EXPERIMENT AND SIMULATION BASED SELECTION OF OSCILLATING BUOYS FOR RACK & PINION POWER TAKE-OFF WAVE ENERGY CONVERTORS

HG Samantha Hikkaduwa

(138110E)

Degree of Master of Engineering

Department of Mechanical Engineering University of Moratuwa Sri Lanka

January 2019

EXPERIMENT AND SIMULATION BASED SELECTION OF OSCILLATING BUOYS FOR RACK & PINION POWER TAKE-OFF WAVE ENERGY CONVERTORS

Hikkaduwa Galappaththilage Samantha Hikkaduwa

(138110E)

Thesis submitted in partial fulfilment of the requirements for the Degree of Master of Engineering in Manufacturing Systems Engineering

> Department of Mechanical Engineering University of Moratuwa Sri Lanka

> > January 2019

DECLARATION, COPYRIGHT STATEMENT OF THE CANDIDATE

I declare that this is my own work and this thesis does not incorporate without acknowledgement of any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Since this thesis contains materials related to Sri Lanka Navy, I hereby grant permission only to the University of Moratuwa to keep this thesis as a restricted copy at the University Library and do not grant permission to reproduce and or distribute my thesis, in whole or in part in print, electronic or other media. I retain the right to use this content in whole or in part in future works (such as articles or books).

Signature:

Date:

STATEMENT OF THE SUPERVISOR

The above candidate has carried out research for the Master of Engineering in Manufacturing Systems Engineering Degree under my supervision.

Name of the Supervisor: Professor M.A.R.V. Fernando

Signature of the Supervisor:

Date:

ACKNOWLEDGEMENTS

This thesis is the final work for my degree in Manufacturing Systems Engineering at the University of Moratuwa. I am grateful for the opportunity to work on a master's thesis at an innovative way in the Sri Lanka Navy on an ambitious project. I found that the subject is very interesting, as wave energy is an initiative and fairly new subject when compared to other power production methods. This gave me an opportunity to learn much more about wave power, and also about the process of how a new technology is developed. I was able to work independently on various aspects of this project but with good access to advice and consultations from excellent specialists. This experience, both the systematic approach as well as facing technical and experimental challenges, was also very valuable. Therefore this has been a great opportunity for me to participate in the development and experience of working in such varied sectors of engineering work. It gives me great pleasure to acknowledge all the advices, guidance and assistance rendered to me by all the lecturers of the Department of Mechanical & Electrical & Electronic Engineering, University of Moratuwa, the Commander of the Sri Lanka Navy, the Director General Training and the Director General Engineering of the Sri Lanka Navy and all Engineering officers and sailors in the Sri Lanka Navy and all those who gave me their fullest support in my studies. Secondly, I would like to express my deepest appreciation to my supervisor, Professor M.A.R.V. Fernando for his advice, patience, commitment and devotion to complete this research. I would like to express my sincere gratitude to our Head of Department in Mechanical Engineering, Course Coordinator of this MEng/PG Dip in Manufacturing Systems Engineering programme who supported me in numerous ways to complete this thesis. I profoundly thank my wife Prabuddhi Manel Ranagala who has sacrificed her valuable time and relived me from my responsibilities as a husband and as a father in many domestic matters. My two sons, Adithya Hikkaduwa and Bahvishya Hikkaduwa were the greatest sources of inspiration to me; most of the time they kept me awak for the successful completion of these studies and reports. Finally, I would like to express my appreciation to everyone who contributed with their moral support or in the actual work to successfully complete the studies related to this academic programme.

