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Abstract

Light is a fundamental form of conveying information. Sensing of light through
conventional cameras leads to images and videos. In contrast to conventional
images and videos, which capture only the directional variation of the intensity
of light rays emanating from a scene, light fields capture the spatial variation as
well. This richness of information has been exploited to accomplish novel tasks
that are not possible with conventional images and videos, such as post-capture
digital refocusing and depth filtering.

As a result of the massive data volume captured by a light field, the light field
processing algorithms require higher memory and computational requirement.
This is a major drawback for employing light fields in real-time applications.
Hence, there is a need for investigating novel low-complexity light field processing
algorithms that can be implemented in real-time applications. In this study, we
address this critical research problem using multidimensional linear filter theory
to develop novel low-complexity and sparse filters for light field processing. To this
end, the work presented in this thesis focus on two major scenarios; light field
denoising and volumetric refocusing. First, we present a novel low-complexity
light field denoising algorithm, utilizing the sparsity of the region of support
of a light field in the frequency domain. It turns out that the proposed filter
runs in near real-time, compared to the previously reported light field denoising
methods which take minutes. Next, a 4-D sparse filter for volumetric refocusing
is presented. The proposed sparse filter provides 72% reduction of computational
complexity compared to a non-sparse filter, with negligible distortion in fidelity.

Index terms— light field, Denoising, volumetric refocusing, real-time, sparse
filters, low-complexity
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Chapter 1

INTRODUCTION

Over the years, scientists have come up with models to describe and simulate
the nature and propagation of light. One such model is the plenoptic function
proposed by Adelson and Bergen [1], which fully describes the light rays emanat-
ing from a scene. The term “plenoptic” has been derived from the Latin term
“plenus” meaning complete or full, and “optic” pertaining to vision. This seven-
dimensional (7-D) function describes the intensity of light rays passing through
a point at every possible location (x, y, z) at every possible angle (θ, φ), for every
possible wavelength λ at every time t, as shown in Figure 1.1. The function takes
the form P (x, y, z, θ, φ, λ, t).

A four-dimensional (4-D) light field (LF) is a simplified version of the plenoptic
function derived by using the following assumptions and conditions [2, 3],

• Intensity of a light ray remains the same along its direction of propagation
within free space (with no occlusion);

• Consider red, green and blue (RGB) wavelengths only;

• Consider an instant in time, i.e., static scenes.

These conditions eliminate the third spatial dimension z, wavelength dimension
λ and time dimension t, to give us a function of the form l(x, y, u, v), which is
called an LF.

A 4-D LF represents light rays emanating from a scene, as a function of both
position and direction [2, 4]. An LF is richer in information compared to a two-
dimensional (2-D) image, since an LF consists of 2-D positional as well as 2-D
angular information, whereas a 2-D image consists only of 2-D angular informa-
tion. In addition, the internal structure of LF cameras enable enhanced light
gathering for an aperture size similar to that of a conventional camera [5]. Con-
sequently, LFs facilitate larger depth of field (DOF), post-capture refocusing and
depth estimation [6]. Hence, LF cameras have gained prominence in recent years
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θ

φ

(x, y, z)

λ

t

Figure 1.1: 7-D plenoptic function

as a powerful tool for imaging in challenging environments such as underwater,
at night and in fog or smoke, where increasing illumination is not always prac-
tical [7, 8]. Here, the extended DOF in LF cameras help overcome the tradeoff
between aperture size and DOF in conventional cameras, by collecting more light
for the same DOF.

Similar to 2-D imaging, LFs are also susceptible to noise, which in turn affects
the subsequent processing. Hence, a required step in the LF processing pipeline
is to denoise them. In the literature, there are multiple LF denoising algorithms
that are being used to resolve this issue. However, partly due to the immensity of
LFs and partly because of the complexity of the algorithms, the denoising process
is too slow and resource consuming, to use LF processing in real-time.

One of the key applications of LFs is post-capture refocusing, where the focus
of an image is altered after the image is captured by the camera. This phe-
nomenon, which was not possible with 2-D imaging, has been made feasible with
LFs. This idea was first demonstrated in [6], where planar refocusing has been
achieved with shifting and averaging in the spatial domain. Recently, an algo-
rithm for refocusing with wider depth of field than that can be obtained from
planar refocus, is proposed in [9], where the method is referred to as volumetric
refocusing.

In this thesis, the main objective is to propose novel algorithms that have
reduced complexity, thereby achieving near real-time light field processing. The
main contributions of the thesis are presented in the next subsection.

2



Contributions of the Thesis INTRODUCTION

1.1 Contributions of the Thesis

In this thesis, two computationally efficient algorithms are proposed for LF pro-
cessing. The first of the proposed algorithms is a low-complexity LF denoising
algorithm. Here, we utilize the sparsity of the region of support (ROS) of an LF in
the 4-D frequency domain and propose selective filtering in the 4-D frequency do-
main. Furthermore, utilizing the separability of multidimensional Fourier trans-
form, we employ a mixed-domain approach, where the LF is processed in the
spatial domain for spatial (x,y) dimensions and in the frequency domain for the
angular (u,v) dimensions. The LF in the mixed domain is next filtered using
2-D overlap-add method [10, ch. 2.2] and 2-D discrete Fourier transform (DFT)
with fast Fourier transform (FFT) algorithms, in order to reduce the computa-
tional and memory complexity. Experimental results prove that the proposed
method runs in 3 seconds, whereas the available denoising methods take minutes
to execute.

The second contribution of this thesis is a sparse filter for volumetric refocus-
ing of LFs. We extend the work in [9] and propose a cascade of two 4-D hyperfan
filters, by utilizing the partial separability of the ROS of an LF. Since the spec-
tral regions encompassed by the two filters are independent of each other, the
designs of the two filters reduce to designs of 2-D fan filters. Furthermore, we
utilize the hard-thresholding approach to obtain sparse filter coefficients for the
two fan filters. The volumetric refocused image is obtained for the central sub-
aperture image (SAI) of the LF by spatial domain filtering using partial-difference
equations. The theoretical and experimental results demonstrate that the pro-
posed sparse filter achieves 72% reduction of computational complexity with the
degradation of accuracy by only 1%. Part of this work had been published in
[11].

1.2 Outline of the Thesis

The remaining chapters of this thesis are organized as follows:

• Chapter 2: Review on Light Field Imaging
In this chapter, LFs are reviewed in detail including LF acquisition and
applications of LFs. Section 2.5 discusses the current methods utilized for
LF denoising and their limitations in terms of complexity. LF refocusing
and volumetric refocusing of LFs are reviewed in Section 2.6.

3
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• Chapter 3: A Low-Complexity Denoising Algorithm for Light Fields
This chapter presents the proposed low-complexity LF denoising algorithm.
In Section 3.3 the ROS of the spectrum of an LF is elaborated. Section
3.4 analyzes the sparsity of LFs in the frequency domain and provides the
background for the proposed method. In Section 3.5, the proposed low-
complexity algorithm is explained in detail. Experimental results and com-
plexity analysis are presented in Section 3.7, where denoising performance
and complexity of the proposed method are compared with those of the
previously reported linear methods [3, 12].

• Chapter 4: A 4-D Sparse Filter for Volumetric Refocusing of Light Fields
This chapter presents the proposed 4-D sparse hyperfan filter for volumetric
refocusing of LFs. Section 4.2 briefly analyzes volumetric refocusing of LFs.
In section 4.3, the proposed 4-D sparse filter is discussed in detail. Section
4.4 presents the outputs of the proposed filter and analyzes the distortion
caused by sparsity of the filter. Furthermore, it compares the computa-
tional complexity of the proposed sparse filter with that of the non-sparse
hyperfan filter [9].

• Chapter 5: Conclusions and Future Work
This chapter presents the concluding remarks and directions for future work.

4



Chapter 2

REVIEW ON LIGHT FIELD IMAGING

We review the LF acquisition and processing with related concepts, and applica-
tions of LFs in this chapter. First we review the 7-D plenoptic function and its
simplified versions derived by utilizing different assumptions. Secondly we elab-
orate about LFs, their applications and types of LF cameras. Next we evaluate
the types of noise that can be found in LFs and the available denoising methods
that are currently being used to attenuate noise. Furthermore, we evaluate the
computational and memory complexity of the available methods. In the next
section, LF refocusing and volumetric refocusing are discussed in detail where
complexity of available method is also evaluated.

2.1 Plenoptic Function

The 7-D plenoptic function proposed by Adelson and Bergen [1] describes all the
radiant energy perceived from the point of view of the observer rather than the
point of view of the source [13]. As stated in Chapter 1, the plenoptic function
describes the intensity of all light rays passing through a point at every possible
location (x, y, z), at every possible angle (θ, φ), for every possible wavelength λ

at every time t. This results in the following form of the plenoptic function.

p = P (x, y, z, θ, φ, λ, t) (2.1)

In order to reduce the data size of the plenoptic function, we restrain its
viewing space by utilizing assumptions, a thorough study about which is presented
in [14]. As mentioned previously in Chapter 1, the following assumptions are used
to derive the 4-D LF from the plenoptic function.

• Radiance along a light ray through empty space remains a constant until it
meets an occlusion. Hence, we limit our interest to the light rays leaving the
convex hull of a bounded scene. This means we no longer need to measure

5
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Figure 2.1: Camera design by Adelson in [17]

Main lens

Subject

Microlens array

Photosensor

Figure 2.2: Camera design by Ng et al. in [18]

the radiance at different positions along each light ray. Hence, measuring
radiance can be constrained to an arbitrary surface surrounding the scene.

• Wavelength dimension is simplified into three channels namely, Red-Green-
Blue (RGB). Each channel gives the integration of p (2.1) over a certain
range of frequencies (i.e., wavelength). All mathematical operations are
conducted separately on each channel.

• Scene is static. Hence, we can drop time dimension from 2.1.

Except the 4-D LF, there are other simplified versions of the plenoptic function
that are derived by utilizing a lesser or higher number of assumptions as required.
For example, in the case of five-dimensional LF videos [14–16], only the first two
from above assumptions are used (i.e., scene is dynamic).

2.2 Light Fields and Applications

As mentioned in Chapter 1, LFs are richer in information content compared to
2-D conventional images. Additionally, LF cameras also enable enhanced light
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gathering for the same DOF, compared to that in a conventional camera. Con-
sequently, LFs have emerged as powerful tools for achieving results otherwise
impossible or limited.

The first application where LFs were used is image-based rendering (IBR) [2].
The traditional approach to rendering has been to model the scene geometrically
and use images to map textural information onto the model [19]. The traditional
model-based rendering requires a huge processing power to make the rendered
scene photo-realistic [13]. IBR overcomes the challenge of photorealism by using
a large collection of images of the same scene from multiple viewpoints. Since
SAIs of LFs provide multiple views of the same scene, LFs are useful in IBR.

