BASINWIDE ANALYSIS OF WATER RESOURCES AND POLLUTE TRANSPORT USING A DISTRIBUTED PARAMETER MODEL

Amali Chathurika Dahanayake

158045C

Degree of Master of Philosophy

Department of Civil Engineering

University of Moratuwa Sri Lanka

July 2019

BASINWIDE ANALYSIS OF WATER RESOURCES AND POLLUTE TRANSPORT USING A DISTRIBUTED PARAMETER MODEL

Amali Chathurika Dahanayake

158045C

Thesis submitted in partial fulfilment of the requirements for the degree of Master of Philosophy

Department of Civil Engineering

University of Moratuwa Sri Lanka

July 2019

Declaration of the Candidate and Supervisor

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature

Date

The above candidate has carried out research for the MPhil thesis dissertation under my supervision.

Signature of the supervisor

Date

Basinwide Analysis of Water Resources and Pollute Transport Using a Distributed Parameter Model

Abstract

The Nachchaduwa sub-catchment (598.74 km²) of the Malwathu Oya basin is seasonally stressed in the dry periods and its downstream parts undergo intermittent floods during monsoon seasons while the fate and behaviour of excess Nitrogen (N) and Phosphorus (P) added to the waterways due to agricultural fertilizers used in the upstream areas remain unresolved. This study incorporated the Water and Energy Transfer Processes (WEP) model to assess the water resources and pollutant transport of the catchment concerning the present status and six possible future scenarios. The required data for the model runs including meteorological, geographical, hydrological, and data related to water quality and anthropogenic activities, were collected and processed identifying the suitable model parameter values. The amounts of N and P in fertilizers applied in this catchment exceeded the actual plant requirement. In both wet and dry seasons, the differences between the measured water quality parameters in upstream and downstream were not statistically significant. The model results of the hydrological component showed that the catchment response to the rainfall was highly regulated due to reservoir storage effect. The model results of the material transport component showed that, on average, the wet season had about $5 \sim 7$ times the dry season value of the Total Suspended Solids (TSS) in the streams, and in both seasons, the modelled TSS, NO_3^- and $PO_4^{\frac{3}{3}-}$ were within the ranges of the previously published results. Scenario analysis found almost all water quality parameters reduced with the reduction of fertilizer input (maximum 30.64% reduction) and with the increase in temperature (maximum 2.27% reduction), but they increased with the increase in rainfall (maximum 13.49% increase). The findings will be useful in identifying best water resources management practices and coping with the residual N and P in streams and water bodies in a more pragmatic manner.

Keywords: Hydrological and material transport models, Nachchaduwa, Nitrogen, Phosphorus, Process-based models

Acknowledgements

I would like to extend my sincere gratitude towards all the organisations and individuals who have contributed and supported to this research. This research was funded by University of Moratuwa Senate Research Council Grants; SRC/ST/2015/17, SRC/LT/2016/09 and SRC/ST/2017/33.

First, I would like to express my profound gratitude to the supervisor of this research, Dr. R. L. H. L. Rajapakse, Senior Lecturer, Department of Civil Engineering, University of Moratuwa, for his immense support, continuous supervision, valuable guidance, and cordial mentoring given throughout the study period, as well as for sharing his extensive knowledge and precious time on this study.

Then I would like to extend my appreciation towards the staff of the Department of Irrigation, in both Colombo and Anuradhapura divisions, for providing the necessary streamflow and reservoir operation data for this study, as well as for the patronage given in field visits to the Nachchaduwa reservoir. Then I would like to acknowledge the support given by the staff of the Fertilizer Division, Divisional Secretariat Division of Anuradhapura District, in collecting fertilizer issuing data. Thereafter, the staff of the Meteorological Department is acknowledged for their support given in collecting meteorological data for this study.

Further, my sincere acknowledgements are conveyed to Professor J. M. A. Manatunga, and to the staff of the laboratory of the division of Environmental Engineering, Department of Civil Engineering, University of Moratuwa, for their support and advices given during the water quality testing conducted in that laboratory.

The research would not have been possible without the support given by all the academic staff members of the Department of Civil Engineering, including Senior Professors, Professors, Senior Lecturers and Lecturers. All the non-academic and academic support staff of University of Moratuwa are greatly appreciated for their heterogeneous supports given throughout the study period.

Finally, I am greatly indebted to my family, colleagues, and friends who gave me an immense support to successfully complete this research study.

