

TOOL FOR CHECKING CODE COMPATIBILITY

WITH PROGRAMMING LANGUAGE RELEASES

Jehan Ryan Benjamin

179308M

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2019

TOOL FOR CHECKING CODE COMPATIBILITY

WITH PROGRAMMING LANGUAGE RELEASES

Jehan Ryan Benjamin

179308M

This dissertation submitted in partial fulfillment of the requirements for the Degree

of MSc in Computer Science specializing in Software Architecture

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2019

i

DECLARATION

I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to the University of Moratuwa the non-exclusive right to

reproduce and distribute my thesis, in whole or in part in print, electronic or other

medium. I retain the right to use this content in whole or part in future works.

..

Jehan Ryan Benjamin

.......................................

Date

The above candidate has carried out research for the Masters thesis under my

supervision.

..

Dr. Indika Perera

.......................................

Date

ii

 ABSTRACT

Programming languages tend to evolve with new methodologies, user requirements,

technology, security constraints etc. In order to stay relevant with changing demands,

programming languages needs to keep adopting new features and enhancements. When

programming languages make a new version release, it creates a necessity to upgrade the

systems developed using older versions. Based on the situation of the project status, ongoing,

completed or new, developers need to make the decision whether to proceed with the current

version or change to new release. If the developers decides to stay with the older version of

release they wouldn’t get the latest features and fixes, eventually the system code would be

outdated. This would lead the system to be vulnerable and prone to compatibility concerns.

The main intention of this research is to develop a simplified tool for checking code

compatibility along with programming language version releases. Currently there few ways

that developers check the compatibility (e.g. IDE plugins, CLI commands, compile time

reports, etc.) but these are with limitations and not user friendly, aim of this research is to

provide a combination of those features, in a more easy to use, optimized, customizable

compatibility tool. The users will be able to run compatibility test on the desired version

effortlessly, developers would be able to add their own custom rule sets to verify the project

code across the selected version by using the tool. Once the tool completes the validation

process, it will generate a user friendly report with the findings. The report would contain

charts with error types and percentages, filenames, error line number, location, error type and

possible fixes, which would be useful for developers. The developers would be able to fix

the notified sections and re-run the verification process. The tool will also provide the option

to get a deployable image along with updated code and version.

Keywords: programming languages, versions, code compatibility, deployable image.

iii

ACKNOWLEDGEMENT

I like to convey my appreciation and gratitude to the project supervisor Dr. Indika

Perera, for the knowledge, guidance and suggestions during this research project

which was a driving force behind the completion of this work on time.

My heartfelt gratitude to my friends especially to Mr. Tiran Wijesekara, Miss. Tirsha

Melani, Mr. Vilochane Vidyarathne, and all other friends which were not mentioned

here whose friendship, hospitality and support in the preparation during this research.

I’d like to thank my current company Netstarter (Pvt) Ltd, especially to my project

manager and colleagues for the endless support and words of encouragements

throughout.

Finally, I would like to extend my deepest gratitude to my parents for their never

ending support and encouragement.

iv

TABLE OF CONTENTS

DECLARATION i

ABSTRACT ii

ACKNOWLEDGEMENT iii

LIST OF FIGURES vi

LIST OF TABLES ix

LIST OF ABBREVIATIONS x

CHAPTER 01: INTRODUCTION 1

1.1 Programming language Types 3

1.2 High-level languages 4

1.3 Programming Language Version 7

1.3.1 Benefits of version updates 8

1.3.2 Cost of updates 8

1.3.2 Dual version support 9

1.4 Backwards compatibility 9

1.5 Problem / Opportunity 11

1.6 Motivation 12

1.7 Objectives 12

CHAPTER 02: LITERATURE REVIEW 14

2.1 Programming language complications 15

2.2 Tools for sensing errors on software projects 16

2.3 PHP Code Fixer 18

2.3.1 Usage 19

2.4 Mining Software Repositories Tools 20

2.5 Deprecated methods 20

2.6 PHP built in lint command 21

v

CHAPTER 03: METHODOLOGY 23

3.1 System 24

3.1.1 High level architecture 25

3.1.2 Components architecture 26

3.2 Input output and processing 27

3.2.1 Custom rule sets 29

3.2.2 Type of notification outputs 30

3.2.3 Deployment process 30

4.1 Scope of implementation 32

4.2 Compatibility checker 33

4.2.1 Application implementation 33

CHAPTER 05: EVALUATION 49

5.1 Usability 50

5.1.1 Readiness check 50

5.1.2 Docker build, run process. 52

5.2 Application results evaluation 56

5.2.1 Code sniffer results 56

5.2.2 Evaluation of the test results 59

5.3 Reporting and error information verification 61

CHAPTER 06: CONCLUSION AND FUTURE WORK 63

Summary 64

6.1 Problems encountered 65

6.2 Future work 65

REFERENCES 67

APPENDIX A 70

vi

LIST OF FIGURES

Figure 1: Computer language and its types [26] 3

Figure 2: Transitions of a High-level Language Program [30] 5

Figure 3: The fifteen most popular languages on GitHub [27] 6

Figure 4: Top 10 Programming Languages [3] 6

Figure 5: PHP error reporting options 10

Figure 6: PHP supported versions [9] 13

Figure 7: C++ Semantic error sample code 15

Figure 8: PHP Related Semantic Error Code Sample 16

Figure 9: Zend Studio Semantic Analysis [28] 16

Figure 10: PHP CodeSniffer findings against PEAR coding standards [11] 17

Figure 11: LGTM alert samples [12] 18

Figure 12: PHP Code Fixer terminal command 19

Figure 13: phpcf sample results [13] 19

Figure 14: Candoia work flow [15] 20

Figure 15: PHP Deprecated Methods Finding Script 21

Figure 16: PHP Lint script 22

Figure 17: Proposed work flow 24

Figure 18: Proposed System Architecture 25

Figure 19: Components architecture 26

Figure 20: system input output 27

Figure 21: Activity flow 29

Figure 22: Custom rules 30

Figure 23: package.json 34

file:///D:\MSC\Research\Correction\Tool%20for%20checking%20code%20compatibility%20with%20programming%20language%20releases.docx%23_Toc9779307
file:///D:\MSC\Research\Correction\Tool%20for%20checking%20code%20compatibility%20with%20programming%20language%20releases.docx%23_Toc9779308
file:///D:\MSC\Research\Correction\Tool%20for%20checking%20code%20compatibility%20with%20programming%20language%20releases.docx%23_Toc9779309
file:///D:\MSC\Research\Correction\Tool%20for%20checking%20code%20compatibility%20with%20programming%20language%20releases.docx%23_Toc9779310
file:///D:\MSC\Research\Correction\Tool%20for%20checking%20code%20compatibility%20with%20programming%20language%20releases.docx%23_Toc9779315
file:///D:\MSC\Research\Correction\Tool%20for%20checking%20code%20compatibility%20with%20programming%20language%20releases.docx%23_Toc9779316
file:///D:\MSC\Research\Correction\Tool%20for%20checking%20code%20compatibility%20with%20programming%20language%20releases.docx%23_Toc9779317
file:///D:\MSC\Research\Correction\Tool%20for%20checking%20code%20compatibility%20with%20programming%20language%20releases.docx%23_Toc9779320
file:///D:\MSC\Research\Correction\Tool%20for%20checking%20code%20compatibility%20with%20programming%20language%20releases.docx%23_Toc9779323
file:///D:\MSC\Research\Correction\Tool%20for%20checking%20code%20compatibility%20with%20programming%20language%20releases.docx%23_Toc9779324
file:///D:\MSC\Research\Correction\Tool%20for%20checking%20code%20compatibility%20with%20programming%20language%20releases.docx%23_Toc9779326
file:///D:\MSC\Research\Correction\Tool%20for%20checking%20code%20compatibility%20with%20programming%20language%20releases.docx%23_Toc9779327

vii

Figure 24: Electron init code 35

Figure 25: Readiness check 35

Figure 26: Docker checker 36

Figure 27: Docker Install option 36

Figure 28: Docker information 36

Figure 29: Docker project info 37

Figure 30: Docker image create code sample 38

Figure 31: Container terminal output 39

Figure 32: Docker starting view 40

Figure 33: Docker and Project information 41

Figure 34: Docker image build 42

Figure 35: Dockerfile contents 42

Figure 36: supervisord.conf file 43

Figure 37: Composer package.json 44

Figure 38: Custom rule set 44

Figure 39: Pie chart 45

Figure 40: Error notification 46

Figure 41: Warning notification 46

Figure 42: Container diff 47

Figure 43: Docker deployment process [21] 48

Figure 44: log files 50

Figure 45: Application landing page 51

Figure 46: Docker information 51

Figure 47: Project info form 52

file:///D:\MSC\Research\Correction\Tool%20for%20checking%20code%20compatibility%20with%20programming%20language%20releases.docx%23_Toc9779331
file:///D:\MSC\Research\Correction\Tool%20for%20checking%20code%20compatibility%20with%20programming%20language%20releases.docx%23_Toc9779350

viii

Figure 48: Docker image run and container start 53

Figure 49: container and project info 53

Figure 50: Docker executes and results 54

Figure 51: Phpstorm code sniffer setup 54

Figure 52: Docker build commands 55

Figure 54: webpack build scripts 55

Figure 53: platform related builds 55

Figure 55: Terminal summary output 57

Figure 56: report summary on application 57

Figure 57: misleading information 62

Figure 58: Updated pie chart view 62

file:///D:\MSC\Research\Correction\Tool%20for%20checking%20code%20compatibility%20with%20programming%20language%20releases.docx%23_Toc9779357
file:///D:\MSC\Research\Correction\Tool%20for%20checking%20code%20compatibility%20with%20programming%20language%20releases.docx%23_Toc9779360

ix

LIST OF TABLES

Table 1: Types of High Level Language 4

Table 2: Compatibility checker Input and result output 27

Table 3: Sample projects information 56

Table 4: Compatibility results summary 58

Table 5: Compatibility results summary for 5.6 59

Table 6: Compatibility results summary for 7.0 60

Table 7: Results summary for 7.1 61

x

LIST OF ABBREVIATIONS

Abbreviation Description

PEAR PHP Extension Add-On Repository

MSR Mining Software Repositories

PHP Recursive acronym for PHP: Hypertext Preprocessor

CPU Central Processing Unit

PM Project Manager

BA Business Analysis

IT Information Technology

HTML HyperText Markup Language

OOP Object Oriented Programming

IDE Integrated Development Environment

LGTM Looks Good To Me

CLI Command Language Interpreter

CSV Comma Separated Values

XML Extensible Markup Language

JS JavaScript

CSS Cascading Style Sheets

JSON JavaScript Object Notation

Amazon ECS Amazon Elastic Container Service

1

CHAPTER 01: INTRODUCTION

2

Programming languages tend to develop gradually over time in response to user

domain requirements, hardware advances, and improvements done from research

developments. A programming language expansion artifact may include new

compilers and interpreters or new language standards. It is a challenging task for

developers when programming languages keep evolving at various levels. Firstly, the

impact on developers can be negative. For example, if two language versions are

incompatible (e.g., Python 2 and 3) developers must choose to either co-evolve with

codebase (which may be costly) or reject the new language version (which may have

support implications). Secondly, evaluating a proposed language change is difficult;

language designers often lack the infrastructure to assess the change. This may lead

to older features remaining in future language versions to maintain backward

compatibility, increasing the language’s complexity (e.g., FORTRAN 77 to Fortran

90). Thirdly, new language features may interact badly with existing features,

leading to unforeseen bugs and ambiguities (e.g., the addition of Java generics). [1]

Mature programming languages such as C, Java, Python change less frequently, with

a comparison to other recently introduced programming languages. Commonly used,

popular programming languages have a clear evolution, marked by its version: for

Java 5, 6, 7 etc., PHP 5.5, 5.6, 7.0 etc. Along with major releases comes new APIs,

fixes bugs, adds new features, and new frameworks.

