DESIGN A MODEL AND MATHEMATICAL APPROACH FOR VECTORED TRUST CONTROLLED TRI ROTOR AERIAL PLATFORM

Hashitha Maduranga Madanayaka

(148462R)

Degree of Master of Science

Department of Electronic and Telecommunication Engineering

University of Moratuwa Sri Lanka

November 2018

DECLARATION, COPYRIGHT STATEMENT AND THE STATEMENT OF THE SUPERVISOR

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text".

"Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)".

Signature:

Date:

The above candidate has carried out research for the Master's Thesis under my supervision.

Name of the supervisor: Prof. Rohan Munasinghe

Signature of the supervisor:

Date:

ABSTRACT

It is a challenging factor to address the more or less of vectored trust-controlled platforms for Stability. There are unnecessary parts in any UAV plat form and must be identified and apply removal of such parts or substitute with aerodynamically more suitable parts will lead to design of good aero stable platform. Testing platform for the different attitude for disturbances and effective analyzing can lead to develop best trirotor vectored trust-controlled platform. Since project is to develop superior tri-rotor system to perform better stability and effective control of motion various mathematical and control approaches to be introduced. A Discussion and an analytical approach towards developing tri-rotor system is a need of future multi-rotor platforms. In coming years there will be a great advancement on tri-rotor systems. Still there are many areas to study when developing a stable tri-rotor platform with precise six directional control. Design will demonstrate stability of the vectored trust-controlled tri-rotor over other multi rotor platforms and enhance the present capabilities of tri-rotor platform to prove it as the future of the multi rotor UAV platforms. To demonstrate the mathematical approach discussed here, it is used a platform enable to carry out further studies on to tri copters.

ACKNOWLEDGEMENT

I would first like to thank my supervisor Prof. Rohan Munasinghe of Department of Electronics and Telecommunication at University of Moratuwa. The way he guided me whenever I ran into a trouble spot or had a question about my research was simply amazing; amidst his busy schedule. He consistently allowed this thesis to be my own work but steered me in the right the direction whenever he thought I needed it.

I would also like to acknowledge the compromise made by my wife and two lovely children who allowed me to spend numerous sleepless nights and tiring days over accomplishment of this task.

Also, I must pay may sincere gratitude to Sri Lanka Air Force for letting myself to experience in to unmanned air technology and providing myself to undergo necessary experiences to build a life interest toward unmanned air technology.

Ex. Squadron Leader. Hashitha Maduranga Madanayaka B.Tech(EEE), Pg.Dip(Aero), C.Eng, MIE(SL), MIEEE

TABLE OF CONTENTS

DECLARAT	ION, COPYRIGHT STATEMENT AND THE STATEMENT	i
OF THE SUP	PERVISOR	
ABSTRACT		ii
ACKNOWLEDGEMENT		iii
TABLE OF CONTENTS		iv
LIST OF FIGURES		vi
LIST OF TABLES		viii
Chapter 1		01
Introduction		
1.1	Objectives of Research Project	01
1.2	Scope of the Research	03
1.3	Methodology and Approach	04
1.4	Time frame and work plan	08
1.5	Problem Identification	08
1.6	Identified suitable solution	09
Chapter 2		13
Literature Survey		
2.1	Existing Designs	15
2.2	Mathematical Model of the Physical System	17
2.3	Design Project Overview	21
2.4	Learnings from design project	32
Chapter 3		33
New System	Design Approach and Hardware Verification	
3.1	New Control System Architecture	33
3.2	Finding the Correction Function	36

3.3	Hardware Implementation	40
Chapter 4		42
Results		
4.1	Auto Tuned Data	42
4.2	Conclusion	44
4.3	Future Works	45
Appendices		46
Bibliography		59

LIST OF FIGURES

Page

Figure 01- Protocol of Methodology	07
Figure 02-Armed Drones Proliferation as of May 2017	11
Figure 03- Multi-copter Platforms	13
Figure 04- T-shaped tri-rotor platform	14
Figure 05- Y-shaped tri-rotor platform	14
Figure 06-Hardware platform	15
Figure 07-Tricopter closed loop system	16
Figure 08-Proposed PID controller structure	17
Figure 09-Inertia calculation	18
Figure 10-Rotational coordinate system	19
Figure 11- Matlab simulation for 3D space	21
Figure 12-Controlled architecture	22
Figure 13-Bode plot for roll and pitch	25
Figure 14-Bode plot for sensitivity of roll and pitch	26
Figure 15-Rootlocus for system stability	26
Figure 16-Rootlocus for sensitivity stability	27
Figure 17-Step response for roll and pitch stability	27
Figure 18-Bode plot for system yaw control	30
Figure 19-Bode plot for sensitivity of yaw control	30
Figure 20-Rootlocus for system stability	31
Figure 21-Rootlocus for sensitivity stability	31
Figure 22-Step response for yaw stability	32
Figure 23-New controlled architecture	33
Figure 24-Basic motions of tri-rotor	33
Figure 25-Momentum around center of the platform	34
Figure 26-Experimental setup description	36

Figure 27-Actual setup	
Figure 28-Momentum Calculation around pivoting point	38
Figure 29-Thrust Vs. Angular speed graph	39
Figure 30-Locally made frame	41
Figure 31-Assembled tri-copter with accessories	41
Figure 32-Auto-tuned mission planner layout	42
Figure 33-Auto-tuned roll variation	43
Figure 34-Auto-tuned pitch variation	43

LIST OF TABLES

Table 1: Time frame and Work Plan	08
Table 2: Platform Classification of UAV Types, And Performance Parameters	12
Table 3: Components used for Rotor correction function identification	36
Table 4: Experimental Data of Trust vs Angular Speed from the Physical Set up	38
Table 5: Tri Copter Hardware	40
Table 6: Hardware verified PD values	44