DEVELOPMENT OF A NATIONAL RISK ACCEPTANCE CRITERIA FOR MANAGING MAJOR INDUSTRIAL HAZARDS

Kodagoda Gamage Veditha Kaumudu De Silva

138017b

Degree of Master of Philosophy

Department of Chemical and Process Engineering

University of Moratuwa Sri Lanka

August 2018

DECLARATION BY CANDIDATE AND SUPERVISOR

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non – exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic, or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)

Signature:....

Date:....

(K.G.V.K.De Silva)

The above candidate has carried out research for the MPhil thesis under our supervision.

Signature of the Supervisors:

1.	Professor A.A.P. De Alwis	 Date	:	
2.	Dr.(Ms) M.Y.Gunasekera	 Date	:	

DEDICATION

"Dedicated to my Father and late Mother"

ACKNOWLEDGEMENT

This thesis would only have been a dream if not for the significant guidance and support from a number of people.

Foremost among them is Professor A.A.P De Alwis, my senior supervisor who was humble enough to consider my initial research concept and helped me develop it into a viable research proposal. Furthermore, I would like to express my utmost appreciation for his guidance, constructive criticism and most of all for the inspiration he has provided in taking this thesis to a completion.

The support, guidance and motivation provided by my supervisor Dr. (Ms) M.Y.Gunasekera is second to none. This thesis would have been poorer if not for her constructive criticism, valuable advice and able guidance. Her dedication in keeping the research focused on the research objectives as well as the time schedule was instrumental in completing the thesis within the prescribed time frame. I am truly grateful for her contribution.

I wish to gratefully acknowledge Dr.H.R.M.Premasiri, Department of Earth Resource Engineering, Chairperson of the Progress Review Committee for his insightful comments and constructive criticism.

The constructive criticism and advice provided by Dr.P.G.Rathnasiri, former Head of the Department of Chemical and Process Engineering and member of the Progress Review Committee is gratefully acknowledged. His timely advice emphasizing on the need to focus on the research objectives is especially appreciated.

Last but not least, I gratefully acknowledge the loving support provided by my wife Isuri and daughter Dimathi who sacrificed many hours of fun and laughter on my behalf.

I would also like to thank all who helped me in numerous ways and regret my inability to thank them individually.

K.G.V.K. De Silva

ABSTRACT

This work attempts to address the issue of managing risk to the safety of the public posed by Major Accident Hazards (MAH) from the Chemical Process Industry (CPI) in Sri Lanka. The research essentially focuses on the establishment of a suitable risk acceptance criteria as well as an appropriate framework that can be used in determining the level of safety offered by a particular MAH installation in Sri Lanka. The "level of safety" of an installation is then compared against the risk acceptance criteria to determine its acceptability in the Sri Lankan context.

The history of process safety management as is understood at present was investigated and the different risk regulation regimes currently in practice globally were identified. The role of risk assessment in each risk regulatory regime was investigated and the need for risk informed decision making was firmly established. The thesis then focuses on the prevalent categories of approaches in risk assessment. The different risk assessment approaches are investigated further. Out of those approaches, the consequence assessment and probabilistic risk assessment approaches or methods were chosen for the development of the risk assessment framework. The different risk metrics used to express the risk for each approach and the respective risk acceptance criteria were identified. Then appropriate risk acceptance criteria were developed for the two approaches. The establishment of a safety distance corresponding to 1% fatality of the public was adopted for the consequence based assessment method whereas a FN criteria line with an anchor point of $(10, 10^{-4})$ and slope -1 was chosen for the probabilistic risk assessment method.

The applicability of the different risk acceptance criteria in the Sri Lankan context is carried out for the case of propane storage tank. Data gaps and constraints are identified. Both methods adopt a conservative decision making approach. A significant constraint is the lack of a nationally verified and validated set of failure rate data for process equipment and ignition probability data; these are essential for establishing conditional probabilities when calculating accident frequencies. The usage of generic data for failure rates is not recommended due to the wide variability in different data sources. Further, allowing room for choosing an arbitrary set of failure rate data could create an opportunity for biasing the risk acceptance decision.

