Design and Implementation of a Multi-port Power Converter topology for DC Nano-grid

Pasan Nawodaka Gunawardena

(178005A)

Degree of Master of Philosophy

Department of Electronic and Telecommunication Engineering

University of Moratuwa Sri Lanka

May 2019

Design and Implementation of a Multi-port Power Converter topology for DC Nano-grid

Loku Hettige Pasan Nawodaka Gunawardena

(178005A)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Philosophy

Department of Electronic and Telecommunication Engineering

University of Moratuwa Sri Lanka

May 2019

Declaration

I declare that this is my own work, and this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other university or institute of higher learning, and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part, in print, electronic, or any other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature: L.H.P.N.Gunawardena Date: 11/05/2019

The candidate, whose signature appears above, carried out research for the MPhil dissertation under my supervision.

Signature: DR. M.D.R.Nayanasiri Date: 11/05/2019

Abstract

This thesis presents a novel multi-port power converter topology for DC nanogrid applications. The proposed topology integrates energy sources, loads and energy storing elements using DC-link and magnetic coupling using a single converter. As a result, it has fewer component counts and conversion stages than the individual converters for each element in the nano-grid, which paves the way for a more efficient system.

The first part of this thesis presents a PV converter topology designed and developed in the laboratory. This circuit topology integrates two PV modules and boosts the input voltage into a 120V DC voltage level. However, switching loss of the converter is significant due to the hard-switching operation. Therefore, switching control strategy of the converter has been modified to minimize switching losses with the assistance of the existing parasitic elements. The operation of the power converter with the proposed switching control strategy is mathematically analyzed and verified using simulation results. The design is further validated using the experimental results obtained using a 250 W hardware prototype.

Moreover, a bi-directional high step-up/down converter is designed and developed to integrate an energy storing element into the system. The bi-directional converter step downs 120 V DC link voltage to an extremely low voltage (10-16 V DC) to charge a Li-ion battery pack. When the solar power is not available, the proposed converter discharges the Li-ion battery to regulate the 120 V DC link. The operation of the battery interfacing converter is validated and verified using both simulation and experimental results.

The conclusions and suggestions for the further development have been presented at the end of this thesis.

Index terms— Bi-directional power converters, DC-DC converters, high step-up/down converters, multi-port power converters, renewable sources, soft-switching.

Acknowledgements

This research is funded by the Senate Research Committee of the University of Moratuwa, Sri Lanka under the grant of SRC/LT/2017/10. I greatly appreciate their encouragement to undertake scientific research in Sri Lanka.

I extend my gratitude to my supervisors, Dr.Dulika Nayanasiri and Dr.Chamira Edussooriya of Department of Electronic and Telecommunication Engineering, The University of Moratuwa, for their astute advice, continuous guidance and the tremendous support throughout my research study. Also the technical support received from the Technical Officer of Post Graduate Laboratory, Department of Electronic and Telecommunication Engineering, Mr.Chinthaka Ranawaka Arachchige, was helpful to troubleshoot the problems associated with the experimental setup. And I thank all the staff members of the Department of Electronic and Telecommunication Engineering for their support extended in numerous ways.

Moreover, I thank my ever-supportive parents for the sublime world that they created for me and my loving wife Sanduni for understanding and encouragement to follow my passion.

Contents

	Dec	laration	i
	Abs	stract	ii
	Ack	nowledgements	iii
1	Inti	coduction	1
	1.1	Background to the Research Topic	1
	1.2	Outline of the Thesis	4
2	Lite	erature Review	6
	2.1	MISO Converters	7
	2.2	SIMO/MIMO Converters	10
	2.3	Summary	14
3	Ana	alysis of the Proposed Multi-Port Power Converter	16
	3.1	The Proposed Multi-port Power Converter	16
	3.2	The Operation of Proposed Multi-port Power Converter	16
		3.2.1 Mode 1: $P_{Gen} > P_{Load}$	17
		$3.2.1.1 SoC < 100\% \dots \dots \dots \dots \dots \dots \dots \dots \dots $	20
		$3.2.1.2 SoC = 100\% \dots \dots \dots \dots \dots \dots \dots \dots \dots $	20
		3.2.2 Mode 2: $0 < P_{Gen} < P_{Load}$	21
		3.2.3 Mode 3: $P_{Gen} = 0$	21
	3.3	Operation of the Solar-PV Converter	21
	3.4	Simulation Results	21
	3.5	Experimental Results	23
		3.5.1 Snubber Circuit Design	26
	3.6	Conclusions	27
4	Imp	plementation of Soft-switching in the Solar-PV Converter	28
	4.1	Literature Review	28

	4.2	The Soft-switching Operation of the Power Converter	29
	4.3	Converter Design Considerations	39
	4.4	Converter Controller Design	41
		4.4.1 Small Signal Modeling of the Solar-PV Converter	41
	4.5	Simulation and Experimental Verifications	45
		4.5.1 Simulation Results	45
		4.5.2 Experimental Results	47
	4.6	Conclusions	56
5	Inte	erfacing the Solar-PV Converter with an Energy Storage	58
	5.1	Introduction	58
	5.2	Literature Review	58
	5.3	The Proposed Power Converter	59
	5.4	The Operation of the Proposed Power Converter	60
		5.4.1 Charging Mode	60
		5.4.1.1 Continuous Conduction Mode Operation	60
		5.4.1.2 Discontinuous Conduction Mode Operation \ldots	62
		5.4.2 Discharging Mode	64
		5.4.2.1 Continuous Conduction Mode Operation	64
		5.4.2.2 Discontinuous Conduction Mode Operation \ldots	65
	5.5	Design of the Controller of the Bi-directional High Step-up/down	
		Converter	66
	5.6	Simulation and Experimental Results	68
		5.6.1 $$ Comparison of Simulation and Experimental Waveforms $$.	70
		5.6.2 Summary of Results	71
	5.7	Conclusions	72
6	Con	clusions and Future Work	73
	6.1	Major Contributions	73
	6.2	Summary of Results	74
	6.3	Discussion	74
	6.4	Suggestions for Further Work	76
A	ppen	dices	78
A			79
	A.1	MATLAB-Simulink model of the controller of solar-PV converter.	79