Post-capture refocusing which was proposed in [6], is one of the applications
that has been made possible with LFs. As the name suggests, this allows generat-
ing multiple views of the same scene, each having different focus, after capturing
the LF [20]. Therefore, unlike in 2-D conventional imaging where, images focused
on different depths have to be captured separately, an LF has to be captured once
only. Post-capture refocusing is also termed as synthetic aperture photography.

Another application where LFs are used is occlusion removal. The redundant
information captured by LFs enable enhancing objects based on their depth.
Using depth filters on LFs, occlusions that obstruct the required view can be
attenuated [3, 21–23]. This is extremely useful in monitoring and surveillance
systems.

Since LF cameras provide enhanced light gathering compared to a conven-
tional camera, LFs have overcome the traditional trade-off between aperture size
and DOF. When aperture size is increased, it enables collecting more light but
DOF reduces and vice versa. In contrast with the conventional cameras, LF cam-
era collects more light for the same aperture size and DOF. Hence, LF cameras
have been extremely useful in photographing dimly lit areas such as underwater
or foggy environments [5, 7].

Using LFs for virtual reality has been explored in [24]. Moreover, some works
have explored utilizing LF technology in the field of robotics [25–28]. [25] pro-
poses three closed-form solutions to estimate the six degree of freedom trajectory
of a camera. While this method uses an array of cameras with fixed parame-
ters, the work in [26] focuses on reducing the generated amount of data to allow
real-time processing, without degrading the visual odometer’s performance. In
addition to these works in plenoptic camera based visual odometry, [27] proposes
a complete framework that includes a calibration process as well. Furthermore,
[28] investigates utilizing LFs in on-orbit service robots, in order to have extended
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Figure 2.3: Lytro Illum light field camera (Source-https://www.lytro.com/illum/)

Figure 2.4: Raytrix light field camera (Source-http://lightfield-forum.com/raytrix/raytrix-r11-3d-
lightfield-camera/)

DOF, and generate three-dimensional (3-D) depth maps.
Additionally, recent works have explored using LFs and plenoptic cameras in

automotive safety [29], ear recognition [30], volumetric particle image velocimetry
[31], and presentation attack detection in facial recognition systems [32].

2.3 Light Field Acquisition

Over the years a variety of devices have been presented for the purpose of acquisi-
tion of LFs. In 1992 Adelson and Wang [17] have proposed a design for a plenoptic
camera, which is shown in Figure 2.1. Although it simplified the assembly and
calibration of the LF camera, it was still too long to be portable [33].

In 2005, Ng et al. implemented a rather simplified design which allowed
the design prototype to be portable (See Figure 2.2). This made hand-held LF
photography possible [6,18]. Ng went ahead and founded Lytro [34] in 2006, which
in 2012 launched the first consumer grade LF camera. Recently Lytro released a
more sophisticated LF camera named Illum [35], which is shown in 2.3. However,
the first commercially available LF camera was launched by Raytrix [36] in 2009.
As opposed to Lytro, Raytrix targets industrial and scientific applications rather
than consumer grade applications. One of their LF cameras is shown in 2.4.
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Figure 2.5: Stanford multi-camera array (Source-http://graphics.stanford.edu/projects/array/)

Apart from these devices, Computer Graphics Laboratory in Stanford Uni-
versity have their own setups for the acquisition of LFs. The multi–camera array
(Figure 2.5) [37] which was built by Bennett Wilburn can be considered as the
first among them. The development of this camera is described in detail in [38].
Other than that, they have also come up with an LF microscope [39] and a
spherical gantry [40]. The first is dedicated to studying LFs at a microscopic
scale while the latter is utilized as a device for acquiring fully surrounded LFs of
small objects. A camera design small enough to be integrated into mobile devices
has been proposed in [41]. This module, named PiCam, is a 4× 4 camera array
which creates a 4× 4 array of images, each with 1000× 750 pixels.

2.4 Noise in Light Fields

Similar to 2-D conventional imaging, noise impacts LF imaging as well, which in
turn affects the subsequent processing. Types of noise added by image sensors
into these media can be specified as follows [42,43]:

• kT/C noise (Reset noise) – kT/C noise is the thermal noise which is gener-
ated due to resetting of pixels after their readout. This type of noise can be
suppressed in image sensors by using a correlated double sampling (CDS)
circuit [44]. Furthermore, it is modeled as additive white Gaussian noise
(AWGN);

• Thermal noise (Johnson noise/Nyquist noise/Johnson–Nyquist noise) - Ther-
mal noise is generated due to the random nature of electrons. It is modeled
as AWGN since it has zero mean and a flat, wide bandwidth [43];
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• Flicker noise (1/f noise) – Flicker noise is caused by carrier fluctuations.
At low frequencies this can be the dominant noise component, whereas at
higher frequencies, thermal noise become dominant over 1/f noise. Fur-
thermore, 1/f noise is mostly suppressed by CDS circuit in image sensors
[44];

• Shot noise – Shot noise occurs due to the variation in the amount of photons
collected by the image sensor, during exposure time. It follows a Poisson
distribution in general, and except at very low intensity levels, its distribu-
tion approximates a Gaussian distribution. This type of noise may become
prominent in photographs captured at low intensity;

• Quantization noise – This type of noise occurs due to the discretization of
pixel values.

2.5 Denoising Light Fields

From a broad perspective, the available LF denoising techniques can be catego-
rized into three groups; image or video denoising algorithms extended for LFs,
linear methods and non-linear methods specifically developed for LFs. Since an
LF can be represented as a 2-D array of 2-D images, any off-the-shelf image
denoising algorithm can be used to denoise each 2-D image named SAI, individ-
ually. Image denoising algorithms which can be utilized for this naive approach
are summarized in [45] and [46]. The common theme in best-performing image
denoising algorithms, is to utilize block matching [47], or formulate the denois-
ing task as an optimization problem, with a regularization penalty such as total
variation [48] or sparsity [49].

However, since these methods consider 2-D slices of the 4-D LF, they do
not fully utilize the redundancies existing in LFs. To further employ the inter-
dependencies of LFs, it is possible to use traditional video denoising algorithms
such as V-BM3D [50] and V-BM4D [51], by re-arranging SAIs into an image se-
quence and filtering along this additional dimension. Another approach is to use
epipolar plane image (EPI) representation of LFs, where an EPI is a 2-D slice
of 4-D LF, obtained by keeping one angular and one spatial dimension constant.
Same as with SAIs, EPIs also can be stacked and filtered as a video, utilizing the
available video denoising methods. In [52], Li et al. propose a two-staged frame-
work, where each EPI is separately filtered using total-variation image denoising
method proposed in [48]. Noisy LF is filtered by forming horizontal EPIs in the
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first stage of the algorithm, whereas in the second stage, intermediate result from
the first stage is filtered as vertical EPIs. However, this method considers only
the spatial redundancy in EPIs. In [53], Sepas-Moghaddam et al. propose a
method that utilizes temporal redundancy as well. There, SAIs are mapped into
an ordered sequence by snake-like row-major scan, which is next converted to an
EPI sequence in the following step and filtered using V-BM4D algorithm [51].

The second category consists of the linear denoising methods specifically de-
veloped for LFs, which are the 4-D planar [3] and the 4-D hyperfan filters [12].
Characteristics of LFs in the spatial frequency domain have been explored in
[12], where it has been derived that the spectral ROS of an LF, is a 4-D hyper-
fan. Hence, a 4-D hyperfan-shaped filter in the spatial frequency domain is used
to segregate the LF signal from noise.

The latest LF denoising techniques proposed in [54] and [55], belong to the
category of nonlinear methods specifically developed for LFs. LFBM5D filter [54]
extends the BM3D method [47] by considering the redundancies occuring in 2-D
angular dimensions of the LF. In [55], Chen et al. propose a framework with two
sequential convolutional neural network (CNN) modules. Based on anisotropic
parallax features, the first CNN denoted as syn-Net is used to construct the
parallax structure of the LF, whereas a second CNN denoted as view-Net is used
to restore non-parallax details onto the output of syn-Net.

2.5.1 Complexity of Light Field Denoising Methods

Although there is a plethora of methods for LF denoising, they are too compu-
tationally expensive to be implemented in real-time scenarios, which require fast
execution times. Filtering each SAI independently, requires time equal to the
number of SAIs in the LF times the execution time for denoising one SAI. This
is a huge drawback especially regarding the optimization-based image denoising
methods such as BM3D and learning-based techniques such as k-SVD [49]. Sim-
ilarly, filtering each EPI separately requires time proportional to the dimensions
of the LF.

Compared to filtering each SAI or EPI separately, filtering a SAI or EPI se-
quence using video denoising methods such as V-BM3D or V-BM4D is a better
approach since the execution is faster. However, it is also not appropriate for a
real-time application, since block-matching methods generally have longer execu-
tion times in the order of minutes. In contrast to this, filtering in the frequency
domain using the 4-D hyperfan or 4-D planar filter is faster since they can be
implemented using fast algorithms such as the FFT. However, hyperfan filter
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and the planar filter require manual parameter tuning for the best performance,
which is unsuitable for real-time processing. In addition, these methods tend to
demand a huge amount of additional memory for processing, since a 4-D filter
and 4-D DFT of the LF, have to be loaded into memory for computation. The
five-dimensional (5-D) approach taken to employ redundancy of LFs [54], exac-
erbate the curse of dimensionality, thereby making it more computationally and
memory intensive. As reported in [56], the LFBM5D method [54] takes about 7
hours on an octo-core processor. Furthermore, recent LF denoising methods that
employ CNNs, also focus on best denoising performance rather than real-time
processing. With the recent advancement into utilizing LFs in field robotics [57],
there is a requirement for fast and simpler algorithms that are able to run on
battery-powered devices, without putting too much computational load. How-
ever, a little work has been done so far on real-time LF denoising. Hence, there
is a need for simpler, less resource-hungry methods for LF denoising.

2.6 Light Field Refocusing

As stated above, an LF consists of 2-D positional as well as 2-D angular infor-
mation as opposed to conventional 2-D imaging, which has only angular informa-
tion. This additional information can be employed to accomplish post-capture
refocusing, which is also identified as synthetic aperture photography. This al-
lows the user to generate multiple views with different focal planes, after the LF
is captured. In contrast, changing the focal plane of a conventional 2-D photo-
graph after capturing, has only recently been made possible using neural networks
[58,59].

