

An Improved Adhoc On Demand Distance Vector Protocol

for Mobile Adhoc Networks

M.M.Razmy

(169344 J)

Faculty of Information Technology

University of Moratuwa

April 2019

ii

An Improved Adhoc On Demand Distance Vector Protocol

for Mobile Adhoc Networks

M.M.Razmy

(169344 J)

Dissertation submitted to the Faculty of Information Technology, University of

Moratuwa, Sri Lanka for the partial fulfillment of the requirement of the Degree of

Master of Science in Information Technology

April 2019

iii

Declaration

I do hereby declare that this work has been originally carried out by me under the guidance

of and supervisor of Dr.M.F.M.Firdhous Director of Post Graduate Studies, Faculty of

Information Technology, University of Moratuwa and this work has not been submitted

elsewhere for any other degree.

I certify that this dissertation does not incorporate without due acknowledgement any

material submitted for a Master Degree or any Degree in any university and to the best of my

knowledge and belief, it does not contain any material previously published or written by any

other person except where due reference is the text.

M.M.Razmy Signature of Student

 Date: 2019/04/10

Supervised by

Dr.M.F.M.Firdhous Signature of Supervisor

 Date: 2019/04/10

iv

Dedicated to

My loving father, late Mr. Pakeer Mohamed

v

Acknowledgement

First of all I want to thank Al mighty Allah to help me to complete this work. Then I express

deep gratitude to my loving parents who helped me financially and making me interest to do

my work.

I particularly want to thank Dr.M.F.M.Firdhous, Director of Postgraduate Studies, Faculty of

Information Technology, University of Moratuwa, who helped me to decide the topic and

giving the explanation about the work. Also would like to thank for the all the lecturers

taught us in the Master Program who gave their full support to complete this dissertation.

Furthermore, I deeply indebted to my loving wife and a son who have helped me in several

ways. Finally, I express deep gratitude to my friends and all, who despite having had to cope

with my tendency to become to absorbed in my work gave me all their support.

vi

Abstract

Mobile Adhoc Network is a kind of adhoc network it can change the locations and configure

by itself. The Mobile Adhoc Network uses the wireless connections to connect to various

networks like standard WiFi connection, cellular or satellite communication. The mobile

Adhoc network does not use any static infrastructure due to multipath broadcasting and high

flexibility of nodes. Because of the availability of free license in wireless communication, the

use of MANET Application has been increased. MANETs Applications are implemented in

disaster-management, business meetings, military operations and rescue operations. There

are many different protocols are implemented in MANET while sending data packet source

node to the destination node. These protocols can be classified as Proactive, Reactive and

hybrid Protocols. Reactive is a very popular routing protocol used in wireless communication

that provide the accessible solution for large network. Ad-hoc on Demand Distance Vector

Protocol is a kind of Reactive routing protocol. There are many issues in MANET. Security

issue is one of the main issue in MANET. With the aim of this research, researcher

interesting to find to Detect and Prevent the Cooperative Black hole attack for AODV

Protocol.

Previous Authors were introduced Dynamic Learning System against Black hole attack

Adhoc On Demand Distance Protocol for Mobile Ad-hoc Network. However the introduced

method has only support for a single Black hole attack and its routing overhead is very high.

This thesis presents the improved further implemented method Detect, Prevent and Reactive

of AODV which will reduce the routing overhead and increasing the packet delivery ratio of

AODV Protocol. For the implementation of the research, researcher use Network Simulator

3.24, which is new simulator written from scratch. It is supported C++ and Python language.

It will depend on the ongoing contributions of the community to develop new models, debug

or maintain existing ones, and share results.

Keyword : MANET, AODV, Black hole, Protocol, Cooperative

vii

Table of Contents

 Page

Abstract vi

List of Figure xi

List of Table xiv

Abbreviations xv

Chapter 01

 1.0 Introduction 01

 1.1 Background and Motivation 01

 1.2 Problem Definition 02

 1.3 Objective 02

 1.4 Resource Required 03

 1.5 Chapter organization of Dissertation 03

 1.6 Chapter Summary 03

Chapter 02

 2.0 Introduction 04

 2.1 Literature Review 04

 2.2 Summarization of Literature Review 12

 2.3 Chapter Summary 14

Chapter 03

 3.0 Introduction 15

 3.1 Methodology 15

 3.2 Improved AODV Protocol 16

 3.3 Summary 17

Chapter 04

 4.0 Introduction 18

 4.1 MANET 18

 4.2 MANET Characteristics 18

 4.2 MANET Applications 19

 4.3 MANET Limitations 19

 4.4 MANET Routing Protocol 20

viii

 4.5.1 Proactive Routing Protocol 20

 4.5.1.1 Distance Sequence Distance Vector Routing Protocol 21

 4.5.1.2 Fisheye State Routing Protocol 22

 4.5.1.3 Optimized Link State Routing Protocol 22

 4.5.2 Hybrid Protocol 23

 4.5.2.1Temporary Ordered Routing Protocol 23

 4.5.2.2Zone Routing Protocol 24

 4.5.3 Reactive Routing Protocol 25

 4.5.3.1Ad-hoc On Demand Distance Vector Protocol 26

 4.5.4 Route Request Message 26

 4.5.5 Route Reply Message 27

 4.5.6 Route Error 28

 4.5.7 Route Discovery Process 28

 4.5.8 Route Maintenance Process 28

 4.5.9 Merits and Limitations of AODV Protocol 29

 4.6 Summary 29

Chapter 05

 5.0 Introduction 30

 5.1Security Attack 30

 5.2 Active Attack 30

 5.2.1Rushing attack 31

 5.2.2Flooding Attack 31

 5.2.3. Gray-hole attack 32

 5.2.4. Denial of Service attack 32

 5.2.5.Man-in-the-middle attack 33

 5.2.6.Wormhole attack 34

 5.2.7. Black hole attack 34

 5.3 Passive Attack 36

 5.3.1Traffic Monitoring 36

 5.3.2 Eavesdropping 37

ix

 5.3.3Traffic Analysis 37

 5.4.Chapter Summary 37

Chapter 06

 6.0 Introduction 39

 6.1 Software Requirement 39

 6.2 Implementation 40

 6.3 Simulation Environment 41

 6.4 Installing Black hole Program 41

 6.5 Compiling AODV Program 42

 6.6 Output of AODV 43

 6.7 Overall output of AODV 43

 6.8 Compiling Modified AODV 44

 6.9 Output of Modified AODV 45

 6.10 Overall output of Modified AODV 46

 6.11 Network Animator 46

 6.11.1 Black-hole.xml 47

 6.11.2 AODV.xml 47

 6.11.3 MDPRAODV.xml 48

 6.12 Summary 48

Chapter 07

 7.0 Introduction 49

 7.1Packet Delivery Ratio 49

 7.2 Packet Loss Ratio 50

 7.3 End-to-end delay 51

 7.4 Throughput 51

 7.5 Summary 52

Chapter 08

 8.0 Introduction 53

 8.1 Conclusion 53

x

 8.2 Future Work 53

 8.3 Summary 54

 References 55

 Appendix A Glossary of Terms 58

 Appendix B Installation of NS3 60

 Appendix C Flow Charts 62

 Appendix D UML Diagrams 68

 Appendix E Source Code 72

xi

List of Figures

No Description
Page

Figure 1 Mobile Adhoc Network 1

Figure 2 Research Methodology 15

Figure 3 MANETs Routing Protocols Classification 20

Figure 4 DSDV Routing Protocol Architecture 21

Figure 5 Fisheye Routing Protocol Architecture

22

Figure 6 Optimized Link State Routing Protocol Architecture 23

Figure 7 Temporary Ordered Routing Protocol Architecture 24

Figure 8 Zone Routing Protocol Architecture 25

Figure 9 AODV Routing Protocol Architecture 26

Figure 10 Route Request Message Format 26

Figure 11 Route Reply Message Format 27

Figure 12 Route Error Message Format 28

Figure 13 Route Discovery Process of AODV 28

Figure 14 Route Maintenance Process 29

Figure 15 Classification of Attack 30

Figure 16 Rushing Attack 31

Figure 17 Flooding Attack 32

Figure 18 Gray hole Attack 32

Figure 19 Denial of Service Attack 33

Figure 20 Man-in-middle attack 34

Figure 21 Wormhole attack 34

Figure 22 Single Black hole attack 35

Figure 23 Cooperative Black hole attack 36

Figure 24 Traffic Monitoring attack 36

 Figure 25 Eavesdropping Attack 37

Figure 26 Traffic Analysis 37

xii

Figure.27 Network Simulation Diagram 40

Figure 28 Ns3 over Ubuntu 14.04 40

Figure 29 Black hole Program installation 41

Figure 30 Compiling the Pure AODV Program 42

Figure 31 Output of AODV Program 43

Figure 32 Overall output of AODV Program 44

Figure 33 Compiling the Modified Ad-hoc on Demand Distance

Program

45

Figure 34 Output of Modified AODV Program 45

Figure 35 Overall output of Modified AODV Program 46

Figure 36 Blackhole.xml 47

Figure 37 AODV.xml 47

Figure 38 MDPRAODV.xml 48

Figure 39 Packet Delivery Ratio 49

Figure 40 Packet Loss Ratio 50

Figure 41 End to end Delay 51

Figure 42 Throughput 52

Figure 43 NS3 installation 61

Figure 44 Route Discovery of AODV 62

Figure 45 Route Reply of AODV 63

Figure 46 AODV Protocol Flow Chart 64

Figure 47 Black hole attack Flow Chart 65

Figure 48 Cooperative Black hole Detection Flow Chart 66

Figure 49 Overall Diagram of Proposed Method 67

Figure 50 AODV Message parsing 68

Figure 51 AODV Protocol Class Diagram 69

Figure 52 AODV Protocol Message Parsing Sequence Diagram 70

Figure 53 AODV Message Passing for Route Discovery 71

xiii

List of Tables

No Description Page

Table 1.0 Summarization of the identified issues in Literature

Review

12

Table 2.0 Simulation Setup Parameters

41

xiv

Abbreviations

AODV - Ad hoc On Demand Distance Vector

MDPRAODV - Method of Detecting Preventing Reactive AODV

WLAN- Wireless LAN

Wifi - Wireless Fidelity

DSDV -Distance Sequence Distance Vector Routing Protocol

FSR-Fisheye State Routing

OLSR- Optimized Link State Routing Protocol

WRP - Wireless Routing Protocol

DSR- Dynamic Source Routing

TORA-Temporary Ordered Routing Protocol

ZRP-Zone Routing Protocol

RREP - Route Reply

RREQ - Route Request

CAODV - Credit Based Ad hoc On Demand Distance Vector

DOS - Denial of Service Attack

HTTPS- Hyper Text Transfer Protocol Secure

SSL- Secure Socket Layer

WEP - Wired Equivalent Privacy

WAP - Wireless Protected Access

NS3 - Network Simulator 3

- 1 -

Chapter 01

Introduction

1.0 Introduction

Ad-Hoc is a Latin word, that means “for this purpose”. In a computer network

environment an ad-hoc describe to a network connection established for a single

period does not require any other devices or control station. An Ad-Hoc network

has the ability to maintain any broken link or path on the network. Whenever a

node in the network leaves the network that causes the link between other nodes is

broken. The broken node in the network request other routes and new route are

established. The ad - hoc network can be mainly classified into Mobile Ad-hoc

network and static ad-hoc network. Mobile Ad-Hoc Network is a wireless or

mobile network, information is divided into packets and each packet should have

packets sequence number and destination address. These packets are sent one node

to another until it reaches the destination. MANET consist of many number of

mobile nodes which are free and moving in and out of the network [1].

Figure 1. Mobile Adhoc Network

1.1 Background and Motivation

Security is an important Challenge of Mobile Ad-Hoc Network. MANET rarely

suffers from a security attack due to the lack of trusted centralized authority and

- 2 -

limited resources. MANET should have a secure way for transmission and

communication. In order to provide secure communication and transmission, the

researchers should understand different types of attacks and their effects on the

MANET. In computer networking, a packet drop attack or black hole attack is a

type of denial-of-service attack in which a router that is supposed to relay packets

instead discards them. There are mainly two types of Black hole attacks in Mobile

Ad-hoc Network. Which are Single Black hole attack and Cooperative Black hole

attacks[2]. With the aim of the research, researcher's aim to detect cooperative or

Collaborative Black hole attack in Ad-hoc On Demand Distance Protocol in

Mobile Ad-hoc network.

1.2 Problem definition

Based on the literature review, many numbers of researchers have detected the

single Black hole attack AODV protocol in Mobile Ad-hoc network and also they

detect the limited number of malicious nodes in the MANET and unable to Detect

the Cooperative Black hole attack and improve the efficiency of the Protocol.

1.3 Objectives

There are four types of objectives have been identified for this research which is

related to the Objective of the problem and solution.

1.3.1 Objective related to the Problem

1. To Detect the Cooperative Black hole nodes

2. To Increase the Packet Delivery Ratio of Existing AODV protocol

3. To Decrease the Packet Lost Ratio of Original AODV Protocol

4. To Decrease the Packet Delivery of AODV Protocol

1.3.2 Objectives related to the solution

1. To Modified the Original AODV code as MDPRAODV and detecting the

Cooperative Black hole node.

2. To Compare the results of Packet Delivery Ratio output of Pure AODV and

MDPRAODV.

3. To compare the results of Packet Loss Ratio output of Pure AODV and

MDPRAODV

 4. To Analyze the output results and displayed it on Gnuplot graph

- 3 -

 5. Preparation of documentation

1.4 Resource required

Resources required for the design and implementation are a personal computer

with Ubuntu operating System and Network Simulator 3.24 Version.

1.5 Chapter Organization of the Dissertation

The rest of the dissertation is structured as follows. Chapter 02 presents the

previous researcher‟s work related to the Review of Routing Protocol,

Performance of Routing Protocol, Security Attack and Prevent to detect a black

hole attack in the AODV Protocol in MANET. Chapter 03 discusses the Research

Methodology for Detecting the Cooperative Black hole attack in AODV protocol

in MANET. Chapter 04 discusses the Overview MANET and Routing Protocol in

MANET. Chapter 05 discusses Security attacks of Mobile Ad-hoc network.

Chapter 06 addresses the Software Requirement & implementation of the Project.

Chapter 07 addresses the Research Results and Evaluation and Chapter 08

Describe the Conclusion and Future work of the dissertation.

1.6 Summary

This chapter gave the general overview of the dissertation. Background and

motivation of the research have been addressed primarily also Problem definition,

Objective and Resource are required to perform the research expressed. Next

chapter will describe the previous researcher‟s work related to the Review of

Routing Protocol, Performance of Routing Protocol, Security Attack and Prevent

to detect a black hole attack in the AODV Protocol in Mobile Ad-hoc Network

attacks which were implemented by others.

- 4 -

Chapter 02

Literature Review

2.0 Introduction

Chapter 01 has stated the Background, Motivation, Problem definition and

Objective of the Thesis. Chapter 02 presents the previous researcher‟s work

related to the Review of Routing Protocol, Performance of Routing Protocol,

Security Attack and how to detect and prevent detect a black hole attack in the

AODV Protocol in MANET. At the end of the Chapter 02, the Summary of the

critical review is expressed.

