IMPROVEMENT OF DEUTZ MARINE ENGINES TO REDUCE CYLINDER LINER FAILURE DURING TRANSIENT CONDITIONS

Ruhunage Vishan Priyanka Ekanayake

(138106X)

Degree of Master of Engineering

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

November 2017

IMPROVEMENT OF DEUTZ MARINE ENGINES TO REDUCE CYLINDER LINER FAILURE DURING TRANSIENT CONDITIONS

Ruhunage Vishan Priyanka Ekanayake

(138106 X)

Thesis submitted in partial fulfilment of the requirements for the Degree of Master of Engineering in Manufacturing Systems Engineering

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

November 2017

DECLARATION, COPYRIGHT STATEMENT OF THE CANDIDATE

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or Institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

This thesis contains confidential material related to the Sri Lanka Navy, hence, I do hereby grant permission to the University of Moratuwa to keep this thesis as Restricted copy at the university library and it is not possible to grant the nonexclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

STATEMENT OF THE SUPERVISOR

The above candidate has carried out research for the Master thesis under my supervision.

Name of the Supervisor:

Signature of the Supervisor:

Date:

ACKNOWLEDGEMENTS

It is a great pleasure for me to acknowledge all the advices, guidance and assistance rendered to me by all the lecturers of the Department of Mechanical, University of Moratuwa, the Commander of the Navy, the Director General Training and the Director General Engineering of Sri Lanka Navy and all Engineering officers and sailors in Sri Lanka Navy and those who gave me the fullest support in my studies.

Secondly, I would like to express my deepest appreciation to my supervisor Professor M.A.R.V. Fernando for his advice, patience, support and devotion to complete this report. I would like to express my sincere gratitude to our Head of Department in Mechanical Engineering, Course Coordinator of this MEng/PGDip in Manufacturing Systems Engineering programme who supported me in numerous ways to complete this thesis successfully.

I profoundly thank my wife who has sacrificed her valuable time and relived me from my responsibilities as husband and as a father in many domestic matters.

Finally, I would like to express my appreciation to everyone who has contributed with their moral support or in the actual work to the successful completion of studies related to this Academic programme.

ABSTRACT

The problem of cylinder liner seizure of marine engines fitted on-board Fast Attack Craft (FAC) is an outstanding issue in Sri Lanka Navy(SLN). This failure has resulted in the wastage of money, manpower, reliability and non-operation of craft fitted with these engines. The Original Equipment Manufacturer (OEM) has tried to solve this issue by extensive investigations. However, the problem has not been fully resolved.

The research is mainly focused on geometrical aspects, surface texture, parameters of cylinder liner and low load running as these are the most influential factors for a cylinder liner. The parameters of the engine were investigated experimentally by preparing an experimented cylinder liner and installing it on 04 engines, surface texture and geometry of cylinder liners were inspected by obtaining sample cylinder liners from stock, and Low Load Running was examined on 04 Nos. engines for 06 months duration.

Literature survey revealed that most of the researches are related to thermal cracking, excessive wear down and lubrication oil failure, however, less attention has been paid towards the cooling water system of the engine. Therefore, engines were operated in steady state condition and also in various transient load conditions with experimented cylinder liners to understand the behaviour of the coolant system and related parameters.

It was revealed that the coolant system of the engine is not responding properly to cater to transient load changes of the engine and as a result, the cooling water temperature as well as the cylinder liner wall temperature could not achieve the required temperature to maintain sufficient clearance between piston and cylinder liner, thus causing a risk of cylinder liner seizure. Hence, a more sensitive thermostatic control valve can be introduced, which can respond very quickly in order to maintain specified elevated temperature values of the engine.

The research is structured in 06 main chapters: (1) Introduction, referring to content, aim & objective, methodology (2) Literature Review, addressing the theoretical background of the problem (3) Results, complete analysis of the thesis (4) Conclusion (5) Recommendation and (6) Future Work, referring to limitations and proposals for future research.