Table of Contents

D	eclar	ration of the Candidate and Supervisor	i
A	bstra		ii
A	ckno	wledgements	iii
Ta	able	of Contents	iv
L	ist of	Figures	vii
L	ist of	Tables	xiii
L	ist of	Appendices	XV
L	ist of	Abbreviations	xvi
1		Introduction	1
	1.1	Overview of the Study	1
	1.2	Identified Research Gap	4
	1.3	Problem Statement	5
	1.4	Objectives	5
	1.	.4.1 Overall objective	5
	1.	.4.2 Specific objectives	6
	1.5	Chapter Outline of the Thesis	7
2		Literature Review	
	2.1	Overview and Present Status of the Malwathu Oya Basin	
	2.2	Water Resources Management in Malwathu Oya	9
	2.3	Water Quality in Malwathu Oya Basin	11
	2.	.3.1 Water quality in streams in Malwathu Oya basin	11
	2.	.3.2 Water quality in reservoirs in Malwathu Oya basin	13
	2.	.3.3 Groundwater quality in Malwathu Oya basin	
	2.4	Review of the Current Status in Malwathu Oya Basin	
	2.5	Water Quality Monitoring for River Basin Management	21
	2.6	Importance of Physics based Modelling for River Basin Manage Selection of the WEP (Water and Energy transfer Processes) Mod Analysis	ement and del for the 22
	2.7	Fertilizer Over Usage in the Basin	
	2.8	Climate Change Impacts	
3		Materials and Methods	
	3.1	Methodology	
	3.2	Data and Data Checking/Data Pre-Processing Procedures	
	3.	.2.1 Data Sources and Data Resolution	

3.2.2 Study Area - Nachchaduwa Catchment Related Data	39
3.2.2.1 Nachchaduwa reservoir	39
3.2.2.2 Land use, soil types and delineation of sub catchments of Nachchaduwa catchment	the 39
3.2.3 Rainfall Data	41
3.2.4 Streamflow Data	42
3.2.4.1 Initial data checking	42
3.2.4.2 Developing a streamflow data series for the WEP model using H HMS	EC 43
3.2.5 Water Balance/Yield Analysis	43
3.2.6 Meteorological Data	46
3.2.7 Reservoir/Streamflow Water Quality Data	48
3.2.7.1 Reservoir/streamflow water quality - Yala season	49
3.2.7.2 Reservoir/streamflow water quality - Maha season	53
3.2.8 Fertilizer Related Data	59
3.3 WEP Model Analysis	69
3.3.1 Preparation of Input Files	69
3.3.2 WEP Model Analysis	70
3.3.3 Parameter Sensitivity Analysis	70
3.3.4 Scenario Analysis	71
4 Results and Discussion	72
4.1 WEP Model Results (for the Present Condition)	72
4.1.1 Streamflow comparison with HEC-HMS model results	72
4.1.2 Temporal variation of results	74
4.1.2.1 TSS results	76
4.1.2.2 Results of Nitrogen components	78
4.1.2.3 Results of Phosphorus components	85
4.1.2.4 Results of other parameters	91
4.1.3 Spatial variation of results	92
4.1.3.1 Discharged DN from each layer ("fort.108" results file)	93
4.1.3.2 DN in gravity drain/subsurface losses ("n-andrn1.asc" results file)	94
4.1.3.3 DP in gravity drain/subsurface losses ("p-apdrn1.asc" results file)	94
4.1.3.4 Mesh influx DN quantity ("n-fxce.asc" results file)	95
4.1.3.5 Mesh influx PN quantity ("n-fxpnce.asc" results file)	96
4.1.3.6 Mesh influx DP quantity ("p-fxdpce.asc" results file)	97