A common issue that developers face is choosing a version of a programming

language to use for a particular software application project. Some developers may

choose the latest version of a language as the best solution, but newer version would

not always be the better option. Selecting a wrong version of a language would lead

the downfall of the project to almost certain failure, or at least make the success of a

project much more difficult. To avoid the risks of choosing a wrong version, it’s

beneficial to avoid dangerous assumptions, understand the benefits and costs of

language updates, examine your own personal preferences, and evaluate the findings.

3

1.1 Programming language Types

There are variety of programming languages types available for developers, each

language having its own type of methodology and implementation. Different types of

languages serve different purposes, some types are:

● Machine languages, which are interpreted directly in hardware to be

executed by a central processing unit (CPU).

● Assembly languages, a low-level programming language for

microprocessors and other programmable devices, that works as a thin

wrapper over a corresponding machine language.

● High-level languages, which are anything machine-independent (C,

FORTRAN, or Pascal).

● System languages, which are designed for writing low-level tasks, like

memory and process management.

● Scripting languages, these programs are written for a special runtime

environment that automates the execution of tasks that could alternatively be

executed one-by-one by a human operator that is generally extremely high-

level and powerful.

● Domain-specific languages, only used for highly special-purpose domains.

● Visual languages, these are non-text based language, that lets users create

programs by manipulating program elements graphically.

Figure 1: Computer language and its types [26]

4

1.2 High-level languages

Very early in the development of computers attempts were made to make

programming easier by reducing the amount of knowledge of the internal workings

of the computer that was needed to write programs. If programs could be presented

in a language that was more familiar to the person solving the problem, then fewer

mistakes would be made. High-level programming languages allow the specification

of a problem solution in terms closer to those used by human beings. These

languages were designed to make programming far easier, less error-prone and to

remove the programmer from having to know the details of the internal structure of a

particular computer. These high-level languages were much closer to human

language. [2]

Table 1: Types of High Level Language

Type Description Examples

Procedural

Languages

Series of well-formed instructions are run to compose a program.

There is a starting point and a logical order to the instructions to

be executed, until the endpoint is reached. It uses program control

constructs (If, Then, Loops, Subroutines, and Functions).

PASCAL,

BASIC,

FORTRAN,

COBOL

Event-driven

languages

A program that listens to user events such as the clicking of the

mouse or the press of a key on a keyboard. When an event is

triggered, it is processed using a defined sequence of instructions

called an event handler. Useful for control programs where events

such as readings from sensors are used to control devices.

Visual

Basic, C++,

Javascript

Object-

Oriented

Language

Defined objects have properties and methods. These properties

can be set initially or changed at run-time. The things that an

object can do are specified in methods.

Visual

Basic, C#,

JAVA,

PYTHON

Markup

Languages

These are designed for the processing, definition and presentation

of text. It specifies code for formatting, both the layout and style,

within a text file. The code used to specify the formatting are

known as tags. HTML is a widely known and used markup

language.

HTML.

XML,

XHTML,

ASP.

5

Each language has its own characteristics, advantages, and disadvantages. It's critical

to choose the right language for the project depending on mid-term, long-term goals

and overall expectations. When selecting a programming language, it is good to be in

trend, but need to make sure all project stakeholders (e.g., product owner(s), PMs,

BAs, IT Manager) agree regarding use of certain languages and technologies for

frontend, backend and data warehousing. Conduct internal and external audits to

make sure the chosen languages don’t have conflicts with current corporate systems,

operating systems, applications, etc. Using interpretive, dynamic, open source

languages developers can achieve speedy development and more cost-effective

solutions. Technologies with high-security standards and abilities to integrate with

legacy systems/environments chose for enterprise application or large scale projects.

Following figure was taken from Github (a popular repository), shows that Javascript

is the most trending programming language and also Python language has passed

Java to become the second most popular language. Typescript has also increased in

reputation. Rust, Google Go, Kotlin are some of the upcoming programming

languages which are not listed.

Figure 2: Transitions of a High-level Language Program [30]

6

Following figure show top 10 programming languages and their information on

implementation, history, file extension etc. [3]

Figure 3: The fifteen most popular languages on GitHub [27]

Figure 4: Top 10 Programming Languages [3]

7

1.3 Programming Language Version

Developers need to select a suitable version of the programming language in order to

develop the proposed solution. When selecting a version, developers often make the

mistake of choosing the latest assuming that it’s the best choice, in some cases, it

could lead to project failure causing time and money. As a developer rather than

making assumptions, understanding the benefits costs associated with updates,

reliability, security, ease of use, etc. would be advantageous.

There are many cases that when developers have to make decisions, when the

programming language makes a release, whether to apply the changes existing

application. The developers are given the choice of keeping the same version of the

language used in the original or to update. Older versions of a language may not

include the latest security features or may lack other features, requiring developers to

invest more time in implementing further solutions. There could be patches

providing latest features to be used in older versions but eventually, that version

going to be outdated.

Another case is when the developers get to create a new application, a commonly

preferred choice would be to rely on the latest release of the language. However, new

versions of a language may not have widespread library support or fully tested

functionality. [4] Selecting a more stable release would be the smarter decision.

Integrating application environments, organizations often force developers to use

their favored language version regardless of whether it’s the best choice for the

particular application at hand. Standardizing on a particular language version across

the organization makes it easier to reuse tooling and libraries, and can help

developers avoid being tripped up by version differences when they move from one

project to another. However, it can also result in lost flexibility, an inability to use

existing code, and wasted developer time to rewrite code in the preferred language

version. [4]

8

1.3.1 Benefits of version updates

Programming language update releases are intended to increase the current

functionality in some form, example Microsoft Entity Framework. Each new version

of Visual Studio comes with an updated version of the Entity Framework, every

update delivering major improvements in functionality. C++ is another example

offering substantial new functionality.

Updates could also make the language more consistent and reliable removing all the

confusing codes. For example: Python 2.7 supports print as a command as well as a

function, leading to confusing code. Python 3.4 consistently views print() as a

function.

HTML5 and JavaScript have become so popular due to increase of reliability and

fastness, the combination of those two is becoming the preferred language for mobile

applications. Continuous updates have made it possible to create an application that

works on most of the devices both quickly and reliably.

Security is a major concern for programming languages and almost all the commonly

used languages release security patches whenever there is vulnerability. Java,

Python, PHP are some of the examples.

1.3.2 Cost of updates

Version updates clearly have its advantages and disadvantages, most consequential

cost of an update is backward compatibility. There can be cases where features

provided by the previous version are no longer available and removed without any

replacements. In worse case may end up with an unusable project. There could be

hidden costs in terms of support and language offers. For example: Python 2.7

provides library support that 3.4 version hasn’t adopted. Also in Python from 2.7 to

3.4 print() considered as a function and all occurrences in the project needs to be

fixed.

9

Deprecated methods are another cost since developers have to pay particular

attention since there could be less helpful error messages. For example PHP version

5.4 to 5.5, there were some significant amount of changes which faced the

deprecated function issue.

1.3.2 Dual version support

There are some languages that officially provide support for multiple versions

parallelly. For example: Python provides support for 2.7 and 3.4 and PHP provide

support for version 5.6 and 7.x at the same time. These supports on older releases

will eventually stop and there wouldn’t be any option other than updating to the

latest.

1.4 Backwards compatibility

Mature languages change less frequently. For mainstream languages, such changes

should be planned in a very careful way to avoid the invalidation of the existing large

code base. Therefore, the modifications are typically backward compatible, i.e. the

earlier written code should compile with the new version of the compiler and the

meaning of the old code should not change. This is a major requirement as it is

unrealistic that the maintainers of a large code base execute a full code review on the

source to detect whether certain code parts are affected by the changes. [5]

When the evolution of the language requires some of the features in the previous

code not to be used in the latest version, then it releases backward incompatible

changes. The selected function will be deprecated, which means those are available

for use in the current version but developers are advised avoid the use of those

elements. In order to easily find out deprecated language elements, compilers emit

the diagnostic messages over them, for web based programming languages the

notification will be visible on the browser this depends on the error settings applied

by the developer. For example in PHP the developers have the option to enable or

disable the errors visible on the browser.

10

error_reporting = E_ALL & ~E_DEPRECATED & ~E_NOTICE

Figure 5: PHP error reporting options

Project maintainers should need to make sure the changes are done and no

deprecated elements are in use, since the deprecated elements could be officially

removed from language and remaining code referring would throw syntax errors.

The most serious problems related to language evolution come from situations where

the syntax of the old language version remains valid in the new version but the

semantics i.e. the meaning of the source code changes. In such cases no compiler

diagnostics are produced, nothing warns the maintainers for the dangerous

difference. The source code is re-compiled with the new compiler version supporting

the new language version without error messages or even warnings. When the

program will be executed, however, one can observe completely different results. To

catch such situations is very difficult even when full regression test coverage exists.

Naturally, mainstream languages try to avoid such backward incompatible semantic

changes. However, even with the best intentions, such situations happen regularly.

