Four-Dimensional Sparse Filters for Near Real-Time Light Field Processing

I. W. A. S. U. Premaratne

(168050V)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Philosophy

Department of Electronic and Telecommunication Engineering

University of Moratuwa Sri Lanka

May 2019

Declaration

I declare that this is my own work, and this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other university or institute of higher learning, and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part, in print, electronic, or any other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The candidate, whose signature appears above, carried out research for the MPhil dissertation under my supervision.

Signature:

Date:

Dr. C. U. S. Edussooriya

Abstract

Light is a fundamental form of conveying information. Sensing of light through conventional cameras leads to images and videos. In contrast to conventional images and videos, which capture only the directional variation of the intensity of light rays emanating from a scene, *light fields* capture the spatial variation as well. This richness of information has been exploited to accomplish novel tasks that are not possible with conventional images and videos, such as post-capture digital refocusing and depth filtering.

As a result of the massive data volume captured by a light field, the light field processing algorithms require higher memory and computational requirement. This is a major drawback for employing light fields in real-time applications. Hence, there is a need for investigating novel low-complexity light field processing algorithms that can be implemented in real-time applications. In this study, we address this critical research problem using multidimensional linear filter theory to develop novel low-complexity and sparse filters for light field processing. To this end, the work presented in this thesis focus on two major scenarios; light field denoising and volumetric refocusing. First, we present a novel low-complexity light field denoising algorithm, utilizing the sparsity of the region of support of a light field in the frequency domain. It turns out that the proposed filter runs in near real-time, compared to the previously reported light field denoising methods which take minutes. Next, a 4-D sparse filter for volumetric refocusing is presented. The proposed sparse filter provides 72% reduction of computational complexity compared to a non-sparse filter, with negligible distortion in fidelity.

Index terms—light field, Denoising, volumetric refocusing, real-time, sparse filters, low-complexity

Acknowledgements

I would like to extend my heartfelt gratitude to my supervisor, Dr. Chamira Edussooriya, Department of Electronic and Telecommunication Engineering, University of Moratuwa, for his academic advice, continuous guidance and the tremendous support given to me throughout my research study.

Furthermore, I would also like to thank my progress review panel members Dr. Ranga Rodrigo and Dr. Chamitha de Alwis (University of Sri Jayawardenepura) for their comments and suggestions to improve my research work. Also, I am grateful to the final examination committee, Prof. Sandun Fernando, Dr. Donald Dansereau (University of Sydney) and Dr. Prathapasinghe Dharmawansha, for conducting the examination and for their constructive remarks on the thesis.

Moreover, I would like to acknowledge the financial support received from the Senate Research Council of University of Moratuwa, under the grant number SRC/LT/2016/10.

Finally, I would like to express my sincere gratitude to my family, colleagues and friends, for their love, kind support and encouragement.

Contents

De	eclar	ation	i
A	bstra	\mathbf{ct}	ii
A	cknov	wledgements	iii
Co	onter	nts	iv
\mathbf{Li}	st of	Figures	vii
\mathbf{Li}	st of	Tables	x
\mathbf{Li}	st of	Abbreviations	xi
\mathbf{Li}	st of	Algorithms	xii
1	INT	RODUCTION	1
	1.1	Contributions of the Thesis	3
	1.2	Outline of the Thesis	3
2	RE	VIEW ON LIGHT FIELD IMAGING	5
	2.1	Plenoptic Function	5
	2.2	Light Fields and Applications	6
	2.3	Light Field Acquisition	8
	2.4	Noise in Light Fields	9
	2.5	Denoising Light Fields	10
		2.5.1 Complexity of Light Field Denoising Methods	11
	2.6	Light Field Refocusing	12
		2.6.1 Complexity of Volumetric Refocusing of Light Fields	13
3	$\mathbf{A} \mathbf{L}$	OW-COMPLEXITY DENOISING ALGORITHM FOR LIGI	ΗT
	FIE	LDS	14

