FEASIBILITY OF CONCENTRATED SOLAR THERMAL POWER PLANT FOR GRID CONNECTED SYSTEM IN SRI LANKA

G.A.S. Perera

(148361G)

Dissertation submitted in partial fulfillment of the requirements for the degree Master of Engineering

Department of Mechanical Engineering

University of Moratuwa

Sri Lanka

May 2019

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other university or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

(Signature)

(Date)

The above candidate has carried out research for the Masters dissertation under my supervision.

(Date)

(Signature of the supervisor)

Abstract

Electricity generation through concentrated solar thermal energy is a rapid developing technology in the world. In order to successfully adapt this technology for Sri Lankan conditions, it is necessary to identify the suitable technology and suitable locations in the country. Also it is a must to evaluate how a small scale concentrated solar power plant performs as the first step since it is a new technology for the country. This research focused on selecting the most suitable technology and location for implementing a concentrated solar power plant through literature review and studying how it performs technically and financially through a software simulation.

Literature review depicted that the parabolic trough is the most suitable technology since it is commercially well proven and most matured technology for grid connected power generation systems. Hambanthota is most suitable location in the country since its Direct Normal Irradiation level is more than 1600 kWh/m²/year. An empherical model of a parabolic trough solar thermal plant of capacity 10 MWe at Hambanthota was simulated using the software, System Advisor Model to obtain the performance parameters. This study further focused on finding out the optimum value of solar multiple, the optimum size of thermal energy storage, the best heat transfer fluid and best collector type for the plant under study.

Simulation results has shown that a 10 MWe plant can generate 45.8 GWh in the first year with a capacity factor 52.8%. Optimum solar multiple was 3.5 while the optimum thermal energy storage size was 7 hours. Therminol 66 was identified as the most suitable heat transfer fluid and Solargenix SGX-1 was the suitable collector type for this application. The levelized cost of energy was 0.276 \$/kWh which is a high value at the moment. The internal rate of return was 3.6% and the net present value was negative indicating that the project is not financially attractive for the investors. The power purchasing agreement price for solar PV, which is 0.1148 \$/kWh was used in this simulation. This study was further extended to see how the plant financially performs in future, considering the rate of capital cost reduction of 30% for solar thermal plants in future for every five years time. It has been identified that the project is financially feasible to start after 15 years resulting a positive net present value and levelized cost of energy 0.11 \$/kWh. A comparative analysis has shown that it takes more than 15 years for a plant without storage to be financially feasible. Future work is needed to validate the results of the simulation by a physical model.

Key words – Concentrated solar power, Parabolic trough, Direct Normal Irradiation, System Advisor Model, Solar multiple, Heat transfer fluid, Thermal energy storage, Levelized cost of Energy, Net present value

ACKNOWLEDGEMENTS

I take this opportunity to acknowledge all individuals and organizations that supported me in carrying out this research and writing the thesis from the beginning to the end.

First of all I should thank Professor R. A. Attalage, former Deputy Vice Chancellor, Senior Professor in the Department of Mechanical Engineering, University of Moratuwa for his guidance and comments given as the supervisor of this research.

Special thank goes to Dr. I. Mahakalanda, Director of undergraduate studies, Faculty of Business, Head of the Department of Industrial Management, University of Moratuwa for his valuable support given to me in completion of this research.

My heartiest gratitude is delivered to Dr. H.K.G. Punchihewa, Senior Lecturer, Department of Mechanical Engineering, Faculty of Engineering, University of Moratuwa for his incomparable contribution and encouragement given me by arranging progress review sessions and adding valuable comments and also for his hard work as the course coordinator.

I should thank Dr. R.A.C.P. Ranasinghe, Dr. M.M.I.D. Manthilaka and Dr. M.A. Wijewardhana, Senior Lecturers of Department of Mechanical Engineering, Faculty of Engineering, University of Moratuwa for their valuable comments during the progress review sessions of this research.

I would like to thank Mr. S.D.L. Sandanayake for his support given to me from the start to the end of the course.

Finally I herewith acknowledge Dr. Hilary E. Silva, former Director General, Sri Lanka Institute of Advanced Technological Education, Mr. P.G.L.S. Kumara, Acting Director, Advanced Technological Institute, Colombo and all the academic staff members of Advanced Technological Institute, Colombo for giving me support and encouragement to make this study a success.

