoulder Abd/Add (b)Manip ellipsoids for the trajectory during shoulder Abd/Add	oulability 82

4.35	(a) Motion of the ortho-prosthesis during Shoulder Vertical F/E	
	(b)Manipulability ellipsoids for the trajectory during shoulder ver-	
	tical F/E	83
4.36	Workspace plot for the proposed ortho-prosthesis	84
4.37	Workspace plot for the proposed ortho-prosthesis in the transverse	
	plane	85
4.38	Workspace plot for the proposed ortho-prosthesis in coronal plane	85
4.39	Workspace plot for the proposed ortho-prosthesis in sagittal plane	86
4.40	Comparison of the paths of human arm, MoBio with stationary	
	humerus and trans-humeral ortho-prosthesis (MoBio with proposed	
	6DoF orthosis) when reaching the same object	88
4.41	Performing pick and place activity while wearing the trans-humeral	
	ortho-prosthesis	89
B.1	Components of proposed trans-humeral ortho-prosthesis	xix

LIST OF TABLES

2.1	ROM of human upper limb and the trans-humeral ortho-prosthesis (Shoulder motions)	9
2.2	ROM of human upper limb and the trans-humeral ortho-prosthesis (Forearm motions)	10
2.3	D-H parameters of human upper limb	11
2.4	Comparison of existing shoulder orthoses	24
2.5	Comparison of existing trans-humeral prostheses	31
3.1	Specifications of Motors	41
4.1	DH parameters of 4DoF orthosis	61
4.2	DH parameters of proposed 6DoF orthosis	62
4.3	DH parameters of proposed trans-humeral ortho-prosthesis $\ . \ . \ .$	74
B.1	Description of the components of the proposed trans-humeral ortho- prosthesis	xix

LIST OF ABBREVIATIONS

ADL	Activities of Daily Living
DoF	Degrees of Freedom
U/R	Ulnar/ Radial
F/E	Flexion/ Extension
ROM	Range of Motions
Abd/Add	Abduction/Adduction
S/P	Supination/ Pronation
I/E	Internal/ External
DH	Denevit-Hartenberg
HRI	Human Robot Interaction
N/A	Not Applicable