MODELING AND ENHANCING FUEL ECONOMY OF FLEET VEHICLES BASED ON DATA ANALYTICS

Sandareka Kumudu Kumari Wickramanayake

158040G

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa Sri Lanka

December 2018

MODELING AND ENHANCING FUEL ECONOMY OF FLEET VEHICLES BASED ON DATA ANALYTICS

Sandareka Kumudu Kumari Wickramanayake

158040G

Thesis submitted in partial fulfillment of the requirements for the degree Master of

Science by Research (Part-time) in Computer Science

Department of Computer Science and Engineering

University of Moratuwa Sri Lanka

December 2018

DECLARATION

"I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief, it does not contain any material previously published or written by another person except where the acknowledgement is made in the text. Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)."

Signature:

Date:

The above candidate has carried out research for the Masters Dissertation under my supervision.

Name of the supervisor: Dr. H.M.N.D Bandara

Signature of the supervisor:

Date:

Name of the supervisor: Mr. Nishal Samarasekara

Signature of the co-supervisor:

Date:

Abstract

Fuel consumption of a vehicle depends on several internal factors such as distance, load, vehicle characteristics, and driver behavior, as well as external factors such as road conditions, traffic, and weather. Moreover, not all of these factors are easily obtainable for the fuel consumption analysis. Therefore, fuel-fraud is relatively easier to conceal; thus, considered a significant threat to the fleet industry by managers. This research model and evaluate the fuel consumption of fleet vehicles based on vehicular data and suggest suitable process improvement actions to improve the fuel economy. We first model and predict the fuel consumption to identify possible frauds. We considered a case where only a subset of the factors mentioned above is available as a multivariate time series from a long-distance public bus. An evaluation of several machine learning techniques revealed that Random Forest could predict fuel consumption with 95.9% accuracy. To verify the detected cases of possible fuel fraud, we propose to use different indicators such as speed profile, the frequency of harsh events, total idle time, and day of the week. Further, we propose a solution to promote fuel-efficient driving through real-time monitoring and driver feedback. A classification model, derived from historical data, identifies fuel inefficient driving behaviors in real-time. The model considers both the driver-dependent and environmental parameters such as traffic, road topography, and weather in determining driving efficiency. If an inefficient driving event is detected, a fuzzy logic inference system is used to determine what the driver should do to maintain fuel-efficient driving behavior. The decided action is conveyed to the driver via a smartphone in a nonintrusive manner. We demonstrate that the proposed classification model yields an accuracy of 85.2% while increasing the fuel efficiency up to 16.4%.

Acknowledgment

I would like to dedicate my sincere thanks to my supervisor Dr. H.M.N Dilum Bandara for his dedicated support for the success of this research. This research would not have been a success without your guidance from the initial stage to the final phase of the research. This research was supported by Nimbus Venture (Pvt) Ltd, Sri Lanka providing related data sets and their insightful expertise knowledge. Thank you for the support given by providing domain knowledge and feedback throughout this research. I would like to thank the entire academic and non-academic staff of the Department of Computer Science and Engineering for their kindness extended to me in every aspect. Last but not least, I thank my parents, my husband and all my friends who supported me for the success of this piece of work. Your support was always precious.

Contents

1	INT	RODUCTION	1
	1.1	Overview	1
	1.2	Problem Statement	2
	1.3	Research Objectives	3
	1.4	Outline	4
2	LIT	ERATURE REVIEW	6
	2.1	Factors influencing fuel economy of fleet vehicles	6
	2.2	Fuel consumption prediction using vehicular data analytics	7
		2.2.1 Machine learning techniques for fuel consumption prediction .	10
	2.3	Analyzing driver behavior to improve the fuel economy of fleet vehicles	13
	2.4	Summary	17
3	DAT	TASET	19
	3.1	Background	19
	3.2	Descriptive Analysis	21
4 FUEL CONSUMPTION PREDICTION		EL CONSUMPTION PREDICTION	28
	4.1	Data preprocessing and feature engineering	28
	4.2	Implementation details	29
		4.2.1 Random Forest	29
		4.2.2 Gradient Boosting	29
		4.2.3 Neural Network	30
	4.3 Results and discussion		31
		4.3.1 Prediction using Random Forest	31
		4.3.2 Prediction using Gradient Boosting	32
		4.3.3 Prediction using Neural Network	32
		4.3.4 Evaluation of prediction accuracy	32
	4.4	Identify prospective fuel frauds	34
	4.5	Verify identified prospective fuel frauds	35
	4.6	Conclusions	36
5	REA	AL-TIME MONITORING AND DRIVER FEEDBACK TO PRO-	
	MO	TE FUEL-EFFICIENT DRIVING	38
	5.1	Overview of the proposed solution	38
	5.2	Proposed system architecture	40
	5.3	Clustering	42
		5.3.1 Classification of Fuel Usage	47