TABLE OF CONTENTS

D	eclara	tion of the candidate and supervisor	i
A	bstrac	t	ii
A	cknow	vledgements	iii
Ta	able of	f Contents	iv
Li	st of I	Figures	vii
Li	st of 7	Tables	X
Li	st of A	Abbreviations	xi
Li	st of A	Appendices	xiii
1	Intro	oduction	1
2	Liter	rature Review	4
	2.1	Concentrated solar thermal plant	4
	2.2	Concentrating collector technologies	7
		2.2.1 Parabolic trough collector	7
		2.2.2 Heliostat field collector	10
		2.2.3 Linear Fresnel reflector	12
		2.2.4 Parabolic dish collector	14
		2.2.5 Solar chimney plant	16
	2.3	Comparison of CSP technologies	17
	2.4	Thermal Energy storage	21
	2.5	Backup systems	23
	2.6 Heat Transfer Fluids		24
	2.7	Future cost of CSP plants	25
	2.8	Simulation software tools for CSP plants	27

	2.9	Solar Irradiation of Sri Lanka	28
3	Theo	ry	31
	3.1	Concentration Ratio	31
	3.2	Useful Energy Collected	32
	3.3	Levelized Cost of Energy	33
4	Metl	nodology	35
	4.1	Location and Resource	35
	4.2	Solar Field	37
		4.2.1 Solar Multiple	37
		4.2.2 Heat Transfer Fluid	38
	4.3	Solar Collector Assembly	38
	4.4	Heat Collection Element	40
	4.5	Power Block	40
	4.6	Thermal Storage	42
		4.6.1 Thermal Energy Storage	42
		4.6.2 TES dispatch control	43
	4.7	Parasitic Energy	44
	4.8	System Costs	44
	4.9	System Performance Degradation	45
	4.10	Financial Parameters	45
	4.11	PPA price for positive NPV	46
	4.12	Future cost of proposed CSP plant	46
	4.13	Sensitivity analysis for discount rate	48
	4.14	Performance analysis for uncertainty of DNI data	48
	4.15	Performance of 25 MWe and 50 MWe plants	48

5	Results		49
	5.1 Solar Multiple and Thermal Energy Storage		49
	5.2 Heat Transfer Fluid		50
	5.3 Selection of SCA		53
	5.4	Performance of 10 MWe plant	54
		5.4.1 Technical Performance	54
		5.4.2 Financial Performance	55
	5.5	Energy profiles of 10 MWe plant	58
	5.6	PPA price for positive NPV	60
	5.7	Results for DNI data uncertanity	61
	5.8	Project feasibility analysis for future cost	62
	5.8	Sensitivity analysis for discount rate	70
	5.9	Performance of 25 MWe and 50 MWe plants	72
6	Disc	ussion	73
7	Cond	clusion	77
Re	References		78

List of Figures

Figure 2.1: Main parts of CSP plant and their components	4
Figure 2.2: Steam power plant operates on Rankine cycle	5
Figure 2.3: Direct and diffuse solar radiation	6
Figure 2.4: Technologywise installation of CSP plants in the world	6
Figure 2.5: Schematic of parabolic trough collector	8
Figure 2.6: Rim angle and focal line of parabolic trough	8
Figure 2.7: The receiver or HCE of parabolic trough collector	9
Figure 2.8: Schematic of heliostat field collector	11
Figure 2.9: Volumetric air receiver	12
Figure 2.10: Schematic of LFR design	13
Figure 2.11: The design of CLFR system	14
Figure 2.12: Secondary reflector of CLFR	14
Figure 2.13: Schematic of parabolic dish collector	15
Figure 2.14: The cavity receiver of PDC plant	15
Figure 2.15: Solar chimney principle	17
Figure 2.16: CSP plant with thermal energy storage	22
Figure 2.17: Performance of CSP plant with TES and back up (a) and sloe TES(b)	23
Figure 2.18: LCOE and auction price trend for CSP, 2010 - 2022	24
Figure 2.19: Direct normal solar irradiation map of Sri Lanka	29
Figure 3.1: Relation between receiver temperature and concentration ratio	32