ABSTRACT

Wave Energy Converters (WECs) are explored on finding solutions to the energy sector as a renewable energy source for electricity and trying to convert the immense power available with ocean waves in the most efficient way. Many researches have been undertaken to improve varieties of WECs. However researchers have paid less attention towards the improvements of Rack & Pinion Power Take-off (PTO) WECs. Oscillating buoys are the most important part in most of the mechanical WECs which are used to absorb initial power from ocean waves. The aim of this thesis is to select the best performing oscillating buoys for Rack and Pinion PTO WECs by fulfilling the three objectives: (1) To identify Oscillating buoys suitable for Rack and Pinion PTO WECs, (2) To carry out simulation analysis to select the best performing oscillating buoys for Rack and Pinion PTO WECs, and (3) To conduct experimental analysis to select the best performing oscillating buoys for Rack and Pinion PTO WECs. The DMAIC (Define, Measure, Analyse, Improve & Control) cycle was used as the basis for the methodology. Six buoy types were selected based on the commonly available other types of WECs and this thesis focussed on simulation & experimental analysis to select the best performing oscillating buoys for Rack and Pinion PTO WECs. Simulations of all buoys were carried out with the help of Computational Fluid Dynamics (CFD) software X-Flow and three parameters, namely: Static Pressure, Vorticity & Liquid Phase, which were compared with each other. Proto type Rack and Pinion PTO WEC with regular wave making facility in a testing tank and six types of buoys in equal weight with the height to width ratio as 1 were fabricated and experimental testing were undertaken by creating four different wave heights for each buoy. Simulation and experimental results were analysed carefully and the best performing buoys for the proto type model of oscillating buoy operated, Rack & pinion PTO WEC were selected.

Key Words: Wave Energy Converter, Oscillating Buoy, Power Take-Off, Simulation, Experimental Analysis and Optimization

TABLE OF CONTENTS

Declaration of the Candidate and Supervisor i			i
Acknowledgement			ii
Abstr	Abstract		
Table	of Con	ntents	iv
List o	f Figur	es	viii
List o	f Table	S	xii
List o	f Abbre	eviations	xiii
1.	Intr	oduction	1
	1.1	Content of the Research Work	1
	1.2	Aim and Objectives	2
		1.2.1 Aim	2
		1.2.2 Objectives	2
	1.3	Methodology	3
	1.4	Introduction to Chapters	4
2.	Lite	rature Review	5
	2.1	Types of Wave Energy Convertors (WEC)	5
		2.1.1 Attenuator	5
		2.1.2 Point Absorber	5
		2.1.3 Terminator	6
	2.2	Regions where Wave Energy Convertors are sited	7
		2.2.1 Offshore	7
		2.2.2 Near Shore	7
		2.2.3 Shore Line	8
	2.3	Power Take-off (PTO) Methods	8
		2.3.1 Electrical Method	8
		2.3.2 Mechanical Method	9
		2.3.3 Hydraulic Method	9

Page

2.4	Mode	s of Operation	10
	2.4.1	Submerged Pressure Differential	10
	2.4.2	Oscillating Wave Surge Convertor	11
	2.4.3	Oscillating Water Column	12
2.5	Wave	Energy Conversion Technique	12
	2.5.1	Method of Oscillating Water Column	12
	2.5.2	Method of Oscillating Power Buoy	13
2.6	Power	Take-off Systems for Wave Energy Convertors	13
2.7	Mode	Study on Pendular type Wave Energy Device to utilize Ocea	ın
	Wave	Energy in Sri Lanka	15
2.8	Asses	sment of Near-shore Wave Climate in Southern Coast of Sri	
	Lanka		17
	2.8.1	Wave Data Availability	17
2.9	A Pre-	feasibility Study on Ocean Wave Power Generation for the	
	South	ern Coast of Sri Lanka: Electrical Feasibility	18
	2.9.1	Suitable WECs for Sri Lanka	20
	2.9.2	Oscillating Wave Column Method	20
	2.9.3	Oscillating Bodies	20
	2.9.4	Electrical Feasibility	21
	2.9.5	Social & Environmental Concerns	22
	2.9.6	Final Results	22
2.10	Desig	n Considerations for a WEC for Sri Lankan Coast	22
2.11	Performance Evaluation of Wave Energy Convertors 25		25
2.12	2 The Performance Evaluation of a Wave Energy Converter in Shallow		
	Water		26
2.13	Hydro	dynamic Characteristics of Buoy	27
2.14	Hydro	dynamic Research of a Novel Floating type Pendulum Wave	
	Energ	y Convertor based on Simulations & Experiments	28
2.15	Resea	rch Gap	29