[5]

Programming languages handle compatibility in various ways. While some

languages strictly release incompatible versions, others languages release fully

compatible versions, also there are other languages that use third party software

libraries/tools to make the code compatible.

Java is a strongly compatible programming language with forward backward

compatibility. Source compatibility concerns translating Java source code into class

files including whether or not code still compiles at all. Binary compatibility is

defined in The Java Language Specification as: 'A change to a type is binary

compatible with (equivalently, does not break binary compatibility with) pre-existing

binaries if pre-existing binaries that previously linked without error will continue to

11

link without error.' Behavioral compatibility includes the semantics of the code that

is executed at runtime. [6]

Scala uses a multi-paradigm design, which uses general programming concepts and

patterns in an optimized manner, if a developer built a program using Scala version

1.2, it won’t be compatible with version 1.3. If a library is compiled using 1.2 and

tries to run it on an application with a version 1.3, it will simply not work and the

developers have to wait until the next release comes. Scala have improved their way

of releases by using a schema EPIC.MAJOR.MINOR and guarantees compatibility

between minor releases.

Unlike other programming languages, JavaScript depends on the browser

compatibility. If a programmer writes a code in ECMAScript 2015 (ES6), older

browsers would not be able to understand the ES6 and generate issues. In order to

resolve this browser compatibility issue, initially developers used ES6 to ES5 using

Babel, but this was not the most efficient solution since babel only transforms syntax

(e.g. arrow functions). There is a polyfill solution provided by Polyfill.io, [7] which

can polyfill ES6 code in the client side browsers, even though this is a solution for an

older browser, browsers that supports ES6 will be still sending for server requests.

Dynamic-polyfill checks whether the required features are natively supported before

making any server side requests. [8]

1.5 Problem / Opportunity

“Don't fix it if it isn’t broken”. Most of the system owners and developers have this

mind set, but when it comes to evolving requirements and technologies the systems /

software should not be stagnated. This research study is focused on compatibility

between version releases for programming languages. Not all the software systems

are built and maintained up to date. System owners tend to notice the system

vulnerabilities and failures when there are complaints from the users, this could be

costly, affecting the business and trust. Clients look to update the system to latest

version only when all the other approaches fail. The main problem would be that the

12

system could be so outdated a simple version upgrade would not be possible and

building the system from scratch would be time consuming and costly.

1.6 Motivation

Programming languages tend to evolve; there will always be a cost of update when

changing from one version to another. Code compatibility across different

programming language versions are handled by developers. The developers tend to

use compile time logs, code sniffers, tools such as selenium or execution time errors

to find code compatibility issues. This process is time consuming and convincing the

client for an upgrade will be difficult. The outcome of this research is to provide a

tool that could easily search through the project code to identify compatibility issues

and provide a full report to the user, making the transition from one version to

another easy and with less update cost. The compatibility tool is intended to be user

friendly allowing any person to run the program and generates a report. It would also

provide advance features for developer to set their own rule sets to verify and create

a deployable image along with updated codebase and updated programming

language version.

1.7 Objectives

The main objective of this research is to provide a tool to check code compatibility

across programming language version releases. The proposed tool is expected to

cover all the areas related to code validation. Code standards, syntax errors,

deprecated methods, user specific validations. Along with the main objectives

following areas would be covered from the compatibility tool.

 Listing of available versions that are stable and supported from the vendors.

 Simple user friendly tool which could be used without any prior experience.

 Multiplatform support, the tool can be used across windows, apple or any

linux OS.

 Provide user friendly graphs and tables in the report.

 Users should be able to update the files and re-run the checker.

13

 The users should be able to get a deployable image which could be deployed

to server.

 Another objective of this tool is to read the project code from the repositories,

since majority of developers use repositories for their project, it is essential

have the option to read from the repositories as well as from local drive.

Since this is a 6 months research, due to time constraints the scope of the research

has been narrowed down to one programming language and its releases. The research

will be based on PHP language and its compatibility with the releases. The reason for

selecting PHP was it is one of the leading software language used for developing

web based solutions and has completed a major version change from 5.6 to 7.0.

Currently PHP supports 5.6.x, 7.0.x, 7.1.x, 7.2.x and 7.3 Also 7.4 will be release on

December 2019.

Figure 6: PHP supported versions [9]

14

CHAPTER 02: LITERATURE REVIEW

15

Many programming languages have their own way of handling language release.

There are research done based on specific languages and platforms. This section is to

identify the importance of those researches based on the compatibility tool

requirements. There are few research work done on checking for compatibility and

language evolution related issues. They were single language specific but were

helpful for the cause of this research.

2.1 Programming language complications

The most consequential problem in relation to language evolution is different

semantics related between versions. This occurred in C++11 and the previous version

for C++ language. One can recognize a completely different result to catch such

situations is very dubious even when an almost full regression test coverage exists.

[5] Following code sample below has non-identical semantics in C++11 and pre

C++11 versions. The output of the previous version would be 12345 while other

version prints 11111.

struct S {

 S() : i(++counter) {}

 static int counter;

 int i;

};

int S::counter = 0;

int main() {

 std::vector<S> v(5);

 for (std::size_t x=0; x<v.size(); ++x)

 std::cout << v[x].i;

}

Figure 7: C++ Semantic error sample code

PHP 3 had a clear semantic that assignment, argument passing, and returns are all by

value, creating a logical copy of the data in question. The programmer can opt into

reference semantics with a “&” annotation. [2] There were conflicts with the

introduction of object-oriented programming in PHP 4 and 5 against these types of

references, even though PHP object-oriented notations were taken from Java

programming language. Java uses semantic objects are treated by references, while

primitive types are treated by value. [10]

16

$a = goldbachs_conjecture() ? 3.14159 : "a string";

Figure 8: PHP Related Semantic Error Code Sample

There are IDEs that support semantic analysis, Zend studio supports semantic

analysis for PHP projects. The semantic analysis feature enables warning and error

messages to be displayed on the project code. Also, it allows the developers to see

compile errors and potential programmer errors.

2.2 Tools for sensing errors on software projects

Code sniffers are a commonly used plug-in for many IDE’s. “PHP_CodeSniffer” is a

set of two PHP scripts; the main phpcs script that tokenizes PHP, JavaScript and CSS

files to detect violations of a defined coding standard, and a second phpcbf script to

automatically correct coding standard violations. PHP_CodeSniffer is an essential

development tool that ensures your code remains clean and consistent. [11]

Figure 9: Zend Studio Semantic Analysis [28]

17

A coding standard in PHP_CodeSniffer is a collection of sniff files. Each sniff file

checks one part of the coding standard only. Multiple coding standards can be used

within PHP_CodeSniffer so that the one installation can be used across multiple

projects. The default coding standard used by PHP_CodeSniffer is the PEAR coding

standard.

“Looks Good To Me” (LGTM), this tool could be used as the last step for verifying

the code base before moving to live. It checks for potential known bugs and

evaluates the design. At the moment LGMT analyzes code bases written in Java,

JavaScript, and Python. This tool uses the code in the repository with the along with

its revisions to analyze the changes that have been done. [12]

Figure 10: PHP CodeSniffer findings against PEAR coding standards [11]

18

2.3 PHP Code Fixer

As the PHP evolve over time the vendors deprecates functions and remove them in

later versions. These functions and variables were used in projects and needs to be

removed when upgrading to newer version. Code fixer parse PHP code to find issues

in functions, variables. It checks the php.ini configuration directives that are

deprecated. It can also suggest replacements for the code that uses deprecated

features. [13]

PHP code fixer is a terminal checker that scans for compatibility of the project code

across the latest supported versions. This tools helps developer finds the following

usage:

 Identifies the use deprecated features in PHP projects (ini-directives /

constants / variables / functions).

 Identifies changed behavior compared to later versions.

This tool provides suggestions to the users on the areas that need to be updated.

Using the composer or Phar file users can install and start using the PHP Code Fixer

tool.

Figure 11: LGTM alert samples [12]

19

2.3.1 Usage

After successful installation users can run the “phpcf” command in the console and

pass file or directory names. This phpcf allows users with following options:

 Set the PHP interpreter version; exclude file or directory names for scanning.

 Skip large files by setting maximum file size, to ignore larger files that would

increase the execution time.

 Set specific file extensions to be scanned. [default: "php, php5, phtml"] [13]

 Files can be skipped based on the given values.

 Get the results as a JSON output file.

$ phpcf [-t|--target [TARGET]]
 [-e|--exclude [EXCLUDE]]
 [-s|--max-size [MAX-SIZE]]
 [--file-extensions [FILE-EXTENSIONS]]
 [--skip-checks [SKIP-CHECKS]] [--output-json [OUTPUT-JSON]]

Figure 12: PHP Code Fixer terminal command

Following is an output of the test carried out from “phpcf”.

Figure 13: phpcf sample results [13]

20

2.4 Mining Software Repositories Tools

Data mining is one of the most relevant topics in current day’s research areas. Based

on the knowledge gather from data mining from repositories, data miners are able to

predict models and patters. This information could be used in various domains. [14]

Candoia uses Mining Software Repositories tools inside are ecosystem. The platform

uses MSR as built apps. These apps can "build once, run everywhere". [15]

Following is a figure of how candoia works.

2.5 Deprecated methods

There are many IDE’s tools that find out deprecated and also there are scripts written

by developers that are published. Depcheck is simple application script to find out

deprecated methods on a file and suggest replacements. [16] Once a deprecated

method had been found from a file if finds a replacement code from the latest version

for a suggestion. In order to check through a full PHP project, the script file can be

modified to iterate through the project PHP files and detect deprecated methods. The

class file is able to read from a text file or a CSV for deprecated methods which can

be updated as the release comes.

<?PHP
include('depcheck.class.php');

Figure 14: Candoia work flow [15]

21

$fileName = (!empty($_REQUEST['f'])) ? $_REQUEST['f'] : '';

$dpc = new depcheck($fileName);
$dpc->checkFile();

?>
<html>
 <head>
 <title>PHP deprecated function checker</title>
 </head>
 <body>
<?PHP
if($dpc->errorFlag === true){
?>
<div style="margin: 10px 0; color: red;">Error!!!
<?PHP echo

$dpc->errorMessage;?></div>
<?PHP
}
?>
<div>Running PHP version <?PHP echo PHP_VERSION;?></div>
 <div>Using deprecated csv file '<?PHP echo $dpc-

>depFile;?>'</div>
 <div>Checking file '<?PHP echo $dpc->fileName;?>'</div>
 <div style="margin-top: 10px;">Results:
<?PHP echo

$dpc->resultMessage;?></div>
 </body>
</html>

Figure 15: PHP Deprecated Methods Finding Script

2.6 PHP built in lint command

In order to find syntax errors through the command line, PHP has introduced the lint

command (php -l). The programmers could run this on a terminal interface and it will

output the syntax error and file information on the terminal. Following is a script

which was developed to iterate through project folder and find PHP and PHTML

files.

