VALIDATION OF MECHANISTIC EMPIRICAL DESIGN APPROACH FOR PAVEMENT DESIGN – CASESTUDY FOR SRI LANKA

Karasinghe Arachchige Ruksala Nishani Jayarathna

138029M

Thesis submitted in partial fulfilment of the requirements for the degree

Master of Philosophy

Degree of Master of Philosophy

Department of Civil Engineering

University of Moratuwa

Sri Lanka

February 2018

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as article or books).

Signature:

Date:

The above candidate has carried out research for the MPhil under my supervision.

Name of the supervisor:

Signature of the supervisor:

Date:

DEDICATION

То

My Loving Parents

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my research supervisor, Prof. W.K Mampearachchi for offering me this immense opportunity to follow the master's research and continuous guidance throughout the research. Your encouragement and enormous support are highly appreciated.

My sincere thanks should goes to Prof. J.M.S.J. Bandara, Dr. H.R. Pasindu and to Mr. Loshaka Perera for providing timely instructions and valuable advice to carry out this project.

My sincere gratitude goes to all the staff in Road Development Authority who supported me to succeed my research project. Special thanks goes to Mr. E.M.S. Ekanayake, Provincial Director (North Central Province), Mr. I.I.I. Inan, Chief Engineer (Mahawa), Mrs. Namalie Siyambalapitiya, Deputy Director (Planning), Mr. Sujith Jayasekara, Design Engineer for their kind support in providing relevant data throughout the project. I really thankful to Mr. Tashantha Kumara, Deputy General Manager, Access Engineering who supported me in collection of pavement design data. Without their support this work would not be possible.

I would like to thank all the academic and non-academic staff members in Civil Engineering Department, who helped me in various ways. The encouragement and great support gained from my friends, Ms.Gayani Galappaththi, Ms. Chamindi Jayasuriya, Mr.Isuru Gamalath, Mr.Uditha Galgamuwa and other colleagues in Transportation Engineering division was high creditable for successful completion of this research. Further, I would like to thank Ms.Melani Jayakody and Ms.Chathuri Andrahennedi for supporting me in official matters throughout this project.

Last but not least I would like to appreciate the encouragement and support given by my loving parents, my husband and my sister and brother in all the way through this study.

K.A. Ruksala Nishani Jayarathna

ABSTRACT

Pavement design is a vital part in new road construction and rehabilitation of roads. American Association of State Highway and Transportation Officials (AASHTO) pavement design guideline and Transport Research Laboratory (U.K) Road Note 31 (TRL RN-31) guideline are widely used for designing road pavements by most of the road agencies. Both these design guidelines are empirical guidelines and based on empirical formulas developed from experimental studies conducted in extreme weather conditions. In recognition of the potential of analysing pavements and predicting their performance, pavement design agencies have been encouraging the movement towards mechanistic empirical pavement design methods. Performance models used for the empirical pavement designs are basically derived from experiments which are conducted in controlled laboratory conditions. So it should be validated before utilising for the road pavement designs. The aim of the research was to check the applicability of Mechanistic Empirical (M-E) models developed by Austroad guide for tropical climatic conditions prevails in Sri Lankan roads. The computer program CIRCLY which is based on Austroad guide was used for the analysis. Cumulative Damage Factor (CDF) given by the computer program was compared with the in service pavement condition. Pavement Condition Index (PCI) was used to represent the pavement condition. PCI values were calculated only for structural based distresses as assessed by type, severity and density according to the ASTM method. CDF values obtained from CIRCLY were verified with the PCI values obtained from the pavement condition. Since PCI and CDF have a good relationship, CIRCLY software which is based on Austroad pavement design guideline could be introduced as a good analytical tool for designing road pavements in tropical climatic conditions. Then the research was focused on evaluating the suitability of a mechanistic empirical pavement design tool CIRCLY to investigate a pavement failure. In this study, failure of a non-structural surface road which is failed immediately after completing the construction was selected for the analysis. This road was designed according to the Overseas Road Note 31(ORN 31) and designed with a nonstructural surface type, Double Bitumen Surface Treatment (DBST). Soil samples collected from critically damaged locations were tested. Results showed that the inadequate strength of the sub base layer as the reason to the failure. Failure investigations were done using a mechanistic tool CIRCLY and reliable reclamation method was proposed.

Key words: Mechanistic Empirical pavement design, CIRCLY computer program, Pavement Condition Index (PCI), Failure analysis

TABLE OF CONTENT

D	eclarat	tion	i	
Dedication				
Acknowledgementsii				
A۱	Abstractiv			
Тε	able of	Content	v	
List of Figures vii				
Li	List of Tablesvi			
Li	st of A	Abbreviations	ix	
Li	st of A	Appendices	Х	
1	INT	TRODUCTION	. 1	
	1.1	Problem Statement and Background	.1	
	1.2	Objectives of the Research	.2	
	1.3	Scope of Work	.2	
2	LIT	ERATURE REVIEW	3	
	2.1	Flexible Pavement Design Methods	3	
	2.2	Empirical Pavement Design Methods	4	
	2.2.	1 AASHTO Design Guidelines	4	
	2.2.	2 TRL Road Note 31	6	
	2.3	Development of Mechanistic-Empirical Pavement Design	8	
	2.4	Mechanistic-Empirical Pavement Design Method	9	
	2.4.	1 Asphalt Fatigue Models	0	
	2.4.	2 Rutting Models	6	
	2.4.	3 Effect of AC Layer Thickness to the Fatigue Cracking	17	
	2.5	Material Properties	9	
	2.5.	1 Asphalt Concrete (AC)	20	
	2.5.	2 Unbound Granular Material	21	
	2.5.	3 Subgrade Material	23	
	2.6	Development of Mechanistic Computer Programmes	23	
	2.1	Introduction to CIRCLY	23	