CONTENT

Declaration of the Candidate & Supervisor	Ι
Acknowledgements	III
Abstract	IV
Table of Content	V
List of Figures	VIII
List of Tables	Х
List of Appendices	XI
List of Abbreviations	XII

1.	Intro	duction	1
	1.1	Content of research work	1
	1.2	Aim and Objective	2
		1.2.1 Aim	2
		1.2.2 Objective	2
	1.3	Methodology	3
	1.4	Introduction to Chapters	3
2.	Litera	ature Review	5
	2.1	Introduction to Deutz TBD 620 V16 engine.	5
	2.2	Cylinder Liner Seizure of Deutz TBD 620 engines	6
		2.2.1 History and Background of the cylinder Liner	6
		Seizure problem	

	2.2.2	Nature of c	ylinder liner and piston seizure	7		
	2.2.3	Upgrades d	lone by OEM to overcome Cylinder	8		
		Liner seizu	re			
2.3	Vario	Various systems of the Deutz engine in-cooperated with the				
	Cyline	Cylinder liner				
	2.3.1	Lubrication	n Oil System	12		
	2.3.2	Fuel Syster	n	19		
	2.3.3	Coolant Sy	stem	21		
2.4	Vario	Various Components Related to Cylinder Unit				
	2.4.1	Cylinder lin	ner	25		
		2.4.1.1	Cylinder Liner Materials	27		
		2.4.1.2	Surface Texture of Cylinder Liner	28		
	2.4.2	Piston Ring	gs	30		
		2.4.2.1	Types of piston rings	31		
		2.4.2.2	Piston ring materials and Coatings	32		
		2.4.2.3	Blow-by prevention	33		
	2.4.3	Piston		34		
2.5	Theories behind the problem			36		
	2.5.1	Cylinder lu	brication	36		
	2.5.2	Friction in	cylinder liner assembly	37		
	2.5.3	Effect of cy	ylinder liner surface finishing and coating	40		
	2.5.4	Effect of cy	ylinder liner out-of-roundness	41		
2.6	Cylinder Liner Failure					
	2.6.1	Types of C	ylinder Liner failure	42		
		2.6.1.1	Liner Wear Down	43		
		2.6.1.2	Thermal cracking	43		
		2.6.1.3	Similar type of failures on other engines	44		

	2.7	Summ	hary	45	
3.	Analy	Analysis of Results			
	3.1	Introduction to the analysis		46	
	3.2	Analy	Analysis of running parameters of the cylinder liner		
		3.2.1	Set up of the measurement test.	47	
		3.2.2	Measurement schedule.	49	
		3.2.3	Measurement data.	50	
		3.2.4	Conclusion of the analysis.	58	
		3.2.5	Examine the behaviour of cooling water temperature		
			during Load variation.	59	
	3.3	Analysis of geometrical aspects of Cylinder liner.			
		3.3.1	Inner diameter of cylinder liner.	61	
		3.3.2	Clearance calculation between cylinder liner and piston	63	
			At elevated temperatures		
	3.4	Analysis of surface texture of cylinder liner.			
		3.4.1	Honing Profile.	69	
		3.4.2	Results of honing measurement.	70	
		3.4.3	Evaluation of analysis.	71	
	3.5	Analy	sis of Load profile of the engine.	71	
4.	Concl	usion.		78	
5.	Recommendation and implementation		79		
6.	Future	e work		90	
Refere	ence Lis	st		91	
Apper	ndix			98	

LIST OF FIGURES

Page

Figure 2.1: Cylinder Liner and Piston subjected to heavy seizure	7
Figure 2.2: Nature of seizure	8
Figure 2.3: Cylinder Liner without APR and with APR	9
Figure 2.4: Initial arrangement and Upgraded piston	10
Figure 2.5: Initial arrangement and Upgraded Version	10
Figure 2.6: Initial Bearing and Upgraded bearing	11
Figure 2.7: Gear wheel type lubrication oil pump	13
Figure 2.8: Lubricating Oil pump fitted on Deutz TBD 620 engine	13
Figure 2.9: Lubricating Oil Cooler	14
Figure 2.10: Lubricating oil system diagram	16
Figure 2.11: Piston cooling nozzles	17
Figure 2.12: Lubrication oil holes in the Piston	17
Figure 2.13: Connecting rod lubrication	18
Figure 2.14:Piston with Piston Rings	18
Figure 2.15:Cylinder liner with honing	19
Figure 2.16: Fuel system diagram	20
Figure 2.17: Injection Pump Nozzle Elements	21
Figure 2.18: Operation of thermostat	22
Figure 2.19: Thermostat of DEUTZ TBD 620	22
Figure 2.20: Configuration of 'plate type' heat exchanger	23
Figure 2.21: Centrifugal type Coolant Pump	24
Figure 2.22: Coolant system diagram	24
Figure 2.23: Cylinder liner Four stroke engine	26
Figure 2.24: Cylinder liner Two stroke engine	27
Figure 2.25: Honing details of cylinder liner	28
Figure 2.26: Piston rings	31
Figure 2.27: Piston ring types	31
Figure 2.28: Combustion gas blow-by past the piston ring	34