	4.1.3.7 Me	sh influx PP quantity ("p-fxppce.asc" results file)	98
4.2	Sensitivity	Analysis Results	99
4.	.2.1 Materia	l movement for the overland flow ("surfaceC.csv" file)	99
4.	.2.2 Materia	l transport in the river channel ("riverC.csv" file)	102
4.	.2.3 Non-p ("nonpe	ooint source material transport in forest and urban ointsource.csv" file)	area 104
4.3	Scenario A	nalysis Results	106
4.	.3.1 Compa	rison of fertilizer related scenarios (Scenario 1, 2 and 3)	106
	4.3.1.1 Cor	mparison of temporal variation of results	106
	a)	Results of Nitrogen components	106
	b)	Results of Phosphorus components	109
	c)	TSS variation	112
	4.3.1.2 Con	mparison of nutrient concentrations with flow values	113
	a)	Results of Nitrogen components	113
	b)	Results of Phosphorus components	116
	c)	Comparison of percentage difference	118
	4.3.1.3 Cor	mparison of spatial variation of results	121
4.	.3.2 Compa	rison of climate change related scenarios (Scenario 4, 5 and	6) 131
	4.3.2.1 Cor	mparison of temporal variation of results	131
	a)	Results of Nitrogen components	131
	b)	Results of Phosphorus components	134
	c)	TSS variation	137
	4.3.2.2 Cor	mparison of nutrient concentrations with flow values	138
	a)	Results of Nitrogen components	138
	b)	Results of Phosphorus components	140
	c)	Comparison of percentage difference	143
	4.3.2.3 Cor	mparison of spatial variation of results	148
5	Conclusion	ns and Recommendations	159
5.1	Conclusion	ns	159
5.2	Summary of	of Findings	160
5.3	Recommen	ndations for Future Studies	163
Refere	nces		164
Appen	dix A: Addi	tional Data for Materials and Methods	170
Appen	dix B: Addi	tional Results	193

List of Figures

Figure 1.1: Malwathu Oya River Basin (original in colour) Figure 2.1: Nachchaduwa Catchment and the Malwathu Oya Basin (original in colour)	1 r)
1 Euro 2.1. Muchemada wa Cateminent and the Marwand Oya Dasin (original in coroa	8
Figure 2.2: (a) The Temporal Variation of NO_3^- in all Six Reservoirs Studied h	w
Wijesundara et al. (2012, 2013) (b) The Temporal Variation of PO_4^{3-} in a	11
Six Reservoirs Studied by Wijesundara et al. (2012, 2013)	6
Figure 2.3: (a) The Spatial Variation of NO_2^- in Each Reservoir Studied b	w
Wijesundara et al. (2012–2013) (b) The Spatial Variation of PO_4^{3-} in Each	۰y h
Reservoir Studied by Wijesundara et al. (2012, 2013)	7
Figure 2.4: The Structure of the WEP Model - Vertical Structure within a Grid Ce	, 11
(Rajanakse et al. 2010)	7
Figure 2 5: The Structure of the WFP Model - Horizontal Structure (Rajanakse et al	1
2010)	8
Figure 3 1: Methodology Flow Chart	7
Figure 3.2: Land use of the Nachchaduwa Catchment (original in colour) 4	0
Figure 3.3: Soil Types of the Nachchaduwa Catchment (original in colour)	0
Figure 3.4: Delineation of Sub Catchments (original in colour)	0
Figure 3.5: Thiessen Polygons for the Catchment (original in colour).	1
Figure 3.6: Thiessen Average Daily Rainfall (mm) and Total Daily Outflow (m ³) from	m
the Reservoir (original in colour)	.2
Figure 3.7: Annual Demand and Supply - Current Situation (original in colour) 4	4
Figure 3.8: Verification of the Reservoir Operation Study Model Outputs with th	ie
Actual Operational Data - Current Situation (original in colour)	-5
Figure 3.9: Annual Demand and Supply - Alternative Situation (original in colour)4	-5
Figure 3.10: Verification of the Reservoir Operation Study Model Outputs with th	ıe
Actual Operational Data - Alternative Situation (original in colour) 4	-6
Figure 3.11: Hourly Temperature Data Series	7
Figure 3.12: Hourly Wind Velocity Data Series	.7
Figure 3.13: Hourly Relative Humidity Data Series	.7
Figure 3.14: Hourly Sunshine Data Series	8
Figure 3.15: Water Quality Sampling Locations in the Yala (Dry) Season (original i	in
colour)	.9
Figure 3.16: Location 1 (original in colour) 5	0
Figure 3.17: Location 3 (original in colour) 5	0
Figure 3.18: Location 4 (original in colour) 5	0
Figure 3.19: Location 5 (original in colour) 5	0
Figure 3.20: Location 6 (original in colour) 5	0
Figure 3.21: Location 7 (original in colour) 5	0
Figure 3.22: Water Quality Test Results with the Sampling Locations - Yala Seaso	n
(original in colour)	3
Figure 3.23: Water Quality Sampling Locations in the Maha (Wet) Season (original i	in
colour)	4
Figure 3.24: Location 4 (original in colour)	4
Figure 3.25: Location 5 (original in colour)	4
Figure 3.26: Location 6 (original in colour) 5	5