In this work, a framework is presented for applying the risk acceptance criteria developed. An FN curve based on upper bound data for the probabilistic risk assessment method and modified consequence assessment method are developed. The probabilistic risk assessment method is modified to accommodate the variability in generic failure rate data. The decision of acceptability is made by defining an FN curve using upper bound values of the FN curve and comparing it with the criterion line. A safety distance proportionate with the overall level of risk based on a relative risk reduction factor (RRRF) is introduced.

Keywords: Major Accident Hazard, Risk Acceptance, Criterion Line, Consequence analysis, Quantitative Risk Assessment, Failure rate

TABLE OF CONTENTS

DEC	CLARA	ATION OF THE CANDIDATE AND SUPERVISOR	i
DEI	DICAT	ION	ii
ACI	KNOW	LEDGEMENTS	iii
ABS	STRAC	CT	iv
TAE	BLE OI	F CONTENT	v
LIS	Г OF A	APPENDICES	xiv
LIS	Г OF F	IGURES	XV
LIS	Г OF Т	ABLES	xxi
LIS	Г OF A	ABBREVIATIONS	xxvii
CH	APTE	R 1	1
1.0	INTR	ODUCTION	1
	1.1	Background	1
	1.2	Problem Statement	3
	1.3	Research Objectives	4
	1.4	Organization of the thesis	4
CH	APTE	R 2	5
2.0	Litera	ature Review	5
	2.1	Introduction	6
	2.2	Seminal Events	6
		2.2.1 The Regulatory Response to Flixborough, UK - 1974	7

	2.2.2	The Regulatory Response to Seveso, Italy - 1976	7
	2.2.3	Bhopal and its Regulatory Aftermath, Bhopal, India in 1984	8
	2.2.4	Piper Alpha Disaster, North Sea, UK - 1988	8
2.3	Subsec	quent Developments	8
2.4	Compa Accide	arison of Major Risk Regulatory Regimes for Major ent Hazards	9
2.5	Investi respec	igation of Risk Assessment approaches in the CPI with to Major Accident Hazards	10
	2.5.1	Introduction	10
	2.5.2	Meaning of Risk in the context of analysis	11
	2.5.3	Risk assessment approaches and their categorization	12
		2.5.3.1 Deterministic or Generic "Safety" Distances Approach	14
		2.5.3.2 Consequence based approach	15
		2.5.3.3 The Risk based approach	17
		2.5.2.4 Hybrid/ Semi Quantitative Approach	20
2.6	Risk A	Assessment Criteria	21
	2.6.1	Overview of Risk Assessment Metrics	22
	2.6.2	International usage of Risk Metrics and Risk Criteria	23
		2.6.2.1 United Kingdom (UK)	23
		2.6.2.2 Netherlands	27

			2.6.2.3	Belgium/ Flanders	27
			2.6.2.4	Germany	28
			2.6.2.5	France	28
			2.6.2.6	Spain	30
			2.6.2.7	Hong Kong	30
			2.6.2.8	Singapore	31
			2.6.2.9	Malaysia	32
			2.6.2.10	Australia	33
			2.6.2.11	Brazil	35
			2.6.2.12	United States of America (USA)	37
			2.6.2.13	Canada	39
			2.6.2.14	Abu Dhabi	39
		2.6.3	Comparis Risk Crite	on of the Application of Risk Metrics and eria	40
	2.7	Discus	ssion		42
CH	APTEF	R 3			47
3.0	Deter	mination	n of Risk A	cceptance Criteria	47
	3.1	Introd	uction		47
	3.2	Detern Based	nination of Risk Asses	Risk Acceptance Criteria for Consequence sment	46
		3.2.1	Selectior	n of Endpoints for Fire Consequences	48
			3.2.1.1	Engulfment from fire	49

	3.2.1.2	Thermal	Radiation	49
		3.2.1.2.1	Fixed Endpoints for Thermal Radiation	50
		3.2.1.2.2	Probit Endpoints for Thermal Radiation	51
		3.2.1.2.3	Selection of an appropriate Probit for Dose – Response relationship under Sri Lankan conditions	54
3.2.2	Selectio explosio	on of endpoi	ints for blast overpressure from	55
	3.2.2.1	Probit end Overpress	dpoint selection for Blast sure	56
	3.2.2.2	Direct eff	ects of Blast Overpressure	56
	3.2.2.3	Comparis Overpress	on of Probit Functions for sure due to explosions	57
3.2.3	Selectio Chemic	on of End Po als	oints for Exposure to Toxic	59
	3.2.3.1	Selection	of Probits for H ₂ S Exposure	62
	3.2.3.2	Selection	of Probits for NH ₃ Exposure	64
	3.2.3.3	Selection	of Probits for Cl ₂ Exposure	65
3.2.4	Proposa consequ	l of a risk a ience assess	cceptance criteria for the sment approach	66
3.2.5	Summa	ry of the sel	lected probits	67
Determ	ination of	f risk accep	tance criteria for the probabilistic	67