	2.7.1	Fatigue Criteria for AC	25
	2.7.2	Fatigue Criteria for Cement Treated Material:	
	2.7.3	Rutting Criteria for Subgrade Material:	
	2.7.4	Design Traffic	
	2.7.5	Mechanistic-Empirical Pavement Design Procedure	
	2.7.6	Cumulative Damage Factor (CDF)	
3	METHO	DDOLOGY	
	3.1 Che	eck the Applicability of CIRCLY for Fatigue Performance in Stru	ctural
]	Road		34
	3.1.1	CIRCLY model	
	3.1.2	Pavement Condition Index (PCI)	39
	3.1.3	Model validation	40
	3.2 Fai	lure Investigation Using CIRCLY	41
	3.2.1	Investigation of material properties and field measurement	
	3.2.2	Model development using CIRCLY	47
4	RESUL	TS	49
4	4.1 Eff	ect of AC Layer Thickness on the Asphalt Fatigue Damage	49
	4.1.1	PCI variation	52
	4.1.2	CDF variation	52
	4.1.3	Development of a Model	53
2	4.2 Res	sults on Failure Analysis	55
	4.2.1	Analysis of proposed design	56
	4.2.2	Recommended design for 10 years' traffic	57
5	CONCL	LUSION AND RECOMMENDATION	59
6	6 REFERENCE LIST 6		
7	APPEN	DICES	66

LIST OF FIGURES

Figure 2.1: Stress distribution over road pavement structure	3
Figure 2.2: AASHTO pavement design procedure	6
Figure 2.3: procedure for determine layer thicknesses	6
Figure 2.4: Road Note 31 pavement design procedure	8
Figure 2.5: variation of Alligator cracking percentage with asphalt concrete (AC)
layer thickness	19
Figure 2.6: Pavement model for mechanistic procedure, showing locations of	critical
strains	
Figure 2.7: Mechanistic design procedure	
Figure 3.1: Road pavement structure	41
Figure 3.2: Failure location	
Figure 3.3: Layout of the test pit	
Figure 3.4: Grid lines marked on the test pit area	44
Figure 3.5: Cross section along grid line A	45
Figure 3.6: Cross section along grid line B	45
Figure 3.7: Individual deflection of layers (CIRCLY results)	46
Figure 4.1: Critical strain variation with the AC layer thickness	49
Figure 4.2: CDF variation with the AC layer thickness	50
Figure 4.3: Effect of AC layer thickness on the fatigue performance of the pa	vement
in LHS	50
Figure 4.4: Effect of AC layer thickness on the fatigue performance of the pa	vement
in RHS	51
Figure 4.5: PCI variation for LHS and RHS	52
Figure 4.6: CDF variation for LHS and RHS	52
Figure 4.7: PCI and CDF variation of new construction in RHS	53
Figure 4.8: PCI variation with CDF	54
Figure 4.9: Model validation	55
Figure 4.10: Individual deflections of actual and proposed design	

LIST OF TABLES

Table 2.1: Empirical relationships developed by different agencies	11
Table 2.2: Constant values introduced by different agencies	17
Table 2.3: Presumptive values for elastic characterization of unbound granular	
material	22
Table 2.4: Standard subbase modulus values	23
Table 2.5: Correlations of subgrade CBR value to resilient modulus value	23
Table 2.6: Reliability factors for different project reliability	26
Table 2.7: Standard axle load for each axle group type	30
Table 2.8: Load damage exponents for each damage type	30
Table 3.1: Layer thicknesses of the selected cross sections	35
Table 3.2: Average climate data - Kantale	36
Table 3.3: Asphalt design modulus at WMAPT of 32°C	36
Table 3.4: Calculated asphalt modulus values at WMAPT of 39.5°C	38
Table 3.5: Selected asphalt modulus at WMAPT of 39.5°C	38
Table 3.6: Selected material properties	39
Table 3.7: Estimated design traffic and traffic multipliers	39
Table 3.8: Pavement Condition Index (PCI) rating scale	40
Table 3.9: Material properties of the sub base soil	43
Table 3.10: Design and actual layer thicknesses	46
Table 3.11: Material Properties	47
Table 4.1: Damage ratios for 10 years design traffic	55
Table 4.2: Damage ratios for 2 years design traffic	56
Table 4.3: Damage ratio for the proposed design (for 10 years design traffic)	57

LIST OF ABBREVIATIONS

Abbreviation	Description		
AASHTO	American Association of State Highway and		
	Transportation Officials		
ABC	Aggregate Base Course		
AC	Asphalt Concrete		
CBR	California Bearing Ratio		
CDF	Cumulative Damage Ratio		
CESAL	Cumulative Equivalent Standard Axle Load		
CNSA	Cumulative Number of Standard Axles		
DBST	Double Bitumen Surface Treatment		
DESA	Design Equivalent Standard Axles		
ESAL	Equivalent Standard Axle Load		
M-E	Mechanistic-Empirical		
MEPDG	Mechanistic Empirical Pavement Design Guide		
PCI	Pavement Condition Index		
RF	Reliability Factor		
SAR	Standard Axle Repetitions		
ITT	Indirect Tensile Test		
TRL Road Note 31	Transport Research Laboratory Road Note 31		
WMAPT	Weighted Mean Annual Pavement Temperature		

LIST OF APPENDICES

Appendix A - Test Pit Data	66
Appendix B - As Build Drawing data	67
Appendix C - Calculation of WMAPT value for Kantale	
Appendix D – Distress Photographs	71
Appendix E – PCI Values for Calibration	74
Appendix F – PCI Values for Validation	76