•	3. The	oretical Background	31
	3.1	Buoy Interaction in Coordinate System	31
	3.2	Waves	31
		3.2.1 Wave Height	32
		3.2.2. Wave Period	32
		3.2.3 Wave Length	33
	3.3	Wave Equations	33
	3.4	Energy in Harmonic Waves	34
		3.4.3 Potential Energy	34
		3.4.4. Kinetic Energy	35
	3.5	Power in Waves or Energy Transport	35
		3.5.1 Energy in Real Waves	36
	3.6	Definitions of Some Energy Efficiency Concepts	37
		3.6.3 Absorption Width	37
		3.6.4 Absorption Efficiency	37
	3.7	Hydrodynamic Forces Acting on a Point Absorbing WEC	37
		3.7.1 Excitation Force	37
		3.7.2 Radiation Force	38
		3.7.3 Hydrostatic Force	38
		3.7.4 Drag Force	38
	3.8	Point Absorbers	38
	3.9	Control Methods	39
	3.10	Latching	40
	3.11	Mass, Spring & Damper System	41
4	4. Fab	rication of Prototype Wave Energy Converter and B	uoys 43
	4.1	Buoy	43
	4.2	Supporting Structure	44
	4.3	Wave Making Water Tank	46
	4.4	Drive Shaft	47
	4.5	Rack & Pinion	48

	4.6	Flywheel	51
	4.7 Gear Wheels		53
	4.8	DC Motor	54
	4.9	Dam	55
	4.10	Final Design	55
5.	Analy	ysis & Discussion of Results and Conclusion	65
	5.1	Simulation Analysis & Results	65
	5.2	Experimental Analysis & Results	79
6.	Discu	ssion	82
6. 7.		lusion	82 84
7.	Conc	lusion	84
	Conc		
7. 8.	Conc	lusion re Works	84
7. 8.	Conc Futur	lusion re Works	84 85

LIST OF FIGURES

Page

Figure 1.1	DMAIC Cycle	3
Figure 2.1	Attenuator WEC	5
Figure 2.2	Point Absorber WEC	6
Figure 2.3	Terminator	6
Figure 2.4	Overtopping Device	7
Figure 2.5	Shore Levels	8
Figure 2.6	Power Take-off (PTO) Methods	10
Figure 2.7	Submerged Pressure Differential Device	11
Figure 2.8	Oscillating Wave Surge Converter	11
Figure 2.9	Oscillating Water Column	12
Figure 2.10	PTO Efficiency & Cost	13
Figure 2.11	Different Self-rectifying Efficiency	14
Figure 2.12	Control Strategies	15
Figure 2.13	Caisson	16
Figure 2.14	Node Point	16
Figure 2.15	Modification to Caisson	17
Figure 2.16	Wave Height vs Time	19
Figure 2.17	Wave Periods	20
Figure 2.18	Power Output vs Time	21
Figure 2.19	Proposed Sites	22
Figure 2.20	Wave Chamber Power Plant	23
Figure 2.21	Basque Harbour, Spain	24
Figure 2.22	Wave Chamber Power Plant	24
Figure 2.23	SINW Power Team Testing Buoy with Linear Generator	25
Figure 2.24	SINW Power Project	25
Figure 2.25	Types of Buoys Selected	27
Figure 2.26	Shapes of Buoy	28

Figure 3.1	Axis for the Coordinate System3	
Figure 3.2	Significant Wave Heights the Average Height of the Highest Third	of
	the Spectra	32
Figure 3.3	The Main Parameters for Waves	33
Figure 3.4	Undisturbed Wave and How a Buoy would absorb the Wave Energy	/
	Completely	39
Figure 3.5	Position and Velocity of the Buoy in a Time Series	40
Figure 3.6	The Latching work	41
Figure 4.1	Fabrication of the Buoy	43
Figure 4.2	CAD Design of the Buoy	43
Figure 4.3	Fabrication of the Supporting Structure	45
Figure 4.4	Final Fabricated Supporting Structure	45
Figure 4.5	CAD Design of the Supporting Structure	46
Figure 4.6	CAD Design of the Wave Making Tank	47
Figure 4.7	Gear Wheels Used for the Drive Shaft	47
Figure 4.8	CAD Design of the Drive Shaft	48
Figure 4.9	Accessories Used for the Proto Type Model	48
Figure 4.10	Rack and the Drive Shaft	49
Figure 4.11	CAD Design of the Rack & Pinions	50
Figure 4.12	Model Connected Rack & Pinions	50
Figure 4.13	Flywheel Connected with the Drive Shaft	52
Figure 4.14	CAD Design of the Flywheel	52
Figure 4.15	Drive and Driven Gear Wheels	53
Figure 4.16	CAD Design of the Drive & Driven Wheels	54
Figure 4.17	Power Distribution of the WEC	55
Figure 4.18	CAD Design of the DC Motor	55
Figure 4.19	CAD Drawing of the Final Proto Type Model of WEC: Front View	56
Figure 4.20	CAD Drawing of the Final Proto Type Model of WEC: Top View	56
Figure 4.21	CAD Drawing of the Final Proto Type Model of WEC: Side View	57
Figure 4.22	Final Proto Type Model of Oscillating Buoy Operated Rack & Pinio	n
	PTO WEC	57