3.3

approach

3.3.1	Introduction	67
3.3.2	Process for the derivation of the Societal Risk Acceptance criterion	68
	3.3.2.1 MAH Installations	69
	3.3.2.2 Selection of an approach for deriving the risk acceptance criteria	69
	3.3.2.3 Definition of risk	70
	3.3.2.4 Selection of a measure of Societal Risk and presentation of the risk	70
	3.3.2.5 Framework for the derivation of Societal Risk Acceptance Criteria	72
3.3.3	Identification of sources of major accidents or disasters	72
3.3.4	Estimation of the level of Societal Risk from different sources of major accidents or disasters	77
3.3.5	Comparison of the Societal Risk for Natural and Technological Disasters	80
3.3.6	Selection of the reference Societal Risk Acceptance Criteria	82
3.3.7	Comparison of the FN Curve for Technological Disasters in Sri Lanka with international Societal Risk Acceptance Criteria	84
	3.3.7.1 Determining the Societal Risk level relative to internationally accepted levels	85

3.3.7.2	Selection of the major parameters for the	85
	Societal Risk Acceptance Criteria for Sri	
	Lanka	

CH	APTEI	R 4		91	
4.0	Application of the Risk Acceptance Criteria in evaluating the level of risk for a bullet type propane storage tank				
	4.1	Applic Consec	ation of Risk Acceptance Criteria using the quence Approach	91	
		4.1.1	Introduction	91	
		4.1.2	Selection of Accident Scenarios for the Consequence Assessment approach	91	
			4.1.2.1 Selection of Accident Scenarios for a Bullet type Liquefied Propane Storage Tank	92	
		4.1.3	Application of Consequence Analysis for each accident scenario	95	
		4.1.4	Comparison of the consequence effects for the selected scenarios	96	
		4.1.5	Significant aspects of the application of the consequence assessment approach	97	
	4.2	Applic Risk A tank	ation of Risk Acceptance Criteria for the Probabilistic Assessment Approach for a bullet type propane storage	99	
		4.2.1	Selection of Accident Scenarios for the Probabilistic Risk Assessment Approach	100	
		4.2.2	Development of event trees for the case study	101	

4.2.3	Determination of the extent o Consequences				
	4.2.3.1	Consequer	ace modeling of scenarios	102	
	4.2.3.2	Summary of Probabilist	of Consequence effects for the ic Risk Assessment Method	108	
4.2.4	Calculat scenario	ion of accid s	ent frequencies for the accident	108	
	4.2.4.1	Introductio	on to Failure Frequencies	109	
	4.2.4.2	Evaluation	of Generic Failure Frequencies	110	
		4.2.4.2.1	Generic Failure Frequencies given by RIVM	110	
		4.2.4.2.2	Generic Failure Frequencies given in Taylor (September 2006)	111	
		4.2.4.2.3	Failure Frequencies published by the International Association of Oil & Gas Producers (OGP)	112	
		4.2.4.2.4	Generic Failure Frequencies given in the Handbook of Failure Frequencies by the Flemish Government	112	
		4.2.4.2.5	Generic Failure Frequencies given in API RP 581	113	
	4.2.4.3	Analysis o sets for Ca	f Generic Failure Frequency data se Study	114	
	4.2.4.4	Selection of	of Ignition Probabilities	116	