Figure 3.27: Location 7 (original in colour)
Figure 3.28: Water Quality Test Results for Nitrogen Components, for the Samples
Collected in Maha Season (original in colour)
Figure 3.29: Water Quality Test Results (Nitrogen Components) with the Sampling
Locations, for the Samples Collected in Maha Season (original in colour)
Figure 3.30: Water Quality Test Results for Phosphorus Components, for the Samples
Collected in Maha Season (original in colour)
Figure 3.31: Water Quality Test Results (Phosphorus Components) with the Sampling
Locations, for the Samples Collected in Maha Season (original in colour)
Figure 3.32: Agrarian Service Centres (ASC) inside the Nachchaduwa Catchment
(original in colour) 60
Figure 4.1: Streamflow Comparison with HEC-HMS Model Results for the
Calibration Period
Figure 4.2: Streamflow Comparison with HEC-HMS Model Results for the Validation
Period
Figure 4.3: Temporal Variation of TSS with the Thiessen Average Rainfall, for the
Calibration Period (original in colour)77
Figure 4.4: Temporal Variation of TSS with the Thiessen Average Rainfall, for the
Validation Period (original in colour)
Figure 4.5: Temporal Variation of Nitrogen Components for the Calibration Period
(original in colour)
Figure 4.6: Temporal Variation of Nitrogen Components for the Validation Period
(original in colour)
Figure 4.7: Comparison of WEP Model Results of Nitrogen Components for the Low
Flows (Calibration Period) with the Entire Duration of the Three
Published Results
Figure 4.8: Comparison of WEP Model Results of Nitrogen Components for the Mid
Flows (Calibration Period) with the Entire Duration of the Three
Published Results
Figure 4.9: Comparison of WEP Model Results of Nitrogen Components for the High
Flows (Calibration Period) with the Entire Duration of the Three
Published Results
Figure 4.10: Comparison of WEP Model Results of Nitrogen Components for the All
Flows (Calibration Period) with the Entire Duration of the Three
Published Results
Figure 4.11: Comparison of WEP Model Results of Nitrogen Components for the Low
Flows (Validation Period) with the Entire Duration of the Three
Published Results
Figure 4.12: Comparison of WEP Model Results of Nitrogen Components for the Mid
Flows (Validation Period) with the Entire Duration of the Three
Published Results
Figure 4.13: Comparison of WEP Model Results of Nitrogen Components for the High
Flows (Validation Period) with the Entire Duration of the Three
Published Results

Figure 4.14:	Comparison of WEP Model Results of Nitrogen Components for the All Elows (Validation Period) with the Entire Duration of the Three
	Published Desults
Figure / 15.	Temporal Variation of Phosphorus Components for the Calibration Period
1 iguic 4.15.	(original in colour)
Figure / 16.	Temporal Variation of Phosphorus Components for the Validation Period
1 iguic 4.10.	(original in colour)
Figure 4 17.	Comparison of WED Model Pagults of Phoenhorus Components for the
rigule 4.17.	Low Elows (Calibration David) with the Entire Duration of the Three
	Low Flows (Calibration Period) with the Entire Duration of the Three
Eigung 4 19.	Comparison of WED Model Desults of Desenhorus Companyate for the
Figure 4.18:	Mid Elaws (Calibration Daried) with the Entire Duration of the Three
	Mid Flows (Calibration Period) with the Entire Duration of the Infee
E' 4.10	Published Results
Figure 4.19:	Comparison of WEP Model Results of Phosphorus Components for the
	High Flows (Calibration Period) with the Entire Duration of the Three
E : 4.20	Published Results
Figure 4.20:	Comparison of WEP Model Results of Phosphorus Components for the
	All Flows (Calibration Period) with the Entire Duration of the Three
	Published Results
Figure 4.21:	Comparison of WEP Model Results of Phosphorus Components for the
	Low Flows (Validation Period) with the Entire Duration of the Three
	Published Results
Figure 4.22:	Comparison of WEP Model Results of Phosphorus Components for the
	Mid Flows (Validation Period) with the Entire Duration of the Three
	Published Results
Figure 4.23:	Comparison of WEP Model Results of Phosphorus Components for the
	High Flows (Validation Period) with the Entire Duration of the Three
	Published Results
Figure 4.24:	Comparison of WEP Model Results of Phosphorus Components for the
	All Flows (Validation Period) with the Entire Duration of the Three
	Published Results
Figure 4.25:	Critical Months and Critical Parameter of "fort.108" Results File; (a)
	Calibration Period (October 2009, ANI1) and (b) Validation Period
	(September 2012, ANI1) (original in colour)
Figure 4.26:	Critical Months of "n-andrn1.asc" Results File; (a) Calibration Period
	(November 2009) and (b) Validation Period (October 2012) (original in
	colour)
Figure 4.27:	Critical Months of "p-apdrn1.asc" Results File; (a) Calibration Period
	(November 2009) and (b) Validation Period (October 2013) (original in
	colour)
Figure 4.28:	Critical Months of "n-fxce.asc" Results File; (a) Calibration Period
	(November 2011) and (b) Validation Period (December 2014) (original
	in colour)
Figure 4.29:	Critical Months of "n-fxpnce.asc" Results File; (a) Calibration Period
	(February 2011) and (b) Validation Period (December 2014) (original in
	colour)

