CROWD-SOURCED USER EXPERIENCE EVALUATION AND ADAPTATION FOR A PERSONALIZED USER INTERFACE

Buddhima Naween Rathnayake

(179348J)

Degree of Master of Science in Computer Science

Department of Computer Science and Engineering

University of Moratuwa Sri Lanka

May 2019

CROWD-SOURCED USER EXPERIENCE EVALUATION AND ADAPTATION FOR A PERSONALIZED USER INTERFACE

Buddhima	Naween	Rathnav	yake
----------	--------	---------	------

(179348J)

Thesis submitted in partial fulfillment of the requirements for the Degree Master of Science in Computer Science specializing in Software Architecture

Department of Computer Science and Engineering

University of Moratuwa Sri Lanka

May 2019

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgment to any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in partial print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature		Date			
	6 4	3.6		,	
The above candidate has carried out research	for the	Masters	thesis	under	my
supervision.					
Name of the Supervisor: Dr. Indika Perera					
Signature of the Supervisor		Date			

ACKNOWLEDGEMENT

This study would not have been possible without the guidance and the help of several individuals who extended their valuable assistance in the preparation and completion of this dissertation. First and foremost,

I'm grateful to my supervisor, Dr. Indika Perera, for his guidance, patience and providing me with an excellent atmosphere for the completion of this research work.

I thank all the teaching and administrative staff of University of Moratuwa, for their service and support.

Great deals appreciated go to Dr. Charith Chitraranjan & Dr. Malaka Walpola, Course main lecturers for their guidance and contribution throughout the course.

Special thanks to my colleagues whose commitment and support contributed to this project and who helped me in numerous ways.

Finally, I would like to extend my regards to my family members who showered me with the needed power of confidence and encouragement provided to make this study a success.

ABSTRACT

We have been using a vast array of software products which provide different services. Even there are many products which fulfill the same requirement some software products stand out from the rest. Providing a strong user experience has been the driving factor for the success of a software product. The goal of the user experience design is to improve user satisfaction, loyalty, and ease of use. To maintain constant user satisfaction throughout the product lifetime, conducting user experience evaluations are desirable however these evaluations tend to be short-term evaluations only focusing on initial product designs. This research aims to promote crowdsourcing mechanisms to gather user feedback on the user experience of any website. These evaluations would be carried out through conversations based questionnaires and capture users perspective of the product. The system can be integrated into any website and it will gather users' answers and their sentiment through conversation-based questionnaires. These user evaluations are analyzed to determine what the user desire and user configuration will be saved as personalized content. These personalized content in the user interface are again to be used to represent the website based on the majority perspective. This research aims to provide insight on how conversational chat-bots are capable of capturing personas of the feedback providers and increasing the feedback rate than questionnaires. Based on the feedback gathered through the Chatbot users 73.1% of the users rated that they choose Chatbot over filling online forms. On how Chatbot is capable of mimicking a human being 12% of the users thought they were actually talking to a real human being while 68% thought it was a computer-based program. The application consists of an admin dashboard which represents demographic data, overall sentiment and sentiment score variation over time, which would be an immense help to the usability evaluation of a particular website.

Keywords: usability evaluation, crowdsourcing, conversational interfaces, sentiment analysis

TABLE OF CONTENTS

Declar	ation	i
Ackno	wledgement	ii
Abstra	ct	iii
Table o	of contents	iv
List of	Figures	vii
List of	Tables	ix
List of	Abbreviations	X
List of	Appendices	xi
INTROI	DUCTION	1
1.1	User Experience and Evaluation	2
1.2	User Experience Elements	4
1.3	User Personas	6
1.4	Crowdsourcing user experience engineering	6
1.5	Research Area	7
1.6	Research Question	7
1.7	Research Scope	8
1.8	Motivation	9
LITERA	ATURE SURVEY	10
2.1	UX evaluation techniques	11
2.2	Crowdsourcing techniques	20
2.3	Persona creation based on questionnaires	23
2.4	Conversational Interfaces	25
METHO	DDOLOGY	30
3.1	Software Development Methodology	31
3.2	System Design	31