#!/bin/bash

FOR file in “find .”
DO
 EXTENSION = "${file##*.}"
 IF ["$EXTENSION" == "php"] || ["$EXTENSION" == "phtml"]
 THEN
 RESULTS =”php -l $file”

22

 IF ["$RESULTS" != "No syntax errors detected in $file"]
 THEN
 echo $RESULTS
 FI
 FI
done

Figure 16: PHP Lint script

Based on the literature review findings, author was able discover that there are few

extension and tools to identify specific areas related to code standers and errors.

These solutions were focused on fixing or identifying specific problem areas. In

order to use them on projects, developers needed to have special IDEs which

supported those tools or knowledge on how to execute them manually using the

terminal. This research is focused on providing a tool that covers all the aspects

related to code validation. The solution would be implemented using features taken

from PHP code sniffer and code fixer.

23

CHAPTER 03: METHODOLOGY

24

Main objective of this research is to provide a tool to help the developers easily find

out system code compatibility in the latest programming language versions. Read the

project code from the local drive or from the repository making the tool portable and

accessible.

The project scope is limited to one programming language and its releases due to the

research time constraint. The methodology of the solution will be specific to PHP

language, but this research can be extended to support many other programming

languages in the future. This section provides a conceptual overview of the approach,

discussing the representation and generation of compatibility reports from PHP code.

3.1 System

The high level of information flow view is represented in figure 3.1. The user will be

given the option to select the project location either from local drive or from the

repository. Once the project file location is added, user need to select the version that

need to be checked, user will be given the available PHP releases to select. Once the

required information are given user will be able to execute the checker which would

inspect the code and generate the findings on the dashboard. The user will be able to

make changes to the project code and re-run the testing. Once the issues are fixed the

user has the option to generate a deployable image using the tool.

Figure 17: Proposed work flow

25

3.1.1 High level architecture

Figure 18 illustrate the top tier architecture in the code compatibility tool. As shown

on the figure, the user will be able to provide the code either from local drive or git

repository. The provided code will be checked depending on the programming

language version that the user selected. The project code will be inspected based on

the version and custom rules set by the user. Based on the rules, the tool will

generate a report on the application dashboard and a deployable image. The report

will have multiple types of notifications, syntax errors, deprecated, warnings, and

notice. Users also have the option to add coding standards to be verified during the

inspection. Inspection process uses the code sniffer to identify errors on the code, this

would be executed internally inside the container using execution calls. The output is

available on the dashboard displayed as graphs and tables. The use will be able to

edit the identified files and re-run the checking process. The files will update inside

the container without affecting the original project code. Once the correction process

is completed the user will able to generate a output to compare the difference

between the original project code and updated code. The user also has the option to

create a docker base image with the updated code along with selected programming

language version.

Figure 18: Proposed System Architecture

26

3.1.2 Components architecture

Figure: 19 illustrate component architecture of the solution. Compatibility tool

consists of multiple components working together to generate the desired output. The

main two components are the application and docker processes.

Figure 19: Components architecture

3.1.2.1 Application interface

All the user interactions will be handled through the application interface. Docker

processes will be triggered from the application interface based on the user

interactions. The application aims to be user friendly fulfilling the requirements. The

application is intended work on multiple platforms, the tool can be used across

windows, apple or any linux os.

3.1.2.2 Docker Processes

The application is depended on docker, it uses docker image build and containers to

mount the project code base and execute the code sniffer rules. Since this is based on

docker containers the users have full access to containers, allowing them to

customize. The docker container consists of required extensions for PHP, open ports

and nginx server, so that the users could access the project from the browser if they

desire.

27

3.2 Input output and processing

Figure: 20 illustrate the abstract input and output of the proposed tool. Code

compatibility tool verify the provided code along with the rule set assigned to the

code sniffer. Once the verification process completed the output will be written as

json to a file. This would be used as the source to generate the report and dashboard

data.

Following table is a sample input and output of the compatibility tool. When a user

triggers a verification process from the application, it will iterate through the

mounted project code and write the findings to the results.json file. The application

will use the json data to notify the user on the findings and generate graphs and

tables on the dashboard.

Table 2: Compatibility checker Input and result output

Context Value

Input /camera-hut/codepool/app/Sales/Orders/Block/order.php

Output results.json output file contains the following output.

{
 "totals": {
 "errors": 4,
 "warnings": 1,
 "fixable": 3
 },

In order to get the results.json file, the application executes multiple processes.

Figure: 21 illustrates the activity flow of the application.

Figure 20: system input output

28

01 - The user will be given an option to start the proceedings. Starting the

readiness check will trigger a prerequisites check. The application depends

on docker installation, during the readiness check, it will check for existing

docker installation and its version.

02 - The Docker installation will be triggered based on the operating system the

installation process may vary.

03 - The user will be able to provide the project information such as project

name, project folder location, required PHP version. This information will

be gathered and used for the docker image build and container startup.

04 - Docker image build up and container will be started on this step. The

output of this process will be visible on the application and written written

to a log file.

05 - During this step user will be able to access the started container along with

project information. The project code will be mounted and will provide a

count of total php / phtml files found on the project.

06 - This step will execute the code sniffer rules set, providing steam of data to

the JSON output file.

07 - Once the execution completes, the JSON file will hold the results. This files

will be use to generate graphs and tables on the report.

29

3.2.1 Custom rule sets

One of the main features of the compatibility tools is allowing the users to add

custom rules sets. There are coding standards such as PSR1, PSR2, PEAR which the

Figure 21: Activity flow

30

developer commonly uses on IDE such as phpstorm, VS code, sublime etc. This tool

provides the same capability as adding multiple coding standards and custom

checkers to code sniffer. Following is a sample rule set which could be used in the

proposed system.

<?xml version="1.0"?>
<ruleset name="User defined" namespace="ProjectName\Rules">
<!-- Define the error message type -->
<rulegroup>
<rule ref="Conditions to be checked">
 <type>error</type>
 </rule>
 <rule ref="Conditions to be checked">
 <type>warning</type>
 </rule>
<rulegroup>
<rule ref="Forbidden_Functions">
 <properties>
 <property type="array" value="delete=>unset,print=>echo" />
 </properties>
</rule>
</ruleset>

Figure 22: Custom rules

3.2.2 Type of notification outputs

There are errors, warnings and notice along with severity level as notification to the

user. Depending on the type of notification and severity level the results will be

categorized and visualized on the dashboard. Also the summary of the total

verification process will be visible to the user.

3.2.3 Deployment process

If the user wishes to extract the updated files or deploy the updated content to the

server, compatibility tool provide the option to generate a deployable image along

with updated PHP version. It will also provide the user, difference between the initial

container and the updated container files. This is helpful to identify which files were

updated and what was updated.

31

CHAPTER 04: IMPLEMENTATION

32

This section describes the implementation aspects of the compatibility tool with

programming language releases. This is to provide proof of concept provided on the

chapter 03: Methodology. In relation to the previous chapter, this section provides

the scope of the implementation, dependencies, implementation technology and

outcomes of the compatibility tool.

4.1 Scope of implementation

In PHP programming language currently there are 3 supported versions (7.1, 7.2. and

7.3). Still there are many projects running on PHP version 5.4, 5.5, 5.6 and 7.0

versions, those needs to update to be compatible with latest supported versions.

Upgrading from 5.4 to 5.6 or 5.6 to 7.0 are considered major changes, since there are

significant amount of changes done from PHP. [9]

The compatibility checker provides an easy to use tool where users will be able to

select the wanted PHP version and execute the code sniffer to find out the errors and

warning on the project. Following are the deliverables of the developed tool.

 Identify deprecated methods and syntax errors on the PHP project compared

to the selected version.

 Listing of available PHP versions that are stable and supported from the

vendore.

 Compatibility checker is developed using electron, a JS framework which is

used to create native applications. It supports multi platforms such as

windows, apple and linux based operating systems.

 Simple user friendly tool which can be used without any prior experience.

 Provide user friendly graphs and tables in the report.

 Multiple re-run of the code sniffer is possible and the reports are updated

along with the changes.

 Once the code sniffer completes the execution, the users are able to view the

results on the dashboard. This includes the graphs and tables.

 On the results output, it shows the error severity level file line number and

option to edit.

33

4.2 Compatibility checker

The compatibility checker is a JS based application which uses node modules to

communicate with docker API. Docker is used to create images along with required

environment variables and start a container to run the compatibility checker. PHP

code sniffers are used to check the project code and generate an output in JSON

format. Once the iteration / verification through project code is completed, by using

the results json file the reports on the dashboard will be populated. The user will be

able to update the related php / phtml files shown on the results. The users have the

option to create a deployable docker image along with updated code and desired PHP

version.

4.2.1 Application implementation

This tool uses the electron framework to build the system as a native application.

Electron was developed by GitHub as an open source library for creating cross-

platform desktop applications. It uses HTML, CSS, and JS for creating application

views. This library achieves this by using Chromium and Node.js combining into

single runtime application which can be built and packaged multiple platforms such

as Mac, Linux and Windows. [17] There are many node modules used during the

development of this application. React, Webpack, Dockerode, material-ui, etc.

Following is a package.json file along with all the dev and prod dependencies.