	5.3.2 Determining the Control Action		47
	5.4	Results	49
	5.5	Conclusions	51
6	CON	ICLUSION	52
	6.1	Summary	52
	6.2	Research Limitations	53
	6.3	Future Work	54

List of Figures

2.1	Different driving cycles considered in related work	10
2.2	Eco-driving coaching service components	14
2.3	A cluster norm table for a particular fleet used for evaluating the trip	
	performance	15
2.4	Architecture of an intelligent driver system	16
2.5	Context characterizing the driving situation	17
3.1	Route of the bus - from Katubedda to Panama	19
3.2	Total fuel consumption of each journey.	21
3.3	Fuel consumption for inward and outward journeys	22
3.4	Comparing total fuel consumption and mean speed at each 10km for	
	all trips from Panama to Colombo.	23
3.5	Comparing total fuel consumption and mean speed at each 10km for	
	all trips from Colombo to Panama.	23
3.6	Change of elevation along the route in two directions	24
3.7	Impact of distance on fuel consumption	24
3.8	Mean fuel consumption at different speeds calculated across one minute	
	samples	25
3.9	Fuel consumption variation with elevation.	25
3.10	Variation of fuel consumption w.r.t. day of the week for journeys from	
	Colombo to Panama.	26
3.11	Variation of fuel consumption w.r.t. day of the week for journeys from	
	Panama to Colombo.	26
3.12	Correlation Matrix for parameters of the data set from Panama to Colombo	. 27
4.1	Variable importance given by Random Forest algorithm	30
4.2	Predicted and observed instantaneous fuel consumption using Random	
	Forest	31
4.3	Predicted and observed instantaneous fuel consumption using Gradient	
	Boosting	31
4.4	Predicted and observed instantaneous fuel consumption using Gradient	
	Boosting	32
4.5	Predicted and observed instantaneous fuel consumption of 29/08	34
5.1	Overview of the proposed system for real-time monitoring and driver	
	feedback to promote fuel-efficient driving	40
5.2	Data flow for one driving event	41
5.3	Fuel usage in an urban and a rural area	44

5.4	Dendrogram of clusters produced by hierarchical clustering	45
5.5	Seven clusters found in sample fuel consumption data points	46
5.6	The membership function of speed	48
5.7	The membership function of acceleration.	48
5.8	Fuzzy output membership function	48
5.9	Actual fuel usage vs. adjusted fuel usage based on driver feedback for	
	a selected journey	50

List of Tables

2.1	Importance measurement of input variables by Random Forest	9
2.2	GAM boosting- Selection frequencies.	9
2.3	Summary of fuel consumption prediction work	11
4.1	Nash- Sutcliffe Efficiency.	33
4.2	Error statistics of three techniques	33
5.1	Driving events near Wellawaththa.	43
5.2	Driving events near Udawalawa.	43
5.3	Summary of each cluster derived using hierarchical clustering	47
5.4	Fuzzy rules	49
5.5	Statistics of results of the classification model.	49

List of Abbreviations

%IncMSE	Percentage of increment of MSE
3G	The third generation of wireless mobile telecom-
	munications technology
ANN	Artificial Neural Network
API	Application Programming Interface
ARIMA	Auto-regressive Integrated Moving Average
COD	Code of Determination
FC	Fuel Consumption
GAM	Generalized Additive Models
GB	Gradient Boosting
GLM	Generalized Linear Models
GPS	Global Positioning System
HHDDT	Heavy Heavy-Duty Diesel Truck
HMI	Human Machine Interface
M2M	Machine-to-Machine
MAE	Mean Absolute Error
MARS	Multivariate Adaptive Regression Splines
MSE	Mean Squared Error
NSE	Nash-Sutcliffe efficiency
PD	Proportional-Derivative
REST	Representational State Transfer
RF	Random Forest
RMSE	Root Mean Squared Error
RPM	Revolutions per minute
WWO	World Weather Online