	3.1	Introd	uction	14
	3.2	Light	Field Parameterization	15
		3.2.1	Spherical-Cartesian Parameterization	15
		3.2.2	Two-Plane Parameterization	16
	3.3	Review	v of Light Field Spectrum	17
		3.3.1	LF Representation of a Lambertian Point Source $\ . \ . \ .$	17
		3.3.2	ROS of the Spectrum	18
		3.3.3	Dimensionality Gap in Light Fields	19
	3.4	Sparsi	ty and Selective Filtering	20
	3.5	Propos	sed Low-complexity Algorithm	22
	3.6	2-D Fi	ilter Design	24
		3.6.1	Parameter Selection	27
	3.7	Result	s and Comparison	28
		3.7.1	Complexity Analysis	28
		3.7.2	Experimental Results	30
4	A 4	-D SP	ARSE FILTER FOR VOLUMETRIC REFOCUSING	
-	OF	LIGH'	T FIELDS	36
	4.1	Introd	uction	36
	4.2	Volum	etric Refocusing	36
	4.3	Propo	sed Sparse Filter	38
	4.4	Result	s and Comparison	40
		4.4.1	Comparison Between the 4-D Sparse and Nonsparse FIR	
			Hyperfan Filters	40
		4.4.2	Performance of the 4-D Sparse FIR Hyperfan Filter in Vol-	
			umetric Refocusing	43
5	COI	NCLU	SIONS AND FUTURE WORK	18
0	5 1	Conclu	sions	40
	5.2	Future	Work	40
	0.2	ruture	, work	43
Re	eferei	nces		50
\mathbf{A}	Der	ivation	of the Ideal Infinite-Extent Impulse Response $g^{I}_{uv}(n_u,n_v)$,)
	of P	aralle	ogram Filter	58
в	Der	ivation	of the Ideal Infinite-Extent Impulse Response $k_{s}^{I}(n_{u}, n_{v})$,)
	of C	ircula	r Filter	, 59

С	Derivation of the Bow-tie Shaped Passband	60
D	Supplementary Results for the Proposed Low-Complexity D noising Algorithm	e- 63

List of Figures

Figure 1.1	7-D plenoptic function	2
Figure 2.1	Camera design by Adelson	6
Figure 2.2	Camera design by Ng	6
Figure 2.3	Lytro Illum light field camera (Source-https://www.lytro.	
com/i	llum/)	8
Figure 2.4	Raytrix light field camera (Source-http://lightfield-	
forum	.com/raytrix/raytrix-r11-3d-lightfield-camera/)	8
Figure 2.5	Stanford multi-camera array (Source-http://graphics.	
stanf	ord.edu/projects/array/)	9
Figure 3.1	Spherical-cartesian parameterization	15
Figure 3.2	The two-plane parameterization (with the locally defined	
image	coordinates (n_u, n_v)) of a (a) Lambertian point source (b)	
Lambe	ertian object	16
Figure 3.3	Spectral ROS of a Lambertian point source; (a) in $\omega_x \omega_u$	
subspa	ace (b) in $\omega_y \omega_v$ subspace.	19
Figure 3.4	Spectral ROS of a Lambertian object; (a) in $\omega_x \omega_u$ subspace	
(b) in	$\omega_y \omega_v$ subspace	19
Figure 3.5	Theoretical 4-D spectrum of an LF plotted as k_{x_0,y_0} slices .	21
Figure 3.6	Spectrum of Wheat & Silos LF from EPFL LF dataset	21
Figure 3.7	Spectral energy of LFs (a) 98% of total energy (b) 95% of	
total e	energy	22
Figure 3.8	Selective filtering	23
Figure 3.9	Algorithm flow diagram	24
Figure 3.10	2-D filters (a) parallelogram passband (b) circular passband	28

 Figure 3.11 SAIs of LFs from EPFL dataset for denoising with σ = 0.2. From left, first column: original image, second column: noisy image, third column: output of proposed method, fourth column: output of 4-D hyperfan filter, fifth column: output of 4-D planar filter, (a)-(e) Diplodocus (f)-(j) Graffiti (k)-(o) Reeds. Figure 3.12 SAIs of LFs from EPFL dataset for denoising with σ = 0.2. From left, first column: original image, second column: noisy image, third column: output of proposed method, fourth column: output of 4-D hyperfan filter, fifth column: output of 4-D planar 	34
filter, (a)-(e) Diplodocus (f)-(j) Graffiti (k)-(o) Reeds.	35
Figure 4.1 The spectral ROS of a Lambertian object and the passband of the 4-D hyperfan filter $H(\mathbf{z})$ (a) in the $\omega_x \omega_u$ subspace; (b) in	
the $\omega_y \omega_v$ subspace.	37
Figure 4.2 The structure of the proposed 4-D sparse FIR hyperfan filter. Figure 4.3 The magnitude response of $H_{xu}(\mathbf{z})$ (a) with nonsparse co-	38
efficients: (b) with sparse coefficients.	41
Figure 4.4 (a) NRMSE between the frequency responses of the sparse	
$H_{xu}(\mathbf{z})$ and the nonsparse $H_{xu}(\mathbf{z})$; (b) number of nonzero coefficients of the sparse $H_{xu}(\mathbf{z})$ compared to the nonsparse $H_{xu}(\mathbf{z})$; w.r.t. θ and h_{th} with $\alpha = 50^{\circ}$.	42
Figure 4.5 (a) NRMSE between the frequency responses of the sparse $H_{xu}(\mathbf{z})$ and the nonsparse $H_{xu}(\mathbf{z})$; (b) number of nonzero coefficients of the sparse $H_{xu}(\mathbf{z})$ compared to the nonsparse $H_{xu}(\mathbf{z})$;	
w.r.t. α and h_{th} with $\theta = 15^{\circ}$	42 42
Figure C.1 (a) Bowtie-shaped passband (b) Enlarged portion of (a) $% \left({{{\bf{x}}_{{\rm{s}}}}_{{\rm{s}}}} \right)$.	60
Figure D.1 SAIs of LFs from EPFL dataset for denoising with $\sigma = 0.1$. From left, first column: original image, second column: noisy image, third column: output of proposed method, fourth column: output of 4-D hyperfan filter, fifth column: output of 4-D planar filter, (a)-(e) Diplodocus (f)-(j) Graffiti (k)-(o) Houses & Lake (p)-	
(t) Reeds (u)-(y) Rolex Learning Center.	63