"dependencies": {
 "@material-ui/core": "3.9.2",
 "@material-ui/icons": "3.0.2",
 "chartist": "0.10.1",
 "classnames": "2.2.6",
 "concurrently": "^4.1.0",
 "dockerode": "^2.5.8",
 "electron": "^4.1.4",
 "electron-is": "^3.0.0",
 "electron-is-dev": "^1.1.0",
 "history": "4.7.2",
 "perfect-scrollbar": "1.4.0",
 "prettier": "1.16.4",
 "prop-types": "15.7.1",
 "react": "16.8.1",
 "react-chartist": "0.13.3",
 "react-dom": "16.8.1",

34

 "react-google-maps": "9.4.5",
 "react-router-dom": "4.3.1",
 "react-scripts": "2.1.5",
 "react-swipeable-views": "0.13.1",
 "wait-on": "^3.2.0"
 },
 "devDependencies": {
 "@babel/core": "^7.4.2",
 "@babel/plugin-proposal-class-properties": "^7.4.0",
 "@babel/preset-react": "^7.0.0",
 "babel-loader": "^8.0.4",
 "babili-webpack-plugin": "^0.1.2",
 "css-loader": "^2.0.2",
 "electron-packager": "^13.0.1",
 "file-loader": "^3.0.1",
 "html-webpack-plugin": "^3.2.0",
 "mini-css-extract-plugin": "^0.5.0",
 "postcss-cssnext": "^3.1.0",
 "postcss-import": "^12.0.1",
 "postcss-loader": "^3.0.0",
 "postcss-nested": "^4.1.1",
 "postcss-pxtorem": "^4.0.1",
 "style-loader": "^0.23.1",
 "url-loader": "^1.1.2",
 "webpack": "^4.28.2",
 "webpack-cli": "^3.1.2",
 "webpack-dev-server": "^3.1.14"
 }
}

Figure 23: package.json

Fully completed package.json file will be available in the appendix. Code

compatibility application uses the port “localhost:8080”. This is commonly used by

other services such as nginx, apache. If specific port is already taken the users can

easily change the main.js file and added unique port. Electron uses the createWindow

function to startup the chromium browser.

function createWindow() {
 // Create the browser window.
 mainWindow = new BrowserWindow({
 width: 1024,
 height: 768,
 show: false
 })

 // and load the index.html of the app.
 let indexPath

 if (dev && process.argv.indexOf('--noDevServer') === -1) {
 indexPath = url.format({

35

 protocol: 'http:',
 host: 'localhost:8080',
 pathname: 'index.html',
 slashes: true
 })
 } else {
 indexPath = url.format({
 protocol: 'file:',
 pathname: path.join(__dirname, 'dist', 'index.html'),
 slashes: true
 })
 }

Figure 24: Electron init code

Figure: 25 illustrate the initial screen the users would see. The users will be given the

option to start the readiness check. This will check the system for docker installation.

Docker is mandatory software for the code compatibility tool.

List of system calls are carried out to check if the docker is already installed. The

tool will look for the docker installation and the current version to verify the

compatibility. Following code sample triggers the system calls, base on the output

user will be able to proceed to next step. If the docker installation was not found the

user will provided with an option to install docker on the PC.

let cmd = (is.windows()) ? 'docker-bash' : 'docker-shell';
 let commands = require('../../scripts/'+cmd);

Figure 25: Readiness check

36

 for (var i = 0; i < Object.keys(commands).length; i++) {
 var commandKey = Object.keys(commands)[i];
 var commandVal = Object.values(commands)[i];

 var parts = commandVal.split(/\s+/g);
 var spawn = spawnSync(parts[0], [parts.slice(1), {
 shell: true
 }]);

Figure 26: Docker checker

Figure 27: Docker Install option

Docker installation will trigger an installation script on the user’s machine,

depending on the OS platform installation process would vary. If it’s a linux base

system application will trigger a installation script which will install docker, for

windows and apple OS users the user needs to approve the installation and setup

docker. Figure 4.3 illustrates the screen output of successful readiness check.

Figure 28: Docker information

37

4.2.1.1 Dockerode

Dockerode is used to communicate with docker. In the application it uses Docker

API to create a docker image from the provided Dockerfile. [18] Dockerode proved

the following features which are used in this application.

 streams - stream output are used to log the communication and execution of

process from application to docker.

 stream demux - Supports optional demultiplexing.

 run – this library provides seamless run commands inside the container.

 interfaces - Features callback and promise based interfaces.

Following code sample is from the image build up process which uses the user inputs

added from the docker build form. The user needs to provide.

 PHP version to check

 Project name - this will be used to create the image tag.

 Project path - This will be mounted to container /var/www/html/public

Figure 29: Docker project info

38

componentDidMount() {
 //stats
 const { activeStep, stopReRun, projectName, phpVersion } =

this.state;

 if(activeStep === 0 && stopReRun === false) {

 if (fs.existsSync(dockerBuildLog)) {
 var writeStream = fs.createWriteStream(dockerBuildLog, {

flags : 'w' });
 }
 //Docker build proces
 docker.buildImage('./Dockerfile.tar.xz', {
 t: projectName,
 rm: true,
 buildargs: {
 "buildtime_version":phpVersion
 },
 }, function(err, stream) {
 if (err)

 return;

 stream.on('error', function(error) {
 this.appendOutput('stderr: <'+error+'>');
 }.bind(this));

 stream.pipe(writeStream);

 stream.on('data', function (dataSet) {
 this.appendOutput(dataSet);
 }.bind(this));

 stream.on('end', function() {
 this.done();
 }.bind(this));
 }.bind(this));
 }
 }

Figure 30: Docker image create code sample

The above code sample uses the “Dockerfile.tar.xz” to build the docker image. The

“Dockerfile.tar.xz” consisites for the following files:

 Dockerfile, consists of the environment set up and configuration related the

docker container.

 Nginx configuration file to setup the default server on the docker container.

Default file will contain the listening port 80, fastcgi_pass socket

configuration and project path. This is added to help out the developers to

view the site after the upgrade.

 Supervisord.conf is added to execute multiple services on the docker

container. Starting and ending points are defined as ENTRYPOINT and

39

CMD in the dockerfile. It is general recommendation would be to separate

areas running one service per container. That service can create multiple

running processes such as apache, nginx, PHP etc. [19]

 Composer.json file is used to set up the code sniffer and PHPCompatibility

along with application dependencies.

 Code_check.xml, this includes the rule sets to be monitored during the code

scanning process.

The outputs of the process are written to the logs and visible to the user through the

application. Once the image is successfully built, it will trigger another function to

create a container and start up the process.

Following is an output taken from the terminal running the command “docker ps”. It

outputs the currently running docker container on the machine. It shows the container

ID, image name, open ports to the host.

Figure 31: Container terminal output

40

Figure 32: Docker starting view

The user will be able to see the responses and errors on the application. This allows

user to re correct any issues during the docker build. The code checker docker

process is a three step process.

1. Docker image and container build up.

2. Verify the setup for code sniffer.

3. Generation of results based on the code sniffer output.

All the communication with docker is carried out using dockerode node module. In

the verification view the user will be able to verify the setup prior to results

generation.

41

Figure 33: Docker and Project information

The application uses two dockerode functions to generate the above output.

“Container.inspect()” and “container.exec()”. Container inspect is used to get the

running container information. Container exec lets the user run commands on the

docker container. The docker information is fetched using the inspect function and

the total php/phtml file count is captured from executing the exec function. After

verifying the information the user can start the code sniffer process.

4.2.1.2 Docker

Compatibility checker tool uses “ubuntu 18.04” docker instance, along with PHP,

nginx, composer, git and required PHP extensions. The application uses a Dockerfile

to setup these installations. The “dockerfile” along with other setup scripts are

compressed and added to application directory to be picked up during the image

build. PHP version is passed on as a variable to the docker file providing flexibility.

docker.buildImage('./Dockerfile.tar.xz', {
 t: projectName,
 rm: true,
 buildargs: {
 "buildtime_version":phpVersion //PHP version taken from

the form
 },
 }, function(err, stream) {
 if (err) return;

42

 stream.on('error', function(err) {
 this.appendOutput('stderr: <'+err+'>');
 }.bind(this));

Figure 34: Docker image build

Following is a code sample taken from the Dockerfile used for the application. It

uses the environment variable passed as ${IMAGE_PHP_VERSION} to set up the

required PHP version for the docker container. The contents of the dockerfile will be

available on the appendix.

RUN get install -y

 software-properties-common \
 && LANG=C.UTF-8 \

 && add-apt-repository ppa:ondrej/php

RUN apt-get update apt-get install -y \

 curl zip unzip git supervisor sqlite3 \
 nginx \
 php${IMAGE_PHP_VERSION}-fpm \
 php${IMAGE_PHP_VERSION}-cli \
 php${IMAGE_PHP_VERSION}-pgsql \
 php${IMAGE_PHP_VERSION}-sqlite3 \
 php${IMAGE_PHP_VERSION}-gd \
 php${IMAGE_PHP_VERSION}-curl \
 php${IMAGE_PHP_VERSION}-memcached \
 php${IMAGE_PHP_VERSION}-imap \
 php${IMAGE_PHP_VERSION}-mysql \
 php${IMAGE_PHP_VERSION}-mbstring \
 php${IMAGE_PHP_VERSION}-xml \
 php${IMAGE_PHP_VERSION}-zip \
 php${IMAGE_PHP_VERSION}-bcmath \
 php${IMAGE_PHP_VERSION}-soap \
 php${IMAGE_PHP_VERSION}-intl \
 php${IMAGE_PHP_VERSION}-readline \
 php${IMAGE_PHP_VERSION}-xdebug \
 php-msgpack php-igbinary \
 && mkdir /run/php

Figure 35: Dockerfile contents

Dockerfile uses the supervisord.conf to keep the nginx and php processes running

during the container startup. This is essential since the user have no access to starting

up these services from the application. In order to run the specified PHP version, it is

passed as a variable to the supervisord.conf file. Following code sample is taken

from the supervisord.conf files used on the application. [25]

43

[supervisord]
nodaemon=true

[program:php-fpm]
command = php-fpm%(ENV_IMAGE_PHP_VERSION)s
stdout_logfile=/dev/stdout
stdout_logfile_maxbytes=0
stderr_logfile=/dev/stderr
stderr_logfile_maxbytes=0

[program:nginx]
command = nginx
stdout_logfile=/dev/stdout
stdout_logfile_maxbytes=0
stderr_logfile=/dev/stderr
stderr_logfile_maxbytes=0

Figure 36: supervisord.conf file

4.2.1.3 PHP Code sniffer / Rule sets

PHP code sniffer is used to check the project code with selected PHP version. Code

sniffer is mainly used on IDS such as Phpstorm, VS code, Sublime etc. compatibility

checker application will be using the terminal based execution. Code sniffer is

mainly used to keep a coding standard a cross developers. PEAR, PSR2, PSR12,

PSR1 are used to keep track of standards. Compatibility checker application focus

more on the syntax errors and deprecated errors which could be more critical. This

application uses an extension called “PHPCompatibility” with code sniffer, which

identify the deprecation errors and adds to the results output.