Figure 2.29: Piston	36
Figure 2.30: Assembly of lubricating Piston Ring and Cylinder Wall	38
Figure 2.31: Lubrication Conditions Encountered by Piston rings	38
Figure 3.1: Instrumented Cylinder Liner	48
Figure 3.2: Instrumented liner with mounting distances of thermo couples	48
Figure 3.3: Data log suitcase and strain gauge on the drive shaft	49
Figure 3.4: Liner temperatures, shaft speed and engine speed (steady state)	51
Figure 3.5: Liner temperatures, shaft speed and engine speed (rapid increase)	52
Figure 3.6: Engine speed, Exhaust gas and receiver pressures	53
Figure 3.7: Comparison measurement step 1-9 and theoretical power curve	53
Figure 3.8 HT in and out of the engine	55
Figure 3.9 : Operation of the thermostat and working element (wax)	60
Figure 3.10: Risk of sticking element	60
Figure 3.11: Measuring planes cylinder liner inner diameter	62
Figure 3.12: Surface Texture Measuring Tool	69
Figure 3.13: Abbott Curve -Profile to explain Rk, Rpk, Rvk	70
Figure 3.14: Load profile of P 421 port main engine	73
Figure 3.15: Load profile of P 421 Starboard main engine	73
Figure 3.16: Load profile of P 436 Port main engine	75
Figure 3.17: Load profile of P 433 Starboard main engine	75
Figure 3.18: Cylinder Liner with APR in Deutz TBD 620 engines	76
Figure 5.1: Operation of Pleiger controller with 3-way valve	80
Figure 5.2: Operation of 3-way valve (hot condition, valve open position)	82
Figure 5.3: Existing and proposed arrangement of thermostatic valve	82
Figure 5.4: Way valve with Pleiger controller fitted in the system	83
Figure 5.5: Attending modification	84
Figure 5.6: Recording final data from Data Logger	86
Figure 5.7: Coolant temperature behaviour from Data Logger	88

LIST OF TABLES

Page

Table 2.1: Statistic of cylinder liner seizure	6
Table 2.2: Increasing Cylinder Liner Bore Diameter	11
Table 2.3: Material Composition of Cast Iron cylinder liner	27
Table 2.4: Depth of surface deformation	30
Table 3.1: Load Steps of the Experiment (first stage)	49
Table 3.2: Load Steps of the Experiment (second stage)	50
Table 3.3: HT cooling water difference of the engine	56
Table 3.4:Specified limitations by the OEM	57
Table 3.5: Test bench recorded data of the engine	58
Table 3.6: Measurement Records of Cylinder Liner Bore	63
Table 3.7: Measurement of Piston Diameter	67
Table 3.8: Calculated data of cylinder liner clearance	68
Table 3.9: Comparison of cylinder liner clearance Image: Comparison of cylinder liner clearance	68
Table 3.10: Roughness Measurements on Deutz cylinder liners	70
Table 3.11: Roughness Measurements on MTU cylinder liners	71
Table 3.12: Running hours of P421 (Port) and P412 (Starboard)	72
Table 3.13: Running hours of P436 (Port) and P433 (Starboard)	74
Table 3.14: Dimension of APR comparing with other area of cylinder bore	77
Table 5.1:Material Requirement of the proposed system	85
Table 5.2: Comparison of Data	88

APPENDICE I

Sea trial report on completion of thermostat modification

98

LIST OF ABBREVIATIONS

OEM – Original Equipment Manufacture

SLN – Sri Lanka Navy