2.1 Literature Review

Hinds et al. [3] were presented the review of routing protocols for mobile ad hoc

network. The researchers described three categories of routing protocols, namely

Reactive routing protocols, Proactive routing protocols and hybrid routing

protocols. Reactive Routing protocol consumes less bandwidth and it consists of

two main functions known as Route Discovery and Route maintenance. Route

Discover will discover new routes and Route Maintenance will identify the link

failure and repair of existing routes. Ad hoc on demand distance vector protocol,

Dynamic source routing protocol, and Temporary ordered routing algorithm

protocol are the example of Reactive Routing Protocols. In Proactive routing,

every node or host in the network maintains one or more table which contains

details of the entire network. If there any changes occurred in the network, these

tables will be updated. Destination sequenced distance vector routing protocol,

Wireless routing protocol, Optimized link state routing protocol and Fisheye state

routing protocol are examples of Proactive Routing Protocol. A hybrid routing

protocol is a third protocol type which uses a combination of Distance Vector

Routing Protocol and Link state routing Protocol. It uses distance vector for

further parameters to decide the shortest path to the destination and report the

message when there is update in the network. Zone routing protocol is the example

of the Hybrid routing protocol.

Gupta et al. [4] Identified the Performance analysis of the routing protocol in

Mobile Ad-hoc network and evaluate the performance of routing protocols in

- 5 -

Mobile ad-hoc network environment. Further, researchers were interested to

evaluate the ad-hoc on Demand distance vector protocol, Dynamic source routing

protocol and Temporary ordered routing protocol. For the simulation environment

they used network simulator version 2 and they were interested throughput and

end-to-end delay as performance metrics. The throughput calculated the total

number of data packets transferred effectively from one place to another in a given

period. On the other hand End-to-end delay calculated the time for a certain data

packet to be transferred across the network from one place to another. The

researchers were discovered AODV protocol has higher throughput than DSR,

TORA protocols and AODV protocol‟s end-to-end delay was higher than DSR

protocol. However, end-to-end delay of TORA protocol was worse than other two

mentioned protocols.

Deng et al.[5] were identified the Routing Security in Ad Hoc Networks. The

researchers were stated the security issues of Mobile Ad-hoc network and to

prevent the black hole attack for AODV protocol in MANET. Further, researchers

were described several attacks in MANET environment, namely Black Hole

attack, Denial Of Service attack, Routing Table Overflow, Impersonation, Energy

consummation and Information disclosure. The black hole attack is a kind of

denial of service attack where malicious nodes announce the invalid path as a

good path to the source node when the route discovery process. When the intruder

node sending a false message to the network does not consider about the routing

table. In another case intruder node in the network consumes all the data packets.

Avoid the black hole attack, researchers were proposed to deactivate the capability

of reply message of an intermediate node.

Manickam et al.[6] have presented the Performance Comparisons of Routing

Protocols in Mobile Ad-hoc networks. The researchers were stated the

Performance comparison of Reactive and Proactive routing Protocols in Ad-hoc

network. Above research, researchers were described classification of routing

protocols and analyze their performance using Network simulator version 2. The

researchers were compared the simulation results of Packet Delivery Ratio,

throughput, End-to-end delay of AODV, DSDV and DSR protocols. The DSDV

Routing protocol is suitable when the nodes of the network are limited with low

- 6 -

movement also DSDV deliver lower end-to-end delay. The DSR routing protocol

is desirable for limited traffic with limited mobility. On the other hand AODV

protocol has a high packet delivery ratio. However, comparing with DSR protocol

AODV protocol has higher throughput and end-to-end-delay.

Upadhyay et al.[7] were presented the Different Types of Attacks on Integrated

Ad-hoc network. Further, they were stated many attacks, namely wormhole attack,

Black hole attack, Syn flooding, snooping, replay attacks, jamming and Denial of

service attack. In a wormhole attack, an intruder or wicked node gets the packets

at one location in the network and bridges them to another location in the network

and rebroadcast them there into the network. In a black hole attack that

mischievous node consumes the routing path and stated it has the valid path to any

desired in the network does not forward the packets to its neighbors. Syn flood

attack or half-open attack is a kind of denial-of-service attack which main target is

to avoid reaching the server by using all the server resources. In snooping attack,

an attacker observing data traffic sending between the source node and destination

node on the network. In replay attack an actual data transmission between source

and destination is repeated or delayed. Jamming attack is a kind of denial of

service attack in which wicked node blocks the allowed packet, which are

transmissions from source to destination node in the network. In a Denial of

service attack attacker attempt to avoid authorized users to consuming the service

and also attacker typically sends unnecessary data packets to a server that source

request that has an invalid return address.

Pandey and Swaroop were identified Performance Analysis of Proactive, Reactive

and Hybrid Protocols in Ad-hoc environment [8]. The researchers were compared

the Performance Routing Protocols using the throughput, average delay, routing

overhead and Packet drop as evaluation metrics. Destination Sequence Distance

Vector is a Proactive routing protocol which is using distributed Bellman-Ford

Algorithm. The DSDV, every node in the network conserves a routing table that

has records for each of the destinations in the network and the number of hops

needed to reach each of them. The DSDV protocol periodically sends the routing

updates for maintaining the reliability of the network. Therefore the traffic flow of

the network is high. Aware the above issue the DSDV sends two types of update

- 7 -

packets known as full dump and incremental packets. Dynamic Source Routing

another reactive routing protocol and it has two parts, namely the route discovery

and route maintenance. The DSR does not send routing packets periodically.

Therefore, traffic flow is very low compared to the DSDV protocol. The route

discovery process finds the new route in the network and route maintenance

allows maintaining the route in the network. The DSR Protocol is designed

especially for mobile ad hoc networks of up to about two hundred nodes. AODV

is a reactive protocol, it has characteristics of both DSR and DSDV Protocol. This

protocol creates routes to the destination and support unicast as well as multicast

routing. The AODV protocol maintains three types of messages, namely route

request, Route Response and Route Error. The Zone Routing Protocol is a Hybrid

Routing Protocol, which is a combination of both reactive and proactive routing

protocols. Further, researchers stated the simulation results of routing protocol.

For the simulation environment authors were used network simulator version 2

used and they interested throughput, average delay, Number of Packets dropped

and Routing Overhead as performance metrics. Throughput calculated the total

number of data packets transferred effectively from one place to another in a given

period. Average Delay is defined as the average amount of time taken by a packet

to go from source to destination. Routing Overhead is the number

of routing packets required for network communication. No of Packet dropped is

the number of packets lost by the router. Evaluating the Performance metrics

Researcher has invented that ZRP and AODV have more routing overhead in

comparison to DSR and DSDV routing protocols. However, The AODV and ZRP

protocol have a higher average delay than DSR and DSDV protocol.

Kalia and Sharma were proposed the Detection of Multiple Black hole nodes

attack in MANET by modifying AODV Protocol [9]. The researchers were

describing the Overview of AODV Protocol. The protocol controls the three types

of messages, namely Route Request, Route Reply and Route Error. Route Request

message used for requesting a new route, whereas Route Reply message used for

reply the route request. On the other hand Route Error message used to inform to

the node if there any error or link failure in the network. Further, researchers were

stated the AODV protocol black hole attack. In a black hole attack that

- 8 -

mischievous node consumes the routing path and stated it has the valid path to any

desired in the network does not forward the packets to its neighbors. The

researchers were described two types of black hole attack in AODV namely

internal black hole attack and external black hole attack. Internal black hole attack

occurred inside the network, whereas external black hole attack occurred outside

the network. They also stated the detecting the Multiple black hole attack in

AODV protocol in MANET. They compared the Route request Sequence number

with Route Reply Sequence numbers to detect the multiple black hole attack.

Mistry et al. [10] were proposed the technique to prevent against Black hole

Attack in AODV Protocol. The researchers were improving the security issues of

AODV Protocol. They were interested to avoid the Black hole and shows major

progress in Packet Delivery Ratio in AODV Protocol. Further, researchers were

examined and introduce new MOS_WAIT_TIME variable and a new

Cmg_RREP_Tab table. Using above two variables the researchers were

successfully detected the black hole nodes on the AODV Protocol. The final

results show that the Proposed AODV protocol reaches high Packet Delivery

Ratio than the existing pure AODV protocol in MANET.

Raj et al. [11] were introduced Dynamic Learning System against Black hole

attack in AODV based MANET. The Researcher stated two secure methods of

MANET namely, secure routing and Intrusion detection System. Secure routing

they mentioned Secure, Efficient Ad-hoc Distance Vector Protocol, the

Authenticated routing protocol for Ad-hoc network and Security Aware ad-hoc

routing. Intrusion Detection they mentioned Real time intrusion Detection for Ad-

hoc network and Confirmation Request. Further, Researcher were introduced the

additional parameter known as Threshold value. In every time interval the

threshold value is updated. In the Proposed solution, the researcher were

introduced the additional parameter known as Threshold value. In every time

interval the threshold value is updated. If the Route Reply sequence number value

is higher than the threshold value the particular node to be intruder node and it is

reported to the blacklist. If the node detected irregularly, it generated the new

control packet known as Alarm packet and forward it to other nodes in the

- 9 -

network. The Alarm packet has details of blacklist node, then the adjacent nodes

know that RREP packet from the node will discard.

Panda et al. [12] were proposed the technique to Prevent of Black hole Attack in

AODV protocols for Mobile Ad Hoc Network by Key Authentication. The

researchers were described the black hole attack in AODV and prevent the Black

hole attack for AODV Protocol. In a black hole attack the intruder node consumes

the routing path and stated it has the valid path to any desired in the network does

not forward the packets to its neighbors. Further, the researchers were proposing a

new algorithm which was based on Key Mechanism process. The attacker wishes

to trace the IP address. Avoid the black hole attack researcher took the 12 digit

number left shift of binary numbers. After that researchers used mathematical

AND operator for rearranging number to very difficult. If the step was succeeded

next step key was fixed into 9 digits and allocated it on data packets. The valid

data packets conclude the originator for IP address, Sequence number and Hop

count. Finally the Hello message broadcast to the adjacent node or host. If it is

successful, then the researchers move to the next step to detect the black hole node

in AODV Protocol.

Ukil et al. [13] were introduced Mechanism for Detection of Cooperative Black

Hole Attack in Mobile Ad Hoc Networks. The researchers were described security

mechanisms against cooperative black hole attack in a MANET. Further, they

stated that there were two parts of the Cooperative black hole attack. In the first

stage malicious nodes broadcast that it has valid path to destination, in the second

stage the malicious nodes stopped the packets without forwarding them. Avoid

the Cooperative black hole attack in MANET Researchers were proposed two

mechanisms which are Data routing information (DRI) table and Cross checking.

In Data routing information describes two bits of additional information are sent

by the nodes that respond to the message of a source node during the route

discovery process. Each node maintains an additional data routing information

(DRI) table. At the DRI table, the bit 1 stands for „true‟ and the bit 0 stands for

„false‟. The cross Checking method describes their lies on nodes through which

source has routed data previously and knows them to be trustworthy to transfer

data packets.

- 10 -

Dr. Sankaranarayanan and Selven were introduced the technique to Prevention of

Co-operative Black hole Attack in MANET [14]. The researchers were described

Prevent Against the cooperative black hole attack in MANET. They proposed a

solution that is an improvement of the basic AODV routing protocol, which will

be able to avoid multiple black holes acting in the group. Further, researchers were

presented a technique to identify multiple black holes cooperating with each other

and a solution to discover a safe route avoiding cooperative black hole attack. The

source node transmits the RREQ to all its neighbors. Then the source waits for

„TIMER‟ seconds to collect the replies, RREP. In each of the received RREP, the

fidelity level of the responding node, and each of its next hop‟s levels are checked.

If two or more routes seem to have the same fidelity level, then select the one with

the least hop count otherwise select the one with the highest level. Further, they

implemented the proposed solution in a Global Mobile simulator and shows that

the improved AODV called PHCBA has a higher packet Delivery than the Pure

AODV Protocol.

Himral et al.[15] were proposed to Preventing AODV Routing Protocol from

Black hole attack. The researchers were proposed secure routes or methods to

avoid the Black hole attack. They were interested in using the sequence number

parameter in the data packets to implement the proposed method. Further, they

compared if there any huge difference between sequence numbers in the node

which was previously sent Route Reply message. The initial route reply will be

from the malicious node with high destination sequence number, which is stored

as the first entry in the Route Reply Table. After that it compare the first

destination sequence number with the source node sequence number, if there

exists much more difference between them, confident that node is the malicious

node, immediately remove that entry from the Route Reply-Table. If the malicious

or wicked node is identified in the routing table and removed. Further, they were

implemented the solution in Network simulator version 2.34 and improved that the

Proposed Program has a higher Packet delivery ratio than existing AODV

Proposed Program‟s packet Loss ratio is less than the original AODV Program.

- 11 -

Saetang and Charoenpanyasak were introduced CAODV Free Black hole Attack

in Ad Hoc Networks[16].The researchers were proposed a Credit Based AODV

Routing protocol technique to prevent against the black attack in MANET. The

CAODV method, the source node broadcasts a Route Request to other nodes until

a destination node or node having a route to destination replies Route Reply back

to the source. The receiving node will assign a credit to the next hop node or who

sent Route Reply. When a node in the path sends one packet, one credit is

deducted from the next hop node. As soon as a destination node receives data

packet, it will send Credit Acknowledge back to a source node. A node within a

way back will increase credit of the next hop by 2 to indicate a higher trust level of

the next hop. On the other hand, credit will be decreased if a node cannot receive a

Credit Acknowledge. The node will be untrusted and marked as a blacklist, when

a credit reaches zero. Further, the researchers were implemented the solution in

Network simulator version 2 and improved that the black hole attack cannot

damage network when the CAODV is active.

Golok and et al.[17] Proposed Prevention of Black hole Attack in AODV

protocols for Mobile Ad Hoc Network by Key Authentication. The researchers

have proposed a new Algorithm for AODV routing protocol. Hello message

spread to its neighbor nodes and finding the occurrences in the network. If the

nodes are active each node should maintain a routing table. The researchers were

proposed algorithm mainly created on Key generation and key comparison

methods. Further, they were used Throughput, End-to-end delay of data packets,

First Packet Received and Average jitter as the Parameter metrics. For the

implementation they were used Qual Net 5.2 simulator.

Surana et al. [18] were introduced Securing Black hole attack in AODV routing

protocol in MANET with Watch dog mechanism. The researchers were introduced

Pending packet table and node rating table. The pending packet table includes the

path of the packets which was sent. And also it includes the IP address of the

destination node, IP address of the adjacent node, packet id and expiry time. In

node routing table include the details of next adjacent node in the network and it

also the special field which concludes dropped packets and successfully forwarded

packets as a ratio. If the ratio is greater than the given threshold value, then the

- 12 -

variable value increased by one otherwise it is considered as unaffected node in

the network.

2.2 Summarization of the Literature reviews

Based on the above literature review, the various authors have given various

proposals for detection and prevention of AODV Cooperative black hole attack in

Mobile Ad-hoc network. However every proposal has some limitations and their

respected solutions. These Limitations are listed in the summarized in the table

1.0.

Table 1.0 Summarization of the identified issues in Literature Review

Reference

No

Research Limitation

3 A review of routing protocols

for mobile ad hoc networks

Described pros and cons of each

category of routing protocol, unable

to provide the Security mechanism.

4 Performance analysis of

AODV, DSR & TORA Routing

Protocols

Described general performance of

the Protocol, Did not provide the

security mechanism of the Protocol

5 Routing Security in Wireless

Ad Hoc Networks

Unable to detect cooperative

malicious nodes in the MANET.

6 Performance comparison of

Routing Protocols in Mobile

Ad-hoc Networks.

Considered only the general

performance of the Protocol, Not

consider to prevent against attack in

MANET.

7 Different Types of Attacks on

Integrated MANET-Internet

Communication

Described to Prevent the many

attacks in MANET rather than

avoiding Black hole attack.