Figure 4.1: Hourly variation of DNI and temperature	36
Figure 5.1: Variation of LCOE with Solar Multiple and TES size	50
Figure 5.2: Annual energy output with HTF types	51
Figure 5.3: Capacity factor with THF types	51
Figure 5.4: LCOE with HTF types	52
Figure 5.5: IRR with HTF types	52
Figure 5.6: Annual energy output with SCA types	53
Figure 5.7: IRR with SCA types	53
Figure 5.8: LCOE w SCA types	54
Figure 5.9: Annual energy production with number of years	57
Figure 5.10: Monthly first year energy generation	57
Figure 5.11: Monthly and annual thermal power incident and absorbed	58
Figure 5.12: Monthly and annual TES performance	59
Figure 5.13: Monthly and annual electrical power output of the plant	60
Figure 5.14: Variation of LCOE with project starting time	63
Figure 5.15: Variation of IRR with project starting time	64
Figure 5.16: Variation of NPV with project starting time	64
Figure 5.17: LCOE vs Storage size at different starting times	66
Figure 5.18: IRR vs Storage size at different starting times	66
Figure 5.19: NPV vs Storage size at different starting times	67
Figure 5.20: LCOE with project starting time at different cost reduction rates (w	
hrs storage)	68

- Figure 5.21: NPV with project starting time at different cost reduction rates (with 7 hrs storage) 68
- Figure 5.22: LCOE with project starting time at different cost reduction rates (without storage) 69
- Figure 5.23: NPV with project starting time at different cost reduction rates (without storage) 69
- Figure 5.24: NPV with project starting time at different discount rates (with 7 hrs storage) 70
- Figure 5.25: LCOE with project starting time at different discount rates (with 7 hrs storage) 70
- Figure 5.26: NPV with project starting time at different discount rates (without storage) 71
- Figure 5.27: LCOE with project starting time at different discount rates (without storage) 71

List of Tables

Table 2.1: Technical performance data of CSP technologies	18
Table 2.2: Operating conditions of CSP technologies	19
Table 2.3: Financial performance of CSP technologies	20
Table 2.4: Environmental aspects and technology maturity	20
Table 2.5: Properties of commonly used HTFs	24
Table 2.6: DNI data of Sri Lanka	30
Table 4.1: Location and annual weather data summary for Hambanthota	37
Table 4.2: Major properties of available SCA types in SAM library	39
Table 4.3: Reference system turbine details in SAM library	41
Table 4.4: Library data of parasitic electric energy use	44
Table 4.5: Direct capital costs default values	45
Table 5.1: Simulation results for selecting TES size and Solar Multiple	49
Table 5.2: Results from the solar field page	55
Table 5.3: Direct capital costs for 10 MWe plant	55
Table 5.4: Indirect costs of the plant	56
Table 5.5: Summary of results for 10 MWe plant	56
Table 5.6: Increase in NPV with PPA price	61
Table 5.7: Plant performance at ± 5% DNI	62
Table 5.8: Comparison of 25 MWe and 50 MWe plants with 10 MWe plant	72

List of Abbreviations

Abbreviation	Description
CLFR	Compact Linear Fresnel Reflector
CSP	Concentrated Solar Power
CWEC	Canadian Weather for Energy Calculation
DNI	Direct Normal Irradiation
DSG	Direct Steam Generation
HCE	Heat Collection Element
HFC	Heliostat Field Collector
HTF	Heat Transfer Fluid
IRENA	International Renewable Energy Agency
IRR	Internal Rate of Return
ISCC	Integrated Solar Combined Cycle
IWEC	International Weather for Energy Calculation
LCOE	Levelized Cost of Energy
LFR	Linear Fresnel Reflector
NPV	Net Present Value
NREL	National Renewable Energy Laboratory
NSRDB	National Solar Resource Data Base
PDC	Parabolic Dish Collector
PPA	Power Purchase Agreement

PTC	Parabolic Trough Collector
PV	Photovoltaics
SAM	System Advisor Model
SCA	Solar Collector Assembly
SM	Solar Multiple
SWERA	Solar Wind Energy Resource Assessment
TES	Thermal Energy Storage

List of Appendices

Appendix	Description	Page
Appendix A	Location and Resource page (SAM)	83
Appendix B	Solar field page (SAM)	84
Appendix C	Solar Collector Assembly page (SAM)	84
Appendix D	Heat Collection Element page (SAM)	85
Appendix E	Power Block page (SAM)	86
Appendix F	Thermal Energy Storage page (SAM)	87
Appendix G	System costs page (SAM)	88
Appendix H	Financial parameters page (SAM)	89