Figure D.2 SAIs of LFs from EPFL dataset for denoising with σ =	
0.3. From left, first column: original image, second column: noisy	
image, third column: output of proposed method, fourth column:	
output of 4-D hyperfan filter, fifth column: output of 4-D planar	
filter, (a)-(e) Diplodocus (f)-(j) Graffiti (k)-(o) Houses & Lake (p)-	
(t) Reeds (u)-(y) Rolex Learning Center. \ldots \ldots \ldots	64
Figure D.3 SAIs of Houses & Lake LF for denoising with $\sigma = 0.2$. (a)	
original image, (b) noisy image, (c) output of proposed method,	
(d) output of 4-D hyperfan filter, (e) output of 4-D planar filter .	65
Figure D.4 SAIs of Rolex Learning Center LF for denoising with $\sigma =$	
0.2. (a) original image, (b) noisy image, (c) output of proposed	
method, (d) output of 4-D hyperfan filter, (e) output of 4-D planar	
filter	65

List of Tables

3.1	Chosen parameter values	27
3.2	Output comparison for grayscale LFs over a range of noise levels .	31
3.3	Average result comparison for grayscale LFs	31
3.4	Output comparison for color LFs over a range of noise levels \ldots	32
3.5	Average result comparison for color LFs	32
4.1	The mean and standard deviation of NRMSE and number of non-	
	zero coefficients for the instances considered in figures $4.4, 4.5$ and	
	4.6	43
4.2	The means and the standard deviations of the SSIM indices be-	
	tween the volumetric refocused images obtained with the proposed	
	sparse and the nonsparse hyperfan filters	43
4.3	Volumetric refocused images obtained with the proposed sparse	
	filter and the non-sparse filter	45
4.4	Volumetric refocused images obtained with the proposed sparse	
	filter for $\alpha = 60^{\circ}$ and $\alpha = 105^{\circ} \dots \dots \dots \dots \dots \dots \dots \dots \dots$	46
4.5	Output comparison for color noisy LFs with noise variance $\sigma^2 = 0.02$	47

List of Abbreviations

1 - D	One-Dimensional
2-D	Two-Dimensional
3-D	Three-Dimensional
4-D	Four-Dimensional
5-D	Five-Dimensional
7-D	Seven-Dimensional
AWGN	Additive White Gaussian Noise
BRDF	Bidirectional Reflectance Distribution Function
CDS	Correlated Double Sampling
CNN	Convolutional Neural Network
DFT	Discrete Fourier Transform
DOF	Depth of Field
EPI	Epipolar Plane Image
\mathbf{FFT}	Fast Fourier Transform
FIR	Finite-Extent Impulse Response
FPGA	Field Programmable Gate Array
\mathbf{HT}	Hard-Thresholding
IBR	Image-Based Rendering
iid	Independent and Identically Distributed
\mathbf{LF}	Light Field
NRMSE	Normalized-Root-Mean-Square Error
PSNR	Peak-Signal-To-Noise Ratio
ROS	Region of Support
SAI	Sub-Aperture Image
SSIM	Structural Similarity

List of Algorithms

3.1	Frequency domain 2-D filtering	25
3.2	2-D overlap-add method	26