8 Comprehensive Performance

Analysis of Proactive, Reactive

and Hybrid MANETs Routing

Protocols

No proposal for the improvements

Routing Protocol

- 13 -

9 Detection of Multiple Black

hole nodes attack in MANET by

modifying AODV protocol

Detecting the Multiple Black hole

node unable to detect Cooperative

Black hole node

10 Improving AODV Protocol

against Black hole Attacks

The proposed solution to detect

single black hole attack, did not

propose a security mechanism to

detect cooperative black hole attack.

11 Dynamic Learning System

Against Black hole attack in

AODV

Described to detect multiple black

hole nodes rather than cooperative

black hole attack.

12 Prevention of Black hole Attack

in AODV protocols for Mobile

Ad Hoc Network by Key

Authentication.

Proposed Solution only detects the

single black hole unable to detect

cooperative black hole.

13 Mechanism for Detection of

Cooperative Black Hole Attack

in Mobile Ad Hoc Networks

Described to detect the cooperative

Black hole node, the researcher

assumes nodes are already

authenticated

14 Prevention of Co-operative

Black Hole Attack in MANET

Nodes are already authenticated and

end-to-end delay is high

15 Preventing AODV Routing

Protocol from Black Hole

Attack

It is only detects the single black

hole and removed unable to detect

cooperative black hole.

16 CAODV Free Black hole

Attack in Ad Hoc Networks

The Proposed solution can detect

and protect a single malicious node,

unable to protect cooperative black

hole.

17 Prevention of Black hole Attack

in AODV protocols for Mobile

Ad Hoc Network by Key

Researchers were described to detect

the single black hole unable to detect

the cooperative black hole malicious

- 14 -

Authentication nodes.

18 Securing Black hole attack in

Routing Protocol AODV in

MANET with Watchdog

Proposed solution maintains two

extra tables, namely Pending Packet

table and rating table which required

additional space of the node.

2.3 Summary

This Chapter described previous researcher‟s work related to the Review of

Routing Protocol, Performance of Routing Protocol, Security issues and Prevent to

detect a black hole attack in the AODV Protocol in MANET. Next Chapter will

address the Research Methodology.

- 15 -

Chapter 03

Research Methodology

3.0 Introduction

Chapter 02 has stated the Previous, work related to the Review of Routing

Protocol, Performance of Routing Protocol, Security issues and Prevent to detect a

black hole attack in the AODV Protocol in MANET. Chapter 03 presents the

Research Methodology of Detecting the Cooperative Black hole attack in AODV

protocol in MANET.

3.1Methodology

Figure 2. Research Methodology

Initial Stage of Research Methodology is Network formation, which is feature of

network that finds to model how a network changes by identifying which factors

move its erection and how these mechanisms work.

The second step of Research Methodology is checking the Propagation in the

MANET. Propagation will identify the spread nodes in MANET.

The third step in the Methodology is Analyzing Routing hop. It is one portion of

the path between source and destination. Data packets pass through bridges,

1. Network Formation

2. Checking propagation

3. Analyzing Routing hops

4. Route Request and response

6. Detect Cooperative black

hole attack nodes

7. Performance Evaluation

5. Detect single black hole

attack nodes

- 16 -

routers and gateways as they travel between the source and destination. Each time

packets are passed to the next network device, a hop count occurs.

The fourth step of the Methodology is Route Request and Route Response. Route

Request and Route Response are two messages in AODV Protocol. Route Request

is requesting route to the source node to the destination node and Route Response

is responding the valid route to the Source node. The AODV Protocol used both

Route Request and Route Response for establishing a valid path.

Fifth step of the methodology is detecting the black hole attack. A black-hole

attack in the Mobile Ad-hoc Network is an attack occurs due to malicious nodes,

which attracts the data packets by falsely advertising a fresh route to the

destination. Therefore, in this step will detect the single black hole attack nodes in

MANET.

The sixth step of the methodology is detecting Cooperative black hole attack. In

cooperative Black hole attack, malicious nodes act as a group or unit. Therefore, in

this step will detect the cooperative black hole attack nodes in MANET.

Final Step of the methodology is Performance Evaluation. Evaluate and compare

the Performance of Original AODV with improved AODV, in this case researcher

interesting about routing delay, Packet delivery ratio, Packet Loss and throughput.

The Detailed graph will be shown in the Evaluation Chapter.

3.2 Improved Ad-hoc demand Distance Vector Protocol

There are two main objectives of the research. The main objective detects the

cooperative Black hole attack. And the second one is to improve performance of

AODV by reducing the routing delay, increase the packet delivery ratio, increased

the throughput and reduce packet loss ratio of ad-hoc network. For the aim of the

second purpose researcher introduce the Improved Ad-hoc Demand Distance

Vector Protocol. The flow chart of the improved AODV protocol will be shown in

Annex C.

- 17 -

3.3 Summary

This Chapter described the Research Methodology is used in the dissertation and

the introduction of improved AODV protocol. There were seven steps used in the

methodology. Each step was mentioned clearly. The next chapter will address the

Overview of Mobile Ad hoc network and MANET Routing Protocol.

- 18 -

Chapter 04

Overview of Mobile Ad hoc Network and MANET Routing Protocol

4.0 Introduction

Chapter 03 has stated the Research Methodology of Detecting the Cooperative

Black hole attack in AODV protocol in MANET. Chapter 04 presents the

Overview of Mobile Ad hoc network and MANET Routing Protocol.

4.1 MANET

A Mobile Ad-hoc network is a kind of network it has the ability to change and

configure itself. Nodes can be easily join and leave the network. There is no

central control mechanism to control the nodes. Which is the main feature of

Mobile Ad-hoc network. The Mobile Ad-hoc network has many Positive features

and Negative features. Mobility and the topology changes are Positive features of

MANET and Power consumption, Energy and computing power are negative

features of MANET[19].

4.2 MANET Characteristics

The Mobile Ad-hoc network has many characteristics. The main characteristics

are the lack of centralized control. Other characters are namely Multi hop routing,

Autonomous Terminal, Distributed operation, Dynamic topology [20]. Each of the

Characteristics is explained below.

1. Lack of centralized control: Mobile Ad-hoc network does not have centralized

control. Therefore, each node or host in the network operates independently.

2. Multi hop routing: MANET uses two or more nodes to transfer the data packets

from source device to the destination device.

3. Autonomous Terminal: Mobile Ad-hoc environment each and every node are

independent nodes. Therefore nodes are operated as both host and router in the

network.

4. Distributed Operation: Mobile Ad-hoc network is a kind of distributed network,

which does not have fixed network. Therefore nodes or host in the network

finds the route easily.

- 19 -

5. Dynamic topology: nodes in the MANET are easily joined and leave the

network. Therefore, topology in the MANET is changed randomly and

frequently.

4.3 MANET Applications

Mobile Ad-hoc network has the capability self-organizing feature. Therefore,

MANET Applications are very popular. It has implemented in many areas namely

Military Application, Mobile Computing, Personal Are Networking, Mobile

Business and Emergency Service. Each of the applications is described in

detail[21].

Military Application: in the Battlefield Mobile Ad-hoc networking very helpful to

military peoples to exchange their information between the soldiers, vehicles, and

military information headquarters over the normal networking.

Mobile Computing: Ad-hoc networks allow mobile communication for

commercial users to communicate in the remote location when there is no other

network facility is available.

Personal Area Networking: Ad-hoc network is suitable for small area networking

applications. Mobile devices with WLAN can be easily configured. If the internet

connectivity available at home MANET device can be easily accessed via remote

locations

Mobile Business: Ad-hoc networks allow the users to pay the payment

electronically anytime, anywhere. It is a tremendous advantage which will save

money and time of Business peoples.

Emergency Services: Once the available existing network facility has terminated

or damaged due to disaster or fire ad-hoc network can be easily established and

provide the solutions to emergency services.

4.4 MANET Limitation

 Due to the flexibility of MANET the Applications of MANET become very

popular. However, it has some limitations as well. Which are listed as,

- 20 -

1. Security: security is the main key drawback of Mobile Ad-hoc network.

MANET nodes are easily can be accessed. Therefore, nodes in MANET are

more vulnerable to attack than wired networks.

2. Nodes speed: in MANET, the speed of the nodes supports a maximum of 11

Mbps. On the other hand Wifi devices should be supported to 54 Mbps or

higher speed.

3. Error rate is very high: compared to the wired network MANET has a higher

error rate. This is another key issue in MANET.

4. Routing: In a MANET, the topology of the network will change frequently,

therefore the issue of routing packets between any pair of the network is a

difficult task.

4.5. MANET Routing Protocol

There are many Protocols are implemented in Mobile Ad-hoc network. These

Protocols are mainly classified into three categories according their performance

and functionality. This is shown below,

Figure 3. MANETs Routing Protocols

4.5.1. Proactive Routing Protocol

In Proactive Routing each node or host in the network preserves one or more

routing tables which keep the information about the entire topology of the

network. These routing tables are updated frequently. Destination Sequence

Distance Vector Protocol, Fisheye State Routing (FSR) protocol and Optimized

- 21 -

Link State Routing Protocol are examples of Proactive Protocols in Mobile Ad-

hoc network. Each of the Protocol are described below.

4.5.1.1 Distance Sequence Distance Vector Routing Protocol

It is table driven or proactive protocol functioning in Mobile Ad-hoc network.

DSDV is an improved protocol of Distributed Bellman-Ford algorithm. DSDV

protocol requires periodically broadcasting hello messages to each and every node

in the network to maintain the link and every node in the DSDV protocol has a

separate table it includes shortest path. DSDV Protocol uses bidirectional link.

Which is a main feature of DSDV protocol. However the protocol provides only

particular route from source to destination. DSDV protocol maintains a sequence

number for each entry in the routing table. When there is a change in the network

the node will send an updated message to the adjacent node by incrementing the

sequence number. Every DSDV node conserves separate routing tables for packet

sending and publishing the incremental routing packets. If there are any changes

occurred in the network, an identifying node sends an update packet to its adjacent

node in the network. Once the adjacent node received an update packet from an

adjacent node, a node abstracts the information from the packet and updates its

routing table. Following figure shows the routing table operations of the DSDV

protocol .

Figure 4. DSDV Protocol

- 22 -

4.5.1.2 Fisheye State Routing (FSR) protocol

 Fisheye state routing protocol is another table driven protocol. FSR Protocol uses

the feature of the fisheye technique to transmit the routing update information with

dissimilar varied frequencies in that way reducing the routing overhead and

reducing flooding update information. The above protocol three has major

functions namely,

1. Neighbor Discovery: maintain the relationship with other nodes broadcasting

hello messages.

2. Information Distribution: each node broadcasting Link state announcement

message to all other nodes in the network.

3. Route Calculation: node can reconstruct the network topology by calculating

the link state announcement. [23]

Figure 5. Fisheye Routing Protocol

4.5.1.3 Optimized Link State Routing Protocol

Optimized Link State Routing Protocol is a Proactive Routing Protocol designed

for Mobile ad hoc environment. It is finding the alternate path of existing link state

protocols in that it decreases the size of control packet and reduces the

transmission of control packets. The OLSR protocol exchanges the routing

information with adjacent nodes regularly. OLSR Protocol uses Multipoint Relay

Packets to reduce the data traffic in the network. A Multipoint Relay is a kind of a

- 23 -

node‟s one-hop neighbor, which will decide to forward the data packets. The

following figure shows the Operation of optimized Link State Routing Protocol

[24].

Figure 6. Optimized Link State Routing Protocol

4.5.2. Hybrid Routing Protocol

Hybrid Routing is the combination of both Distance vector protocol and Link state

routing protocols and act as a new protocol. Temporary ordered routing Protocol

and Zone routing protocol are example of Hybrid Routing Protocol.

4.5.2.1Temporary Ordered Routing Protocol

The main aim of the TORA is to control the message broadcast in Mobile Ad-hoc

network. It refers that TORA is designed to reduce the network overhead by

adjusting the local topology changes in MANET. TORA protocol supports the

multiple paths to send the data packets from source node to destination node [25].

- 24 -

Figure 7. Temporary Ordered Routing Protocol

4.5.2.2 Zone Routing Protocol

Zone Routing Protocol was invented by Zygmunt Haas of Cornell University. ZRP

is Hybrid Protocol, which uses the combination of Distance vector protocol and

Link state routing protocol when transferring data packets over the network. And

it finds the loop free routes to destinations. The ZRP main concept is based on

Zones. Zone consists of several nodes whose minimum length between the nodes

is defined as Zone radius. The main objective of ZRP was designed to speed up

sending and decrease the processing delay [26].

- 25 -

Figure 8. Zone Routing Protocol

4.5.3. Reactive Routing Protocol

Reactive routing protocol does not make the nodes initiate a route discovery

process until a route to a destination is required. It is a bandwidth efficient on-

demand routing protocol for Mobile Ad-Hoc Networks. The protocol has many

features which are listed as,

 Do not consume bandwidth for sending information.

 Protocol consumes bandwidth only, when the node start transmitting the

data to the destination node.

Ad-hoc on Demand Vector Protocol and Dynamic Source Routing Protocols are

examples of Reactive Routing Protocols. There are various parameters available in

Reactive Protocols, which are throughput, delay time, Packet Delivery Ratio and

Packet Loss Ratio. With the aim of research, researcher interesting to detect the

Cooperative Black hole attack nodes in Ad-hoc on Demand Distance Vector

Protocol in Mobile Ad-hoc network environment.

- 26 -

4.5.3.1 Ad-hoc on demand Distance Vector Protocol

An Ad-Hoc On demand Distance Vector is a kind of Reactive Routing Protocol,

which was jointly developed by Nokia Research Center, the University of

California, Santa Barbara and the University of Cincinnati in 1991. The main

features of AODV protocol is it supported both unicast and multicast routing.

Figure 9. AODV Routing Protocol

There are two main processes implemented in the AODV protocol, which are

known as route discovery and route maintaining. There are mainly four numbers

of messages are implemented in AODV Protocol, namely as Route Reply

Message, Route Request Message, Route Error Message and Hello Messages.

Each of the messages is described below with diagram[4] .

4.5.4 Route Request Message

If the nodes in the network need to establish a link with destination node it sends

Route request broadcast the message in the network. The Route Request message

format is attached is given below[27].

- 27 -

 Figure 10. Route Request Message Format

Type: Type described the message type, By default it should be set at 0

Reserved: this is for future use. By defualt it should be set as 0;

Hop Count: the number of hosts or nodes from the Discover IP Address

to the node.

RREQ ID:it is a unique number identify the particular Route Request.

 Destination IP Address: IP Address of the Destination Node.

Destination Sequence Number: The up-to-date sequence number

received in the past by the sender

Originator IP Address: IP Address of the node or host invented the

Route Request

Originator Sequence Number: The Present sequence number to be used

in the route entry pointing.

4.5.5 Route Reply message

Once the node receives a route request message, it should be discarded and a route

reply message will reply. The Route Reply message format is given below[27].

Figure 11: Route Reply Message Format

 Destination IP Address: IP Address of the Destination Node.

Destination Sequence Number: The up-to-date sequence number

received in the past by the sender.

Originator IP Address: IP Address of the node or host invented the

Route Request

Originator Sequence Number: The Present sequence number to be used

in the route entry pointing.

 Lifetime updated every time the route is used.

- 28 -

4.5.6. Route Error

If there is any link break occurs in the network the route error message is

forwarded to the nodes. The Error message format is given below[27].

 Figure 12. Route Error Message Format

4.5.7. Route Discovery Process

The route finding process is extended by broadcasting packets to entire nodes in

the network. Route Request and Route Reply messages are detected to find the

route between source to destination[28]. The following figure shows the AODV

Protocol Route discovery.