This possibility in LFs was first demonstrated in [6], where images having dif-
ferent focal planes have been obtained from the same LF, by shifting the LF with
respect to the angular dimensions and averaging with respect to the positional
dimensions. A frequency domain implementation of LF refocusing was proposed
in [60], where a refocusing method based on generalized Fourier slice theorem
has been implemented using FFT algorithms. Moreover, [61] achieves refocusing
through depth-adaptive splatting. All these methods achieve planar-refocusing,
in that the generated views have a single depth in focus.

However, putting a depth range in focus is desirable when the scene is non-
planar. Recently, a filter which achieves a wider DOF (referred to as volumetric
refocusing), was proposed in [9]. Here, volumetric refocusing is attained by using
a 4-D filter having a hyperfan-shaped passband in the 4-D frequency domain.
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2.6.1 Complexity of Volumetric Refocusing of Light Fields

The key difference in the hyperfan filter method for volumetric refocusing is that
its output is a 4-D LF whereas in the planar refocusing methods, the output
is a 2-D image. This leads to higher computational and memory complexity in
volumetric refocusing, since the number of output samples of the hyperfan filter
is huge, compared to the size of a 2-D image. As an instance, a typical LF of the
EPFL LF dataset [62] is 15×15×625×434. Output of the hyperfan filter will be
of the same dimensions, whereas the outputs of planar refocusing methods will
be of size 625× 434.
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Chapter 3

A LOW-COMPLEXITY DENOISING ALGORITHM FOR
LIGHT FIELDS

3.1 Introduction

In this chapter, we propose a novel low-complexity LF denoising algorithm, by
utilizing the sparsity of LFs in the frequency domain. To this end, we first analyze
the spectrum of a light field that corresponds to a Lambertian object. A Lam-
bertian object is assumed to be comprised of Lambertian surfaces. A Lambertian
surface is one that scatters incoming light uniformly in all directions. In other
words, it is a surface which diffusely reflects light. In terms of bidirectional re-
flectance distribution function (BRDF), Lambertian surfaces are those that have
a constant BRDF [63, ch. 2.2]. Such a Lambertian surface can be modeled as a
collection of Lambertian point sources. Therefore, the LF of a Lambertian object
is obtained by the superposition of the LFs of its point sources. Furthermore,
almost all natural materials except water, show diffuse reflectance [64]. Although
natural scenes can have some specular components such as reflection on water,
they primarily consist of diffusely reflected light. Hence, in our work, we adopt
the assumption of a Lambertian scene. Consequently, in the analysis presented
in this chapter, we focus on the LF representation of a Lambertian point source,
and its spectra.

We begin the analysis by reviewing the ROS of the spectrum of a Lambertian
point source, and showing that it is a plane through the origin in the 4-D frequency
domain. Furthermore, it is shown that for a Lambertian point source, the ROS
of its spectrum is given by the intersection of two 3-D hyperplanes. Next, we
review the ROS of the spectrum of a Lambertian object, and show that it is a
3-D hyperfan in 4-D frequency domain [8, 12]. Based on this analysis, we infer
that LFs have a sparse representation in the 4-D frequency domain.

Next we propose a technique named selective filtering where we eliminate
redundant filtering processes by utilizing the sparsity of the LF signal in the 4-D
frequency domain. As elaborated in Sections 3.5 and 3.7, we propose a novel
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Figure 3.1: Spherical-cartesian parameterization.

low-complexity LF denoising algorithm which achieves LF denoising in near real-
time. Subsequently, we present a complexity analysis of the proposed algorithm
and the previously proposed linear methods [3,12]. Finally, we draw conclusions
by comparing the results of the proposed algorithm with those of the methods
proposed in [3, 12] in terms of PNSR, SSIM and computational complexity.

3.2 Light Field Parameterization

3.2.1 Spherical-Cartesian Parameterization

Recall that, an LF is a 4-D representation of the plenoptic function. Pertaining
to the assumptions stated in section 2.1, we will drop wavelength λ, depth z

and time t, to denote the remaining function as L(x, y, θ, φ) [65]. The value of
this function is a color triplet, since RGB channels are considered separately.
This representation which is identified as spherical-cartesian parameterization, is
depicted in Figure 3.1.

In spherical–cartesian parameterization, direction of light ray is represented
by two angles θ and φ. These two angles depict the point of intersection of
each ray, with a reference sphere centered at the coordinates (x, y) . Here, (x, y)
coordinates lie on a reference plane which denotes the location of a particular
light ray. The advantage of this notation is that light rays traveling in all direc-
tions are represented with equal resolution. However, because it uses angles to
denote the direction, even the simplest calculations require the use of trigono-
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Figure 3.2: The two-plane parameterization (with the locally defined image coordinates (nu, nv)) of a (a)
Lambertian point source (b) Lambertian object.

metric functions, which make it quite complex. To overcome this issue, two-plane
parameterization was introduced.

3.2.2 Two-Plane Parameterization

Instead of the reference sphere, we may use a second reference plane. Two sets of
local coordinates are used to avoid confusion as (x, y) and (u, v) for each plane
as shown in Figure 3.2(a). Ideally, the two reference planes are of infinite extent.
However, in practical applications these two are sampled with finite ROS. Result-
ing function is denoted as L(x, y, u, v). Similar to the case in spherical–cartesian
parameterization, this function also gives values as color triplets.

With this representation, most operations turn out to be simpler than in
spherical–cartesian parameterization. However, the drawback of this representa-
tion is that it only includes light rays propagating from the (u, v) plane towards
(x, y) plane. This is a smaller subset of the plenoptic function than in the spheri-
cal–cartesian parameterization. Also, resolution of the representation varies with
the direction of propagation. On the other hand, spherical-cartesian parameteri-
zation represents light rays traveling in all directions, with the same resolution.

Regardless of its weaknesses, considering its simplicity and the equivalence to
the structure of a camera (lens and sensor), two-plane parametrization is widely
employed in the analysis of light fields. Hence, throughout this thesis two–plane
parameterization will be used.
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3.3 Review of Light Field Spectrum

In this section we review the 4-D frequency spectrum of an LF. Consider the two-
plane parameterization of a Lambertian point source and a Lambertian object
depicted in Figure 3.2. Here the coordinates (nx, ny) ∈ Z2 denote the camera
plane whereas the coordinates (nu, nv) ∈ Z2 denote the image plane. The constant
distance between the two planes is denoted by D.

3.3.1 LF Representation of a Lambertian Point Source

First we consider a discrete domain LF lp(n), n = (nx, ny, nu, nv) ∈ Z4 corre-
sponding to a Lambertian point source of intensity l0 located at depth z0 ∈ R+,
shown in Figure 3.2(a). By employing the EPI analysis [66], the Lambertian point
source can be represented as a plane of constant value l0 given by the intersection
of two 3-D hyperplanes [3],

mx+ u+ cx = 0 (3.1a)

my + v + cy = 0, (3.1b)

where

m = D

z0
(3.2a)

cx = −Dx0

z0
(3.2b)

cy = −Dy0

z0
. (3.2c)

Hence, the light field lp(n) comprising a Lambertian point source can be formu-
lated as follows.

lp(n) = l0δ(mx+ u+ cx)δ(my + v + cy) (3.3)

Using multi-dimensional Fourier transform theory, the spectrum of a Lamber-
tian point source Lp(ω), ω = (ωx, ωy, ωu, ωv) ∈ R4, can be obtained from (3.3) as
[67],

Lp(ω) = 4π2l0δ(ωx −mωu)δ(ωy −mωv)ej(cxωu+cyωv) (3.4)
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3.3.2 ROS of the Spectrum

From (3.4), the ideal ROSRp of the spectrum Lp(ω) inside the Nyquist hypercube
N , is derived as [3, 68],

Rp = Hxu ∩Hyv, (3.5)

where,

Hxu =
{

ω ∈ N
∣∣∣∣ ωx −

(
m∆x
∆u

)
ωu = 0

}
(3.6a)

Hyv =
{

ω ∈ N
∣∣∣∣ ωy −

(
m∆y
∆v

)
ωv = 0

}
. (3.6b)

Here, m = D/z0, ∆i, i = x, y, u, v, is the sampling interval along the corresponding
dimension.

Hence, spectral ROS Rp is a plane through the origin in the 4-D frequency
domain, that lies at the intersection of two 3-D hyperplanes

ωx −
(
m∆x
∆u

)
ωu = 0 (3.7a)

ωy −
(
m∆y
∆v

)
ωv = 0 (3.7b)

Since 1
m

= tanα (See Figure 3.3), we can obtain the following relationship for α
from (3.2a).

α = tan-1
(
z0

D

)
(3.8)

From (3.8) we can conclude that, since D is a constant, the orientation α of the
two hyperplanes 3.7a and 3.7b, depends solely on the depth z0 of the point source.

By modeling the Lambertian object as a collection of Lambertian point sources
having depth z0 ∈ [dmin, dmax], we can derive the spectral ROS Ro of an LF
corresponding to a Lambertian object (see Figure 3.2(b)). Thus,Ro is given as the
superposition of the spectral ROS of point sources, in the depth range [dmin, dmax].
Utilizing the linearity of the multidimensional Fourier transform [10, ch. 1.3], Ro

can be obtained as [22,68]

Ro =
⋃
z0

Rp

=
⋃
z0

(Hxu ∩Hyv) . (3.9)
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Figure 3.3: Spectral ROS of a Lambertian point source; (a) in ωxωu subspace (b) in ωyωv subspace.
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Figure 3.4: Spectral ROS of a Lambertian object; (a) in ωxωu subspace (b) in ωyωv subspace.

Figure 3.4 illustrates 2-D projections of the spectral ROS Ro which is a hyper-
fan, where the angular width depends on the range of depths occupied by the
Lambertian object [12].

3.3.3 Dimensionality Gap in Light Fields

As elaborated above, the scene depth corresponds to slope m in the LF through
(3.2a). However, it has been observed that most slopes in the 4-D LF do not
correspond to a physical depth, which is characterized by the following two con-
straints [9].

mmin <
ωx
ωu

< mmax (3.10a)

mmin <
ωy
ωv

< mmax (3.10b)
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Here mmax and mmin denote the highest and lowest slopes of the fan shapes
shown in Figure 3.4. The shape of the frequency spectrum defined by (3.10a)
and (3.10b) is named the dual-fan [22]. Furthermore, the third constraint given
below describes the Lambertian surfaces lying on planes in the 4-D frequency
domain.

ωx
ωu

= ωy
ωv

(3.11)

The shape of the frequency spectrum defined by (3.11) is identified as the hy-
percone [9]. Furthermore, [9] also shows that the frequency domain ROS of an
LF, which is named hyperfan, is given by the intersection of the dual-fan and the
hypercone. The ROS of an LF is referred to as the dimensionality gap in [69].

