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ABSTRACT 

 

Recent advances in deep reinforcement learning has produced state of the art 

algorithms. These algorithms have better training stability, convergence and 

computational performance.  

In this study a state of the art deep reinforcement learning algorithm is used to 

implement a self-learning, model free, non-linear controller to control pH of an 

aquaponic system.  Aquaponics is a soil-less farming system where effluent water from 

a fish tank is used as nutrients for growing plants. Maintaining the pH of an aquaponic 

system provides the optimal condition for micro-organisms that convert the ammonia 

rich fish effluent to nitrates, which are easily absorbed by the plants. In order to 

optimize this conversion process known as nitrification, pH is maintained at optimal 

conditions within an intermediate setup known as the nitrification bioreactor.  

The implementation of a deep reinforcement learning based controller is studied in 

detail and the performance of the deep reinforcement learning based pH controller is 

evaluated by comparing the performance of a classic PID based controller in an 

aquaponic system.  

The results show that DRL based controllers are better suited for control of dynamic 

stochastic control pH process and is capable of learning complex plant models and 

tuning itself based on the learnt model. The outcomes of this research can be applied 

in the design of optimal controllers that learns purely from experience to optimize 

various industrial processes. This type of controllers is ideal in Industry 4.0 based 

applications. 

 

Keywords: Deep Reinforcement Learning, Artificial Intelligence, Aquaponics, 

Nitrification, Process Control 
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