Figure 13. Route Discovery

4.5.8. Route Maintenance Process

In AODV protocol, the Hello message is used for determining link connectivity

between nodes. If the particular route is active, the node should use the Hello

messages to maintain the particular route. The route Error message is informed

when there is link failure occurred in the network [28]. The Route Maintenance

Process is shown in following figure.

- 29 -

Figure 14. Route Maintenance Process

4.5.9. Merits and Limitations of AODV Protocol

There are certain merits and limitations of the AODV Protocol, which are listed

below.

4.5.9.1 Merits of AODV Protocol

1. AODV Protocol support unicast and Multicast routing

2. The Protocol is loop free and self-starting to a large number of nodes.

3. The Protocol does not need any central administrative system to handle the

routing process.

4. The protocol respond time is very quick. If the network topology change it will

quickly respond to the nodes.

4.5.9.2 Limitation of AODV Protocol

1. The AODV Protocol utilizes large share of bandwidth.

2. It takes much considerable time to build the routing table

3. It has high processing demand

4. If there is link failure, the AODV protocol generate a large number of packets,

this may lead to congestion of the network.

4.6. Summary

This chapter described the Overview of MANET Structure and Routing Protocols

namely Proactive, Reactive and Hybrid Routing Protocol. Each of the Routing

Protocols is described clearly with diagram. Next chapter will address the Security

Attacks on Mobile Ad-hoc network.

- 30 -

Chapter 05

Security Attacks on Mobile Ad-hoc network

5.0 Introduction

Chapter 04 has stated the Overview Structure of MANET and Routing Protocol on

Ad-hoc network environment. Chapter 05 presents Security Attacks of Mobile Ad-

hoc network.

5.1Security Attack

Mobile Ad-hoc Network is not secure and very flexible for the nodes. Nodes can

be easily join and leave the network. There is no central control mechanism to

control the nodes. Therefore, many security attacks occurred in MANET. Security

Attacks mainly classified as Active Attacks and Passive Attack[7].

Figure 15. Classification of Attack

5.2. Active Attack

An active attack, attacker can change the packet or drop the packets which are

being transferred in the network. There are two kinds of active attacks, namely

internal or external active attack. In the External attack conceded out by host or

nodes that do not belong to the area on the network. On the other hand internal

attack is from contained host or nodes which are located inside in the network[29].

There are many active attacks in MANET namely rushing attack, Flooding attack,

Gray-hole attack, Denial of service attack, Man-in-middle attack, wormhole attack

and Black hole attack. On the other hand Traffic Monitoring, Eavesdropping and

Traffic Analysis are Passive attacks.

Security Attack

Passive Attack

passive Attack

Active Attack

- 31 -

5.2.1. Rushing attack

The rushing attack is a kind of active attack occurred in Mobile Ad hoc network.

Rushing attack uses replicate destruction technique by quickly forwarding route

discovery packets. In other words, it is a type of Denial of service attack. This

attack can be performed in two ways. Sending a false route request id is a first one,

the other one is sending false route request to false destination. These causes

intermediate nodes to send many messages. In order to prevent the rushing attack,

there were many techniques implemented, namely secure neighbor detection, and

secure route delegation, specifying timeout and randomized message forwarding

[30].

Figure 16. Rushing Attack

5.2.2. Flooding attack

Flooding attack is a type of Active attack occurred in Mobile Ad hoc network in

the attacker node sends unwanted false duplicate packets to the network and

absorb the network bandwidth, battery power and nodes other resources and

making the destination nodes to receive the actual data packets. Flooding attack

can be classified as hello flooding, RREQ Flooding and Data flooding. In Hello

Flood attack, hello packets are broadcast with very high power. Therefore, a large

number of nodes in the network will select it as the main node in the network.

Using identifying verification protocol is a major technique to protect against

Hello flooding attack[31].

- 32 -

Figure 17. Flooding Attack

5.2.3. Gray-hole attack

This attack also called as misbehavior attack. The main aim of the Gray-hole

attack is to drop messages. It has two phases. In the initial part it broadcasts it

contains the actual path to destinations and other phase it drops the packets which

are received from the adjacent node. The main aim of this update is to forward all

the packets to intruder or malicious node rather than original node. In the second

part, gray hole attack where intruder node dropped the interjected packets with a

certain probability. To avoid the Gray-hole attack in MANET the Gray-hole

prevent technique is used[32].

Figure 18. Gray hole Attack

5.2.4. Denial of Service attack

A Denial-of-service is any type attack where the intruder or attacker tries to avoid

the authorized users from using the service or network. In DOS, the intruder

broadcasts the data packets and asking the server to agree to accept the unwanted

data packets from illegal return addresses. Then the network is unable to find the

return address of the intruder when sending validation approval. This will continue

- 33 -

until server or networks find the return address and it makes network is busy. A

denial of service attack is performed in many ways. Preventing a particular

individual from accessing services, disrupting connections between two machines,

disrupting a service to a specific system and disrupting the state of information are

the form of denial service attacks. There are many techniques were proposed to

avoid Denial of service attack, namely thread model and Dealing with

Misbehaving Nodes [33].

Figure 19. Denial of Service Attack

5.2.5. Man-in-the-middle attack

A man-in-middle attack is a type of active attack when an intruder or attacker

capture the communication between two parties secretly adjust the message

transferring between source node to the destination node. Man-in-middle attack

has two different phases, namely interception and Decryption. In interception, the

sending data packets are stopped over the intruder‟s network until it touches

specific destination on the network. Interception can be achieved by IP spoofing,

ARP spoofing or DNS Spoofing. In Decryption phase data traffic can be modified

without the involvement of the sender. Decryption can be achieved by HTTPS

Spoofing, SSL Hijacking, SSL Beast or SSL Stripping. Prevent against the Man-

in-middle attack there were many techniques proposed. Strong WEP/WAP

Encryption, Virtual Private Network and Public key pair based authentication

were some of them[34].

- 34 -

Figure 20. Man-in-middle attack

5.2.6. Wormhole attack

Worm hole attack is a server type attack for Mobile ad hoc network. In worm hole

attack two more malicious nodes are connected channel called wormhole link. In

this attack, attackers receive packets in a certain location in the network and tunnel

them to another location in the network, and then repeat them into the network

from that location. In other words, routing messages are forward in the wrong

direction. Therefore, this attack performs tremendous effect on Mobile ad hoc

network. To avoid the wormhole attack in MANET Random Approach Transfer

Model, Packet leash and Hello message timing interval procedure are

implemented in MANET[35].

Figure 21. Wormhole attack

5.2.7. Black hole Attack

Black hole attack is a special Active type attack occurred in Mobile Ad hoc

network. In a black hole attack a malicious node consumes the routing path and

stated it has the valid path to any desired in the network does not forward the

packets to its neighbors. These malicious black hole node executes various

dangerous actions on the network, which are represented as a source node by

- 35 -

wrongly sending the Route Request message, represented as a destination node by

wrongly sending the Route Reply Packets and decreasing the hop count. There are

two types of black hole attack happened in the Mobile Ad-hoc network. Which are

known as Single Black hole attack and Cooperative Black hole attack.

5.2.7.1. Single Black hole Attack

The black hole attack contains two stages. In the initial stage the hateful node's

adventures the AODV protocol to present it contains the shortest path destination

even though the particular path is not correct. In the second stage hateful node

discards the interrupted packets without broadcasting. Following figure shows the

single Black hole attack in MANET[36].

Figure 22. Single Black Hole attack

5.2.7.2. Cooperative Black hole attack

In Cooperative Black hole attack there are more than one malicious nodes are

working as group to interrupt the routing protocol specification [36]. The

following graphs show the cooperative black hole attack in Mobile Ad-hoc

network. With the aim of research, researcher interesting to detect the cooperative

Black hole attacking nodes in AODV protocol in Mobile Ad-hoc network.

- 36 -

Figure 23. Cooperative Black hole attack

5.3. Passive Attack

A Passive attack is a kind of attack where an attacker monitoring transferring data

packets over the network. This can happen in many forms, such as tracing the

packets or reading the unauthorized email. Contrast to an Active attack, passive

attack intruder or attacker does not modify or change the transferring data pass

through the network[37].

5.3.1. Traffic Monitoring

Traffic monitoring is the procedure which a person can track the information about

the network and which resources are being used each device in the network[38].

Figure 24. Traffic monitoring attack

- 37 -

5.3.2. Eavesdropping

An Eavesdropping is another kind of Passive attack which is also known as

snooping attack. In Eavesdropping, the attacker wishes to steal valuable

information which is transferred through the network. This information includes

the Public key, Private Key and the Password [39].

Figure 25. Eavesdropping Attack

5.3.3. Traffic Analysis

Traffic Analysis is a method of capturing and inspecting transferring the data

packets over the network. The attack can perform Even if the data packets are

encrypted. In other words the attacker listens the data packets which are

transferring between source node to destination node[40].

Figure 26. Traffic Analysis

5.4. Summary

This Chapter described the Security attacks which were known as Passive attack

and Active Attack. There are many types of Active Attacks namely Rushing

attack, Flooding attack, Gray-hole attack, Denial of service attack, Man-in-middle

- 38 -

attack, wormhole attack and Black hole attack. Traffic Monitoring, Eavesdropping

and Traffic Analysis are Passive attacks. Next Chapter will address the Software

Requirement & implementation of the Project.

- 39 -

Chapter 06

Software Requirement & Implementation of the Project

6.0. Introduction

Chapter 05 has stated the Security Attacks of Mobile Ad-hoc network

environment and also stated the Each and every Attack detecting technique.

Chapter 06 presents the Software Requirement & implementation of the Project.

6.1. Software Requirements

6.1.1. Ubuntu

Ubuntu is an open-source operating system based on the Debian GNU/Linux

distribution. Ubuntu cooperate all the features of a Unix OS with an added

customizable GUI, which makes it popular in universities and research

organizations. Ubuntu is primarily designed to be used on personal computers.

Researcher is interesting to use Ubuntu 14.04.1 version of Ubuntu for

implementing the research.

6.1.2. Network Simulator

Network Simulator Version 3, widely known as NS3, is new simulator written

from scratch. It is supported C++ and Python language. It will depend on the

ongoing contributions of the community to develop new models, debug, or

maintain existing ones, and share results. The researcher is interesting to use ns3.

24 for implementing the research. The result of an output trace file that can be

used to do data processing (Calculate Delay, throughput, etc.) and to visualize the

simulation with a program called Network Animator, which is a very good

visualization tool that visualizes packets as they transmit through the network. An

overview of how a simulation is done ns3 shown below.

- 40 -

Figure 27. Network Simulation Diagram

6.2. Implementation

The implementation of the project is proposed to Linux environment. Therefore,

Beginning of the research Researcher installed the virtual machine software to

windows environment Computer. Then the researcher installed Ubuntu 14.04 on

the virtual machine. After installing the Virtual machine, next step is to install the

Ubuntu. Then the researcher needs to install network simulator 3.24 to the Ubuntu

virtual machine. The final step is to install the black hole attack file to network

simulator 3.24. After successfully installed Black hole attack program he needs to

run AODV program named as OAODV.cc which contains the black hole node.

Finally, researcher finds the Cooperate black hole detection code and named as

MDPRAODV.cc file and run MDPRAODV.cc

Figure 28.Ns3 over Ubuntu 14.04

Output Data

Processing

Network

Simulator 3

C++ Source

File

Network

Animator

Ns-3 ver. 3.24

Ubuntu 14.04

Windows 7

- 41 -

6.3. Simulation Environment

The identification of Black hole attack is done in Network Simulator Version 3.24.

Table 2.0 Simulation Setup Parameters

6.4 installing the Black hole Program

The first step of the Simulation is to implement the Black hole attack program to

the network simulator. If the patch file was successfully installed, following output

will be displayed.

Figure 29. Black hole Program installation

Parameters Value

Simulator Ns-3

Version Ns-3.24

Simulation Time 420 s

Number of nodes 100

Routing protocol AODV

No. Of malicious node 10

Movement model Random waypoint

Simulation Area 800 * 600

- 42 -

This Black hole program allows a network simulator 3 to pretend Black hole

attack in Mobile Ad-hoc environment. The above program version is black hole

3.24. If the black hole attack is installed successfully the “Black hole Attack!

Packet dropped” message displayed as an output. The above message describes the

data packets inside the network is transmitted instead of destroying the packets.

6.5. Compiling the Ad-hoc on Demand Distance Program

The next step of the Simulation is to run the Pure or Original AODV file known as

OAODV.cc. The running command of OAODV.cc file is given below.

Figure 30. Compiling the Pure OAODV Program

The Pure OADV file is located inside the scratch folder. Scratch folder is one of

the folders freely distributed folder in network simulator 3. Which is located inside

the nose-allinone 3.24. The entire source files are located in a Scratch folder.

- 43 -

6.6 Out of Original AODV

If the Original AODV is running successfully following Message will be

displayed on the screen.

Figure 31. Output of AODV Program

If the Black hole attack is working with the pure AODV code, the Packet dropped

message displayed on the screen. Also displayed the sink port and Max Packets

per trace file exceed. The Sink port is a port which Receive and consumes traffic

generated to an IP address and port. Max packets per trace file exceed message

indicate about the length of the animation, NetAnim stops recording when the

output file gets too big.

6.7. Overall output of AODV

In the next step of AODV it takes 8 minutes to display the Overall Output, which

is shown below.

- 44 -

Figure 32. Overall output of OAODV Program

In the above output display Packet delivery ratio 86% as percentage and 13%

displayed as Packet Lost Ratio for OAODV in Mobile Ad-hoc Network.

6.8 Compiling the Modified Ad-hoc on Demand Distance Program

The next step is running the Modified AODV file known as MDPRAODV.cc in

Mobile Ad-hoc network. Which is the program file detecting the cooperative

Black hole nodes in AODV protocol in Mobile Ad-hoc network. The running

command of MDPRAODV.cc file is given below.

- 45 -

Figure 33. Compiling the Modified Ad-hoc on Demand Distance Program

6.9. Out of Modified AODV

If the Original MDPRAODV is running successfully following Message will be

displayed on the screen.

Figure 34. Output of Modified AODV

- 46 -

If MDPRAODV file compiled in simulation, Packet dropped message displayed

on the screen. Nearly 8 minutes displayed Overall output of AODV file.

6.10. Overall output of Modified AODV

The final step, MDPRAODV takes 8 minutes to display the Overall Output, which

is shown below.

Figure 35. Overall output of Modified AODV Program

In the above output display Packet delivery ratio 90% as percentage and 9%

displayed as Packet Lost Ratio for MDPRAODV in Mobile Ad-hoc Network.

6.11. Network Animator

The Network Animator is a kind of Program that is freely available in the network

simulator version3. This program displays the movement of the packet through the

network. The researcher has the three xml files known as Black hole, AODV and

MDPRAODV. Each of the files is displayed below.

- 47 -

6.11.1 Blachole.xml File

Figure 36. Blackhole.xml

The Above figure shows the movements of data packets in Black hole attack in the

AODV Protocol in MANET Environment.

6.11.2 AODV.xml

Figure 37.AODV.xml

- 48 -

The Above figure shows the movements of data packets in the AODV Protocol in

MANET Environment. Which display the AODV Route Request and Route

Response messages.

6.11.3 MDPRAODV.xml

Figure 38. MDPRAODV.xml

The Above figure shows the movements of data packets in the MDPRAODV

Protocol in MANET Environment. Route Request and Route Response messages

also displayed in the above figure.

6.12. Summary

Chapter 06 described the Software Requirement and Implementation of the

Project. For this purpose researcher compiles the Black hole code, Original AODV

code and Modified AODV code. The researcher also uses the Network Animator

tool to display the movement of the data packet. The movement of the black hole,

AODV and MDPRAODV files, data packets are also displayed as Blackhole.xml,

AODV.xml and MDPRAODV.xml. Next chapter will address the Research Result

and Evaluation.