	3.3	Approach and Technology Selection	32
	3	3.1 Interviewing participants and invoking questions	32
	3.3	3.2 Crowdsourcing the user experience evaluation	35
	3.3	3.3 Sentiment Analysis	38
	3.3	3.4 Personalization and adaptation	41
IM	PLIM	ENTATION	45
	4.1	Set the Goals of the usability evaluation	46
	4.2	Determine the target population and sample size	46
	4.3	Determining the questions	47
	4.4	Best practices in selection of better questions	49
	4.4	4.1 Usage of simple language	49
	4.4	4.2 Avoid rhetorical questions	49
	4.4	4.3 Include open-ended questions	49
	4.4	4.4 Avoid invoking multiple questions	49
	4.4	4.5 Limit the questionnaire to few important questions	50
	4.4	4.6 Organize a flow in questions	50
	4.5	Conversational interface configuration	51
	4.6	Solution Architecture	55
	4.0	5.1 Identifying new users and return users	57
	4.0	5.2 Invoking the question	58
	4.0	5.3 Detecting the intent	60
	4.0	6.4 Analyzing the sentiment score	61
	4.0	5.5 Matching output contexts of question and answer	62
	4.0	5.6 Entity Framework database structure	63
	4.7	Conversational user interface	64
	4.8	Pre-test questions	66
	4.9	Conduct questionnaire	66
	4.9	9.1 Case Study – "CharikaBot"	66
	4.9	9.2 Data representation	67

EVALUA	ATION	71
5.1	Performance Evaluation	72
5.2	Heuristic Evaluation	73
5.3	User Feedback	75
CONCLU	USION	81
6.1	Summary of the Research	82
6.2	Limitations	83
6.3	Future work	84
Reference	e List	86
Appendix	A	91
Appendix	В	95

LIST OF FIGURES

Figure 1: User Experience Honeycomb	3
Figure 2: Elements of user experience	5
Figure 3: IsoMetrics questionnaire	14
Figure 4: Dependencies between aspects of usability	17
Figure 5: UX curve	19
Figure 6: Average personas' impact rating segmented by revision frequency.	
The bars represent 95% confidence intervals [23]	24
Figure 7: Revised versions of original persona [34]	26
Figure 8: Captured conversation between the personas [34]	27
Figure 9: Persona based neural network architecture [35]	28
Figure 10: Question context and predicted answer [35]	28
Figure 11: using bots to interview participants	33
Figure 12: Configuring agent's intent with utterances and parameters	34
Figure 13 : Configuration of an Intent	35
Figure 14: WAMMI questionnaire	36
Figure 15: Sentiment Analysis on Microsoft Text Analytics	38
Figure 16 : Languages supported by Dialogflow	40
Figure 17: Language support on Sentiment Analysis services	41
Figure 18: Semantic User Interface	42
Figure 19: Navigational semantic user interface	43
Figure 20 : High-level diagram	44
Figure 21: Dialogflow configuration	51
Figure 22 : Configure answer intent	52
Figure 23: Configure entities	53
Figure 24: Persona answer configuration	54
Figure 25: Configuring output contexts	55
Figure 26 : Solution Architecture	56
Figure 27: Question database table	59
Figure 28 : Question_Answer database table	63
Figure 29 : Entity Framework Data model	64

Figure 30: Chat panel minimized	64
Figure 31 : Chatbot integrated to a test application	65
Figure 32: Chat panel with avatars	65
Figure 33: Overall sentiment score	68
Figure 34: Sentiment variation over time	69
Figure 35: Admin panel to update questionnaire	70
Figure 36: Conversational interface analytics	73
Figure 37: Feedback – Understanding Q1	76
Figure 38: Feedback - Onboarding	76
Figure 39: Feedback – Understanding Q2	77
Figure 40: Feedback - Enjoyment rating	77
Figure 41 : Feedback - Navigation	78
Figure 42: Feedback - Understanding Q3	78
Figure 43 : Feedback - Chat interface rating	79
Figure 44: Feedback - User preference	79
Figure 45: Feedback - Personality	80
Figure 46: General feedback/Improvements	80

LIST OF TABLES

Table 3.i	: Utterance, Intent and Entity	32
Table 3.ii	: Usability evaluation questionnaires	37
Table 3.iii	: Re-phrase questions for chatbot	37
Table 4.3.	: Determining questions to be asked	47
Table 5.1.i	: Task completion	72

LIST OF ABBREVIATIONS

Abbreviation	Description
UX -	User Experience
UI -	User Interface
EM -	Expectation Maximization
NLP -	Natural Language Processing
NLU -	Natural Language Understanding
UUID -	Universal Unique Identifier
API -	Application Programming Interface

LIST OF APPENDICES

Appendix	Description	page
A	Usability evaluation questionnaire	91
В	Evaluation form of UI/UX evaluator	95