The dimensionality gap can be clearly observed in the 4-D frequency spectrum
of an LF. We consider 2-D slices Lωx0,y0

(ωu, ωv) of the LF spectrum L, where the
spatial frequencies ωx and ωy are held constant. We refer to these 2-D slices
as kx0,y0 slices, following the convention in [69]. From (3.7a) and (3.7b) we can
obtain the following relationship for the angular frequencies ωu and ωv, when the
spatial frequencies ωx and ωy are held constant by letting ωx = ωx0 and ωy = ωy0.

ωv =
(

∆v∆xωy0

∆u∆yωx0

)
ωu (3.12)

Since ωx0, ωy0 and ∆i, i = x, y, u, v are constants, the 4-D spectrum follows a
linear relationship in the 2-D kx0,y0 slices. The theoretical 4-D spectrum obtained
as a 2-D array of 2-D kx0,y0 slices, using (3.12), is shown in Figure 3.5. Here, we
have considered an LF with 5× 5 array of SAIs.

3.4 Sparsity and Selective Filtering

By observing the LF spectrum plotted in Figure 3.5 , it can be seen that the
spectral energy of the LF of a Lambertian object, is limited to a small portion in
the 4-D Nyquist hypercube. Hence, the light field has a sparse representation in
the frequency domain. However, the spectrum of an actual LF, taken from an LF
camera, somewhat differs from the ideal spectrum due to the finite field of view
of cameras and the finite number of SAIs. This can be illustrated by drawing
samples from the EPFL LF dataset [62,70] and plotting their kx0,y0 slices. Their
spectra were observed to take the shape shown in Figure 3.6. From the spectra,
it is evident that LFs are sparse low-pass signals in the 4-D frequency domain.

This can be further demonstrated by plotting only a fraction of spectral energy
of the LF, in discrete 4-D frequency domain. Figure 3.7 shows the spectra of LFs
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Figure 3.5: Theoretical 4-D spectrum of an LF plotted as kx0,y0 slices

from EPFL LF dataset when 98% and 95% of total spectral energy is plotted
respectively. These two plots have been obtained by plotting spectra for a sample
of 40 LFs drawn from the EPFL LF dataset, and superimposing the plots for each
percentage considered. The plots in Figure 3.7 clearly demonstrate the sparsity
of LFs in the frequency domain. Therefore, noise can be substantially attenuated
by filtering only the kx0,y0 slices closer to the center of the spectrum, where most
of the signal energy is present, and setting the spectrum to zero in the remaining
kx0,y0 slices. We identify this process as selective filtering in the discrete 4-D
frequency domain.

Figure 3.6: Spectrum of Wheat & Silos LF from EPFL LF dataset.
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(a) (b)

Figure 3.7: Spectral energy of LFs (a) 98% of total energy (b) 95% of total energy

3.5 Proposed Low-complexity Algorithm

The proposed low-complexity algorithm is derived by utilizing the sparsity of
the LFs in discrete 4-D frequency domain, which was elaborated in the previous
section. By observing the spectra of multiple LFs from the EPFL dataset and
the Stanford dataset [71], we could distinguish the following characteristics.

• The kx0,y0 slice in the center of the spectrum closely follows a circular shape.
This corresponds to the subset of ω where ωx = 0 and ωy = 0. However, in
the center kx0,y0 slice of the theoretical 4-D spectrum shown in Figure 3.5,
spectrum is available for only a small subset of ωu and ωv.

• Other kx0,y0 slices take the shape of a parallelogram, and the spectrum
declines in amplitude as ωx and ωy increases (i.e. as we move away from
the center). In contrast, the theoretical 4-D spectrum shown in Figure 3.5,
does not show a similar declining relationship.

Employing these characteristics of the spectrum, we propose to use parallelogram
filters and a circular filter in the 2-D frequency domain ωvωv to attenuate noise.

The 4-D Fourier transform is a separable operator, since it can be performed
as a sequence of one-dimensional (1-D) Fourier transforms, one on each of the
four dimensions [10]. Therefore, as an alternative to converting the 4-D LF to
the discrete 4-D frequency domain, we consider the LF in what we specify as
the mixed domain, where conversion to frequency domain is done only in nx and
ny dimensions. The output of this procedure is a 4-D signal of which nx and ny
dimensions are in the frequency domain, whereas nu and nv dimensions are in the
spatial domain. Furthermore, utilizing the sparsity of the LF in the 4-D frequency
domain, selective filtering is employed as shown in Figure 3.8, by filtering only
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Figure 3.8: Selective filtering

the kx0,y0 slices highlighted in blue. The remaining slices are replaced with zeros
since the spectral energy present in those slices is infinitesimal compared to that
in the highlighted slices.

These techniques are utilized in order to reduce the time complexity of the
proposed algorithm by eliminating the requirement to apply 4-D DFT to LF. In
addition to this, 2-D overlap-add method is used for filtering each kx0,y0 slice as
an attempt to reduce the additional memory required for denoising.

Figure 3.9 depicts the steps of the proposed algorithm, which can be enumer-
ated as follows:

1. Convert the noisy LF to mixed domain signal LFin (kx, ky, nu, nv) by ap-
plying the 2-D DFT to nx and ny dimensions. Here, the LF has Nx × Ny

SAIs. Furthermore, kx = 0, 1, . . . , Nx − 1 and ky = 0, 1, . . . , Ny − 1.

2. For each selected kx0,y0 slice (highlighted in Figure 3.8):

(a) Use 2-D overlap-add method to get filtered output for each kx0,y0 slice.
For this purpose we use the derived filter impulse response h cor-
responding to the selected kx0,y0 slice. For (kx, ky) = (0, 0) circular
passband filter is used. For all other instances parallelogram filter is
used. First, the filter impulse response is converted to its frequency
response by applying 2-D DFT in u and v dimensions.

(b) Next, we consider a small square block from kx0,y0 slice. This block is
filtered by point-wise multiplication with the filter frequency response.

(c) Finally, the output block is converted back to mixed domain by 2-D
IDFT in nu and nv dimensions, and saved.

(d) Similarly, whole kx0,y0 slice is filtered in a block-wise manner.
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Figure 3.9: Algorithm flow diagram

3. Remaining kx0,y0 slices are set to zero. The filtered output LFout (kx, ky, nu, nv)
is obtained by processing each kx0,y0 slice as mentioned in the step above.

4. Apply 2-D inverse DFT to LFout (kx, ky, nu, nv) on ny and nx dimensions to
get denoised LF, lfdn (nx, ny, nu, nv).

Pseudocode representation of the proposed algorithm is presented in algorithms
3.1 and 3.2. Selection of parameters including bandwidth B in line 20 of algorithm
3.1 and block size L in algorithm 3.2, is explained in Section 3.6.1.

3.6 2-D Filter Design

The procedure of designing the 2-D parallelogram and circular filters is elaborated
in this section. As mentioned above, the circular filter is used for filtering the
central kx0,y0 slice (kx, ky) = (0, 0), whereas parallelogram filters are used for
the remaining slices. By observing the spectra in Figures 3.6 and 3.7, it can be
noticed that spectrum grows thinner as it moves away from the central kx0,y0 slice.
Following this realization, parallelogram filter bandwidth B is chosen as follows.

B = l × π√
r2
x + r2

y

(3.13)
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Algorithm 3.1 Frequency domain 2-D filtering
Require: Noisy LF lf
Ensure: Denoised LF lfdn

1: procedure lffilter(lf)
2: [Nx, Ny, Nu, Nv]← size(lf)
3: Mu ← length of filter u dimension
4: Mv ← length of filter v dimension
5: Fu ←Mu +Nu − 1 . fft length
6: Fv ←Mv +Nv − 1 . fft length
7: LFin ← 2D fft of LF in y and x dimensions
8: for i← 1 : Ny do
9: for j ← 1 : Nx do
10: if j <= (Nx + 1)/2 then
11: x = j − 1
12: else
13: x = j −Nx − 1
14: end if . x coordinate

15: if i <= (Ny + 1)/2 then
16: y = 1− i
17: else
18: y = Ny + 1− i
19: end if . y coordinate

20: B ← l × π√
|x|2 + |y|2

. Bandwidth

21: if x = 0 and y = 0 then
22: α← circularfilter
23: else if x = 0 then
24: α← 90
25: else if y = 0 then
26: α← 0
27: else
28: α← tan-1 (y/x)
29: end if

30: huv ← impule response of 2-D planar filter in u, v
31: IMin ← LFin(i, j, :, :) . (i,j)th slice of LFin
32: LFout(i, j, :, :)← overlap_add(IMin, huv)
33: end for
34: end for
35: lfout← 4D inverse fft of LFout
36: lfdn← remove transient of lfout
37: return lfdn
38: end procedure
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Algorithm 3.2 2-D overlap-add method
1: function overlap_add(im, h)
2: [imd1, imd2]← size(im)
3: [K,M ]← size(h)
4: L← 220
5: r1← remainder of imd1 after division by L
6: r2← remainder of imd2 after division by L
7: im1← im zero padded by L− r1 and L− r2
8: imd1 ← (length of im1 )/L
9: imd2 ← (width of im1 )/L
10: h← h zero padded by L− 1 on both sides
11: H ← 2-D fft of h of size L+M − 1 on both sides
12: for i← 1 : imd1 do
13: rw ← ((j − 1) ∗ L+ 1 : j ∗ L)
14: for j ← 1 : imd2 do
15: cl = ((i− 1) ∗ L+ 1 : i ∗ L)
16: temp← im1(rw, cl)
17: X ← temp zero padded by M − 1 on both sides
18: X ← zero centred 2-D fft of X of size L+M − 1 on both sides
19: Y ← X ◦H . Point-wise multiplication
20: y ← 2-D inverse fft of Y
21: Save filtered block to relevant position of output image out
22: end for
23: end for
24: remove zero pad
25: return out
26: end function
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Here, l is the parameter that allows varying the parallelogram passband band-
width, whereas

√
r2
x + r2

y is the geometric distance of a particular kx0,y0 slice from
the slice in the center.

Derivation of the ideal infinite-extent impulse response of the parallelogram
filter and the circular filter are given in Appendix A and Appendix B respectively.
To obtain the finite-extent impulse response, we utilize the windowing method
with a Hamming window as follows.

huv(nu, nv) = hIuv(nu, nv)wuv(nu, nv) (3.14)

where, huv(nu, nv) is the finite-extent impulse response, hIuv(nu, nv) is the infinite-
extent impulse response, and wuv(nu, nv) is the window function.