- 49 -

Chapter 07

Research Results and Evaluation

7.0. Introduction

Chapter 06 has stated the Software Requirement and Implementation of the

Research. Chapter 07 presents the Research Results and Evaluation. For this

scenario researcher has used four metrics for comparing the Original AODV

Protocol with Proposed Protocol, namely Packet delivery Ratio, Packet Loss

Ratio, throughput and end-to-end delay.

7.1 Packet Delivery Ratio

Packet delivery ratio describes the percentage between total number of packets

received by destination and generated packets by from the source. Researcher‟s

aim to compare the Packet delivery ratio of Present AODV Protocol and improved

Modified AODV Protocol.

Figure 39. Packet Delivery Ratio

- 50 -

In the above figure shows a comparison of Packet delivery Ratio of Present

AODV and Proposed Modified AODV Protocol. The Modified AODV Protocol‟s

Packet Delivery Ratio is higher than the existing AODV Protocol.

7.2 Packet Loss Ratio

Packet loss describes the failure of more transferred packets to come to their

particular destination. Packet loss ratio measured by total number of Packets loss

respect to total number of packets sent.

Figure 40. Packet Loss Ratio

In the above figure shows a comparison of the Packet Loss Ratio of Pure AODV

and Proposed Modified AODV Protocol. The Modified AODV Protocol‟s Packet

Loss Ratio is lower than the existing AODV Protocol.

- 51 -

7.3 End-to-end delay

Packet End-to-end delay describe the amount of time taken for a packet to be

delivered through the network from source node to the destination node. It is a

specific word used in network communication and different from round trip time,

it only measures the one direction between source node to the destination node.

Figure 41. End to end Delay

In the above figure shows a comparison of End to end delay of Pure AODV and

Proposed Modified AODV Protocol. The Modified AODV Protocol end to end

delay is lower than the existing AODV Protocol.

7.4 Throughput

In Data communication, Throughput stated amount of data packets successfully

transferred source node to a destination node in a specific time period and is

measured in bits per second. The throughput is calculated by total number of data

packets is divided by the specified time period.

- 52 -

Figure 42. Throughput

In the above figure shows a comparison of network throughput of Pure AODV and

Proposed Modified AODV Protocol. The Modified AODV Protocol‟s through is

higher than the existing AODV Protocol.

7.5 Summary

This Chapter described the Research Results and Evaluation. Implementing the

particular research, researcher has used four metrics namely Packet Delivery

Ratio, Packet Loss Ratio, End-to-end delay and throughput. Next chapter will

address Conclusion & Future Work of the dissertation.

- 53 -

Chapter 08

Conclusion and Future work

8.0. Introduction

Chapter 07 has sated the Research Results and Evaluation of the Thesis. The

researcher has evaluated four metrics namely Packet Delivery Ratio, Packet Loss

Ratio, End-to-end delay and throughput. Chapter 08 presents the Conclusion and

Future work of the dissertation.

8.1. Conclusion

The cooperative Black hole attack is the one of the major challenges in the

MANET. The Proposed MDPRAODV implementation, researcher detects the

many numbers of cooperative Black hole nodes in the AODV Protocol in MANET

and it was clear to detect many cooperative malicious nodes accurately. However,

implementing the proposed solution, researcher added 100 nodes for the Original

AODV code and improved AODV code. If the nodes are increased more than 100

nodes the proposed program will take more than 5 minutes to detect the malicious

cooperative Black hole nodes in the Modified AODV and it clearly to display

Modified AODV file has high packet delivery Ratio, high throughput and decrease

the Packet Lost ratio and Delay than the Original AODV protocol in MANET. The

proposed technique detects the cooperative Black nodes rather than securely

secure way of transmitting data source to destination which is the main drawbacks

of the proposed solution.

8.2. Future Work

Mobile Ad-Hoc networks are broadly used networks due to their flexible

environment. These networks are wide-open to both external and internal attacks

and there is no control centralized mechanism. There is a need to detect the

cooperative Black Hole attack in other MANETs routing protocols such as DSR,

TORA and GRP. Other types of attacks such as Wormhole, Jellyfish and Sybil

attacks are needed to be studied in comparison with the black hole attack.

- 54 -

8.3 Summary

Chapter08 stated the conclusion work which has been implemented by the

researcher and future work on Mobile Ad-hoc network is presented.

- 55 -

References

[1] C. E. Perkins Editor et al., “Ad Hoc Networking Addison-Wesley,” 2008.

[2] A. Saini and H. Kumar, “Comparison between various black hole detection

techniques in MANET, Akanksha Saini , Harish Kumar,” Instrumentation, no.

pp. 19–20, 2010.

[3] A. Hinds, M. Ngulube, S. Zhu, and H. Al-Aqrabi, “A Review of Routing

Protocols for Mobile Ad-Hoc NETworks (MANET),” Int. J. Inf. Educ.

Technol., vol. 3, no. 1, pp. 1–5, 2013.

[4] K. Majumder and S. K. Sarkar, “Performance analysis of AODV and DSR

routing protocols in hybrid network scenario,” Proc. INDICON 2009 - An

IEEE India Counc. Conf., vol. 2, no. 2, 2009.

[5] H. Deng, W. Li, and D. P. Agrawal, “Routing security in wireless ad hoc

networks,” IEEE Commun. Mag., vol. 40, no. 10, pp. 70–75, 2002.

[6] P. Manickam and T. G. Baskar, “Pefromance comparioson of routing protocols

in Mobile adhoc networks,” vol. 3, no. 1, pp. 98–106, 2011.

[7] Kumar Rai et al., “Different Types of Attacks on Integrated MANET-Internet

Communication,” no. 4, pp. 265–274, 2010.

[8] K. Pandey and A. Swaroop, “A Comprehensive Performance Analysis of

Proactive, Reactive and Hybrid MANETs Routing Protocols,” IJCSI Int. J.

Comput. Sci. Issues ISSN, vol. 8, no. 3, pp. 1694–814, 2011.

[9] N. Kalia, “Detection of Multiple Black hole nodes attack in MANET by

modifying AODV protocol,” vol. 8, no. 5, pp. 160–174.

[10] N. Mistry, D. C. Jinwala, and M. Zaveri, “Improving AODV Protocol against

Blackhole Attacks,” Int. Multiconference Eng. Comput. Sci. (Imecs 2010), Vols

I-Iii, vol. II, pp. 1034–1039, 2010.

[11] P. N. Raj and P. B. Swadas, “Dpraodv: a Dyanamic Learning System Against,”

Int. J. Comput. Sci. Issues, vol. 2, pp. 54–59, 2009.

[12] A. K. Sahoo, “Prevention of Black hole Attack in AODV protocols for Mobile

Ad Hoc Network by Key Authentication Prevention of Black hole Attack in

AODV protocols for Mobile Ad Hoc Network by Key Authentication,” 2012,

2014.

[13] S. L. Dhende, “A-98. A Mechanism for Detection of Black Hole Attack in

Mobile Ad Hoc Networks,” vol. 1, no. 6, pp. 1–4, 2012.

- 56 -

[14] L. Tamilselvan and V. Sankaranarayanan, “Prevention of co-operative black

hole attack in MANET,” J. Networks, vol. 3, no. 5, pp. 13–20, 2008.

[15] L. Himral, V. Vig, and N. Chand, “Preventing AODV Routing Protocol from

Black Hole Attack,” Int. J. Eng. Sci. Technol., vol. 3, no. 5, pp. 3927–3932,

2011.

[16] W. Saetang and S. Charoenpanyasak, “CAODV Free Blackhole Attack in Ad

Hoc Networks,” vol. 35, no. Cncs, pp. 63–68, 2012.

[17] S. Univercity, “Security attacks I . INTRODUCTION,” vol. 2, no. 3, pp. 651–

657, 2012.

[18] K. Vishnu and A. J. Paul, “Detection and Removal of Cooperative Black/Gray

hole attack in Mobile AdHoc Networks,” Int. J. Comput. Appl., vol. 1, no. 22,

pp. 40–44, 2010.

[19] P. Goyal, V. Parmar, and R. Rishi, “MANET: Vulnerabilities, Challenges,

Attacks, Application,” IJCEM Int. J. Comput. Eng. Manag. ISSN, vol, pp.

2230–7893, 2011.

[20] M. Chitkara and M. W. Ahmad, “Review on MANET: Characteristics,

Challenges, Imperatives and Routing Protocols,” Int. J. Comput. Sci. Mob.

Comput., vol. 32, no. 2, pp. 432–437, 2014.

[21] S. A. K. A. Omari and P. Sumari, “An Overview of Mobile Ad Hoc Networks

for the Existing Protocols and Applications,” Int. J. Appl. Graph Theory Wirel.

Ad Hoc Networks Sens. Networks, vol. 2, no. 1, pp. 87–110, 2010.

[22] S. Ade and P. Tijare, “Performance comparison of AODV, DSDV, OLSR and

DSR routing protocols in mobile ad hoc networks,” Int. J. Inf. Technol. Knowl.

Manag., vol. 2, no. 2, pp. 545–548, 2010.

[23] A. S. Roy, M. Borah, and A. Banerjee, “Study of Fisheye Routing Protocol in

Ns3 and Its Comparative Analysis With Aodv ,” pp. 82–94.

[24] K. A. Adoni, “Optimization of Energy Consumption for OLSR Routing

Protocol in MANET,” Int. J. Wirel. Mob. Networks, vol. 4, no. 1, pp. 251–262,

2012.

[25] V. D. Park and M. S. Corson, “A performance comparison of the temporally-

ordered routing algorithm and ideal link-state routing,” Proc. - 3rd IEEE Symp.

Comput. Commun. ISCC 1998, pp. 592–598, 1998.

[26] N. Beijar, “Zone Routing Protocol (ZRP),” Netw. Lab. Helsinki Univ.

Technol. Finl. 9, pp. 1–12, 2002.

[27] A. Huhtonen, “Comparing AODV and OLSR Routing Protocols 2 Ad hoc On

- 57 -

Demand Distance Vector,” Telecommun. Softw. Multimed., pp. 1–9, 2004.

[28] I. D. Chakeres and E. M. Belding-Royer, “AODV routing protocol

implementation design,” pp. 698–703, 2004.

[29] P. M. Jawandhiya, M. M. Ghonge, M. S. Ali, and P. J. S. Deshpande, “A

Survey of Mobile Ad Hoc Network Attacks,” Int. J. Eng. Sci. Technol., vol. 2,

no. 9, pp. 4063–4071, 2010.

[30] K. I. Lakhtaria, “Next generation wireless network security and privacy,” Next

Gener. Wirel. Netw. Secur. Priv., 2015.

[31] S. Alzahrani and L. Hong, “Generation of DDoS Attack Dataset for Effective

IDS Development and Evaluation,” J. Inf. Secur., vol. 09, no. 04, pp. 225–241,

2018.

[32] S. Dixit, P. Pathak, and S. Gupta, “A novel approch for gray hole and black

hole detection and prevention,” 2016 Symp. Colossal Data Anal. Networking,

CDAN 2016.

[33] A. Nadeem and M. Howarth, “Adaptive intrusion detection & prevention of

denial of service attacks in MANETs,” p. 926, 2009.

[34] H. Bakiler and A. Şafak, “Analysis of Current Routing Attacks in Mobile Ad

Hoc Networks,” Int. J. Appl. Math. Electron. Comput., vol. 3, no. 2, p. 127,

2015.

[35] R. H. Jhaveri, A. D. Patel, J. D. Parmar, and B. I. Shah, “MANET routing

protocols and wormhole attack against AODV,” Int. J. Comput. Sci. Netw.

Secur., vol. 10, no. 4, pp. 12–18, 2010.

[36] J. Kumar, M. Kulkarni, and D. Gupta, “Effect of Black Hole Attack on

MANET Routing Protocols,” Int. J. Comput. Netw. Inf. Secur., vol. 5, no. 5, pp.

64–72, 2013.

[37] V. Shanmuganathan and M. T. Anand, “A Survey on Gray Hole Attack in

MANET,” IRACST-International J. Comput. Networks Wirel. Commun., vol. 2,

pp. 647–650, 2012.

[38] P. Casas, J. Mazel, and P. Owezarski, “Knowledge-independent traffic

monitoring: Unsupervised detection of network attacks,” IEEE Netw., vol. 26,

no. 1, pp. 13–21, 2012.

[39] S. Yadav, “Attacks in MANET,” vol. 1, no. 3, pp. 123–126, 2012.

[40] M. P. A. Patil, M. E. H. V. P. M. Coet, and A. P. H. V. P. M. Coet, “Available

Online at www.ijarcs.info Network Traffic Monitoring with IDS,” vol. 4, no. 6,

pp. 214–219, 2013.

- 58 -

APPENDIX-A

Glossary of Terms

 Node: A node in a mobile ad hoc network is the actual device that

communicates with other devices using wireless transmission. It refers host

or hop as well.

 Data Packets: A Data Packet is a small unit of data transmits through the

network.

 DOS: A Denial-of-service is a kind of attack where the intruder will block

the authorized users to using the available resources. In this attack, an

intruder or attacker will send unnecessary messages to the network which

include the invalid addresses.

 Protocol: A Protocol is a set of rules and procedure for transferring data

over the network.

 Black hole attack: A Black hole attack is kind of Denial-of-service attack in

which a router that is supposed to spread packets instead of rejects them.

 Cooperative Black hole: Cooperative Black hole is kind of black hole

attack where the attacker nodes worked as a unit or group.

 Network Simulator: in Networking Research, network simulation is

software that forecast or analyze of a computer network.

 RREQ: Route Request Message, the function of Route Request message is

creating a route to a destination when the nodes need to transmit a data.

 RREP: Route Reply message, the destination node sends the reply

messages to the source node that there is a valid path.

 Route Error: Route Error message, when there is a link failure in the

network the Route Error message is generated and informed it to node in

the network.

 Security Attack: it is unauthorized access to services cause to damage or

modify the network.

 Virtual Private Network: it is a kind of network, which is a secure tunnel

two or more devices on the network.

- 59 -

 Throughput: in Data communication throughput is the amount of data

transferred successfully from source node to destination. Throughput is

measured in bits per second.

 Packet Delivery Ratio: Packet delivery ratio is the percentage of packets

successfully expected to total sent. Packet delivery Ratio Calculated by

total number of data packets received is divided by data packets produced

by each source.

 Packet Loss Ratio: Data Packets Loss arises when data packets transferring

over the computer network unable to reach their destination. It is measured

as a Percentage of Packets lost with respect to total data packets.

 End-to-end delay: End to end delay is the amount of time taken for a

particular data packet transmitted from source node to the destination node.

- 60 -

APPENDIX-B

Installation guide line for Network Simulator Version 3.24

1. Introduction NS 3.24

Network Simulator Version 3 is the famous tool designed for Wireless

communication. It is the successor of Network Simulator Version 2. The tool is

written in C++ and python language. And also Network Simulator 3 is mainly

developed on Linux platforms.

There are many versions available for Network Simulator 3. Research has

interesting to use network simulator version 3.24 version it includes many

modules. Implementing the Research researcher discuss two modules namely,

i. Network Simulator

ii. Network Animator

1.1. Installing the network simulator 3.24 on Ubuntu 14.04

It is not very easy to install the network simulator into the Windows Platform.

Therefore the user has to install the VMwhere workstation to the windows. After

that install the Linux version. Implementing the researcher, researcher installed the

Ubuntu 14.04 Version. If the Ubuntu installed successfully user has to install the

network simulator version 3.24 for the Ubuntu.