			4.2.4.5	Introduction of ignition	on to the application of probability	117
				4.2.4.5.1	Review of Ignition Probability values	118
				4.2.4.5.2	Ignition probability model proposed by the International Association of Oil & Gas Producers Association (OGP)	118
				4.2.4.5.3	Ignition probability values proposed by Crossthwaite	120
				4.2.4.5.4	Ignition Probabilities proposed by RIVM	121
			4.2.4.5	Selecting a	an ignition probability model for n in the Case Study	124
		4.2.5	Estimati	ng the Acci	dent Frequencies	124
CHA	APTER	R 5				127
5.0	Select develo	ion of an opment of	appropria f the decis	ate Risk Ace	ceptance Criterion and g framework	127
	5.1	Compare the Prob	rison of th	e Conseque Risk Assess	ence Assessment (CA) approach vs sment (PRA) approach	127
	5.2	The imp	pact of un	certainty in	risk informed decision making	135
	5.3	Risk As	ssessment	framework	for the Sri Lankan context	138
		5.3.1	The mod	lified "Cons	sequence Assessment Approach"	139
		5.3.2	The "Up	per Bound	FN Curve" method	141

		5.3.3	Comparison of the proposed "modified Consequence Assessment Approach" vs the "Upper Bound FN Curve" method	143
		5.3.4	Relative Risk Reduction Factor (RRRF)	144
CH	APTER	26		150
6.0	Demor Metho	nstrating d	the applicability of the "Upper Bound FN Curve"	150
	6.1	Introduc	ction	150
	6.2	Risk red method	luction measures for the "Upper Bound FN Curve"	150
	6.3	Selectio	n of Safety Barriers	151
	6.4	Develop	oment of Event Trees with Safety Barriers	152
	6.5	Selectio Safety H	n of the probability of failure on demand (PFD) for the Barriers	156
	6.6	Plotting Barriers	of "Upper Bound FN Curve" after incorporating Safety	156
	6.7	Calculat Study	tion of Risk Reduction Factor (RRRF) for the Case	157
	6.8	Estimat	ion of the Safety Distance	158
CH	APTER	27		162
7.0	Conclu	usion and	Recommendations for future work	162
	7.1	Conclus	sions	162
	7.2	Recomm	nendations	164

LIST OF APPENDICES

Appendix A	: Description of the Probit Analysis Method	175
Appendix B	: Major Technological System Related Accidents in Sri Lanka	177
Appendix C	: Gaseous Leaks in Sri Lanka with potential for Public Exposure	178
Appendix D	: Meteorological Data for Consequence Assessment	179
Appendix E	: Estimation of Consequence Impacts for the Consequence Assessment (CA) Approach	183
Appendix F	: Estimation of Consequence Impacts for the Probabilistic Risk Assessment Approach	201
Appendix G	: Comparison of factors contributing to variations in the failure rate/ frequency data set	249
Appendix H	: Accident frequencies (f) and fatalities (N) for generic failure frequency data sets	250
Appendix I	: Accident frequencies (f) and fatalities (N) for generic failure frequency data sets with safeguards	255
Appendix J	: Theoretical Basis for the Relative Risk Reduction Factor (RRRF)	256

LIST OF FIGURES

Figure 2.1	Land use restrictions zones according to the consequences based approach	17
Figure 2.2	Probabilistic Risk Assessment Process	18
Figure 2.3	Societal Risk Criteria for Hong Kong	31
Figure 2.4	Societal Risk Criteria for New South Wales	34
Figure 2.5	Societal Risk Criteria for Victoria	35
Figure 2.6	Societal Risk Criteria for different states in Brazil	36
Figure 2.7	Societal Risk Criteria for Santa Barbara County, USA	38
Figure 2.8	Societal Risk Criteria for ADNOC Group, Abu Dhabi	40
Figure 2.9	Historical Development of the Risk Based Approach	45
Figure 3.1	Quantitative comparison of probit functions for thermal radiation	54
Figure 3.2	Comparison of probit functions for fatalities due to overpressure	57
Figure 3.3	Comparison of dose – response relationships for lethal effects from H_2S	63
Figure 3.4	Comparison of dose – response relationships for lethal effects from NH_3	64
Figure 3.5	Comparison of dose – response relationships for lethal effects from Cl_2	65
Figure 3.6	Framework for deriving a societal risk acceptance criteria acceptance criteria for major accident hazards in Sri Lanka	72
Figure 3.7	FN Curve with Key Coordinates	79
Figure 3.8	FN Curves for Major Natural & Technological Hazards in Sri Lanka	88
Figure 3.9	Fitted linear curve for log – log plot of total fatalities (N) vs cumulative frequency (F) for Technological Disaster Data (Technological Curve)	89