3.6.1 Parameter Selection

From the derived infinite-extent filter responses in Appendix A and Appendix B,
it is evident that there are multiple parameters that need to be tuned for the best
denoising performance achievable by the proposed method. Paralleogram filter
has two distinct parameters, namely, cutoff frequency Cv (See Figure 3.10(a)) and
filter bandwidth l (3.13). Circular passband filter has a single distinct parameter,
which is the cutoff frequency ωc (See Figure 3.10(b)). Filter order M and block
size L for 2-D overlap-add method (Algorithm 3.2), are common to both passband
shapes.

Since there are multiple filter parameters, this becomes a multi-variable op-
timization problem with an objective function to maximize peak-signal-to-noise
ratio (PSNR) and structural similarity (SSIM). The optimized parameter values
obtained through exhaustive search, are specified in Table 3.1.

Table 3.1: Chosen parameter values

Parameter Value
Cv 0.7
l 0.2
ωc 0.7
M 61
L 220
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Figure 3.10: 2-D filters (a) parallelogram passband (b) circular passband

3.7 Results and Comparison

In the first part of this section, we theoretically compare the complexity of the
proposed algorithm with the available methods, using the closed form expressions
for complexity. In addition to this, we also consider an example case and provide
a comparison of the number of computations and additional memory require-
ment. However, learning-based and block matching methods are excluded in this
comparison, since we cannot exactly assess the number of computations or the
additional memory requirement.

Experimental results of the proposed algorithm is compared with that of the
previously reported linear filtering algorithms in this section. Denoising perfor-
mance is compared in terms of both PSNR and SSIM. Moreover, execution time
for each algorithm is recorded as an indication of its computational complexity.

3.7.1 Complexity Analysis

The objective of this work has been to reduce the computational complexity
and memory complexity of LF denoising, which was detailed in Section 2.5.1.
Therefore, in this section, complexity of the proposed filter is compared with
those of alternative methods.

Assuming an LF of dimensions Nx × Ny × Nu × Nv, the total number of
computations of the proposed filter can be derived as,

2NxNy log (NxNy) +Nsel (3MuMv log (MuMv) +MuMv) (3.15)
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where Nsel is the number of selected kx0,y0 slices for the step 2 of the proposed
algorithm (Figure 3.9) andMu,Mv are the FFT lengths for nu and nv dimensions,
with Mu = Mv = L + M − 1. Here, the first term corresponds to the FFT and
inverse FFT operations on nx and ny dimensions of the LF. The second term
denotes the number of operations when 2-D overlap-add method is employed for
the selected kx0,y0 slices.

For 4-D hyperfan [12] and 4-D planar filters [3], the total number of arithmetic
operations can be specified as,

2NxNyNuNv log (NxNyNuNv) + 2NxNyNuNv (3.16)

As an example case, considering an LF of size 17×17×1024×1024, multiplications
and additions per output sample for the hyperfan filter, totaled up to 52 and 158
respectively. For the same LF dimensions and parameters selected in section
3.6.1, the proposed method takes only 9 multiplications and 39 additions per
sample.

Considering the additional memory requirement, the memory complexity of
the proposed filter with double-precision buffers is given as,

16NxNyNuNv + 32MuMv (3.17)

whereas the 4-D hyperfan implementation in [12] has a memory complexity of,

24NxNyNuNv (3.18)

However, in order to overcome the computational and memory complexity of the
4-D hyperfan in [12], Dansereau et al., [9] suggest using a hybrid of the spatial-
domain and the frequency-domain implementations. The key thing to note here is
that, in software implementations, frequency-domain computations are faster but
memory intensive, whereas spatial-domain computations require less memory, at
the cost of slower performance. To overcome this trade-off, Dansereau et al., [9]
suggests incorporating overlap-add and overlap-save methods.

For the same example LF size of 17 × 17 × 1024 × 1024, frequency-domain
implementation of 4-D hyperfan proposed in [12], consumes about 7273 MB for
double-precision buffers. In [9], it is stated that the hybrid implementation takes
about 603 MB for single-precision. Consequently, in double-precision arithmetic,
the hybrid implementation of the 4-D hyperfan consumes 1206 MB. Compara-
tively, the software implementation of the proposed filter consumes about 4850
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MB for double-precision buffers.

3.7.2 Experimental Results

To demonstrate the denoising performance, we test our algorithm on the EPFL
LF dataset [62]. This dataset contains LFs of 15× 15 SAIs, with a resolution of
625 × 434. Before commencing the evaluation process, we eliminate the border
images of these LFs which have been distorted by vignetting. The resized LFs
contain only 11× 11 SAIs.

The experimental procedure can be described as follows:

1. Add Gaussian noise
Since these noise types in 2.4 are predominantly Gaussian, we use Gaussian noise
in our denoising experiments. The ground-truth is purturbed with independent
and identically distributed (iid) Gaussian noise as given by,

ln (n) = l (n) + η0,σ2 (n) (3.19)

where ln is the noisy LF, l is the ground-truth, and η0,σ2 is iid zero mean white
Gaussian noise, with standard deviation σ. In this analysis, different σ values are
considered, ranging from 1% to 100%.

2. Denoise LF
The noisy LF generated in the above step, is denoised using the method proposed
in Section 3.5, and performance is compared with linear denoising methods pro-
posed in [12] and [3].

3. Performance criterion
Denoised LF is compared with the ground truth using PSNR and SSIM metric.
In addition, algorithm execution time is recorded for proposed method and linear
denoising methods proposed in [12] and [3], as a performance measure of time
complexity.

The output PSNR and SSIM values obtained by following this procedure on
grayscale LFs, are displayed in Tables 3.2 and 3.3. Tables 3.4 and 3.5 demonstrate
the same performance metrics for color LFs. These tabulated results compare
the denoising performance of the proposed algorithm with that of two alternative
linear LF denoising methods, namely, hyperfan filter [12] and planar filter [3],
for multiple noise levels (σ). Here, the outputs from the hyperfan filter and the
planar filter have been obtained using the optimized parameter values. Color
SAIs of 3 LFs chosen from the EPFL dataset, are depicted in Figure 3.12 with
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Table 3.2: Output comparison for grayscale LFs over a range of noise levels

LF σ
Noisy LF Proposed Hyperfan Planar

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Rolex
Learning
Center

0.1 20.44 0.2670 32.12 0.8606 30.54 0.7388 28.70 0.8371
0.2 14.46 0.0702 28.17 0.7265 26.90 0.5756 26.61 0.7258
0.3 10.85 0.0333 23.83 0.5930 22.91 0.4224 23.31 0.6065

Houses
& Lake

0.1 20.50 0.1535 35.19 0.8644 31.43 0.7309 33.84 0.8863
0.2 14.25 0.0454 28.85 0.7049 27.37 0.5508 28.69 0.7509
0.3 10.67 0.0190 24.16 0.5591 23.18 0.3876 24.26 0.6157

Reeds
0.1 20.23 0.1575 35.02 0.8403 32.43 0.7195 34.97 0.8626
0.2 14.03 0.0456 30.08 0.6903 28.38 0.5486 30.58 0.7353
0.3 10.62 0.0197 25.55 0.5591 24.28 0.3945 25.97 0.6151

Graffiti
0.1 20.29 0.2827 32.44 0.8616 30.70 0.8029 31.49 0.8669
0.2 14.09 0.1031 28.72 0.7585 27.65 0.6720 28.56 0.7810
0.3 10.66 0.0487 24.78 0.6529 23.79 0.5307 24.88 0.6853

Diplodocus
0.1 20.07 0.1453 34.36 0.8367 29.78 0.6854 31.56 0.8541
0.2 13.55 0.0450 30.55 0.6693 27.73 0.4978 29.35 0.7147
0.3 10.32 0.0217 27.18 0.5373 24.77 0.3538 26.66 0.5925

Table 3.3: Average result comparison for grayscale LFs

σ = 0.1 σ = 0.2 σ = 0.3
PSNR SSIM Time(s) PSNR SSIM Time(s) PSNR SSIM Time(s)

Noisy 20.30 0.2012 - 14.08 0.0619 - 10.62 0.0285 -
Proposed 31.89 0.8615 3.36 28.38 0.7334 3.33 24.13 0.6174 3.33
Hyperfan 29.80 0.7577 10.86 26.83 0.6140 11.07 23.13 0.4688 10.99
Planar 30.15 0.8622 10.23 27.33 0.7578 10.37 23.96 0.6498 10.36

results obtained for σ = 0.2, for visual comparison. Output SAIs for grayscale LFs
are depicted in Figure 3.11. Supplementary results are provided in Appendix D.

Here, denoising performance is compared only with the linear methods since
non-linear methods using optimization or learning-based techniques consistently
outperform linear filters in the denoising task. For example, the best performing
algorithms for 2-D images and 3-D videos are BM3D [47] and V-BM4D [51].
For LF denoising, so far the best denoising performance has been reported by
LFBM5D method [54] and CNN based methods [72,73]. However, the objective of
this work is to reduce the computational and memory complexity of LF denoising,
thereby formulating a real-time algorithm for denoising LFs. Hence, performance
of the proposed method is contrasted with that of other linear methods, which
currently possess the least execution time for LF denoising.

From Table 3.2, it is evident that with the proposed filter, PSNR improvement
ranges from 11 dB to 18 dB for grayscale images, whereas the SSIM improvement
is between 0.55 to 0.75. The best output PSNR and SSIM values obtained by
tuning the parameters of 4-D hyperfan and the 4-D planar filter are also indicated
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Table 3.4: Output comparison for color LFs over a range of noise levels

LF σ
Noisy LF Proposed Hyperfan Planar

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Rolex
Learning
Center

0.1 21.07 0.3680 29.64 0.8556 29.56 0.8418 29.04 0.8281
0.2 15.76 0.1676 25.39 0.7244 24.85 0.6661 24.53 0.6405
0.3 12.72 0.0949 21.60 0.6006 21.11 0.5189 20.89 0.4900

Houses
& Lake

0.1 21.24 0.5324 31.25 0.8665 30.59 0.8577 30.37 0.8498
0.2 15.75 0.3644 25.42 0.7417 24.78 0.7075 24.58 0.6941
0.3 12.67 0.2688 21.42 0.6468 20.94 0.6028 20.77 0.5886

Reeds
0.1 20.73 0.4151 32.62 0.8730 32.39 0.8773 32.00 0.8694
0.2 15.35 0.1907 27.15 0.7695 26.39 0.7292 26.05 0.7094
0.3 12.39 0.1078 22.93 0.6681 22.30 0.5981 22.04 0.5717

Graffiti
0.1 20.52 0.4564 30.24 0.8478 30.99 0.8627 30.62 0.8522
0.2 15.11 0.2311 26.71 0.7654 26.25 0.7416 25.87 0.7193
0.3 12.22 0.1379 23.21 0.6856 22.61 0.6337 22.30 0.6055

Diplodocus
0.1 20.29 0.6409 31.19 0.9589 30.58 0.9528 30.26 0.9491
0.2 14.74 0.3620 28.01 0.9129 26.49 0.8840 26.08 0.8721
0.3 11.90 0.2259 24.69 0.8547 23.34 0.8034 22.96 0.7845

Table 3.5: Average result comparison for color LFs

σ = 0.1 σ = 0.2 σ = 0.3
PSNR SSIM Time(s) PSNR SSIM Time(s) PSNR SSIM Time(s)

Noisy 20.77 0.4826 - 15.34 0.2632 - 12.38 0.1671 -
Proposed 30.99 0.8803 10.92 26.53 0.7828 10.93 22.77 0.6912 10.98
Hyperfan 30.82 0.8785 16.32 25.75 0.7459 16.29 21.87 0.6314 16.37
Planar 30.46 0.8697 16.12 25.42 0.7270 16.09 21.79 0.6080 16.29

in the same table. Furthermore, average results for each noise level are juxtaposed
in Table 3.3.