“PHPCompatibility” and Code sniffer both are added to container using composer

install. This will be picked from the dockerfiles and added to the container for

installation and execution. Users can easily modify the “composer.json” file and add

more extensions to the code sniffer tool. Following is the code sample taken from the

composer.json file. It triggers the installation of “squizlabs/php_codesniffer” and

“phpcompatibility/php-compatibility”. The users can verify this by running the

following code on the container.

{
 "name": "phpcompatibility/code-checker",
 "description": "code checker required php_codesniffer

extensions",
 "version": "1.0.0",
 "authors" : [
 {
 "name": "Jehan Benjamin",
 "email": "ryan.jehan@gmail.com",

44

 "role": "Developer"
 }
],
 "license": "MIT",
 "require": {
 "squizlabs/php_codesniffer": "*",
 "phpcompatibility/php-compatibility": "*"
 },
 "prefer-stable" : true,
}

Figure 37: Composer package.json

This application uses the custom rule set to get retrieves the desired results. Syntax

and compatibility checker are enabled while code comments and coding standards

are ignored. Users can easily include or exclude these from the code_checker.xml

file. Also the users will be able to add parameters, exclude folders, and ignore

specific functions. The code_checker.xml is fully customizable, allowing users to use

the setup for unique projects. The compatibility checker application focus more on

the generic use of code sniffer and provided a generic set of rules.

<?xml version="1.0"?>
<ruleset name="Code Checker">
 <description>My rules for PHP CodeSniffer</description>
 <arg name="extensions" value="php,phtml"/>
 <!-- Run against the PHPCompatibility ruleset -->
 <rule ref="PHPCompatibility"/>
 <!-- Exclude Composer vendor directory. -->
 <exclude-pattern>*/vendor/*</exclude-pattern>
 <rule ref="Generic.PHP.Syntax"/>
</ruleset>

Figure 38: Custom rule set

4.2.1.3 Notification and reports

Based on the results found during the code sniffer process, the application will use

the results.json file to generate notification types and reports. The user will be able to

view charts based on the total number of files searched with number of error found

on files, the application will differentiate the errors based on the type of error and

severity level.

syntax errors file percentage = 100 x
 num of error files

total num of files checked

45

warnings file percentage = 100 x
 num of warning files

total num of files checked

Figure 39: Pie chart

The charts will be using the percentage values to create pie / column charts on the

application. The defect files would be visible on the application categorized into

syntax errors, deprecated errors and warnings. Users will be able to click on the file

name and access the file inside the container and fix the issues. The application

allows the user to re-run the code sniffer again and validate the fixes.

46

Figure 40: Error notification

The users will be able to view the list of errors on the dashboard after a successful

compatibility check. The errors will be listed based on the severity level. Users can

access the specified file by clicking on the file location link. The file will be open

from the docker container, the developer will be able to fix the prompted issue and

re-run the checker. Error section displays the syntax errors, deprecated errors and

fatal errors found during the checker process.

Figure 41: Warning notification

Under the warning section, the users will be able to view the list of warnings after a

successful compatibility check. The warnings will be listed based on the severity

47

level. Users have the option to access the specified file by clicking on the file

location link. The file will be open from the docker container, the developer will be

able to fix the prompted warning and re-run the checker. The users can set custom

rules to ignore specific types of warnings and set to ignore low level of severity

errors and warnings.

4.2.1.4 Verification and deployment

The application provides the user to execute a diff command on the container. The

application will generate a diff report from the results fetch from the container. This

report will include all the updates done on the container.

$ docker diff CONTAINER ID

#sample output of the command
C /var/www/html/public/app/Sales/Block/order.php
C /var/www/html/public/app/Product/Block/inventory.php
C /var/www/html/public/app/Email/Module/order.php
C /var/www/html/public/app/Invoice/Module/shipment.php

Figure 42: Container diff

The application provides the option to create a new image from a container’s

changes. The new image with the changes can be deployed. This option helps the

developers to work collaboratively. The results.json file will be available, along with

project file updated list.

AWS Deployment

Amazon ECS is used to run Docker applications in AWS environments. It uses

scalable clusters for docker containers. User will be able to start a docker supported

application on an Amazon ECS cluster along with load balancer and execute test runs

on the sample application. [20]

48

Figure 43: Docker deployment process [21]

Kubernetes Deployments

It provides a portable and extensible platform to manage containerized workloads

and services. Kubernetes provide the feature to setup configurations or automation.

Kubernetes is a rapidly expanding ecosystem with a widely supported range of tools.

[22] Docker containers can be easily deployed to kubernetes’ orchestration systems.

49

CHAPTER 05: EVALUATION

50

This section discusses the effectiveness and validation of the compatibility checker

application. It verifies the deliverables based on the requirements scope. Section 5.1

focuses on the usability of the application across other tools and IDEs. Section 5.2

discusses on the projects and sample data sets and PHP code sniffer capturing errors

and warnings on the results JSON. Section 5.3 presents the reporting and information

validation based on the sample data set.

5.1 Usability

One of the main objectives of the research is to provide a user friendly, multi

platform application. The application follows a simple step process during the

readiness check and docker container build process, hiding the complex setup and

configuration from the users. Users can easily keep track of the current process using

the application interface. Also every docker base process calls are recorded in logs.

Following are some screen captures from the code compatibility application. Provide

an easy to use step by step process.

5.1.1 Readiness check

During the readiness check the application search for docker installation in the user’s

machine. The application uses “spawnSync” child process to trigger arbitrary

command execution. The application is checking for docker installation and version

for verification.

Figure 44: log files

51

Figure 45: Application landing page

The Pre-requisites page is the initial page that the user will be able to view. It is used

to inform the user on the system pre-requisites and start the initiate the code

compatibility process. The will be able to view only one view, dashboard and docker

compose will be available as the user progress.

Figure 46: Docker information

Once the user starts the readiness check the next step is to check the docker

installation and the version. If this step is successful user will be able to proceed to

next step. Adding the project name, select the required PHP version and provide a

project source path. The project name will be taken as the docker image tag name.

During the readiness steps user always have to option to go back to the previous step

if needed. It hides the system calls and complexity on the application from the user.

52

Figure 47: Project info form

5.1.2 Docker build, run process.

Code compatibility application depends on the docker features of creating and

running containers. It uses a Dockerfile to setup the image and build the container

based on the user input. The project name, project source location and PHP version

shown on figure: 47 is captured from the form. It uses the port “9000” on the hosted

machine to communicate. This can be altered by the user.

53

Figure 48: Docker image run and container start

On this step the docker image is built using the Dockerfile and the variable values

provided by the user. Once the image is successfully created, container creation will

be started. Mounting the project source with container and creating a port binding

will triggered next.

Figure 49: container and project info

54

Figure 50: Docker executes and results

During this step docker executions will be triggered, PHP code sniffer checker

results summary will be loaded on the application. Full results will be added to

results.json file inside the docker container. JSON file contents will be used to

generate the reports and notification on the dashboard.

Phpstorm is a widely used commercial IDE used by developers. Setting up

codesniffer in Phpstorm requires multiple steps. It requires the user to have an idea

about the IDE and how to use code sniffer plugin. Running multiple code checker

from the IDE is not possible. [23] Since Phpstorm is a paid software developers may

tend to look for alternatives.

Figure 51: Phpstorm code sniffer setup

55

Running PHP CodeSniffer in Visual Studio Code is another option for the

developers. The setup process is similar to the phpstorm. This also required the user

to have previous knowledge about the IDE and code sniffer setup. [24]

The application uses docker command to setup the image and start the containers.

Some developers may struggle to mount source location and open up ports to

communicate with the containers. Also passing arguments and setting up variable

would be challenging work for a beginner. Following are some docker terminal

commands which are used from in the compatibility application. In the application its

implemented using docker API calls.

$ docker build --build-arg buildtime_version=7.2 -t

nginxphpdocker/app:latest -f dockerTest/application/Dockerfile

dockerTest/app/

$ docker run -d --rm -e IMAGE_PHP_VERSION=7.2 -p 8080:80 -v

$(pwd)/application:/var/www/html/public nginxphpdocker/app:latest
Figure 52: Docker build commands

Compatibility checker application is developed using electron a JS based framework

which uses the chromium browser create a native application. This tool will be built

using webpack, it provides a JS based API that could be used in Node.js runtime.

[25]

"scripts": {
 "prod": "webpack --mode production --config

webpack.build.config.js && electron --noDevServer .",
 "start": "webpack-dev-server --hot --host 0.0.0.0 --

config=./webpack.dev.config.js --mode development",
 "build": "webpack --config webpack.build.config.js --mode

production",
 "package": "npm run build",
 "postpackage": "electron-packager ./ --out=./builds"
},

Figure 54: webpack build scripts

Figure 53: platform related builds

56

5.2 Application results evaluation

In order to conduct an unbiased evaluation of the results for the application, the

results were captured from fifteen systems that are currently in production. Table 5.1

illustrates the types of PHP projects that were selected for the testing.

Table 3: Sample projects information

Project type PHP Versions Num of Projects

Magento 1.x 5.6 2

Magento 2.0.x 7.0 2

Magento 2.1.x 7.0 ~ 7.1 3

Orange HRM 7.1 1

CRM - Vtiger 5.6 1

Wordpress blogs 4.x 5.6 ~ 7.0 3

Wordpress blogs 5.x 7.1 1

Laravel 5.6 7.1 2

5.2.1 Code sniffer results

All the selected projects were analyzed using the compatibility checker application

using PHP version 7.2. This version was selected due to its stability, support and

relatedness. Code sniffers with custom rules were executed from terminal and

through the application to compare the output and execution time. During the

execution of code sniffer, the author noticed the execution time and results are same.

57

Figure 55: Terminal summary output

Above is the terminal output taken from summary generation. It has taken 1mins,

53.57secs and Memory: 36MB to generate the summary. Same figures were

identified from the application output during the summary report generation.

Figure 56: report summary on application

Following table is a comparison of the code sniffer summary report generation. The

application uses both summary and full JSON based report to generate reports for the

user.