Figure 4.30: Critical M (February	lonths of "p-fxdpce.asc" I 2011) and (b) Validation F	Results File; (a) Calibration Period Period (December 2014) (original in
colour)		
Figure 4.31: Critical M	lonths of "p-fxppce.asc" I	Results File; (a) Calibration Period
(February	2011) and (b) Validation F	Period (December 2014) (original in
colour)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	99
Eigung 4.22: DD in East	$M_{a} = \frac{1}{2} D_{a} (m_{a} / 1) in (m_{a} / 2)$	uface C early Eile (ariginal in colour)
Figure 4.52: DP III Each	i Model Run (mg/1) in su	riaceC.csv File (original in colour)
••••••		
Figure 4.33: PP in Each	Model Run (mg/l) in "sur	rfaceC.csv" File (original in colour)
e		101
Figure 1 31: TD in Each	Model Pup (mg/l) in "su	rface C cay" File (original in colour)
Figure 4.54. II III Each	i wodel Kull (ling/1) lii Sul	
	••••••	
Figure 4.35: DP in Eac	h Model Run (mg/l) in "r	riverC.csv" File (original in colour)
-		
Figure 1 36. PD in Eac	h Model Run (mg/l) in "r	iver(csy" File (original in colour)
Figure 4.50. 11 III Eac	ii Wodel Kull (ilig/l) ili l	
Figure 4.37: TP in Eac	h Model Run (mg/l) in "r	riverC.csv" File (original in colour)
Figure 4 38: DP in Eac	h Model Run (mg/l) in "n	onpointsource csy" File (original in
colour)		
Figure 4.39: PP in Eac.	n Model Run (mg/l) in "no	onpointsource.csv ² File (original in
colour)		
Figure 4.40: TP in Eac	h Model Run (mg/l) in "ne	onpointsource.csv" File (original in
colour)		105
$\mathbf{E}^{\mathbf{COIOUI}}$		
Figure 4.41: The Varia	tion of PN in Present Con	idition, Scenario I (SI), Scenario 2
(S2) and S	cenario 3 (S3) (original in	colour)107
Figure 4.42: The Varia	tion of DN in Present Con	dition, Scenario 1 (S1), Scenario 2
(S2) and S	cenario 3 (S3) (original in	colour) 108
Figure 1 13: The Varia	tion of TN in Present Con	dition Scenario 1 (S1) Scenario 2
rigule 4.45. The Valla		
(S2) and S	cenario 3 (S3) (original in	colour) 109
Figure 4.44: The Varia	tion of PP in Present Con	dition, Scenario 1 (S1), Scenario 2
(S2) and S	cenario 3 (S3) (original in	colour)110
Figure 4.45: The Varia	tion of DP in Present Con	dition. Scenario 1 (S1). Scenario 2
(S2) and S	conorio 3 (S3) (original in	$\frac{111}{111}$
Figure 4.46: The Varia	tion of TP in Present Con	dition, Scenario I (SI), Scenario 2
(S2) and S	cenario 3 (S3) (original in	colour)112
Figure 4.47: The Varia	tion of TSS in Present Cor	ndition. Scenario 1 (S1). Scenario 2
(\$2) and \$	cenario 3 (S3) (original in	colour) 113
(52) and 5	centario 5 (55) (original in	$V_{1} = (N_{1}) + (N_{2}) + (N_{2}$
Figure 4.48: Compariso	n of Nutrient Concentratio	in values (Nitrogen Components) of
All Scenar	ios with the Published Res	sults for the Low Flows114
Figure 4.49: Compariso	n of Nutrient Concentratio	n Values (Nitrogen Components) of
All Scenar	ios with the Published Res	sults for the Mid Flows 114
Figure 4 50: Compariso	n of Nutriant Concentratio	n Values (Nitrogen Components) of
rigure 4.50. Compariso		in values (Nillogen Components) of
All Scenar	10s with the Published Res	sults for the High Flows 115
Figure 4.51: Compariso	n of Nutrient Concentratio	n Values (Nitrogen Components) of
All Scenar	ios with the Published Res	sults for the All Flows 115

