DESIGN OF A DEEP REINFORCEMENT LEARNING BASED OPTIMAL PH CONTROLLER FOR NITRIFICATION BIOREACTORS IN AQUAPONICS SYSTEMS

Pin Chathushka Parami De Silva

(168658R)

Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science in Industrial Automation

Department of Electrical Engineering

University of Moratuwa

Sri Lanka

May 2019

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Masters dissertation under my supervision.

Name of the supervisor: Dr. A.G.B.P Jayesekera

Signature of the supervisor:

Date:

To all the people who feed us....

ACKNOWLEDGEMENTS

This research would have been another dream without the support from the following people.

First of all, I wish to express my sincere thanks to my supervisor, Dr Buddhika Jayasekara, for guiding me in the research process and providing feedback and advice over the years.

Next, I wish to thank Dr. D.P. Chamdima and Prof. K.T.M.U. Hemapala for their valuable feedback. Their feedback was extremely valuable in asking the right research questions and steering the study in the correct direction.

I wish to thank Eng. B.S. Samarasiri for mentoring me through the years and introducing me to research and product development. I would also like to give my sincere thanks to Mr. Jayasiri Kumarasinghe for all those industrial outings and for the valuable and practical industrial experience. He has taken me all over the country to see various industries and introduced me to industrial instrumentation and automation. This exposure was significant in finding the currently studied research problem.

Finally, I would like to thank my wife, my mother, my father and my brother for all the love and support they have given me and persevering with me during the entire period of the research.

ABSTRACT

Recent advances in deep reinforcement learning has produced state of the art algorithms. These algorithms have better training stability, convergence and computational performance.

In this study a state of the art deep reinforcement learning algorithm is used to implement a self-learning, model free, non-linear controller to control pH of an aquaponic system. Aquaponics is a soil-less farming system where effluent water from a fish tank is used as nutrients for growing plants. Maintaining the pH of an aquaponic system provides the optimal condition for micro-organisms that convert the ammonia rich fish effluent to nitrates, which are easily absorbed by the plants. In order to optimize this conversion process known as nitrification, pH is maintained at optimal conditions within an intermediate setup known as the nitrification bioreactor.

The implementation of a deep reinforcement learning based controller is studied in detail and the performance of the deep reinforcement learning based pH controller is evaluated by comparing the performance of a classic PID based controller in an aquaponic system.

The results show that DRL based controllers are better suited for control of dynamic stochastic control pH process and is capable of learning complex plant models and tuning itself based on the learnt model. The outcomes of this research can be applied in the design of optimal controllers that learns purely from experience to optimize various industrial processes. This type of controllers is ideal in Industry 4.0 based applications.

Keywords: Deep Reinforcement Learning, Artificial Intelligence, Aquaponics, Nitrification, Process Control

TABLE OF CONTENT

Declaration	i
Dedication	ii
Acknowledgements	iii
Abstract	iv
Table of Content	v
List of Figures	viii
List of Tables	X
List of Abbreviations	xi
List of Appendices	xii
Chapter 1 Introduction	1
1.1 Objectives	3
1.2 Thesis Outline	5
1.3 Limitations of the Study	6
Chapter 2 Literature Review	7
2.1 Introduction	7
2.2 Related works in Aquaponics and Limitations	7
2.2.1 Biomass Balance Equation	9
2.2.2 Substrate Balance Equation	10
2.3 Related works in pH control	11
2.3.1 PID based pH controllers	12
2.3.2 Fuzzy logic based pH control	13
2.3.3 Adaptive Neuro Fuzzy Inference Systems	16
2.3.4 pH controllers based on optimal control	17
2.4 Deep Reinforcement Learning Techniques	20
2.4.1 Dynamic Programming in the Context of Reinforcement Learning	20
2.4.2 Summary of Dynamic Programming Methods	24
2.4.3 Monte Carlo Learning	25
2.4.4 Temporal Difference Learning	27
2.4.5 Policy Gradient Methods	28
2.4.6 Actor Critic Methods	29

2.4.7 Curse of Dimensionality	30
2.4.8 The Deathly Triads	30
2.4.9 Activation Functions for neural networks	31
2.5 Summary	33
Chapter 3 Methodology and Controller Design	35
3.1 Introduction	35
3.2 Methodology	35
3.3 Development of the Deep Reinforcement Learning based controller	36
3.3.1 Specification of Inputs and Outputs to the controller	37
3.3.2 Design of Critic	38
3.3.3 Design of Policy Network	39
3.3.4 Determination of Learning Rate	40
3.3.5 Learning and Gradient Descent based update	40
3.3.6 Selection of deep reinforcement algorithm	41
3.3.7 Designing the Reward Function	42
3.3.8 Overall Architecture of the DRL controller	43
3.3.9 Results based on empirical work	43
3.3.10 Tool chains and Development tools	47
3.4 Development of the PID controller	48
3.5 Hardware Design	49
Chapter 4 Experimental Results and Analysis	51
4.1 Introduction	51
4.2 Evaluating controller performance under a static deterministic system	51
4.2.1 Hardware Setup	52
4.2.2 Experimental procedure	52
4.2.3 Results	53
4.2.4 Analysis	54
4.3 Evaluating controller performance under a dynamic stochastic system	57
4.3.1 Hardware Setup	58
4.3.2 Experimental procedure	59
4.3.3 Results	60
4.3.4 Analysis	61
Chapter 5 Conclusions	62