58

Table 4: Compatibility results summary

PHP versions

compared

Time to complete Memory Errors Warnings

5.6 -> 7.2

Magento 1.x 19mins, 12.13secs 94.01MB 305 310

Magento 1.x 18mins, 35.54secs 94MB 307 250

CRM - Vtiger 21mins, 15.23secs 58MB 159 296

Wordpress 15mins, 04.30secs 73.59MB 72 498

7.0 -> 7.2

Magento 2.0.x 3mins, 44.17secs 41MB 7 171

Magento 2.0.x 3mins, 41.89secs 39MB 4 149

Magento 2.1.x 1mins, 53.57secs 36MB 3 148

Wordpress blogs 4.x 52.32secs 12MB 2 123

Wordpress blogs 4.x 42.28secs 11.23MB 2 112

7.1 -> 7.2

Laravel 5.6 43.54secs 9.5 MB 1 92

Laravel 5.6 21.01secs 4 MB 0 25

Wordpress blogs 5.x 32.24secs 4.2 MB 0 35

Orange HRM 54.25secs 29 MB 2 185

Magento 2.1.x 33.54secs 3.2 MB 0 21

Magento 2.1.x 22.29secs 2.5 MB 0 11

The projects tend to differ from the platforms, code architecture and the

functionality. Magento is one of the leading ecommerce platform providers, one of

the largely used PHP base systems; Wordpress is one of the popular content

59

management systems. Laravel is a free, open-source PHP web framework used on

many projects. Orange HRM and Vtiger CRM were selected to cater the need of

having unique type of systems to conduct the testing.

5.2.2 Evaluation of the test results

Compatibility results from 5.6 to 7.2

During the evaluation total number of four projects were checked, these systems

were built using PHP 5.6. Using the compatibility application the code was check for

compatibility with 7.2. It was noticed that execution of time on these reports were

high compared to the other versions.

Table 5: Compatibility results summary for 5.6

5.6 -> 7.2 Execution time. Report size Error Warning

Magento 1.x 19mins, 12.13secs 94.01MB 305 310

Magento 1.x 18mins, 35.54secs 94MB 307 250

CRM - Vtiger 21mins, 15.23secs 58MB 159 296

Wordpress 15mins, 04.30secs 73.59MB 72 498

Avg. 18mins, 38secs 79.9 MB 210.75 338.5

From these results it was noticed that there are higher number of errors and warnings

were generated. During these inspections the following issues were commonly

identified.

 Static calls to non-static methods

 password_hash()

 capture_session_meta

 Use of LDAP deprecated methods

60

Based on the findings, we can assume that the next project with similar build would

take around 18mins to generate a result. Depending on the size of the project

expected error count would be around 210, warning count would be around 338.

Compatibility results from 7.0 to 7.2

In order to evaluate the compatibility of the code in the selected project in we

monitored the execution time, file size, error and warning count. Below tables show

the results along with the averages.

Table 6: Compatibility results summary for 7.0

7.0 -> 7.2 Execution time. Report size Error Warning

Magento 2.0.x 3mins, 44.17secs 41MB 7 171

Magento 2.0.x 3mins, 41.89secs 39MB 4 149

Magento 2.1.x 1mins, 53.57secs 36MB 3 148

Wordpress blogs 4.x 52.32secs 12MB 2 123

Wordpress blogs 4.x 42.28secs 11.23MB 2 112

Avg. 2mins, 18secs 27.85MB 3.6 140.6

By analyzing the error reports, the following deprecated errors were found used in

the project code:

 each() function

 create_function() function

 __autoload() method

 assert() with a string argument

 Unquoted strings

There were considerable amount of warnings were found during the testing phase

with an average of 140. Execution time is very less compared to the 5.6 averaging

around 2mins.

61

Compatibility results from 7.1 to 7.2

PHP version 7.1 and 7.2 are still largely at use, most of the features are available for

both 7.1 and 7.2 versions, with the introduction of 7.3 and upcoming PHP version 7.4

and version 7.1 will be outdated soon after. The compatibility testing was carried out

for the selected project on 7.2 version.

Table 7: Results summary for 7.1

7.1 -> 7.2 Execution time. Report size Error Warning

Laravel 5.6 43.54secs 9.5 MB 1 92

Laravel 5.6 21.01secs 4 MB 0 25

Wordpress blogs 5.x 32.24secs 4.2 MB 0 35

Orange HRM 54.25secs 29 MB 2 185

Magento 2.1.x 33.54secs 3.2 MB 0 21

Magento 2.1.x 22.29secs 2.5 MB 0 11

Avg. 34secs 13.53MB 0.5 61.5

Error count and execution time are low compared to the other version check results.

Still there are considerable amount of warnings found on the projects.

5.3 Reporting and error information verification

During the evaluation process, it was identified that the pie chart information is

misleading. Initial chart designs were to display the percentage along with the labels

(successful, errors, warnings). In the evaluation process out of the fifteen projects,

selected a project which had 11725 number of php and phtml files out of them only

3 files were found with errors and 148 had warnings. The selected system is a

Magento 2.1.3 based project.

syntax errors file percentage = 100 x
 num of error files

total num of files checked

62

When the figures are applied to the equation, it gives an error percentage of

0.025586354 and warning percentage of 1.262260128. The original pie chart design

shows only up to one decimal place and the value is rounded up according to that.

The pie chart show as errors as 0.0% which is misleading.

Figure 57: misleading information

The pie chart view is updated to show the label, error count and the percentage.

Provide a more accurate output to the user.

Figure 58: Updated pie chart view

63

CHAPTER 06: CONCLUSION AND FUTURE WORK

64

This chapter present the conclusions of the researched areas describe on the thesis.

This section re-visits the objectives on chapter 1 and how the implementation

delivers the expected outcome. This section also includes the achievements,

problems encountered and future work.

Summary

The phase “Don't fix it if it ain't broken” should not be applied to systems anymore.

The programming languages will keep on evolving and keep on releasing updated

versions. In order to get the updated features and fixes, it is advised to stay updated

with the latest supported version. Checking version changes and running code testers

would be time consuming. Compatibility checker is an easy to use application which

provides docker based solution that verifies the code with the selected PHP version.

The objectives identified on the chapter 01 are fulfilled in the implementation

deliverables. Users are now able to check for issues during upgrade from one

programming version to another. The compatibility tool identifies the deprecated

methods, syntax errors and warnings on the project. Based results users will be able

to make decisions, edit the specific files and make the code compatible with the

selected version.

The application consists of integrations between electron, docker, PHP code sniffer,

composer and node JS plugins. These components were mapped to create a working

solution discussed on the implementation section as a proof of concept. Users have

the ability to execute the application and check for errors without any previous

knowledge of the application. This system is not totally focused on developers. Due

to its usability QA engineers, project managers and even clients would be able to run

the application and check for issues.

The compatibility application could be used in multi platform environments. This is

one of the key areas since there are many developers working with different type of

platforms. This application uses docker containers which could be used by

65

developers to easily get the updated code and make a deployable image. Docker

containers are supported on AWS and Kubernetes which are widely used server

infrastructure providers.

One of the areas focused during the evaluation process was the execution results and

time spent on generating the results. The testing processes were carried out for

fifteen projects that are currently in production. Depending on the PHP version and

framework there projects were categorized and monitored. During the evaluation it

was noticed that upgrading from PHP version 5.6 to 7.2 directly is less feasible,

based on the results. The average numbers of errors were 210 along with warning

average of 338. Average execution time comes around 18 mins, which affects the

usability of the system, since user will be seeing a loading screen for 18 mins.

Also one additional option for developers would be to plug in a database and run the

PHP project from the host machine. This is possible due to docker container is

consists of nginx and PHP extensions and composer.

6.1 Problems encountered

The application is consists of many integrations, code sniffer, dockerode node js

module, react, streams, etc. building a common communication between these

integration were time consuming. Each integration has its own limitations

customizing and extending the functionality needed a learning curve. PHP

Codesniffer alone does not capture system errors and deprecated errors, needed to

add PHPCompatibility and customize the rule set to find syntax errors.

During the evaluation it was noticed that it takes an average around 18mins to

complete the compatibility check on 7.2 for a projects developed using 5.6 version,

this may vary based on the number of files and project size.

6.2 Future work

Currently the application mainly focuses on the deprecation errors and syntax errors.

There are many other types of errors which need to be identified during the

codesniffer process. Functional and performance aspects of the application were not

66

evaluated during this research. Large amounts of files and JSON result output would

slow down the performance and usability. In order to cater this in future we can

implement the progress Information option provided by the code sniffer or break

files into smaller chunks and run the compatibility checker. Building up an image

container takes considerable amount of time, due to the number of installation and

updates. Optimizations of this process were not considered during the research topic.

This application mainly focuses on PHP programming language but with the use of

docker containers we are able add any type of programming languages with its

dependencies to be verified.

67

REFERENCES

[1] (2015) PLE 2015 Programming Language Evolution. [Online].

https://2015.ecoop.org/track/PLE-2015-papers

[2] P. JB King. (1999, Augest) Heriot-Watt University. [Online].

https://2015.ecoop.org/track/PLE-2015-papers

[3] A. Shaleynikov. (2017, October) Hackernoon. [Online].

https://hackernoon.com/top-10-programming-languages-in-2017-2f22e918fbfd

[4] J. Mueller. (2015, May) NewRelic Blog. [Online].

https://blog.newrelic.com/2015/05/05/programming-language-version/

[5] T. Brunner, N. Pataki, and Z. Porkolab, "Tool for Detecting Standardwise

Differences in C++ Legacy Code," in IEEE 13th International Scientific

Conference on Informatics, Slovakia, 2015, pp. 57-62.

[6] (2015, March) Compatibility Guide for JDK 8. [Online].

http://www.oracle.com/technetwork/java/javase/8-compatibility-guide-

2156366.html

[7] J. Neal. (2017) Polyfill.io. [Online]. https://polyfill.io/v2/docs/

[8] P. Klau. (2016, November) CSS-Tricks. [Online]. https://css-tricks.com/polyfill-

javascript-need/

[9] (2019) PHP Official site. [Online].

https://www.php.net/manual/en/migration70.php

[10] L. C. Kenneth and L. A. Kenneth, Programming Languages: Principles and

Practices, 3rd ed., Marie lee, Ed. Boston, United States of America: Course

Technology, 2012.

