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 ABSTRACT 

Programming languages tend to evolve with new methodologies, user requirements, 

technology, security constraints etc. In order to stay relevant with changing demands, 

programming languages needs to keep adopting new features and enhancements. When 

programming languages make a new version release, it creates a necessity to upgrade the 

systems developed using older versions. Based on the situation of the project status, ongoing, 

completed or new, developers need to make the decision whether to proceed with the current 

version or change to new release. If the developers decides to stay with the older version of 

release they wouldn’t get the latest features and fixes, eventually the system code would be 

outdated. This would lead the system to be vulnerable and prone to compatibility concerns. 

 

The main intention of this research is to develop a simplified tool for checking code 

compatibility along with programming language version releases. Currently there few ways 

that developers check the compatibility (e.g. IDE plugins, CLI commands, compile time 

reports, etc.) but these are with limitations and not user friendly, aim of this research is to 

provide a combination of those features, in a more easy to use, optimized, customizable 

compatibility tool. The users will be able to run compatibility test on the desired version 

effortlessly, developers would be able to add their own custom rule sets to verify the project 

code across the selected version by using the tool. Once the tool completes the validation 

process, it will generate a user friendly report with the findings. The report would contain 

charts with error types and percentages, filenames, error line number, location, error type and 

possible fixes, which would be useful for developers. The developers would be able to fix 

the notified sections and re-run the verification process. The tool will also provide the option 

to get a deployable image along with updated code and version.  

 

Keywords:  programming languages, versions, code compatibility, deployable image. 
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