Similarly, from Table 3.4 we can observe that for color LFs the proposed
method improves PSNR by a value between 9 dB to 14 dB. Moreover, we could
also note that its SSIM improvement is between 0.3 and 0.6. In addition to this,
Table 3.5 portrays the average results for each noise level, in the case of color
LFs.

Comparing the output PSNR and SSIM values it is evident that the proposed
method predominantly outperforms both the 4-D hyperfan and the 4-D planar
filters.

The execution time for each method was measured using the MATLAB imple-
mentations on the sameWindows 10 machine with an Intel i-7 processor. For both
color and grayscale LFs, the proposed method achieved the best execution time.
However, for color LFs, we can see an increase in execution time, nearly three
times that for grayscale LFs. Considering non-linear LF denoising methods, fil-
tering a grayscale LF as a SAI sequence with the V-BM4D algorithm takes more
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than 5 minutes with the same experimental conditions. Similarly, the method
proposed in [53] with V-BM4D chosen as the base denoising algorithm consumes
around 8 minutes for grayscale LFs. Comparatively, the proposed method runs
in near-real time.

However, there are a few limitations of the proposed LF denoising algorithm.
Since the noise in the passband of the parallelogram and circular-shaped filters is
not attenuated, there is still some residual noise on the output image. Although
the effect of this residual noise is not visible in lower noise levels, for σ = 0.3
and above, it can be slightly seen on the output images. Furthermore, since the
proposed filter resembles a low-pass filter, blurring of edges is also present to some
extent.

The proposed low-complexity LF denoising algorithm processes a typical LF in
only 3 seconds and its denoising performance exceeds that of previously reported
linear LF denoising methods. The proposed algorithm which is an approximation
to the hyperfan passband, demonstrates this better performance since it omits
filtering the parts of the spectrum with low signal energy, through selective fil-
tering. The non-linear LF denoising methods consume minutes to complete, and
yet they demonstrate superior denoising performance.
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Figure 3.11: SAIs of LFs from EPFL dataset for denoising with σ = 0.2. From left, first column: original image, second column: noisy image, third column: output of proposed
method, fourth column: output of 4-D hyperfan filter, fifth column: output of 4-D planar filter, (a)-(e) Diplodocus (f)-(j) Graffiti (k)-(o) Reeds.
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Figure 3.12: SAIs of LFs from EPFL dataset for denoising with σ = 0.2. From left, first column: original image, second column: noisy image, third column: output of proposed
method, fourth column: output of 4-D hyperfan filter, fifth column: output of 4-D planar filter, (a)-(e) Diplodocus (f)-(j) Graffiti (k)-(o) Reeds.
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Chapter 4

A 4-D SPARSE FILTER FOR VOLUMETRIC
REFOCUSING OF LIGHT FIELDS

4.1 Introduction

In this chapter we analyze post-capture refocusing of LFs and propose a sparse
4-D finite-extent impulse response (FIR) hyperfan filter for volumetric refocusing
of LFs. We first review the volumetric focus; a method that was proposed in [9]
to maintain sharp focus over a range of depths selected by the user, rather than
at a single depth as in planar refocusing. The 4-D hyperfan filter that is being
employed for volumetric refocusing can also be used to denoise LFs, as we have
previously discussed in Chapter 3.

Next, utilizing the partial separability of the spectral ROS and hard-thresholding
(HT) approach, we propose a sparse filter that is designed as a cascade of two
4-D hyperfan filters. Note that, despite being simple, it has been shown that the
HT approach is extremely effective in multidimensional sparse FIR filter designs
employed for beamforming [74–76]. Subsequently, we compare the computational
complexity of the proposed method with that of the non-sparse 4-D hyperfan fil-
ter. Finally, we compare the visual and analytical results of the two methods
based on their MATLAB implementations.

4.2 Volumetric Refocusing

As elaborated in Chapter 2, post-capture refocusing is one of the novel tasks that
has been made possible with 4-D LFs. This property was first demonstrated in
[6] where images with different focal planes have been obtained by shifting and
averaging the LF in the spatial domain. Planar refocusing based on generalized
Fourier slice theorem has been proposed in [60]. Furthermore, a planar refocusing
method using depth adaptive splatting has been achieved in [61]. However, it is
desirable to put a volume in focus when dealing with non-planar scenes. Volu-
metric focus proposed in [9] achieves this task by employing a linear non-iterative
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Figure 4.1: The spectral ROS of a Lambertian object and the passband of the 4-D hyperfan filter H(z) (a) in
the ωxωu subspace; (b) in the ωyωv subspace.

filter that is shaped to enclose the spectral ROS of an LF, as reviewed in Section
3.3.2.

As mentioned in section 3.3.2 the ROS Ro of an object is determined by
modeling a Lambertian object as a collection of Lambertian point sources. Hence,
spectral ROS Ro was derived as [22,68]

Ro =
⋃
z0

Rp

=
⋃
z0

(Hxu ∩Hyv) . (4.1)

where, Hxu and Hyv represent the spectral ROS of a Lambertian point source in
ωxωu and ωyωv subspaces respectively.

The spectral ROSRo takes a hyperfan shape in ω where ω = (ωx, ωy, ωu, ωv) ∈
R4. Figure 4.1 depicts the two 2-D projections of the hyperfan-shaped ROS of
the spectrum. Recall that, the angular width of the hyperfan depends on the
depth range occupied by the Lambertian object. Hence, volumetric refocusing
can be achieved with a 4-D filter having a hyperfan-shaped passband as depicted
in Figure 4.1, by adjusting its angular width as necessary. This will make the
objects in the depth range corresponding to the passband, appear sharply in the
refocused image, whereas those having depths corresponding to the stopband,
will appear blurred.
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Figure 4.2: The structure of the proposed 4-D sparse FIR hyperfan filter.

4.3 Proposed Sparse Filter for Volumetric Refocusing

The proposed 4-D sparse FIR hyperfan filter H(z), [zx, zy, zu, zv]T ∈ C4 is de-
signed as a cascade of two 4-D hyperfan filters, Hxu(z) and Hyv(z), as illustrated
in Figure 4.2. For this purpose, we employ the epipolar geometry of LFs [66] by
considering nx, nu dimensions and ny, nv dimensions as separate pairs.

Utilizing the partial separability of the ROS, we can formulate the spectral
ROS Ro, as follows.

Ro = Bxu ∩ Byv (4.2)

where,

Bxu =
⋃
z0

Hxu (4.3a)

Byv =
⋃
z0

Hyv, (4.3b)

Consequently, the passbands of Hxu(z) and Hyv(z) are selected to encompass Bxu
and Byv respectively. The overall passband H(z) fully encompasses the spectral
ROS Ro.

Since Bxu is independent of ωy and ωv, and Byv is independent of ωx and
ωu, the designs of the 4-D FIR hyperfan filters Hxu(z) and Hyv(z) reduce to
the designs of 2-D FIR fan filters. In this regard, we utilize the rotation-based
2-D FIR fan filter design method proposed in [77], along with the windowing
method [10, ch. 3.3]. However, for the purely fan-shaped passbands, the origin
point is on the boundary between the passband and the stopband. Therefore,
it gets attenuated after multiplying with a window function [77]. To mitigate
this, the passbands of Hxu(z) and Hyv(z) are designed to be bow-tie-shaped in
the ωxωu and ωyωv subspaces as shown in Figure 4.1. Here, B determines the
length, α determines the orientation and, θ and T define the angular width of
the bow-tie-shaped passbands.

Following this method, the impulse responses Hxu(z) of orderMx×0×Mu×0
and Hyv(z) of order 0×My×0×Mv, whereMx,My,Mu,Mv ∈ N, are respectively
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obtained as follows.

hxu(n) =
[
hIxu(nx, nu)wxu(nx, nu)

]
δ(ny)δ(nv) (4.4a)

hyv(n) =
[
hIyv(ny, nv)wyv(ny, nv)

]
δ(nx)δ(nu), (4.4b)

where n = (nx, ny, nu, nv) ∈ Z4, hIxu(nx, nu) and hIyv(ny, nv) are the ideal infinite-
extent impulse responses, and wxu(nx, nu) and wyv(ny, nv) are 2-D separable win-
dows of size (Mx + 1) × (Mu + 1) and (My + 1) × (Mv + 1), respectively [10,
ch. 3.3]. The derivations of hIxu(nx, nu) and hIyv(ny, nv) are elaborated in Ap-
pendix C. For an LF of size (Nx + 1) × (Ny + 1) × (Nu + 1) × (Nv + 1), where
Nx, Ny, Nu, Nv ∈ N, Mx and My are set to Nx and Ny, respectively. Generally,
Mu � Nu andMv � Nv. Note that the order of the 4-D FIR hyperfan filter H(z)
is Mx ×My ×Mu ×Mv. Accordingly, computational complexity of the proposed
separable filter is O(MxMu + MyMv), whereas computational complexity of the
non-separable 4-D filter is O(MxMyMuMv). Hence, computational complexity of
the proposed filter is extremely low compared to that of the non-separable 4-D
FIR hyperfan filter.