Figure 3.10	Fitted linear curve for log – log plot of total fatalities (N) vs cumulative frequency (F) for Technological Disaster Data (DesInventar)	89
Figure 3.11	Fitted linear curve for log – log plot of total fatalities (N) vs cumulative frequency (F) for Technological Disaster Data (EMDAT)	89
Figure 3.12	Proposed Criteria Line for Societal Risk in the CPI for Sri Lanka	90
Figure 4.1	LOC due to catastrophic failure of pressure vessel	93
Figure 4.2	LOC due to rupture in the shell of the vessel with an effective diameter of 100mm	93
Figure 4.3	LOC due to continuous release from a hole with an effective diameter of 10mm	94
Figure 4.4	Event tree for LOC with catastrophic failure of vessel with instantaneous release of Pressurized Liquefied Gas	103
Figure 4.5	Event tree for LOC with release of entire content of Pressurized Liquefied Gas in 10 minutes	104
Figure 4.6	Event tree for continuous release of inventory through 10mm hole	105
Figure 4.7	Comparison of FN Curves having different failure frequencies with FN criterion for Sri Lanka	113
Figure 4.8	Threat zones for a vapour cloud explosion (VCE) for case b	114
Figure 4.9	Threat zones for a flash fire (Case a)	117
Figure 4.10	Threat zone for a flash fire (Case b)	118
Figure 4.11	Area within the LEL for release of propane (Hole Size 10mm) case a	119
Figure 4.12	LOC with Instantaneous Release of Pressurized Liquefied Gas	125
Figure 4.13	LOC with release of entire content of the pressurized liquefied gas in 10 minutes	126

Figure 4.14	LOC with release of entire content of pressurized liquefied gas in 10 minutes	126
Figure 5.1	Methodology for applying the Safety Distance risk acceptance criterion using Consequence Assessment (CA) Approach for the "Worst Case" scenario	129
Figure 5.2	Methodology for applying the FN Curve Risk Acceptance Criterion using the Probabilistic Risk Assessment Approach	130
Figure 5.3	The six levels of complexity in the characterization of risk	138
Figure 5.4	The modified Consequence Assessment approach for the Safety Distance Risk Acceptance Criteria	140
Figure 5.5	The Flow Chart for the Upper Bound FN Curve Method	142
Figure 5.6	Areas for RRRF Calculation from the FN Curve	146
Figure 5.7	Area A1 bounded by "Criterion line", cumulative frequency, total fatalities and N_{Max}	146
Figure 5.8	Area A2 bounded by "FN Curve", cumulative frequency, total fatalities and N_{Max}	146
Figure 5.9	Decision making process using the "Upper Bound FN Curve" method	148
Figure 6.1	Event tree for the Instantaneous Release of Entire Inventory (with Safety Barriers)	153
Figure 6.2	Event tree for the Release of entire inventory within 10 minutes (with Safety Barriers)	154
Figure 6.3	Event tree for the continuous release of inventory through a 10mm hole	155
Figure 6.4	Comparison of "Upper Bound FN Curves" with and without Safety Barriers	160
Figure 6.5	Areas marked for Calculation of Relative Risk Reduction Factor (RRRF)	161
Figure A.1	Probit Transformation	175
Figure D.1	Wind Rose for Colombo (2003 – 2013)	181

Figure E.1	Threat zones for BLEVE	184
Figure E.2	Scaled Overpressure and Impulse Curves for a TNT Explosion on a surface	188
Figure E.3	Threat zones for a Vapour Cloud Explosion (VCE) for Case a	193
Figure E.4	Threat zones for a Vapour Cloud Explosion (VCE) for Case b	194
Figure E.5	Threat zones for a Flash Fire (Case a) in Accident Scenario 3	198
Figure E.6	Threat zones for a Flash Fire (Case b) in Accident Scenario 3	199
Figure E.7	Flammable are within the LEL for release of Propane for Case a (Hole Size 10mm)	200
Figure F.1	Summary of the BLEVE event	201
Figure F.2	Threat Zone for the BLEVE event	202
Figure F.3	30m X 30m Grid for the BLEVE Threat Zone	202
Figure F.4	Rate of release of entire content of propane bullet within 1 minute	209
Figure F.5	Summary of Event 2	210
Figure F.6	Threat zone for event 2	211
Figure F.7	Threat zone superimposed on the geographical location of the release for event 2	211
Figure F.8	50m X 50m Grid for the VCE Threat Zone	212
Figure F.9	Threat zone for event 3	216
Figure F.10	Concentration vs Time after release	217
Figure F.11	Threat zone with 100m demarcation line	218
Figure F.12	50m X 50m Grid for Event 3	218
Figure F.13	Threat zone due to VCE if ignition occurs at $\Delta t = 5 \text{ min}$	221
Figure F.14	VCE threat zones at different time intervals event 4	222
Figure F.15	Summary of the VCE at $\Delta t = 5 \min$	223