1.2. Using NS3

1. Network simulator version 3 has many dependencies. Therefore, before the ns3

installation researcher needs to install those dependencies. Open the new terminal

and user has to type the following commands in command line.

$] sudo apt update

$] sudo apt upgrade

2. After that Researcher needs the run the combination of following command, it

will take some time to complete the installation

$] sudo apt-get install build-essential autoconf automake libxmu-dev python-

pygoocanvas python-pygraphviz cvs mercurial bzr git cmake p7zip-full

- 61 -

python-matplotlib python-tk python-dev python-kiwi python-gnome2 python-

gnome2-desktop-dev python-rsvg qt4-dev-tools qt4-qmake qt4-qmake qt4-

default gnuplot-x11 wireshark

3. If the above commands run successfully, then Researcher has to install the

Network simulator 3.24. The researcher needs to open the terminal and type the

following commands listed below,

$] tar jxvf ns-allione-3.24.tar.bz2

$] cd ns-allinone-3.24/

$] ./build.py --enable-examples --enable-tests

Above commands take some time to complete. If the installation is successful,

the following researcher will get the following screen on the terminal

Figure 43. NS3 installation

- 62 -

APPENDIX-C

Flow Charts:

C1. Route Discovery of AODV Protocol Flow Chart:

Figure 44. Route Discovery of AODV

Start

Does the Route to

the destination exist

Send RREQ

Wait for RREP

If RREQ

Received

Wait for RREP

End

- 63 -

C2. Route Reply of AODV Protocol Flow Chart:

Figure 45. Route Reply of AODV

Wait for Route

Request

Receive Route Reply

Check the

message

Destination

Start

Broadcast the

message to other

nodes

End

- 64 -

C3. AODV Protocol Flow Chart

 If the Link is Available

 If the Link is disconnected

 No

yes

Figure 46. AODV Protocol Flow Chart

Start

Verify Link

Connectivity

Previous node verify with

neighbor table

If Neighbor

Available

Route Reply

Process

Stop

Route Discovery

Process

Transfer Data

- 65 -

C4. Black hole attack Flow Chart

 Common

 Active / Passive Attack

 No

 Yes

Figure 47. Black hole attack Flow Chart

Start

Join the Network

Received Packet

Select the

Attack

Reply the False

RREP

If Control

Packet

Affected

Discard Packet

End

- 66 -

C5. Cooperative Black hole Detection Flow Chart

Figure 48.Cooperative Black hole Detection Flow Chart

Identify Cooperative

Blackhole nodes

Start

Checking Network

Propagation

Checking Route Request &

Route Reply

Identify Blackhole nodes

If the nodes

are

Blackhole ?

Stop

- 67 -

C6. Flow Diagram of Implementation of the Proposed Method in Network Simulator

Version 3

Legend

 Tools

 Output

 User input

Figure 49. Overall Diagram of Proposed Method

NS3

Simulator
Output

Tracefile
C++ Compiler

Network

Animator

Network

Animator

Gnuplot

Topology

Graphs

Performance

Graph

Source Code

Header File

- 68 -

Appendix D- UML Diagram

D1. AODV Message Parsing

Figure 50. AODV Message parsing

- 69 -

D2. AODV Protocol Class Diagram

Figure 51. AODV Class Diagram

- 70 -

D3. AODV Protocol Message Passing Sequence Diagram

Figure 52. AODV Protocol Message Parsing

- 71 -

D4. AODV Message Passing for Route Discovery

Figure 53. AODV Message Passing for Route Discovery

- 72 -

Appendix E

Source Code

Source codes which are written in C++ Language implemented in Network

simulator 3.24 for the tasks which are listed in this appendix.

E1.The Complete Source code for the Block-hole attack source code known as

blackhole.cc

/* Blackhole Attack Simulation with AODV Routing Protocol - Sample

Program

 *

 * Network topology

 *

 * n0 ------------> n1 ------------> n2 -------------> n3

 *

 * Each node is in the range of its immediate adjacent.

 * Source Node: n1

 * Destination Node: n3

 * Malicious Node: n0

 *

 * Output of this file:

 * 1. Generates blackhole.routes file for routing table information and

 * 2. blackhole.xml file for viewing animation in NetAnim.

 *

 */

#include "ns3/aodv-module.h"

#include "ns3/netanim-module.h"

#include "ns3/core-module.h"

#include "ns3/network-module.h"

#include "ns3/internet-module.h"

#include "ns3/applications-module.h"

#include "ns3/mobility-module.h"

#include "ns3/wifi-module.h"

- 73 -

#include "ns3/netanim-module.h"

#include "ns3/flow-monitor-module.h"

#include "ns3/mobility-module.h"

#include "myapp.h"

NS_LOG_COMPONENT_DEFINE ("Blackhole");

using namespace ns3;

void

ReceivePacket(Ptr<const Packet> p, const Address & addr)

{

 std::cout << Simulator::Now ().GetSeconds () << "\t" << p-

>GetSize() <<"\n";

}

int main (int argc, char *argv[])

{

 bool enableFlowMonitor = false;

 std::string phyMode ("DsssRate1Mbps");

 CommandLine cmd;

 cmd.AddValue ("EnableMonitor", "Enable Flow Monitor",

enableFlowMonitor);

 cmd.AddValue ("phyMode", "Wifi Phy mode", phyMode);

 cmd.Parse (argc, argv);

// Explicitly create the nodes required by the topology (shown above).

 NS_LOG_INFO ("Create nodes.");

 NodeContainer c; // ALL Nodes

 NodeContainer not_malicious;

 NodeContainer malicious;

 c.Create(4);

 not_malicious.Add(c.Get(1));

 not_malicious.Add(c.Get(2));

 not_malicious.Add(c.Get(3));

 malicious.Add(c.Get(0));

 // Set up WiFi

 WifiHelper wifi;

- 74 -

 YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();

 wifiPhy.SetPcapDataLinkType

(YansWifiPhyHelper::DLT_IEEE802_11);

 YansWifiChannelHelper wifiChannel ;

 wifiChannel.SetPropagationDelay

("ns3::ConstantSpeedPropagationDelayModel");

 wifiChannel.AddPropagationLoss

("ns3::TwoRayGroundPropagationLossModel",

 "SystemLoss", DoubleValue(1),

 "HeightAboveZ", DoubleValue(1.5));

 // For range near 250m

 wifiPhy.Set ("TxPowerStart", DoubleValue(33));

 wifiPhy.Set ("TxPowerEnd", DoubleValue(33));

 wifiPhy.Set ("TxPowerLevels", UintegerValue(1));

 wifiPhy.Set ("TxGain", DoubleValue(0));

 wifiPhy.Set ("RxGain", DoubleValue(0));

 wifiPhy.Set ("EnergyDetectionThreshold", DoubleValue(-61.8));

 wifiPhy.Set ("CcaMode1Threshold", DoubleValue(-64.8));

 wifiPhy.SetChannel (wifiChannel.Create ());

 // Add a non-QoS upper mac

 NqosWifiMacHelper wifiMac = NqosWifiMacHelper::Default ();

 wifiMac.SetType ("ns3::AdhocWifiMac");

 // Set 802.11b standard

 wifi.SetStandard (WIFI_PHY_STANDARD_80211b);

 wifi.SetRemoteStationManager ("ns3::ConstantRateWifiManager",

 "DataMode",StringValue(phyMode),

 "ControlMode",StringValue(phyMode));

 NetDeviceContainer devices;

 devices = wifi.Install (wifiPhy, wifiMac, c);

// Enable AODV

- 75 -

 AodvHelper aodv;

 AodvHelper malicious_aodv;

 // Set up internet stack

 InternetStackHelper internet;

 internet.SetRoutingHelper (aodv);

 internet.Install (not_malicious);

 malicious_aodv.Set("IsMalicious",BooleanValue(true)); // putting

false instead of*true* would disable the malicious behavior of the

node

internet.SetRoutingHelper (malicious_aodv);

 internet.Install (malicious);

 // Set up Addresses

 Ipv4AddressHelper ipv4;

 NS_LOG_INFO ("Assign IP Addresses.");

 ipv4.SetBase ("10.1.2.0", "255.255.255.0");

 Ipv4InterfaceContainer ifcont = ipv4.Assign (devices);

 NS_LOG_INFO ("Create Applications.");

 // UDP connection from N1 to N3

 uint16_t sinkPort = 6;

 Address sinkAddress (InetSocketAddress (ifcont.GetAddress (3),

sinkPort)); // interfaceof n3

PacketSinkHelper packetSinkHelper ("ns3::UdpSocketFactory",

InetSocketAddress (Ipv4Address::GetAny (), sinkPort));

 ApplicationContainer sinkApps = packetSinkHelper.Install (c.Get (3));

//n3 as sink

 sinkApps.Start (Seconds (0.));

 sinkApps.Stop (Seconds (100.));

 Ptr<Socket> ns3UdpSocket = Socket::CreateSocket (c.Get (1),

UdpSocketFactory::GetTypeId ()); //source at n1

 // Create UDP application at n1

 Ptr<MyApp> app = CreateObject<MyApp> ();

- 76 -

 app->Setup (ns3UdpSocket, sinkAddress, 1040, 5, DataRate

("250Kbps"));

 c.Get (1)->AddApplication (app);

 app->SetStartTime (Seconds (40.));

 app->SetStopTime (Seconds (100.));

// Set Mobility for all nodes

 MobilityHelper mobility;

 Ptr<ListPositionAllocator> positionAlloc = CreateObject

<ListPositionAllocator>();

 positionAlloc ->Add(Vector(100, 0, 0)); // node0

 positionAlloc ->Add(Vector(200, 0, 0)); // node1

 positionAlloc ->Add(Vector(450, 0, 0)); // node2

 positionAlloc ->Add(Vector(550, 0, 0)); // node3

 mobility.SetPositionAllocator(positionAlloc);

 mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");

 mobility.Install(c);

 AnimationInterface anim ("blackhole.xml"); // Mandatory

 AnimationInterface::SetConstantPosition (c.Get (0), 0, 500);

 AnimationInterface::SetConstantPosition (c.Get (1), 200, 500);

 AnimationInterface::SetConstantPosition (c.Get (2), 400, 500);

 AnimationInterface::SetConstantPosition (c.Get (3), 600, 500);

 anim.EnablePacketMetadata(true);

 Ptr<OutputStreamWrapper> routingStream =

Create<OutputStreamWrapper> ("blackhole.routes", std::ios::out);

 aodv.PrintRoutingTableAllAt (Seconds (45), routingStream);

 // Trace Received Packets

Config::ConnectWithoutContext("/NodeList/*/ApplicationList/*/$ns3::

PacketSink/Rx",MakeCallback (&ReceivePacket));

//

// Calculate Throughput using Flowmonitor

//

 FlowMonitorHelper flowmon;

 Ptr<FlowMonitor> monitor = flowmon.InstallAll();

- 77 -

//// Now, do the actual simulation.

 NS_LOG_INFO ("Run Simulation.");

 Simulator::Stop (Seconds(100.0));

 Simulator::Run ();

 monitor->CheckForLostPackets ();

 Ptr<Ipv4FlowClassifier> classifier =

DynamicCast<Ipv4FlowClassifier> (flowmon.GetClassifier ());

 std::map<FlowId, FlowMonitor::FlowStats> stats = monitor-

>GetFlowStats ();

 for (std::map<FlowId, FlowMonitor::FlowStats>::const_iterator i =

stats.begin (); i != stats.end (); ++i)

 {

 Ipv4FlowClassifier::FiveTuple t = classifier->FindFlow (i-

>first);

 if ((t.sourceAddress=="10.1.2.2" && t.destinationAddress ==

"10.1.2.4"))

 {

 std::cout << "Flow " << i->first << " (" << t.sourceAddress << " -

> " <<t.destinationAddress << ")\n";

 std::cout << " Tx Bytes: " << i->second.txBytes << "\n";

 std::cout << " Rx Bytes: " << i->second.rxBytes << "\n";

 std::cout << " Throughput: " << i->second.rxBytes * 8.0 / (i-

>second.timeLastRxPacket.GetSeconds() - i-

>second.timeFirstTxPacket.GetSeconds())/1024/1024 << " Mbps\n";

 }

 }

 monitor->SerializeToXmlFile("lab-4.flowmon", true, true);

}

E2.The Complete code for myApp.h header file known as myApp.h

 #include "ns3/applications-module.h"

#include "ns3/core-module.h"

- 78 -

using namespace ns3;

class MyApp : public Application

{

public:

 MyApp ();

 virtual ~MyApp();

void Setup (Ptr<Socket> socket, Address address, uint32_t packetSize,

uint32_t nPackets, DataRate dataRate);

private:

 virtual void StartApplication (void);

 virtual void StopApplication (void);

 void ScheduleTx (void);

 void SendPacket (void);

 Ptr<Socket> m_socket;

 Address m_peer;

 uint32_t m_packetSize;

 uint32_t m_nPackets;

 DataRate m_dataRate;

 EventId m_sendEvent;

 bool m_running;

 uint32_t m_packetsSent;

};

MyApp::MyApp ()

 : m_socket (0),

 m_peer (),

 m_packetSize (0),

 m_nPackets (0),

 m_dataRate (0),

 m_sendEvent (),

 m_running (false),

 m_packetsSent (0)

{

- 79 -

}

MyApp::~MyApp()

{

 m_socket = 0;

}

void

MyApp::Setup (Ptr<Socket> socket, Address address, uint32_t

packetSize, uint32_t nPackets, DataRate dataRate)

{

 m_socket = socket;

 m_peer = address;

 m_packetSize = packetSize;

 m_nPackets = nPackets;

 m_dataRate = dataRate;

void

MyApp::StartApplication (void)

{

 m_running = true;

 m_packetsSent = 0;

 m_socket->Bind ();

m_socket->Connect (m_peer);

 SendPacket ();

}

Void MyApp::StopApplication (void)

{

 m_running = false;

 if (m_sendEvent.IsRunning ())

 {

 Simulator::Cancel (m_sendEvent);

 }

 if (m_socket)

 {

 m_socket->Close ();

 }

}

- 80 -

void

MyApp::SendPacket (void)

{

 Ptr<Packet> packet = Create<Packet> (m_packetSize);

 m_socket->Send (packet);

 if (++m_packetsSent < m_nPackets)

 {

 ScheduleTx ();

 }

}

void

MyApp::ScheduleTx (void)

{

 if (m_running)

 {

 Time tNext (Seconds (m_packetSize * 8 / static_cast<double>

(m_dataRate.GetBitRate ())));

m_sendEvent = Simulator::Schedule (tNext, &MyApp::SendPacket,

this);

 }

}

E3.The complete Source code for the OAODV protocol source code known as

OAODV.cc

#include "ns3/aodv-module.h"

#include "ns3/netanim-module.h"

#include "ns3/core-module.h"

#include "ns3/network-module.h"

#include "ns3/internet-module.h"

#include "ns3/applications-module.h"

#include "ns3/mobility-module.h"

- 81 -

#include "ns3/wifi-module.h"

#include "ns3/netanim-module.h"

#include "ns3/flow-monitor-module.h"

#include "ns3/mobility-module.h"

#include "myapp.h"

NS_LOG_COMPONENT_DEFINE ("Blackhole");

using namespace ns3;

void

ReceivePacket(Ptr<const Packet> p, const Address & addr)

{

 std::cout << Simulator::Now ().GetSeconds () << "\t" << p-

>GetSize() <<"\n";

}

int main (int argc, char *argv[])

{

 bool enableFlowMonitor = false;

 std::string phyMode ("DsssRate1Mbps");

 CommandLine cmd;

 cmd.AddValue ("EnableMonitor", "Enable Flow Monitor",

enableFlowMonitor);

 cmd.AddValue ("phyMode", "Wifi Phy mode", phyMode);

 cmd.Parse (argc, argv);