The two window functions wxu(nx, nu) and wyv(ny, nv) are chosen such that
the stopband objects are only blurred rather than being completely attenuated.
The 2-D separable Hamming or Kaiser windows [10, ch. 3.3], [78, ch. 6.3] are
frequently employed in the cases where higher stopband attenuation is required,
for instance, in designing 2-D FIR filters to attenuate noise. However, in LF
volumetric refocusing, our objective is to blur the stopband objects rather than
fully attenuating them. Therefore, the typically utilized Hamming and Kaiser
windows are not preferable for our filter design. In planar refocusing, the refo-
cused LF is obtained by shifting the LF in the angular dimensions nu and nv, and
averaging in the spatial dimensions nx and ny [6]. Here, the shifting operation
determines the focal plane of the output refocused image, whereas the averaging
operation manages the blur of out-of-focus objects. Note that, averaging cor-
responds to lowpass filtering with a filter having a rectangular-shaped impulse
response. Hence, 2-D separable rectangular windows are selected for wxu(nx, nu)
and wyv(ny, nv).

In order to obtain the sparse filter coefficients of Hxu(z) and Hyv(z), we utilize
the HT approach proposed in [74]. The sparse coefficients hsi (n) of Hi(z), i =
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xu, yv, are obtained as,

hsi (n) =

hi(n), if |hi(n)| ≥ hth ·max |hi(n)|

0, otherwise,
, (4.5)

where hth is the threshold value, which is typically selected to be between 0.005
and 0.05 [74].

The volumetric refocused image is obtained for the central SAI, which we
denote by (nx, ny) = (0, 0) where −Ni/2 ≤ ni ≤ Ni/2, i = x, y. Following this
notation, the 4-D sparse FIR hyperfan filter can be denoted by the following
partial-difference equations.

lxu(0, ny, nu, nv) =
∑∑
︸ ︷︷ ︸
(ix,iu)∈I

hsxu(ix, 0, iu, 0)× lin(−ix, 0, nu − iu, 0) (4.6a)

lout(0, 0, nu, nv) =
∑∑
︸ ︷︷ ︸
(iy ,iv)∈I

hsuv(0, iy, 0, iv)× lxu(0,−iy, 0, nv − iv), (4.6b)

Here, I is the set containing the indices of the nonzero coefficients of Hxu(z) and
Hyv(z).

4.4 Results and Comparison

We first compare the frequency response error of the proposed 4-D sparse FIR
hyperfan filter, with that of the 4-D non-sparse FIR hyperfan filter [9]. Subse-
quently, we compare the 4-D sparse and non-sparse FIR hyperfan filters in terms
of computational complexity, and evaluate the complexity reduction of the pro-
posed non-sparse filter. Finally, we present output images for visual comparison.

4.4.1 Comparison Between the 4-D Sparse and Nonsparse FIR Hy-
perfan Filters

The frequency response of the proposed 4-D sparse FIR hyperfan filter which
is given by Hxu(z) and Hyv(z), depends on the filter parameters (α, θ, B and
T ), the threshold value hth and the filter order. As an instance, the magnitude
responses of the nonsparse and sparse Hxu(z) corresponding to α = 50◦, θ = 20◦

and hth = 0.01 are shown in Figs. 4.3(a) and 4.3(b), respectively. In this case, and
for all the experimental results presented henceforth, we let B = 0.9π rad/sample,
T = 0.08π rad/sample, and filter order=10× 40.

Normalized-root-mean-square error (NRMSE) between the frequency responses
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(a) (b)

Figure 4.3: The magnitude response of Hxu(z) (a) with nonsparse coefficients; (b) with sparse coefficients.

of the sparse Hxu(z) and the nonsparse Hxu(z), is used to quantify the deviation
of the proposed 4-D sparse FIR hyperfan filter, compared to the 4-D non-sparse
FIR hyperfan filter.

NRMSE = ‖Hs
xu (k)−Hxu (k)‖2√

FxFu [max {|Hxu (k)|} −min {|Hxu (k)|}]
(4.7)

where,

k = (kx, ku) (4.8a)

Hs
xu (k)− Frequency response of the sparse filter (4.8b)

Hxu (k)− Frequency response of the non-sparse filter (4.8c)

Fx − FFT length for the nx dimension (4.8d)

Fu − FFT length for the nu dimension (4.8e)

Furthermore, number of non-zero coefficients in the 4-D sparse FIR hyperfan filter
with respect to that of the non-sparse filter, is utilized as a metric to quantify
the reduction in computational complexity.

Figures 4.4, 4.5 and 4.6 depict the variation of NRMSE and number of non-
zero coefficients, relating to filter parameters α, θ and threshold value hth. Fig-
ure 4.4 shows the variation of NRMSE and the number of non-zero coefficients of
the sparse filter compared to the non-sparse filter, with respect to θ and hth for
α = 50◦. In Figure 4.5 the same two metrics have been plotted as functions of α
and hth while having θ = 15◦, whereas in Figure 4.6 the plots have been obtained
with respect to θ and α, keeping hth = 0.01.
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Table 4.1: The mean and standard deviation of NRMSE and number of non-zero coefficients for the instances
considered in figures 4.4, 4.5 and 4.6.

Figure NRMSE Nonzero coeff.
mean std dev mean std dev

4.4 2.83% 1.71% 28.19% 10.39%
4.5 3.63% 1.93% 28.81% 11.73%
4.6 1.91% 0.8% 39.74% 8.62%

Table 4.2: The means and the standard deviations of the SSIM indices between the volumetric refocused images
obtained with the proposed sparse and the nonsparse hyperfan filters [9].

LF MPT Books Flowers SV1 GG

Mean 0.986 0.991 0.989 0.989 0.989
Standard deviation 0.019 0.012 0.014 0.017 0.015
MPT - Mirabelle Prune Tree, SP1 - Sophie & Vincent 1, and GG - Gravel Garden

The mean and standard deviation of NRMSE and the number of nonzero co-
efficients corresponding to above three cases, are given in Table 4.1. By observing
the tabulated values it is evident that the deviation of Hs

xu(z) compared to Hxu(z)
is negligible. Furthermore, Hyv(z) and Hs

yv(z) posses the same characteristics as
Hxu(z) and Hs

xu(z), respectively.
Moreover, sparse Hs

xu(z) provides approximately 72% mean reduction in com-
putational complexity, since zero-valued coefficients do not require arithmetic op-
erations. As an example, consider an LF of size 11 × 11 × 512 × 512 and filter
order of 10 × 10 × 40 × 40. The non-sparse filter requires 2172 multiplications
and 5400 additions, whereas the sparse filter requires only 768 multiplications and
1512 additions, considering direct-form realizations and symmetry of the filter co-
efficients. Additionally, the frequency domain implementation of the non-sparse
filter [9], requires 3993 multiplications and 19239 additions, with the split-radix
algorithm for nu and nv dimensions, and Winograd algorithm for nx and ny di-
mensions [79, ch. 3].

4.4.2 Performance of the 4-D Sparse FIR Hyperfan Filter in Volu-
metric Refocusing

The performance of the proposed sparse filter in volumetric refocusing, is com-
pared with that of the 4-D non-sparse FIR hyperfan filter using multiple LFs
from the EPFL LF dataset [62, 70]. Both sparse and nonsparse filters are de-
signed with filter order 10 × 10 × 40 × 40 and parameters α = 50◦, B = 0.9π
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rad/sample, and T = 0.08π. θ and hth are varied in the range 5◦ to 30◦ with the
steps of 5◦ and 0.005 to 0.05 with the steps of 0.005. The mean and standard
deviations of the SSIM indices, between the outputs of the proposed sparse filter
and the nonsparse filter, are presented in Table 4.2. From these results we can
conclude that, the distortion caused by the sparsity of the filter coefficients of the
proposed filter, is negligible. The volumetric refocused images of multiple LFs,
obtained for α = 45◦ and θ = 35◦ are given in Table 4.3 for visual comparison.
Through visual inspection it is evident that, volumetric refocused images of the
proposed sparse filter have no visual difference from those of the non-sparse filter.
Table 4.4 shows the outputs of the sparse volumetric refocusing filter for two α
values. As stated before, α corresponds to the angle of orientation of the 4-D FIR
hyperfan filters Hxu(z) and Hyv(z). Recall that, depth z0 of a Lambertian point
source corresponds to the slope m of a hyperplane through the origin of the 4-D
frequency domain. This relationship is characterized in (3.8) as α = tan-1

(
z0
D

)
where, m = tan α and D is the constant distance between the parallel planes in
the two-plane parameterization. Hence, α = 60◦ corresponds to a closer depth
whereas α = 105◦ corresponds to a more distant depth. Furthermore, the range
of depths in focus is kept similar for both sparse filter and non-sparse filter, by
keeping θ and T constant. The output images in Table 4.4 clearly contrasts
refocusing on different depths.

The experiments presented in this chapter so far, have been conducted assum-
ing that the input LF is already denoised. Table 4.5 explores how the proposed
sparse filter, its non-sparse counterpart and the hyperfan filter [12] behave in
case the input LF is noisy. Each output image obtained for a noisy LF, is com-
pared with the central SAI of the noise-free LF. From the PSNR and SSIM values
tabulated in Table 4.5, it is evident that the proposed filter is only suitable for
generating refocused views from previously denoised LFs. Compared to this, the
hyperfan filter denoises the LF as an inherent part of refocusing.

The execution time for the proposed sparse cascaded filter, the non-sparse
cascaded filter, and the 4-D hyperfan filter [12] was measured using the MAT-
LAB implementations on the same Windows 10 system powered by an Intel i-7
processor. The average time recorded for the proposed sparse filter and its non-
sparse counterpart is 13 seconds whereas the average time consumption of the
4-D hyperfan is 15 seconds. Although theoretically the number of computations
has drastically reduced, it has not been reflected in the execution time. This is
because the FFT algorithms utilized in the implementation are not optimized for
sparsity. However, in hardware implementations using field programmable gate
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Table 4.3: Volumetric refocused images obtained with the proposed sparse filter and the non-sparse filter

LF Sparse filter Non-sparse filter SSIM

MPT 0.9714

Books 0.9915

Flowers 0.9882

SV1 0.9897

GG 0.9948

MPT - Mirabelle Prune Tree, SV1 - Sophie & Vincent 1, and GG - Gravel Garden
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Table 4.4: Volumetric refocused images obtained with the proposed sparse filter for α = 60◦ and α = 105◦

LF α = 60◦ α = 105◦

Books

Flowers

GG

SV1

Swans 1

GG - Gravel Garden and SV1 - Sophie & Vincent 1
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Table 4.5: Output comparison for color noisy LFs with noise variance σ2=0.02

LF Noisy LF Non-sparse Sparse Hyperfan
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Rolex Learning
Center

17.86 0.2284 19.56 0.2922 19.10 0.2973 25.26 0.7338

Houses & Lake 18.38 0.4454 20.18 0.4941 19.33 0.4937 27.31 0.7612
Reeds 17.84 0.2798 19.73 0.3494 19.15 0.3554 28.56 0.7593
Graffiti 17.58 0.3305 19.33 0.3858 18.48 0.3986 28.04 0.7889
Diplodocus 17.33 0.4944 19.14 0.5794 18.43 0.5988 28.77 0.9257

arrays (FPGAs) or application specific integrated circuits, the proposed sparse
filter leads to significant resource saving compared to the non-sparse filter.