5.1 Conclusion on Objectives	62
5.2 Conclusion on Research Questions	63
5.3 Further works	64
5.3.1 Internet of Things use case	64
5.3.2 DRL controllers in SCADA systems	65
REFERENCES	66
Appendix A: Modelling and Controlling Techniques for Aquaponic Systems	70
Appendix B: DRL Controller Implementation	76
Appendix C: Device Driver For Hardware Interfacing	83
Appendix D: Digital PID Controller Implementation	85
Appendix E: List of Algorithms	87

LIST OF FIGURES

Figure 1.1 Operation of an Aquaponics System	
Figure 1.2 Relationship between the research problem, research questions and	
discipline	4
Figure 2.1. Ammonia ionization capability based on pH	8
Figure 2.2. System Boundary used in Mass Balance Equation	9
Figure 2.3 Block diagram of a typical PID controller used in process automation	12
Figure 2.4 Fuzzy controller overview (top left), output membership function (top	
right) & input membership function of a fuzzy based pH controller	
designed using simulink	15
Figure 2.5 ANFIS architecture	16
Figure 2.6 Graphical representation of a Markovian Decision Process	18
Figure 2.7 Graphical representation of a Partially Observable Markovian Decision	
Process	19
Figure 2.8 Agent environment interaction in a reinforcement learning problem	20
Figure 2.9 Pictorial representation of policy evaluation & improvement (right) and	l
value iteration (left)	23
Figure 2.10 Comparison of activation functions	31
Figure 3.1 Relationship between the input and output of the DRL controller	37
Figure 3.2 Recurrent Neural Network that approximates the critic	38
Figure 3.3 Neural network that approximates the actor/policy network	39
Figure 3.4 Overall system architecture of DRL controller and its peripherals	43
Figure 3.5 UML diagram of the DRL controller implementing the A3C algorithm	44
Figure 3.6 Visual Representation of the implemented DRL controller using	
Tensorboard	45
Figure 3.7 Internal networks of the DRL controller represented using Tensorboard	. 45
Figure 3.8 Training losses of the actor network and critic network plotted at each	
training steps.	46

Figure 3.9 Total moving reward generated at two different epochs.	47
Figure 3.10 Simulink model of a nitrification bioreactor in an aquaponics system	
Figure 3.11 Hardware Interfacing	50
Figure 4.1 Setup to study the performance in a static system	51
Figure 4.2 Setup to study the performance in a static system	52
Figure 4.3 Transient responses of the controllers in the static system	53
Figure 4.4 Setup used to study the performance in a dynamic system	57
Figure 4.5 The aquaponics system used to determine the response of the DRL	
controller dynamic stochastic conditions	58
Figure 4.6 Steady state response of the aquaponics system. This setup is a stochas	tic
system and the pH should be maintained at a set point of 7.2 for exten	ded
durations.	60
Figure 5.1 Implementation of the DRL controller in IoT/Industry 4.0 based	
applications	64
Figure 5.2 Implementation of the DRL controller in a SCADA scenario	65

LIST OF TABLES

Table 1: Summary of Dynamic Programming Methods 25
Table 2: Summary of literature review and identified research gaps
Table 3: Comparison of different DRL algorithms
Table 4: Comparison of different software framework for implementing DRL
controller
Table 5: Gain values obtained from Simulink model 49
Table 6: Rise times of DRL & PID controller in static system
Table 7: Rise times of DRL & PID controller in static system
Table 8: Rise times of DRL & PID controller in static system
Table 9: Results of ANOVA test on the static case results
Table 10: Comparison of steady state value of the two controllers in the static case 56
Table 11: Comparison of steady state value of the two controllers in the dynamic
case

LIST OF ABBREVIATIONS

Abbreviation	Description
AI	Artificial Intelligence
RL	Reinforcement Learning
DRL	Deep Reinforcement Learning
MDP	Markovian Decision Process
POMDP	Partially Observable Markovian Decision Process
SISO	Single Input Single Output
MIMO	Multiple Input Multiple Output
DP	Dynamic Programming
ADP	Asynchronous Dynamic Programming
GPI	Generalized Policy Iteration
RPi	Raspberry Pi
I2C	Inter- Integrated Circuit Protocol
ReLu	Rectified Linear Unit
ІоТ	Internet of Things
ANOVA	Analysis of Variance

LIST OF APPENDICES

Appendix	Description	Page
Appendix A	Modeling and Controlling Techniques for Aquaponic	73
	Systems	
Appendix B	DRL controller Implementation	79
Appendix C	Device Driver for Hardware Interfacing	86
Appendix D	Digital PID Controller Implementation	88
Appendix E	List of DRL Algorithms	90