Figure 4.52: Comparison of Nutrient Concentration Values (Phosphorus Components)
Figure 4.53: Comparison of Nutrient Concentration Values (Phosphorus Components)
of All Scenarios with the Published Results for the Mid Flows 117
Figure 4.54: Comparison of Nutrient Concentration Values (Phosphorus Components)
of All Scenarios with the Published Results for the High Flows 117
Figure 4.55: Comparison of Nutrient Concentration Values (Phosphorus Components)
Γ of All Scenarios with the Fublished Results for the All Piows
Figure 4.56: Comparison of Discharged DN from each layer ("fort.108" Results File); (a) Present Condition (b) Scenario 1 (c) Scenario 2 (d) Scenario 3
(a) Present Condition, (b) Sechario 1, (c) Sechario 2, (d) Sechario 5 (original in colour)
(Original III Colour)
Figure 4.57: Comparison of DN in Gravity Drain/Subsurface Losses ("n-andrn1.asc"
Results File); (a) Present Condition, (b) Scenario 1, (c) Scenario 2, (d)
Scenario 3 (original in colour) 125
Figure 4.58: Comparison of DP in Gravity Drain/Subsurface Losses ("p-apdrn1.asc"
Results File); (a) Present Condition, (b) Scenario 1, (c) Scenario 2, (d)
Scenario 3 (original in colour)126
Figure 4.59: Comparison of Mesh Influx DN Quantity ("n-fxce.asc" Results File); (a)
Present Condition, (b) Scenario 1, (c) Scenario 2, (d) Scenario 3 (original
in colour)
Figure 4.60: Comparison of Mesh Influx PN Quantity ("n-fxpnce.asc" Results File);
(a) Present Condition, (b) Scenario 1, (c) Scenario 2, (d) Scenario 3
(original in colour)
Figure 4 61: Comparison of Mesh Influx DP Quantity ("p-fxdpce.asc" Results File):
(a) Present Condition (b) Scenario 1 (c) Scenario 2 (d) Scenario 3
(a) Present Condition, (b) Scenario 1, (c) Scenario 2, (a) Scenario 3 (original in colour)
Figure 4.62: Comparison of Mesh Influx PP Quantity ("n-fxppce asc" Results File):
(a) Present Condition (b) Scenario 1 (c) Scenario 2 (d) Scenario 3
(a) Tresent Condition, (b) Scenario 1, (c) Scenario 2, (d) Scenario 5 (original in colour)
(Oliginal III colour)
Figure 4.65: The variation of PN in Present Condition, Scenario 4 (54), Scenario 5 (S_{2}) and Scenario 6 (S_{2}) (arising the scheme) 122
(55) and Scenario 6 (56) (original in colour)
Figure 4.64: The Variation of DN in Present Condition, Scenario 4 (54), Scenario 5
(S5) and Scenario 6 (S6) (original in colour)
Figure 4.65: The Variation of TN in Present Condition, Scenario 4 (S4), Scenario 5
(S5) and Scenario 6 (S6) (original in colour)133
Figure 4.66: The Variation of PP in Present Condition, Scenario 4 (S4), Scenario 5
(S5) and Scenario 6 (S6) (original in colour)134
Figure 4.67: The Variation of DP in Present Condition, Scenario 4 (S4), Scenario 5
(S5) and Scenario 6 (S6) (original in colour)
Figure 4.68: The Variation of TP in Present Condition, Scenario 4 (S4), Scenario 5
(S5) and Scenario 6 (S6) (original in colour)
Figure 4.69: The Variation of TSS in Present Condition Scenario 4 (S4) Scenario 5
(S5) and Scenario 6 (S6) (original in colour)
Figure 4 70: Comparison of Nutrient Concentration Values (Nitrogen Components) of
All Scenarios with the Published Desults for the Low Flows 129
Figure 4.71: Comparison of Nutriant Concentration Values (Nitroan Comparate) of
120 All Comparison with the Dublished Describe for the Mid Elect.
All Scenarios with the Published Results for the Mid Flows