The proposed sparse FIR hyperfan filter provides a significant reduction in
computational complexity with negligible distortion. Although the HT approach
employed here is a fairly simple technique, it has produced an impressive outcome
in this case. However, the proposed filter has a limitation in that it is not suitable
for denoising as an inherent part of refocusing, whereas the 4-D hyperfan [12] can
be used for both tasks.
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Chapter 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

In this thesis, we propose two novel low-complexity LF processing algorithms
focusing on LF denoising and volumetric refocusing. To this end, the ROS of the
LF of a Lambertian object is analyzed, and it is shown that the spectral ROS of
a Lambertian object takes a hyperfan shape in the 4-D frequency domain. In the
spectral analysis, it is first demonstrated that the spectral ROS of a Lambertian
point source is a plane through the origin in the 4-D frequency domain. The
planar ROS lies at the intersection of two 3-D hyperplanes, whose orientation
depends on the depth of the point source. Extending this, it is also demonstrated
that the angular width of the hyperfan-shaped ROS depends on the range of
depths occupied by the Lambertian object.

Utilizing the sparsity of the ROS of an LF, it is shown that noise can be atten-
uated by selective filtering. Here, we only filter the regions in the 4-D frequency
domain where LF signal is present. Observing the spectral ROS of LFs from the
EPFL LF dataset [62], we employ filters with parallelogram and circular shaped
passbands for 2-D filtering in the angular (u,v) dimensions. Furthermore, using
a mixed-domain approach, LF is processed in the spatial domain for spatial (x,y)
dimensions and in the frequency domain for the angular (u,v) dimensions. By
theoretical analysis it is shown that the computational and memory complexity
of the proposed algorithm is less than those of the available linear LF denoising
methods. The experimental results indicate that the proposed filter predomi-
nantly outperforms the competing linear methods, in terms of PSNR and SSIM.
However, the non-linear LF denoising methods outperform all the linear meth-
ods including the proposed algorithm. Furthermore, the proposed filter executes
faster than both linear and non-linear LF denoising methods.

Utilizing the partial separability of the ROS of an LF, we employ a cascade
of two 4-D hyperfan filters [9] for volumetric refocusing of LFs. The designs of
the 4-D FIR hyperfan filters reduce to the designs of 2-D FIR fan filters since the
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four dimensions are independent of each other. The sparse coefficients of the two
fan filters are obtained by utilizing the HT approach. The experimental results
demonstrate that the distortion caused by the sparsity of the proposed filter is
negligible, while providing significant reduction in computational complexity.

With the growing interest in robotics community to employ LFs for visual
odometry [25–28], there is an increasing requirement of real-time algorithms that
are simple enough to run on smaller processing units employed in autonomous
robotics. Similarly, the prospect of employing LF cameras in mobile phones, also
has created a requirement for real-time LF processing algorithms, that can run
on the limited processing power and limited memory in mobile phones. Hence,
the algorithms presented in this work have a considerable potential in catering to
this requirement.

5.2 Future Work

True real-time processing of the proposed denoising method can be achieved with
a FPGA implementation which can process tens of LF frames per a second. Fur-
thermore, such an FPGA implementation would drastically reduce the memory
complexity of the filter as well. Another direction to work on, is using low-
complexity infinite-extent impulse response (IIR) planar filters in place of FIR
planar filters. Additionally, we can extend the proposed denoising algorithm to
5-D light field video (LFV) denoising as well [80].
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Appendix A

Derivation of the Ideal Infinite-Extent Impulse Response
gIuv(nu, nv) of Parallelogram Filter

The frequency response Huv (ejω) of the parallelogram filter, depicted in Fig-
ure 3.10(a), can be expressed as follows.

Huv

(
ejω

)
=


1, ωumin

≤ ωu ≤ ωumax ,

−Cv ≤ ωv ≤ Cv,

0, otherwise.

(A.1)

where,

ωumin
= ωv cot α− bu

ωumax = ωv cot α + bu

The infinite extent impulse response hIuv (n) of the parallelogram filter where
n = (nx, ny, nu, nv), is acquired by obtaining the 4-D inverse Fourier transform
of its frequency response Huv (ejω) [16].

hIuv (n) = gIuv (nu, nv) δ (nx) δ (ny) (A.2)

where,

gIuv (nu, nv) =



CvB csc(α)
2π2 , nu = 0, nv = 0,

B csc(α) sin(nvCv)
2π2nv

, nu = 0, nv 6= 0,
Cv sin(nu

B
2 cscα)

π2nu
, nu 6= 0, nu cotα + nv = 0,

sin(nubu)× sin[(nu cotα+nv)Cv ]
π2nu(nu cotα+nv) , otherwise.

(A.3)

58



Appendix B

Derivation of the Ideal Infinite-Extent Impulse Response
kIuv(nu, nv) of Circular Filter

The frequency response Huv (ejω) of the circular filter, depicted in Figure 3.10(b),
can be expressed as follows.

Huv

(
ejω

)
=

1, ω2
u + ω2

v ≤ ω2
c ,

0, otherwise.
(B.1)

The infinite extent impulse response kIuv (n) of the parallelogram filter where
n = (nx, ny, nu, nv), is acquired by obtaining the 4-D inverse Fourier transform
of its frequency response Huv (ejω) [81, ch. 1.2].

kIuv (nu, nv) =


ωc

2π
√
n2

u+n2
v

J1
(
ωc
√
n2
u + n2

v

)
, nu 6= 0, nv 6= 0,

ω2
c

2 , nu = 0, nv = 0,
(B.2)

where J1 is first order Bessel function of the first kind.
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Appendix C

Derivation of the Bow-tie Shaped Passband

u

v

−b

b

B

−B

v
′ =

−au
′ − b

v
′ =

au
′ +
b

v
′ u

′

θ

α

T

Main passband

Secondary
passband

π−π

π

−π

(a)

−b

b

v
′

u
′

B

θ

θ

T

(b)

Figure C.1: (a) Bowtie-shaped passband (b) Enlarged portion of (a)

Here, we review the derivation of the bow-tie shaped passband. The gener-
alized fan-shaped filter is shown in Figure C.1(a). A secondary passband is
added around the main passband in order to prevent the attenuation at the
zero-frequency response. Using the line equation v′ = au

′ + b, we can obtain the
following relationships for a and b from Figure C.1(b).

a = tan θ, (C.1a)

b = T

cos θ , (C.1b)

where, T is the width of the secondary passband.
The ideal impulse response h(m,n) can be written as [77],

h(m,n) = 1
4π2

∫ π

−π

∫ π

−π
H
(
eju, ejv

)
ej(mu+nv)dudv. (C.2)
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Derivation of the Bow-tie Shaped Passband

For convenience in integration, we use rotated coordinate system (u′ , v′) instead
of the original (u, v) coordinate system. The relationship between the two coor-
dinate systems is given by a rotation operation as follows.

(u′ , v′) = (u, v)
 cosα sinα
− sinα cosα.

 (C.3)

Using the Jacobian,

dudv =

∣∣∣∣∣∣
∂u
∂u′

∂v
∂u′

∂u
∂v′

∂v
∂v′

∣∣∣∣∣∣ du′dv′

=

∣∣∣∣∣∣ cosα sinα
− sinα cosα

∣∣∣∣∣∣ du′dv′
= du

′
dv
′

(C.4)

Then C.2 can be rewritten as,

h(m,n) = 2
4π2

∫ B

0

∫ au
′+b

−(au′+b)
cos[mu′ cosα−mv′ sinα + nu

′ sinα + nv
′ cosα]du′dv′ ,

= 2
4π2

∫ B

0

∫ au
′+b

−(au′+b)
cos(pu′ + qv

′)du′dv′ ,

= g(p, q),
(C.5)

where,

(p, q) = (m,n)
cosα − sinα

sinα cosα.

 (C.6)

Closed form solutions of C.5 can be specified for special conditions as follows [77].

g(p, q) =
1

4π2q

[
cos(qb)− cos(pB + qaB + qb)

p+ qa
−cos(qb)− cos(pB − qaB − qb)

p− qa

]
for q 6= 0, p+ qa 6= 0, p− qa 6= 0,

(C.7)

g(0, 0) = B

4π2 (aB + 2b) for p = q = 0, (C.8)

g(p, 0) = 1
2π2p

[
(aB + b) sin(pB) + a(cos(pB)− 1)

p

]
for q = 0, (C.9)
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g(p, q) = 1
4π2q

[
B sin(qb)− cos(qb)− cos(pB − qaB − qb)

p− qa

]
for p+ qa = 0,

(C.10)

g(p, q) = 1
4π2q

[
B sin(qb) + cos(qb)− cos(pB + qaB + qb)

p+ qa

]
for p− qa = 0.

(C.11)
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Appendix D

Supplementary Results for the Proposed Low-Complexity
Denoising Algorithm

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

Figure D.1: SAIs of LFs from EPFL dataset for denoising with σ = 0.1. From left, first column: original image,
second column: noisy image, third column: output of proposed method, fourth column: output of 4-D hyperfan
filter, fifth column: output of 4-D planar filter, (a)-(e) Diplodocus (f)-(j) Graffiti (k)-(o) Houses & Lake (p)-(t)
Reeds (u)-(y) Rolex Learning Center.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

Figure D.2: SAIs of LFs from EPFL dataset for denoising with σ = 0.3. From left, first column: original image,
second column: noisy image, third column: output of proposed method, fourth column: output of 4-D hyperfan
filter, fifth column: output of 4-D planar filter, (a)-(e) Diplodocus (f)-(j) Graffiti (k)-(o) Houses & Lake (p)-(t)
Reeds (u)-(y) Rolex Learning Center.
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(a) (b) (c)

(d) (e)
Figure D.3: SAIs of Houses & Lake LF for denoising with σ = 0.2. (a) original image, (b) noisy image, (c)
output of proposed method, (d) output of 4-D hyperfan filter, (e) output of 4-D planar filter

(a) (b) (c)

(d) (e)
Figure D.4: SAIs of Rolex Learning Center LF for denoising with σ = 0.2. (a) original image, (b) noisy image,
(c) output of proposed method, (d) output of 4-D hyperfan filter, (e) output of 4-D planar filter
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