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Abstract

Fuel consumption of a vehicle depends on several internal factors such as dis-

tance, load, vehicle characteristics, and driver behavior, as well as external factors

such as road conditions, traffic, and weather. Moreover, not all of these factors are

easily obtainable for the fuel consumption analysis. Therefore, fuel-fraud is rel-

atively easier to conceal; thus, considered a significant threat to the fleet industry

by managers. This research model and evaluate the fuel consumption of fleet ve-

hicles based on vehicular data and suggest suitable process improvement actions

to improve the fuel economy. We first model and predict the fuel consumption to

identify possible frauds. We considered a case where only a subset of the factors

mentioned above is available as a multivariate time series from a long-distance

public bus. An evaluation of several machine learning techniques revealed that

Random Forest could predict fuel consumption with 95.9% accuracy. To ver-

ify the detected cases of possible fuel fraud, we propose to use different indi-

cators such as speed profile, the frequency of harsh events, total idle time, and

day of the week. Further, we propose a solution to promote fuel-efficient driving

through real-time monitoring and driver feedback. A classification model, derived

from historical data, identifies fuel inefficient driving behaviors in real-time. The

model considers both the driver-dependent and environmental parameters such

as traffic, road topography, and weather in determining driving efficiency. If an

inefficient driving event is detected, a fuzzy logic inference system is used to de-

termine what the driver should do to maintain fuel-efficient driving behavior. The

decided action is conveyed to the driver via a smartphone in a nonintrusive man-

ner. We demonstrate that the proposed classification model yields an accuracy of

85.2% while increasing the fuel efficiency up to 16.4%.
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