Figure 4.72: Comparison of Nutrient Concentration Values (Nitrogen Components) of
All Scenarios with the Published Results for the High Flows
Figure 4.73: Comparison of Nutrient Concentration Values (Nitrogen Components) of
All Scenarios with the Published Results for the All Flows
Figure 4.74: Comparison of Nutrient Concentration Values (Phosphorus Components)
of All Scenarios with the Published Results for the Low Flows 141
Figure 4.75: Comparison of Nutrient Concentration Values (Phosphorus Components)
of All Scenarios with the Published Results for the Mid Flows 142
Figure 4.76: Comparison of Nutrient Concentration Values (Phosphorus Components)
of All Scenarios with the Published Results for the High Flows 142
Figure 4.77: Comparison of Nutrient Concentration Values (Phosphorus Components)
of All Scenarios with the Published Results for the All Flows
Figure 4.78: Comparison of Discharged DN from each layer ("fort.108" Results File);
(a) Present Condition, (b) Scenario 4, (c) Scenario 5, (d) Scenario 6
(original in colour)152
Figure 4.79: DN in Gravity Drain/Subsurface Losses ("n-andrn1.asc" Results File); (a)
Present Condition, (b) Scenario 4, (c) Scenario 5, (d) Scenario 6 (original
in colour)153
Figure 4.80: Comparison of DP in Gravity Drain/Subsurface Losses ("p-apdrn1.asc"
Results File); (a) Present Condition, (b) Scenario 4, (c) Scenario 5, (d)
Scenario 6 (original in colour)154
Figure 4.81: Comparison of Mesh Influx DN Quantity ("n-fxce.asc" Results File); (a)
Present Condition, (b) Scenario 4, (c) Scenario 5, (d) Scenario 6 (original
in colour)155
Figure 4.82: Comparison of Mesh Influx PN Quantity ("n-fxpnce.asc" Results File);
(a) Present Condition, (b) Scenario 4, (c) Scenario 5, (d) Scenario 6
(original in colour)156
Figure 4.83: Comparison of Mesh Influx DP Quantity ("p-fxdpce.asc" Results File);
(a) Present Condition, (b) Scenario 4, (c) Scenario 5, (d) Scenario 6
(original in colour)157
Figure 4.84: Comparison of Mesh Influx PP Quantity ("p-fxppce.asc" Results File);
(a) Present Condition, (b) Scenario 4, (c) Scenario 5, (d) Scenario 6
(original in colour)158

List of Tables

Table 2.1: Water	Quality in Reservoirs in Malwathu Oya Basin
Table 2.2: Mather	natical Equations and Methods used in the WEP Model
Table 3.1: Data So	ources and Data Resolution
Table 3.2: Water	Quality Sample Details for Samples collected in Yala Season 51
Table 3.3: Summa Season	ry of Water Quality Test Results for the Samples Collected in Yala
Table 3.4: Water	Quality Sample Details for Samples collected in Maha Season 56
Table 3.5: Summa	rry of the Water Quality Test Results (Concentrations in ppm) 59
Table 3.6: Crop an	rea in every ASC
Table 3.7: Require	ed Amounts of Fertilizers for Crops
Table 3.8: Compa (kg/ha) colour	rison of the Monthly Average Values of Applied Nitrogen Amounts of Each Month, with the Required Amount, for Paddy (original in)
Table 3.9: Comp Amour (origin	arison of the Monthly Average Values of Applied Phosphorus nts (kg/ha) of Each Month, with the Required Amount, for Paddy al in colour)
Table 3.10: Comp (kg/ha) (origin	arison of the Monthly Average Values of Applied Nitrogen Amounts of Each Month, with the Required Amount, for Other Crops al in colour)
Table 3.11: Com Amour Crops	parison of the Monthly Average Values of Applied Phosphorus nts (kg/ha) of Each Month, with the Required Amount, for Other (original in colour)
Table 3.12: Comp (kg/ha) (origin	arison of the Monthly Average Values of Applied Nitrogen Amounts of Each Month, with the Required Amount, for Homesteads al in colour)
Table 3.13: Com Amour Homes	parison of the Monthly Average Values of Applied Phosphorus nts (kg/ha) of Each Month, with the Required Amount, for teads (original in colour)
Table 4.1: Error C	oefficients for the Calibration and Validation Period
Table 4.2: Averagent the Loc Valida	ge Values of Nitrogen and Phosphorus Components, Classified for ow Flow, Mid Flow, and High Flow, for the Calibration and tion Periods
Table 4.3: TSS Va Season	alues for the Calibration and Validation Period for the Wet and Dry
Table 4.4: Critica Results	Months and Critical Parameters of the Selected Spatial Variation Files