Figure F.16	Threat Zone superimposed on the geographical location	223
Figure F.17	25m X 25m Grid for VCE at $\Delta t = 5 \text{ min}$	224
Figure F.18	Summary of event 5	226
Figure F.19	Threat zone of event 5	227
Figure F.20	Threat Zone superimposed on the geographical location	228
Figure F.21	Threat zone with 300m & 450m demarcation lines (Grid – 50m X 50m)	229
Figure F.22	Rate of release of entire content within 10 minutes	231
Figure F.23	Summary of event 7	231
Figure F.24	Threat zone for event 7	232
Figure F.25	Threat Zone superimposed on the geographical location	232
Figure F.26	Summary of event 7	233
Figure F.27	Threat zone for event 7	233
Figure F.28	Concentration vs Time profile	234
Figure F.29	Threat zone for event 8	234
Figure F.30	Summary of event 8	235
Figure F.31	VCE Threat Zones at different time intervals	236
Figure F.32	VCE threat zone for delayed ignition at $\Delta t = 9 \min$	237
Figure F.33	Threat zone of event 8 (Grid 30m X 30m)	237
Figure F.34	Summary of event 9	239
Figure F.35	Threat zone during the vulnerable period	240
Figure F.36	Flame envelope at 7 min from release	240
Figure F.37	30m X 30m Grid for Event 9	241
Figure F.38	Concentration vs Time profiles for successive downwind distances	242
Figure F.39	Summary of event 10	244

Figure F.40	Threat zone for event 10	244
Figure F.41	Summary of event 11	245
Figure F.42	Threat zone due to VCE for all ignition times	246
Figure F.43	Threat Zone superimposed on the geographical location	246
Figure F.44	Summary of event 12	247
Figure F.45	Threat zone for flash fire (Event 12)	247
Figure F.46	Threat Zone superimposed on the geographical location	248
Figure J.1	Bounded area used for the calculation of "Level of Risk"	256

LIST OF TABLES

Table 2.1	Listing of Accident Scenarios	12
Table 2.2	Comparison of different risk assessment approaches	13
Table 2.3	Common risk metrics for Major Accident Hazards	23
Table 2.4	Comparison of risk metrics for Major Accident Hazards	24
Table 2.5	Risk Criteria for the Demarcation of Zones in LUP, United Kingdom	26
Table 2.6	Criteria for External Human Risk in Flanders	27
Table 2.7	Gravity Levels	28
Table 2.8	Probability Levels	28
Table 2.9	Matrix of Acceptability of Risk for France	29
Table 2.10	MIACC Risk Criteria for Land Use Planning	39
Table 2.11	ADNOC Maximum Individual Risk Criteria	40
Table 2.12	Comparison of World Wide Application of Risk Metrics and type of Respective Risk Criterion	41
Table 2.13	Comparison of advantages between consequence and probabilistic approach	43
Table 2.14	Comparison of disadvantages between consequence and probabilistic approach	44
Table 2.15	Comparison of Individual and Societal Risk Metrics	46
Table 3.1	Relationship between fire and potential vulnerability	47
Table 3.2	Heat flux values used in ALOHA 5.4.1.2 Program	48
Table 3.3	Thermal Dose Probit functions for Human Mortality	53
Table 3.4	Qualitative Comparison of probit functions for Thermal Radiation	54
Table 3.5	Commonly used Probit Equations used to predict Human Exposure Effects due to overpressure	57