 NS_LOG_INFO ("Create nodes.");

 NodeContainer c; // ALL Nodes

 NodeContainer not_malicious;

 NodeContainer malicious;

 c.Create(100);

 not_malicious.Add(c.Get(1));

 not_malicious.Add(c.Get(2));

 not_malicious.Add(c.Get(3));

 not_malicious.Add(c.Get(4));

 not_malicious.Add(c.Get(5));

- 82 -

 not_malicious.Add(c.Get(6));

 not_malicious.Add(c.Get(7));

 not_malicious.Add(c.Get(8));

 not_malicious.Add(c.Get(9));

 not_malicious.Add(c.Get(10));

 not_malicious.Add(c.Get(11));

 not_malicious.Add(c.Get(12));

 not_malicious.Add(c.Get(13));

 not_malicious.Add(c.Get(14));

 not_malicious.Add(c.Get(15));

 not_malicious.Add(c.Get(16));

 not_malicious.Add(c.Get(17));

not_malicious.Add(c.Get(18));

not_malicious.Add(c.Get(19));

not_malicious.Add(c.Get(20));

not_malicious.Add(c.Get(21));

not_malicious.Add(c.Get(22));

not_malicious.Add(c.Get(23));

not_malicious.Add(c.Get(24));

not_malicious.Add(c.Get(25));

not_malicious.Add(c.Get(26));

not_malicious.Add(c.Get(27));

not_malicious.Add(c.Get(28));

not_malicious.Add(c.Get(29));

not_malicious.Add(c.Get(30));

not_malicious.Add(c.Get(31));

not_malicious.Add(c.Get(32));

not_malicious.Add(c.Get(33));

not_malicious.Add(c.Get(34));

not_malicious.Add(c.Get(35));

not_malicious.Add(c.Get(36));

not_malicious.Add(c.Get(37));

- 83 -

not_malicious.Add(c.Get(38));

not_malicious.Add(c.Get(39));

not_malicious.Add(c.Get(40));

not_malicious.Add(c.Get(41));

not_malicious.Add(c.Get(42));

not_malicious.Add(c.Get(43));

not_malicious.Add(c.Get(44));

not_malicious.Add(c.Get(45));

not_malicious.Add(c.Get(46));

not_malicious.Add(c.Get(47));

not_malicious.Add(c.Get(48));

not_malicious.Add(c.Get(49));

not_malicious.Add(c.Get(50));

not_malicious.Add(c.Get(51));

not_malicious.Add(c.Get(52));

not_malicious.Add(c.Get(53));

not_malicious.Add(c.Get(54));

not_malicious.Add(c.Get(55));

not_malicious.Add(c.Get(56));

not_malicious.Add(c.Get(57));

not_malicious.Add(c.Get(58));

not_malicious.Add(c.Get(59));

not_malicious.Add(c.Get(60));

not_malicious.Add(c.Get(61));

not_malicious.Add(c.Get(62));

not_malicious.Add(c.Get(63));

not_malicious.Add(c.Get(64));

not_malicious.Add(c.Get(65));

not_malicious.Add(c.Get(66));

not_malicious.Add(c.Get(67));

not_malicious.Add(c.Get(68));

not_malicious.Add(c.Get(69));

- 84 -

not_malicious.Add(c.Get(70));

not_malicious.Add(c.Get(71));

not_malicious.Add(c.Get(72));

not_malicious.Add(c.Get(73));

not_malicious.Add(c.Get(74));

not_malicious.Add(c.Get(75));

not_malicious.Add(c.Get(76));

not_malicious.Add(c.Get(77));

not_malicious.Add(c.Get(78));

not_malicious.Add(c.Get(79));

not_malicious.Add(c.Get(80));

not_malicious.Add(c.Get(81));

not_malicious.Add(c.Get(82));

not_malicious.Add(c.Get(83));

not_malicious.Add(c.Get(84));

not_malicious.Add(c.Get(85));

not_malicious.Add(c.Get(86));

not_malicious.Add(c.Get(87));

not_malicious.Add(c.Get(88));

not_malicious.Add(c.Get(89));

not_malicious.Add(c.Get(90));

not_malicious.Add(c.Get(91));

not_malicious.Add(c.Get(92));

not_malicious.Add(c.Get(93));

not_malicious.Add(c.Get(94));

not_malicious.Add(c.Get(95));

not_malicious.Add(c.Get(96));

not_malicious.Add(c.Get(97));

not_malicious.Add(c.Get(98));

not_malicious.Add(c.Get(99));

 malicious.Add(c.Get(0));

 // Set up WiFi

- 85 -

 WifiHelper wifi;

 YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();

wifiPhy.SetPcapDataLinkType(YansWifiPhyHelper::DLT_IEEE802

_11)

 YansWifiChannelHelper wifiChannel ;

 wifiChannel.SetPropagationDelay

("ns3::ConstantSpeedPropagationDelayModel");

 wifiChannel.AddPropagationLoss

("ns3::TwoRayGroundPropagationLossModel",

 "SystemLoss", DoubleValue(1),

 "HeightAboveZ", DoubleValue(1.5));

 // For range near 250m

 wifiPhy.Set ("TxPowerStart", DoubleValue(33));

 wifiPhy.Set ("TxPowerEnd", DoubleValue(33));

 wifiPhy.Set ("TxPowerLevels", UintegerValue(1));

 wifiPhy.Set ("TxGain", DoubleValue(0));

 wifiPhy.Set ("RxGain", DoubleValue(0));

 wifiPhy.Set ("EnergyDetectionThreshold", DoubleValue(-61.8));

 wifiPhy.Set ("CcaMode1Threshold", DoubleValue(-64.8));

 wifiPhy.SetChannel (wifiChannel.Create ());

 // Add a non-QoS upper mac

 NqosWifiMacHelper wifiMac = NqosWifiMacHelper::Default ();

 wifiMac.SetType ("ns3::AdhocWifiMac");

 // Set 802.11b standard

wifi.SetStandard (WIFI_PHY_STANDARD_80211b);

 wifi.SetRemoteStationManager ("ns3::ConstantRateWifiManager",

 "DataMode",StringValue(phyMode),

 "ControlMode",StringValue(phyMode));

 NetDeviceContainer devices;

 devices = wifi.Install (wifiPhy, wifiMac, c);

// Enable AODV

 AodvHelper aodv;

- 86 -

 AodvHelper malicious_aodv;

 // Set up internet stack

 InternetStackHelper internet;

 internet.SetRoutingHelper (aodv);

 internet.Install (not_malicious);

 malicious_aodv.Set("IsMalicious",BooleanValue(true)); // putting

false instead of *true* would disable the malicious behavior of the

node

 internet.SetRoutingHelper (malicious_aodv);

 internet.Install (malicious);

 // Set up Addresses

 Ipv4AddressHelper ipv4;

 NS_LOG_INFO ("Assign IP Addresses.");

 ipv4.SetBase ("10.1.2.0", "255.255.255.0");

 Ipv4InterfaceContainer ifcont = ipv4.Assign (devices);

 NS_LOG_INFO ("Create Applications.");

 // UDP connection from N1 to N3

 uint16_t sinkPort = 6;

 std::cout << " Sink Port: " << sinkPort << "\n";

 Address sinkAddress (InetSocketAddress (ifcont.GetAddress (4),

sinkPort)); // interface of n3

 PacketSinkHelper packetSinkHelper ("ns3::UdpSocketFactory",

InetSocketAddress (Ipv4Address::GetAny (), sinkPort));

 ApplicationContainer sinkApps = packetSinkHelper.Install (c.Get

(4)); //n3 as sink

 sinkApps.Start (Seconds (0.));

 sinkApps.Stop (Seconds (100.));

 Ptr<Socket> ns3UdpSocket = Socket::CreateSocket (c.Get (1),

UdpSocketFactory::GetTypeId ()); //source at n1

 Ptr<MyApp> app = CreateObject<MyApp> ();

 app->Setup (ns3UdpSocket, sinkAddress, 1040, 5, DataRate

("250Kbps"));

- 87 -

 c.Get (1)->AddApplication (app);

 app->SetStartTime (Seconds (40.));

 app->SetStopTime (Seconds (100.));

// Set Mobility for all nodes

 MobilityHelper mobility;

 Ptr<ListPositionAllocator> positionAlloc = CreateObject

<ListPositionAllocator>();

 positionAlloc ->Add(Vector(100, 0, 0)); // node0

 positionAlloc ->Add(Vector(200, 0, 0)); // node1

 positionAlloc ->Add(Vector(450, 0, 0)); // node2

 positionAlloc ->Add(Vector(550, 0, 0)); // node3

 positionAlloc ->Add(Vector(650, 0, 0)); // node4

 positionAlloc ->Add(Vector(700, 0, 0)); // node5

 positionAlloc ->Add(Vector(750, 0, 0)); // node6

 positionAlloc ->Add(Vector(800, 0, 0)); // node7

 positionAlloc ->Add(Vector(860, 0, 0)); // node8

 positionAlloc ->Add(Vector(910, 0, 0)); // node9

 mobility.SetPositionAllocator(positionAlloc);

mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");

 mobility.Install(c);

 AnimationInterface anim ("OAodv.xml"); // Mandatory

 AnimationInterface::SetConstantPosition (c.Get (0), 0, 500);

 AnimationInterface::SetConstantPosition (c.Get (1), 200, 500);

 AnimationInterface::SetConstantPosition (c.Get (2), 400, 500);

 AnimationInterface::SetConstantPosition (c.Get (3), 600, 500);

 AnimationInterface::SetConstantPosition (c.Get (4), 800, 500);

 AnimationInterface::SetConstantPosition (c.Get (5), 0, 600);

 AnimationInterface::SetConstantPosition (c.Get (6), 200, 600);

 AnimationInterface::SetConstantPosition (c.Get (7), 400, 600);

 AnimationInterface::SetConstantPosition (c.Get (8), 600, 600);

 AnimationInterface::SetConstantPosition (c.Get (9), 800, 600);

- 88 -

 AnimationInterface::SetConstantPosition (c.Get (10), 0, 700);

 AnimationInterface::SetConstantPosition (c.Get (11), 200, 700);

 AnimationInterface::SetConstantPosition (c.Get (12), 400, 700);

 AnimationInterface::SetConstantPosition (c.Get (13), 600, 700);

 AnimationInterface::SetConstantPosition (c.Get (14), 800, 700);

 AnimationInterface::SetConstantPosition (c.Get (15), 0, 400);

 AnimationInterface::SetConstantPosition (c.Get (16), 200, 400);

 anim.EnablePacketMetadata(true);

 Ptr<OutputStreamWrapper> routingStream =

Create<OutputStreamWrapper> ("blackhole.routes", std::ios::out);

 aodv.PrintRoutingTableAllAt (Seconds (45), routingStream);

 PcapHelper pcapHelper;

 Ptr<PcapFileWrapper> file = pcapHelper.CreateFile

("blockhole.pcap", std::ios::out, PcapHelper::DLT_PPP);

Config::ConnectWithoutContext("/NodeList/*/ApplicationList/*/$ns

3::PacketSink/Rx", MakeCallback (&ReceivePacket));

 FlowMonitorHelper flowmon;

 Ptr<FlowMonitor> monitor = flowmon.InstallAll();

 NS_LOG_INFO ("Run Simulation.");

 Simulator::Stop (Seconds(100.0));

 Simulator::Run ();

 monitor->CheckForLostPackets ();

 Ptr<Ipv4FlowClassifier> classifier =

DynamicCast<Ipv4FlowClassifier> (flowmon.GetClassifier ());

 std::map<FlowId, FlowMonitor::FlowStats> stats = monitor-

>GetFlowStats ();

uint32_t txPacketsum = 0;

 uint32_t rxPacketsum = 0;

 uint32_t DropPacketsum = 0;

 uint32_t LostPacketsum = 0;

 double Delaysum = 0;

- 89 -

 for (std::map<FlowId, FlowMonitor::FlowStats>::const_iterator i =

stats.begin (); i != stats.end (); ++i)

 {

 txPacketsum += i->second.txPackets;

 rxPacketsum += i->second.rxPackets;

 LostPacketsum += i->second.lostPackets;

 DropPacketsum += i->second.packetsDropped.size();

 Delaysum += i->second.delaySum.GetSeconds();

 Ipv4FlowClassifier::FiveTuple t = classifier->FindFlow (i-

>first);

 std::cout << "Transmission Flow " << i->first << " (" <<

t.sourceAddress << " -> " << t.destinationAddress << ")\n";

 std::cout << " Transmission Bytes: " << i->second.txBytes

<< "\n";

 std::cout << " Receiving Bytes: " << i->second.rxBytes <<

"\n";

 std::cout << " Throughput: " << i->second.rxBytes * 8.0

/ (i->second.timeLastRxPacket.GetSeconds() - i-

>second.timeFirstTxPacket.GetSeconds())/1024/1024 << "

Mbps\n";

 std::cout << " All Tx Packets: " << txPacketsum << "\n";

 std::cout << " All Rx Packets: " << rxPacketsum << "\n";

 std::cout << " All Delay: " << Delaysum / txPacketsum <<"\n";

 std::cout << " All Lost Packets: " << LostPacketsum << "\n";

 std::cout << " All Drop Packets: " << DropPacketsum << "\n";

 std::cout << " Packets Delivery Ratio: " << ((rxPacketsum

*100) / txPacketsum) << "%" << "\n";

 std::cout << " Packets Lost Ratio: " << ((LostPacketsum *100)

/ txPacketsum) << "%" << "\n";

 if ((t.sourceAddress=="10.1.2.2" && t.destinationAddress ==

"10.1.2.4"))

 {

- 90 -

 std::cout << "Transmission Flow " << i->first << " (" <<

t.sourceAddress << " -> " << t.destinationAddress << ")\n";

 std::cout << " Transmission Bytes: " << i->second.txBytes

<< "\n";

 std::cout << " Receiving Bytes: " << i->second.rxBytes <<

"\n";

 std::cout << " Throughput: " << i->second.rxBytes * 8.0

/ (i->second.timeLastRxPacket.GetSeconds() - i-

>second.timeFirstTxPacket.GetSeconds())/1024/1024 << "

Mbps\n";

 std::cout << " All Tx Packets: " << txPacketsum << "\n";

 std::cout << " All Rx Packets: " << rxPacketsum << "\n";

 std::cout << " All Delay: " << Delaysum / txPacketsum <<"\n";

 std::cout << " All Lost Packets: " << LostPacketsum << "\n";

 std::cout << " All Drop Packets: " << DropPacketsum << "\n";

 std::cout << " Packets Delivery Ratio: " << ((rxPacketsum

*100) / txPacketsum) << "%" << "\n";

 std::cout << " Packets Lost Ratio: " << ((LostPacketsum *100)

/ txPacketsum) << "%" << "\n";

 }

 }

 monitor->SerializeToXmlFile("lab-4.flowmon", true, true);

}

E4.The complete Source code for the Modified OADV protocol source code

known as MDPROADV.cc

#include "ns3/aodv-module.h"

#include "ns3/netanim-module.h"

#include "ns3/core-module.h"

#include "ns3/network-module.h"

#include "ns3/internet-module.h"

- 91 -

#include "ns3/applications-module.h"

#include "ns3/mobility-module.h"

#include "ns3/wifi-module.h"

#include "ns3/netanim-module.h"

#include "ns3/flow-monitor-module.h"

#include "ns3/mobility-module.h"

#include "myapp.h"

NS_LOG_COMPONENT_DEFINE ("Blackhole");

using namespace ns3;

void

ReceivePacket(Ptr<const Packet> p, const Address & addr)