[11] G. Sherwood. (2016, July) PHP_CodeSnifferwiki. [Online].

https://github.com/squizlabs/PHP_CodeSniffer/wiki

[12] H. C. Gall, "LGTM - Software Sensing and Bug Smelling," in IEEE, Szeged,

2012, pp. 3-4.

https://2015.ecoop.org/track/PLE-2015-papers
https://2015.ecoop.org/track/PLE-2015-papers
https://hackernoon.com/top-10-programming-languages-in-2017-2f22e918fbfd
https://blog.newrelic.com/2015/05/05/programming-language-version/
http://www.oracle.com/technetwork/java/javase/8-compatibility-guide-2156366.html
http://www.oracle.com/technetwork/java/javase/8-compatibility-guide-2156366.html
https://polyfill.io/v2/docs/
https://css-tricks.com/polyfill-javascript-need/
https://css-tricks.com/polyfill-javascript-need/
https://www.php.net/manual/en/migration70.php
https://github.com/squizlabs/PHP_CodeSniffer/wiki

68

[13] wapmorgan. (2019) phpclasses. [Online].

https://www.phpclasses.org/package/10211-PHP-Find-deprecated-functions-

and-variables-in-PHP.htm

[14] K. K. Chaturvedi, V. B. Singh, and P. Singh, "Tools in Mining Software

Repositories," in 13th International Conference on Computational Science and

Its Applications, Ho Chi Minh, 2013, pp. 89-98.

[15] N. M Tiwari, G. Upadhyaya, and H. Rajan, "Candoia: A Platform and

Ecosystem for Mining Software," in ACM 38th IEEE International Conference

on Software Engineering Companion, Austin, 2016, pp. 759-761.

[16] D. Smith. (2015, April) phpclasses. [Online].

https://www.phpclasses.org/package/9084-PHP-Find-deprecated-functions-and-

suggest-replacements.html

[17] (2019) electronjs. [Online]. https://electronjs.org/docs/tutorial/about

[18] apocas. (2019) npm js. [Online]. https://www.npmjs.com/package/dockerode

[19] (2019) docker. [Online]. https://docs.docker.com/config/containers/multi-

service_container/

[20] (2019) aws. [Online].

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/docker-

basics.html

[21] Ajeetraina. (2019) collabnix. [Online]. https://collabnix.com/a-docker-

deployment-workflow/

[22] (2019) kubernetes. [Online]. https://kubernetes.io/docs/concepts/overview/what-

is-kubernetes/

[23] (2019) jetbrains. [Online]. https://www.jetbrains.com/help/phpstorm/using-php-

code-sniffer.html

[24] (2019) tommcfarlin. [Online]. https://tommcfarlin.com/php-codesniffer-in-

visual-studio-code/

[25] (2019) webpack. [Online]. https://webpack.js.org/api/node/

https://www.phpclasses.org/package/10211-PHP-Find-deprecated-functions-and-variables-in-PHP.htm
https://www.phpclasses.org/package/10211-PHP-Find-deprecated-functions-and-variables-in-PHP.htm
https://www.phpclasses.org/package/9084-PHP-Find-deprecated-functions-and-suggest-replacements.html
https://www.phpclasses.org/package/9084-PHP-Find-deprecated-functions-and-suggest-replacements.html
https://electronjs.org/docs/tutorial/about
https://www.npmjs.com/package/dockerode
https://docs.docker.com/config/containers/multi-service_container/
https://docs.docker.com/config/containers/multi-service_container/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/docker-basics.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/docker-basics.html
https://collabnix.com/a-docker-deployment-workflow/
https://collabnix.com/a-docker-deployment-workflow/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://www.jetbrains.com/help/phpstorm/using-php-code-sniffer.html
https://www.jetbrains.com/help/phpstorm/using-php-code-sniffer.html
https://tommcfarlin.com/php-codesniffer-in-visual-studio-code/
https://tommcfarlin.com/php-codesniffer-in-visual-studio-code/
https://webpack.js.org/api/node/

69

[26] (2016, June) Informationq. [Online]. https://www.informationq.com/computer-

language-and-its-types/

[27] (2017) octoverse.github. [Online]. https://octoverse.github.com/2017/

[28] Zend. (2019) zend. [Online]. http://files.zend.com/help/Zend-

Studio/content/semantic_analysis_preferences.htm

[29] K. Adams et al., "The HipHop Virtual Machine," in OOPSLA, Portland, 2014,

pp. 777-790.

[30] M. G. Schneider and J. L. Gersting, Invitation to Computer Science: C++

Version, 4th ed.: Thomson Learning EMEA, 2006.

https://www.informationq.com/computer-language-and-its-types/
https://www.informationq.com/computer-language-and-its-types/
https://octoverse.github.com/2017/
http://files.zend.com/help/Zend-Studio/content/semantic_analysis_preferences.htm
http://files.zend.com/help/Zend-Studio/content/semantic_analysis_preferences.htm

70

APPENDIX A

package.json

{

 "name": "electron-react-webpack",

 "version": "1.0.0",

 "description": "Code Compare Application. Coded by Jehan Ryan",

 "license": "MIT",

 "private": false,

 "repository": {

 "type": "git",

 "url": "https://github.com/jehanben/electron-react-webpack.git"

 },

 "homepage": "/",

 "bugs": {

 "url": "https://github.com/jehanben/electron-react-webpack.git/issues"

 },

 "author": {

 "name": "Jehan Ryan",

 "email": "ryan.jehan@gmail.com",

 "url": "https://github.com/jehanben"

 },

 "keywords": [

 "app",

 "boilerplate",

 "electron",

 "open",

 "open-source",

 "postcss",

 "react",

 "reactjs",

 "source",

 "webpack"

],

 "engines": {

 "node": ">=9.0.0",

 "npm": ">=5.0.0",

 "yarn": ">=1.0.0"

 },

 "main": "main.js",

 "scripts": {

 "prod": "webpack --mode production --config webpack.build.config.js && electron --noDevServer .",

 "start": "webpack-dev-server --hot --host 0.0.0.0 --config=./webpack.dev.config.js --mode development",

 "build": "webpack --config webpack.build.config.js --mode production",

 "package": "npm run build",

 "postpackage": "electron-packager ./ --out=./builds"

 },

 "dependencies": {

 "@material-ui/core": "3.9.2",

 "@material-ui/icons": "3.0.2",

 "chartist": "0.10.1",

 "classnames": "2.2.6",

 "concurrently": "^4.1.0",

 "dockerode": "^2.5.8",

 "electron": "^4.1.4",

 "electron-is": "^3.0.0",

 "electron-is-dev": "^1.1.0",

 "history": "4.7.2",

 "perfect-scrollbar": "1.4.0",

 "prettier": "1.16.4",

 "prop-types": "15.7.1",

 "react": "16.8.1",

 "react-chartist": "0.13.3",

 "react-dom": "16.8.1",

71

 "react-google-maps": "9.4.5",

 "react-router-dom": "4.3.1",

 "react-scripts": "2.1.5",

 "react-swipeable-views": "0.13.1",

 "wait-on": "^3.2.0"

 },

 "devDependencies": {

 "@babel/core": "^7.4.2",

 "@babel/plugin-proposal-class-properties": "^7.4.0",

 "@babel/preset-react": "^7.0.0",

 "babel-loader": "^8.0.4",

 "babili-webpack-plugin": "^0.1.2",

 "css-loader": "^2.0.2",

 "electron-packager": "^13.0.1",

 "file-loader": "^3.0.1",

 "html-webpack-plugin": "^3.2.0",

 "mini-css-extract-plugin": "^0.5.0",

 "postcss-cssnext": "^3.1.0",

 "postcss-import": "^12.0.1",

 "postcss-loader": "^3.0.0",

 "postcss-nested": "^4.1.1",

 "postcss-pxtorem": "^4.0.1",

 "style-loader": "^0.23.1",

 "url-loader": "^1.1.2",

 "webpack": "^4.28.2",

 "webpack-cli": "^3.1.2",

 "webpack-dev-server": "^3.1.14"

 }

 }

Dockerfile

FROM ubuntu:18.04

LABEL maintainer="Jehan Ryan"

ENV DEBIAN_FRONTEND=noninteractive

Get build time evnironment for PHP
ARG buildtime_version=7.1

ENV variables
Update base image
Add sources for PHP
Install software requirements

ENV ERRORS=0
ENV IMAGE_PHP_VERSION=$buildtime_version

RUN apt-get update \
 && apt-get install -y gnupg tzdata \
 && echo "UTC" > /etc/timezone \
 && dpkg-reconfigure -f noninteractive tzdata

RUN apt-get install -y software-properties-common \
 && LANG=C.UTF-8 add-apt-repository ppa:ondrej/php

RUN apt-get update \
 && apt-get install -y curl zip unzip git supervisor sqlite3 \
 nginx \
 php${IMAGE_PHP_VERSION}-fpm \
 php${IMAGE_PHP_VERSION}-cli \
 php${IMAGE_PHP_VERSION}-pgsql \
 php${IMAGE_PHP_VERSION}-sqlite3 \
 php${IMAGE_PHP_VERSION}-gd \
 php${IMAGE_PHP_VERSION}-curl \
 php${IMAGE_PHP_VERSION}-memcached \
 php${IMAGE_PHP_VERSION}-imap \
 php${IMAGE_PHP_VERSION}-mysql \
 php${IMAGE_PHP_VERSION}-mbstring \
 php${IMAGE_PHP_VERSION}-xml \
 php${IMAGE_PHP_VERSION}-zip \
 php${IMAGE_PHP_VERSION}-bcmath \
 php${IMAGE_PHP_VERSION}-soap \
 php${IMAGE_PHP_VERSION}-intl \
 php${IMAGE_PHP_VERSION}-readline \
 php${IMAGE_PHP_VERSION}-xdebug \

72

 php-msgpack php-igbinary \
 && mkdir /run/php

RUN curl --silent --show-error https://getcomposer.org/installer | php \
 && ./composer.phar global require wapmorgan/php-code-fixer dev-master \
 && apt-get -y autoremove \
 && apt-get clean \
 && rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/* \
 && echo "daemon off;" >> /etc/nginx/nginx.conf

tweak php-fpm config
RUN sed -i -e "s/;cgi.fix_pathinfo=1/cgi.fix_pathinfo=0/g" /etc/php/${IMAGE_PHP_VERSION}/fpm/php.ini
RUN sed -i -e "s/error_reporting = E_ALL & ~E_DEPRECATED & ~E_STRICT/error_reporting = E_ALL/g"
/etc/php/${IMAGE_PHP_VERSION}/fpm/php.ini
RUN sed -i -e "s/error_reporting = E_ALL & ~E_DEPRECATED & ~E_STRICT/error_reporting = E_ALL/g"
/etc/php/${IMAGE_PHP_VERSION}/cli/php.ini
RUN sed -i -e "s/;daemonize = yes/daemonize = no /g" /etc/php/${IMAGE_PHP_VERSION}/fpm/php-fpm.conf

ADD default /etc/nginx/sites-available/default
ADD supervisord.conf /etc/supervisor/conf.d/supervisord.conf

CMD ["supervisord"]