Table 3.6	Percentage damage values for the Eisenberg probit for total structural damage	58
Table 3.7	Effects of exposure to Hydrogen Sulphide	62
Table 3.8	Commonly used probits for lethal effects from H ₂ S	63
Table 3.9	Widely used probit equations for lethality from NH ₃ exposure	64
Table 3.10	Widely used probit equations for lethality from Cl ₂ exposure	65
Table 3.11	Summary of selected probits	67
Table 3.12	Natural disasters in Sri Lanka from 1974 to 2012 (Source: DesInvnetar)	75
Table 3.13	Natural disasters in Sri Lanka from 1974 to 2013 (Source:EMDAT)	76
Table 3.14	Technological disasters of Sri Lanka from 1974 to 2013	77
Table 3.15	FN relationships for Technological and Natural Accident Systems	80
Table 3.16	Summary of Societal Risk Criteria based on the likelihood of N or more fatalities	87
Table 4.1	Selected Accident Scenarios for the Propane Storage Vessel	94
Table 4.2	Comparison of threat distances for the different scenarios for the Consequence Assessment Approach	97
Table 4.3	Parts included in the scenario for pressurized storage tank aboveground	101
Table 4.4	List of scenarios for LOC of a bullet type propane tank	106
Table 4.5	List of events for the Probabilistic Risk Assessment Approach	107
Table 4.6	Summary of consequence effects for the Probabilistic Risk Assessment Approach	108
Table 4.7	Failure frequencies from RIVM	111
Table 4.8	Failure frequencies from Taylor for storage vessels	111
Table 4.9	Failure frequencies from OGP for storage vessels	113

Table 4.10	Failure frequencies from Handbook of Failure Frequencies 2009 for storage vessels	113
Table 4.11	Failure frequencies from API RP 581 for vessel (Drum)	113
Table 4.12	Categorization of LOCs	114
Table 4.13	Generic Failure Frequencies for Pressure Vessels	115
Table 4.14	Categorization of Ignition	117
Table 4.15	Total Probability of Ignition for an LPG Leak	120
Table 4.16	Probability of ignition for LPG releases from Pressure Vessels (Crosstwaite et al)	120
Table 4.17	Probability of direct ignition for category 0 substances at fixed installations	121
Table 4.18	Probability of delayed ignition (Onsite vs Offsite)	122
Table 4.19	Probability of ignition for a time interval of one minute for point sources	122
Table 4.20	Probability of ignition for a time interval of one minute for line sources	123
Table 4.21	Probability of ignition for a time interval of one minute for Area sources	123
Table 4.22	Probability of ignition for a time interval of one minute for population sources	123
Table 4.23	Cumulative Frequencies (F) vs Total Fatalities (N) for different failure frequency data sets	125
Table 5.1	Comparison of the Consequence Assessment approach vs the Probabilistic Risk Assessment approach in Sri Lanka	128
Table 5.2	Factors contributing to uncertainty in the purely Consequence Assessment approach	132
Table 5.3	Factors contributing to uncertainty in the purely Probabilistic Risk Assessment approach	133
Table 6.1	PFD Values for the Selected Safety Barriers	156

Table 6.2	Cumulative Frequency (F) vs Fatalities (N) for the "Upper Bound FN Curve" with Safety Barriers	157
Table 6.3	1% Fatality Distance (Downwind Direction)	159
Table 7.1	Summarized Table of Risk Acceptance Criteria for Sri Lanka	163
Table A.1	Tabular form of the Probit – Probability Relationship	176
Table B.1	Major Technological Accidents in Sri Lanka	177
Table C.1	Major Gas Leaks in Sri Lanka	178
Table D.1	Yearly Average Wind Speeds and Directions (2003 – 2013)	180
Table D.2	General Meteorological and Topographical Conditions	182
Table E.1	Impact Distances for thermal radiation from fire ball	185
Table E.2	Overpressure effects due to BLEVE	189
Table E.3	Parameters for VCE	192
Table E.4	Flame speed in Mach Numbers for soft ignition sources	193
Table E.5	Impact distances for Case a in Accident Scenario 1	194
Table E.6	Impact distances for Case b in Accident Scenario 1	195
Table E.7	Impact distances for Case a in Accident Scenario 2	198
Table E.8	Impact distances for Case b in Accident Scenario 2	199
Table E.9	Impact distances for Case b in Accident Scenario 3	200
Table F.1	Consequence effects of the BLEVE Event	204
Table F.2	Exposure levels (Dose) for the BLEVE Event	205
Table F.3	Probit values for the BLEVE Event	206
Table F.4	Probability of Fatalities for the BLEVE Event	207
Table F.5	Site Specific fatalities for the BLEVE Event	208
Table F.6	End points for VCE overpressure	210
Table F.7	Exposure levels (overpressure) for event 2	212