{

 std::cout << Simulator::Now ().GetSeconds () << "\t" << p-

>GetSize() <<"\n";

}

int main (int argc, char *argv[])

{

 bool enableFlowMonitor = false;

 std::string phyMode ("DsssRate1Mbps");

 CommandLine cmd;

 cmd.AddValue ("EnableMonitor", "Enable Flow Monitor",

enableFlowMonitor);

 cmd.AddValue ("phyMode", "Wifi Phy mode", phyMode);

 cmd.Parse (argc, argv);

 NS_LOG_INFO ("Create nodes.");

 NodeContainer c; // ALL Nodes

 NodeContainer not_malicious;

 NodeContainer malicious;

 c.Create(100); //17

 not_malicious.Add(c.Get(1));

 not_malicious.Add(c.Get(2));

 not_malicious.Add(c.Get(3));

- 92 -

 not_malicious.Add(c.Get(4));

 //not_malicious.Add(c.Get(5));

 //not_malicious.Add(c.Get(6));

 not_malicious.Add(c.Get(7));

 not_malicious.Add(c.Get(8));

 not_malicious.Add(c.Get(9));

 not_malicious.Add(c.Get(10));

 not_malicious.Add(c.Get(11));

 not_malicious.Add(c.Get(12));

 not_malicious.Add(c.Get(13));

 not_malicious.Add(c.Get(14));

 not_malicious.Add(c.Get(15));

 not_malicious.Add(c.Get(16));

not_malicious.Add(c.Get(17));

not_malicious.Add(c.Get(18));

not_malicious.Add(c.Get(19));

//not_malicious.Add(c.Get(20));

not_malicious.Add(c.Get(21));

not_malicious.Add(c.Get(22));

not_malicious.Add(c.Get(23));

not_malicious.Add(c.Get(24));

not_malicious.Add(c.Get(25));

not_malicious.Add(c.Get(26));

not_malicious.Add(c.Get(27));

not_malicious.Add(c.Get(28));

not_malicious.Add(c.Get(29));

not_malicious.Add(c.Get(30));

not_malicious.Add(c.Get(31));

not_malicious.Add(c.Get(32));

not_malicious.Add(c.Get(33));

not_malicious.Add(c.Get(34));

not_malicious.Add(c.Get(35));

- 93 -

not_malicious.Add(c.Get(36));

not_malicious.Add(c.Get(37));

not_malicious.Add(c.Get(38));

not_malicious.Add(c.Get(39));

//not_malicious.Add(c.Get(40));

not_malicious.Add(c.Get(41));

not_malicious.Add(c.Get(42));

not_malicious.Add(c.Get(43));

not_malicious.Add(c.Get(44));

//not_malicious.Add(c.Get(45));

//not_malicious.Add(c.Get(46));

not_malicious.Add(c.Get(47));

not_malicious.Add(c.Get(48));

not_malicious.Add(c.Get(49));

not_malicious.Add(c.Get(50));

not_malicious.Add(c.Get(51));

not_malicious.Add(c.Get(52));

not_malicious.Add(c.Get(53));

not_malicious.Add(c.Get(54));

not_malicious.Add(c.Get(55));

not_malicious.Add(c.Get(56));

not_malicious.Add(c.Get(57));

not_malicious.Add(c.Get(58));

not_malicious.Add(c.Get(59));

//not_malicious.Add(c.Get(60));

not_malicious.Add(c.Get(61));

not_malicious.Add(c.Get(62));

not_malicious.Add(c.Get(63));

not_malicious.Add(c.Get(64));

//not_malicious.Add(c.Get(65));

//not_malicious.Add(c.Get(66));

not_malicious.Add(c.Get(67));

- 94 -

not_malicious.Add(c.Get(68));

not_malicious.Add(c.Get(69));

not_malicious.Add(c.Get(70));

not_malicious.Add(c.Get(71));

not_malicious.Add(c.Get(72));

not_malicious.Add(c.Get(73));

not_malicious.Add(c.Get(74));

not_malicious.Add(c.Get(75));

not_malicious.Add(c.Get(76));

not_malicious.Add(c.Get(77));

not_malicious.Add(c.Get(78));

not_malicious.Add(c.Get(79));

//not_malicious.Add(c.Get(80));

not_malicious.Add(c.Get(81));

not_malicious.Add(c.Get(82));

not_malicious.Add(c.Get(83));

not_malicious.Add(c.Get(84));

not_malicious.Add(c.Get(85));

not_malicious.Add(c.Get(86));

not_malicious.Add(c.Get(87));

not_malicious.Add(c.Get(88));

not_malicious.Add(c.Get(89));

not_malicious.Add(c.Get(90));

not_malicious.Add(c.Get(91));

not_malicious.Add(c.Get(92));

not_malicious.Add(c.Get(93));

not_malicious.Add(c.Get(94));

//not_malicious.Add(c.Get(95));

//not_malicious.Add(c.Get(96));

not_malicious.Add(c.Get(97));

not_malicious.Add(c.Get(98));

not_malicious.Add(c.Get(99));

- 95 -

//not_malicious.Add(c.Get(100));

 malicious.Add(c.Get(0));

 malicious.Add(c.Get(5));

 malicious.Add(c.Get(6));

 malicious.Add(c.Get(20));

 malicious.Add(c.Get(45));

malicious.Add(c.Get(46));

malicious.Add(c.Get(60));

malicious.Add(c.Get(65));

malicious.Add(c.Get(66));

malicious.Add(c.Get(80));

 // Set up WiFi

 WifiHelper wifi;

 YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();

 wifiPhy.SetPcapDataLinkType

(YansWifiPhyHelper::DLT_IEEE802_11);

 YansWifiChannelHelper wifiChannel ;

wifiChannel.SetPropagationDelay

("ns3::ConstantSpeedPropagationDelayModel");

wifiChannel.AddPropagationLoss

("ns3::TwoRayGroundPropagationLossModel",

 "SystemLoss", DoubleValue(1),

 "HeightAboveZ", DoubleValue(1.5));

 // For range near 250m

 wifiPhy.Set ("TxPowerStart", DoubleValue(33));

 wifiPhy.Set ("TxPowerEnd", DoubleValue(33));

 wifiPhy.Set ("TxPowerLevels", UintegerValue(1));

 wifiPhy.Set ("TxGain", DoubleValue(0));

 wifiPhy.Set ("RxGain", DoubleValue(0));

 wifiPhy.Set ("EnergyDetectionThreshold", DoubleValue(-61.8));

 wifiPhy.Set ("CcaMode1Threshold", DoubleValue(-64.8));

 wifiPhy.SetChannel (wifiChannel.Create ());

- 96 -

 // Add a non-QoS upper mac

 NqosWifiMacHelper wifiMac = NqosWifiMacHelper::Default ();

 wifiMac.SetType ("ns3::AdhocWifiMac");

 // Set 802.11b standard

 wifi.SetStandard (WIFI_PHY_STANDARD_80211b);

 wifi.SetRemoteStationManager ("ns3::ConstantRateWifiManager",

 "DataMode",StringValue(phyMode),

 "ControlMode",StringValue(phyMode));

 NetDeviceContainer devices;

 devices = wifi.Install (wifiPhy, wifiMac, c);

// Enable AODV

 AodvHelper aodv;

 AodvHelper malicious_aodv;

 // Set up internet stack

 InternetStackHelper internet;

 internet.SetRoutingHelper (aodv);

 internet.Install (not_malicious);

 malicious_aodv.Set("IsMalicious",BooleanValue(true)); // putting *false*

instead of *true* would disable the malicious behavior of the node

 internet.SetRoutingHelper (malicious_aodv);

 internet.Install (malicious);

 // Set up Addresses

 Ipv4AddressHelper ipv4;

 NS_LOG_INFO ("Assign IP Addresses.");

 ipv4.SetBase ("10.1.2.0", "255.255.255.0");

 Ipv4InterfaceContainer ifcont = ipv4.Assign (devices);

 NS_LOG_INFO ("Create Applications.");

 // UDP connection from N1 to N3

 uint16_t sinkPort = 6;

 std::cout << " Sink Port: " << sinkPort << "\n";

Address sinkAddress (InetSocketAddress (ifcont.GetAddress (4),

sinkPort)); // interface of n3

- 97 -

PacketSinkHelper packetSinkHelper ("ns3::UdpSocketFactory",

InetSocketAddress (Ipv4Address::GetAny (), sinkPort));

ApplicationContainer sinkApps = packetSinkHelper.Install (c.Get (4));

//n3 as sink

 sinkApps.Start (Seconds (0.));

 sinkApps.Stop (Seconds (100.));

Ptr<Socket> ns3UdpSocket = Socket::CreateSocket (c.Get (1),

UdpSocketFactory::GetTypeId ()); //source at n1

 Ptr<MyApp> app = CreateObject<MyApp> ();

 app->Setup (ns3UdpSocket, sinkAddress, 1040, 5, DataRate

("250Kbps"));

 c.Get (1)->AddApplication (app);

 app->SetStartTime (Seconds (40.));

 app->SetStopTime (Seconds (100.));

 MobilityHelper mobility;

Ptr<ListPositionAllocator> positionAlloc = CreateObject

<ListPositionAllocator>();

 positionAlloc ->Add(Vector(100, 0, 0)); // node0

 positionAlloc ->Add(Vector(200, 0, 0)); // node1

 positionAlloc ->Add(Vector(450, 0, 0)); // node2

 positionAlloc ->Add(Vector(550, 0, 0)); // node3

 positionAlloc ->Add(Vector(650, 0, 0)); // node4

 positionAlloc ->Add(Vector(700, 0, 0)); // node5

 positionAlloc ->Add(Vector(750, 0, 0)); // node6

 positionAlloc ->Add(Vector(800, 0, 0)); // node7

 positionAlloc ->Add(Vector(860, 0, 0)); // node8

 positionAlloc ->Add(Vector(910, 0, 0)); // node9

 mobility.SetPositionAllocator(positionAlloc);

 mobility.SetMobilityModel("ns3::ConstantPositionMobilityModel");

 mobility.Install(c);

 AnimationInterface anim ("MDPRAODV.xml"); // Mandatory

 AnimationInterface::SetConstantPosition (c.Get (0), 0, 500);

- 98 -

 AnimationInterface::SetConstantPosition (c.Get (1), 200, 500);

 AnimationInterface::SetConstantPosition (c.Get (2), 400, 500);

 AnimationInterface::SetConstantPosition (c.Get (3), 600, 500);

 AnimationInterface::SetConstantPosition (c.Get (4), 800, 500);

 AnimationInterface::SetConstantPosition (c.Get (5), 0, 600);

 AnimationInterface::SetConstantPosition (c.Get (6), 200, 600);

 AnimationInterface::SetConstantPosition (c.Get (7), 400, 600);

 AnimationInterface::SetConstantPosition (c.Get (8), 600, 600);

 AnimationInterface::SetConstantPosition (c.Get (9), 800, 600);

 AnimationInterface::SetConstantPosition (c.Get (10), 0, 700);

 AnimationInterface::SetConstantPosition (c.Get (11), 200, 700);

 AnimationInterface::SetConstantPosition (c.Get (12), 400, 700);

 AnimationInterface::SetConstantPosition (c.Get (13), 600, 700);

 AnimationInterface::SetConstantPosition (c.Get (14), 800, 700);

 AnimationInterface::SetConstantPosition (c.Get (15), 0, 400);

 AnimationInterface::SetConstantPosition (c.Get (16), 200, 400);

AnimationInterface::SetConstantPosition (c.Get (17), 0, 800);

AnimationInterface::SetConstantPosition (c.Get (18), 200, 800);

AnimationInterface::SetConstantPosition (c.Get (19), 400, 800);

AnimationInterface::SetConstantPosition (c.Get (20), 600, 800);

AnimationInterface::SetConstantPosition (c.Get (21), 800, 800);

anim.EnablePacketMetadata(true);

 Ptr<OutputStreamWrapper> routingStream =

Create<OutputStreamWrapper> ("Cooperative_blackhole.routes",

std::ios::out);

 aodv.PrintRoutingTableAllAt (Seconds (45), routingStream);

 PcapHelper pcapHelper;

 Ptr<PcapFileWrapper> file = pcapHelper.CreateFile

("Cooperative_blockhole.pcap", std::ios::out, PcapHelper::DLT_PPP);

Config::ConnectWithoutContext("/NodeList/*/ApplicationList/*/$ns3::Pack

etSink/Rx", MakeCallback (&ReceivePacket));

 FlowMonitorHelper flowmon;

- 99 -

 Ptr<FlowMonitor> monitor = flowmon.InstallAll();

 NS_LOG_INFO ("Run Simulation.");

 Simulator::Stop (Seconds(100.0));

 Simulator::Run ();

 monitor->CheckForLostPackets ();

 Ptr<Ipv4FlowClassifier> classifier = DynamicCast<Ipv4FlowClassifier>

(flowmon.GetClassifier ());

 std::map<FlowId, FlowMonitor::FlowStats> stats = monitor-

>GetFlowStats ();

uint32_t txPacketsum = 0;

 uint32_t rxPacketsum = 0;

 uint32_t DropPacketsum = 0;

 uint32_t LostPacketsum = 0;

 double Delaysum = 0;

for (std::map<FlowId, FlowMonitor::FlowStats>::const_iterator i =

stats.begin (); i != stats.end (); ++i)

 {

txPacketsum += i->second.txPackets;

 rxPacketsum += i->second.rxPackets;

 LostPacketsum += i->second.lostPackets;

 DropPacketsum += i->second.packetsDropped.size();

 Delaysum += i->second.delaySum.GetSeconds();

 Ipv4FlowClassifier::FiveTuple t = classifier->FindFlow (i->first);

std::cout << "Malicious detected \n";

std::cout << "Transmission Flow " << i->first << " (" << t.sourceAddress

<< " -> " << t.destinationAddress << ")\n";

 std::cout << " Transmission Bytes: " << i->second.txBytes << "\n";

 std::cout << " Receiving Bytes: " << i->second.rxBytes << "\n";

std::cout << " Throughput: " << i->second.rxBytes * 8.0 / (i-

>second.timeLastRxPacket.GetSeconds() - i-

>second.timeFirstTxPacket.GetSeconds())/1024/1024 << " Mbps\n";

- 100 -

 if ((t.sourceAddress=="10.1.2.2" && t.destinationAddress ==

"10.1.2.4"))

 {

 std::cout << "Transmission Flow " << i->first << " (" <<

t.sourceAddress << " -> " << t.destinationAddress << ")\n";

 std::cout << " Transmission Bytes: " << i->second.txBytes << "\n";

 std::cout << " Receiving Bytes: " << i->second.rxBytes << "\n";

std::cout << " Throughput: " << i->second.rxBytes * 8.0 / (i-

>second.timeLastRxPacket.GetSeconds() - i-

>second.timeFirstTxPacket.GetSeconds())/1024/1024 << " Mbps\n";

 }

 }

 std::cout << " Coperative blockhole attack detected\n";

 std::cout << " All Tx Packets: " << txPacketsum << "\n";

 std::cout << " All Rx Packets: " << rxPacketsum << "\n";

 std::cout << " All Delay: " << Delaysum / txPacketsum <<"\n";

 std::cout << " Data dopped by malicious attack: " <<

LostPacketsum << "\n";

 std::cout << " All Drop Packets: " << DropPacketsum << "\n";

std::cout << " Packets Delivery Ratio: " << ((rxPacketsum *100) /

txPacketsum) << "%" << "\n";

std::cout << " Packets Lost Ratio: " << ((LostPacketsum *100) /

txPacketsum) << "%" << "\n";

 monitor->SerializeToXmlFile("lab-4.flowmon", true, true);

}