Table 4.5: Comparison of TN in Different Flows (mean±standard deviation) 113
Table 4.6: Comparison of TP in Different Flows (mean±standard deviation) 116
Table 4.7: S1 Percentage Difference Compared to the Present Condition ((S 1 Average- Present Condition Average)*100)/(Present Condition Average)
Table 4.8: S2 Percentage Difference Compared to the Present Condition ((S 2 Average- Present Condition Average)*100)/(Present Condition Average)
Table 4.9: S3 Percentage Difference Compared to the Present Condition ((S 3 Average- Present Condition Average)*100)/(Present Condition Average)
Table 4.10: Comparison of Critical Months and the Percentage Differences in the Maximum Values - Present and S1
Table 4.11: Comparison of Critical Months and the Percentage Differences in the Maximum Values - Present and S2
Table 4.12: Comparison of Critical Months and the Percentage Differences in the Maximum Values - Present and S3
Table 4.13: Comparison of TN in Different Flows (mean±standard deviation) 138
Table 4.14: Comparison of TP in Different Flows (mean±standard deviation) 140
Table 4.15: S4 Percentage Difference Compared to the Present Condition ((S4 Average - Present Condition Average)*100)/(Present Condition Average) 144
Table 4.16: S5 Percentage Difference Compared to the Present Condition ((S5 Average - Present Condition Average)*100)/(Present Condition Average) 144
Table 4.17: S6 Percentage Difference Compared to the Present Condition ((S6 Average - Present Condition Average)*100)/(Present Condition Average) 144
Table 4.18: Comparison of Critical Months and the Percentage Differences in the Maximum Values - Present and S4
Table 4.19: Comparison of Critical Months and the Percentage Differences in the Maximum Values - Present and S5
Table 4.20: Comparison of Critical Months and the Percentage Differences in the Maximum Values - Present and S6

List of Appendices

Appendix A: Additional Data for Materials and Methods	. 171
Appendix B: Additional Results	. 193

List of Abbreviations

Abbreviation	Description
APHA	American Public Health Association
ASC	Agrarian Services Centres
BMP	Best Management Practices
BOD	Biological Oxygen Demand
CEA	Central Environmental Authority
CCME	Canadian Council of Ministers of the Environment
CKDu	Chronic Kidney Disease of Unknown aetiology
COD	Chemical Oxygen Demand
DN	Dissolved Nitrogen
DP	Dissolved Phosphorus
DO	Dissolved Oxygen
DON	Dissolved Organic Nitrogen
DP	Dissolved Phosphorus
DSD	Divisional Secretariat Divisions
EC	Electrical Conductivity
FIMS	First Inter Monsoon Season
GCM	General Circulation Models
HERT	Hydrologic Engineering Research Team
HLMC	High Level Main Canal
HMIS	Hydro-meteorological Management Information System
HYV	High-Yielding Varieties
IGCI	International Global Change Institute

IN	Inorganic Nitrogen
IP	Inorganic Phosphorus
IPCC	Intergovernmental Panel on Climate Change
IPCC-TGCIA	Intergovernmental Panel on Climate Change - Task Group on Scenarios for Climate Impact Assessment
IWMI	International Water Management Institute
LB	Left Bank
LBHL	Left Bank High Level
LLMC	Low Level Main Canal
МСМ	Million Cubic Meters (10 ⁶ m ³)
МОР	Muriate of Potash
NCP	North Central Province
NEM	North East Monsoon
NGO	Non-Governmental Organizations
OFC	Other Field Crops
ON	Organic Nitrogen
OP	Organic Phosphorus
PBSD	Physically Based Spatial Distributed
PN	Particulate Nitrogen
PON	Particulate Organic Nitrogen
PP	Particulate Phosphorus
RB	Right Bank
RBHL	Right Bank High Level
RBLL	Right Bank Low Level
RSC	Residual Sodium Carbonate

SAR	Sodium Absorption Ratio
SCS	Soil Conservation Service
SLS	Sri Lanka Standards
SS	Suspended Solids
SIMS	Second Inter Monsoon Season
SRES	Special Report on Emission Scenarios
SWM	South West Monsoon
SWMS	South West Monsoon Season
TDS	Total Dissolved Solids
TN	Total Nitrogen
TP	Total Phosphorus
TSP	Triple Super Phosphate
USACE	United States Army Corps of Engineers
VBA	Visual Basic for Applications
WEP	Water and Energy transfer Processes
WHO	World Health Organisation
WQI	Water Quality Index