Table F.8	Probit values	213
Table F.9	Probability of fatality	213
Table F.10	Site specific fatalities for event 2	214
Table F.11	Probability of death	219
Table F.12	Fatalities for event 3	219
Table F.13	Endpoints for VCE overpressure	221
Table F.14	Consequence effects	224
Table F.15	Probit values	225
Table F.16	Probability of Fatality	225
Table F.17	Estimation of fatalities	225
Table F.18	Probability of fatality for event 5	229
Table F.19	Estimated fatalities due to event 5	230
Table F.20	Consequence events of event 8	238
Table F.21	Probit values for event 8	238
Table F.22	Probability of fatality for event 8	238
Table F.23	Distribution of fatality values for event 8	239
Table F.24	Probability of fatality for event 9	241
Table F.25	Distribution of fatality values for event 9	243
Table F.26	Endpoints for thermal radiation effects	243
Table G.1	Factors contributing to variations in the failure rate/ failure frequency data set	249
Table H.1	Fatalities (N) vs Accident Frequency (f) for RIVM failure frequencies	250
Table H.2	Fatalities (N) vs Accident Frequency (f) for OGP failure frequencies	251
Table H.3	Fatalities (N) vs Accident Frequency (f) for Taylor's failure	252

frequencies

Table H.4	Fatalities (N) vs Accident Frequency (f) for Flemish failure frequencies	253
Table H.5	Fatalities (N) vs Accident Frequency (f) for API RP 581 failure frequencies	254
Table I.1	Fatalities (N) vs Accident Frequency (f) for the "Upper Bound" Failure Frequency with Safety Barriers	255

LIST OF ABBREVIATIONS

Description
Chemical Process Industry
Acute exposure guideline level
As low as reasonbly practicable
Areal location of hazardous areas
American Petroleum Institute
American Petroleum Institute Recommended
Practice
American Society of Mechanical Engineers
Boiling liquid expanding vapor explosion
Consequence Assessment
Clean Air Act Amendment
Canadian Chemical Producers Association
Center for Chemical Process Safety
Code of Federal Regulations
Control of Industrial Major Accident Hazards
Control of Major Accident Hazards
Center for Research on the Epidemiology of
Disasters
Dense gas dispersion
Disaster Management Center - Sri Lanka
Dangerous toxic load
Environment Impact Assessment
Environment Protection Agency
Emergency Response Division
Emergency Response Planning Guideline
Event Tree Analysis
European Union
Failure frequency
Failure modes and effects analysis
Failure rate and event data
Fault Tree Analysis
Hazard identification
Hazard and Operability
Heavy gas dispersion from Area Sources
Hydrocarbon Industry
Immediately dangerous to life and health
Institute of Petroleum
Independent Protection Layer

IR	Individual Risk
IRPA	Individual Risk per annum
KPI	Key Performance Index
LEL	Lower explosive limit
LFL	lower flammability limit
LOC	Loss of containment
LOPA	Layers of Protection Analysis
LPG	Liquefied Petroleum Gas
LUP	Land use planning
MAH	Major Accident Hazard
MIC	Methyl Iso Cyanate
NFPA	National Fire Protection Association
NIOSH	National Institute of Occupational Safety and Health
NOAA	National Oceanic and Atmospheric Administration
OGP	International Association of Oil & Gas Producers
OSHA	Occupational Safety and Health Administration
PFD	Probability of failure on demand
PSM	Process Safety Management
QRA	Quantitative Risk Assessment
RBI	Risk based insepction
RIVM	Netherlands National Institute for Public Health
RMP	Risk Management Plan
RRRF	Relative risk reduction frequency
SLOD	Significant likelihood of death
SLOT	Specified level of toxicity
SR	Societal Risk
TCDD	Tetrachlorodibenzoparadioxin
	Netherlands organization for applied scientific
TNO	research
UK	United Kigndom
UK HSE	United Kigndom Health and Safety Executive
UN	United Nations
VCE	Vapor Cloud Explosion