Figure 4.23	Wave Making Facility in Final Proto Type Model of Oscillating Po	ower
	Buoy Operated Rack & Pinion PTO WEC	58
Figure 4.24	Design Parameters of Sphere (OPB 1)	59
Figure 4.25	Design Parameters of Cuboid (OPB 2) 60	
Figure 4.26	Design Parameters of Cuboid with 45 degree Linear Chamfer divid	ing
	Length in a Ratio of 8:7 (OPB 3)	61
Figure 4.27	Design Parameters of Truncated Cylinder (OPB 4)	62
Figure 4.28	Design Parameters of Truncated Cylinder with 45 degree Linear	
	Chamfer dividing the Radius in a Ratio of 8:7 (OPB 5)	63
Figure 4.29	Design Parameters of Truncated Cylinder with a Quarter in Circle	
	Chamfer dividing the Radius in a Ratio of 8:7 (OPB 6)	64
Figure 5.1	Variation of Static Pressure related to OPB 1	66
Figure 5.2	Variation of Static Pressure related to OPB 2	66
Figure 5.3	Variation of Static Pressure related to OPB 3	67
Figure 5.4	Variation of Static Pressure related to OPB 4	67
Figure 5.5	Variation of Static Pressure related to OPB 5	68
Figure 5.6	Variation of Static Pressure related to OPB 6	68
Figure 5.7	Average Values of Static Pressure after Buoy Engagement	69
Figure 5.8	Variation of Static Pressure related to OPB 1	70
Figure 5.9	Variation of Static Pressure related to OPB 2	71
Figure 5.10	Variation of Static Pressure related to OPB 3	71
Figure 5.11	Variation of Static Pressure related to OPB 4	72
Figure 5.12	Variation of Static Pressure related to OPB 5	72
Figure 5.13	Variation of Static Pressure related to OPB 6	73
Figure 5.14	Average Values of Vorticity after Buoy Engagement	74
Figure 5.15	Volume of Liquid Phase related to OPB 1	75
Figure 5.16	Volume of Liquid Phase related to OPB 2	75
Figure 5.17	Volume of Liquid Phase related to OPB 3	76
Figure 5.18	Volume of Liquid Phase related to OPB 4	76
Figure 5.19	Volume of Liquid Phase related to OPB 5	77
Figure 5.20	Volume of Liquid Phase related to OPB 6	77

Figure 5.21	Average Values of Volume of Liquid Phase after	
	Buoy Engagement	78
Figure 5.22	Movement of Rack vs Wave Height	79
Figure 5.23	Main Shaft RPM vs Wave Height	80
Figure 5.24	Motor Shaft RPM vs Wave Height	81

LIST OF TABLES

Page

Table 2.1	Wave Climatic Data	18
Table 5.1	Average Values of Static Pressures of the Wave during Buoy	
	Engagement	69
Table 5.2	Average Values of Vorticity of the Wave during Buoy Engagement	73
Table 5.3	Average Values of Volume of Liquid Phase of the Wave during Buc	у
	Engagement	78
Table 5.4	Data Sheet for Movement of Rack vs Wave Height	79
Table 5.5	Data Sheet for Main Shaft RPM vs Wave Height	80
Table 5.6	Data Sheet for Motor Shaft RPM vs Wave Height	80

LIST OF ABBREVIATIONS

Abbreviation Description

CAD	Computer Aided Design
CCD	Coastal Conservation Department
CEB	Ceylon Electricity Board
CFD	Computational Fluid Dynamics
LCOE	Levelised Cost of Energy
LHI	Lanka Hydraulic Institute Ltd
NWW	Noaa Wave Watch
OWC	Oscillating Water/Wave Column
РТО	Power Take Off
RAO	Response Amplitude Operator
RPM	Revolutions per Minute
UK	United Kingdom
WCD	Wave Converting Devices
WEC	Wave Energy Converter