A.2	MATLAB-Simulink model	of the	$\operatorname{controller}$	of bi-directional high	1
	$\operatorname{step-up}/\operatorname{down}$ converter				. 80

List of Figures

T · T	The structure of integrating sources, loads and energy storing ele-	
	ments into the proposed multi-port power converter	4
2.1	Classification of Multi-port converters.	7
2.2	Multi-input buck-boost converter	7
2.3	Multi-input flyback converter.	8
2.4	Multi-input flyback converter with a multi-winding transformer	9
2.5	Two-input current-fed full-bridge DC-DC converter	9
2.6	Three-port full-bridge DC-DC converter.	10
2.7	Three-port half-bridge DC-DC converter	11
2.8	Three port SRC based bi-directional DC-DC converter	12
2.9	Triple-half-bridge bi-directional DC-DC converter with less com-	
	ponent	13
2.10	Three-port modified half-bridge converter	13
3.1	The proposed multi-port power converter that can be used to in- tegrate two PV modules, energy storing element, DC loads and a	
3.1	The proposed multi-port power converter that can be used to in- tegrate two PV modules, energy storing element, DC loads and a micro inverter	17
3.1 3.2	The proposed multi-port power converter that can be used to in- tegrate two PV modules, energy storing element, DC loads and a micro inverter	17 17
3.1 3.2 3.3	The proposed multi-port power converter that can be used to in- tegrate two PV modules, energy storing element, DC loads and a micro inverter	17 17
3.1 3.2 3.3	The proposed multi-port power converter that can be used to in- tegrate two PV modules, energy storing element, DC loads and a micro inverter	17 17 18
 3.1 3.2 3.3 3.5 	The proposed multi-port power converter that can be used to in- tegrate two PV modules, energy storing element, DC loads and a micro inverter	17 17 18
 3.1 3.2 3.3 3.5 	The proposed multi-port power converter that can be used to in- tegrate two PV modules, energy storing element, DC loads and a micro inverter	17 17 18
 3.1 3.2 3.3 3.5 	The proposed multi-port power converter that can be used to in- tegrate two PV modules, energy storing element, DC loads and a micro inverter	17 17 18
 3.1 3.2 3.3 3.5 	The proposed multi-port power converter that can be used to in- tegrate two PV modules, energy storing element, DC loads and a micro inverter	17 17 18 22
 3.1 3.2 3.3 3.5 3.4 	The proposed multi-port power converter that can be used to in- tegrate two PV modules, energy storing element, DC loads and a micro inverter	17 17 18 22
 3.1 3.2 3.3 3.5 3.4 	The proposed multi-port power converter that can be used to in- tegrate two PV modules, energy storing element, DC loads and a micro inverter	17 17 18 22
 3.1 3.2 3.3 3.5 3.4 	The proposed multi-port power converter that can be used to in- tegrate two PV modules, energy storing element, DC loads and a micro inverter	17 17 18 22

3.6	The experimental waveforms of the converter (a) Q_1 and Q_2 switches	
	control signal, (b) voltage across HF transformer primary winding.	23
3.7	Efficiency graph of the converter operating in different load condi-	
	tions	24
3.8	Zoom in waveform of the voltage across HF transformer primary	
	winding	24
3.9	Parasitic elements of the circuit that cause ringing	25
3.10	RCD snubber circuit	26
3.11	(a) Drain to source voltages of switch Q_1 and Q_2 and voltage across	
	transformer primary winding, (b)Zoom in waveform of the voltage	
	across HF transformer primary winding	27
4.1	Soft-switching integration into the system	30
4.2	Ideal switching waveforms under the steady-state condition of the	
	operation	31
4.3	The equivalent circuits during sub-intervals $(t_0 - t_1)$ and $(t_1 - t_2)$.	33
4.4	The equivalent resonant tank circuit during the time interval (t_0-t_1) .	34
4.5	The equivalent circuits during sub-intervals $(t_2 - t_3)$ and $(t_3 - t_4)$.	35
4.6	The equivalent circuits during sub-intervals $(t_4 - t_5)$ and $(t_5 - t_6)$.	37
4.7	The equivalent circuits during sub-intervals $(t_6 - t_7)$ and $(t_7 - t_8)$.	38
4.8	Small signal model of the PV converter.	42
4.9	Bode-plot of the control to output transfer function	43
4.10	Small signal model of the controller	43
4.11	MATLAB-Simulink model of the closed-loop control system	44
4.12	Comparison of the received output and the input reference value.	44
4.13	Simulation waveforms:(a) gating signal of switch S_1 , current through	
	switch S_1 and voltage across switch S_1 , (b) gating signal of switch	
	S_2 , current through switch S_2 and voltage across switch S_2 , (c)	
	voltage across leakage inductor L_{lk} and current through leakage	
	inductor L_{lk}	46
4.14	Simulation waveforms:(a) gating signals of switch S_3 & S_4 , cur-	
	rent through switch S_3 and current through switch S_4 , (b) voltage	
	across transformer primary side winding and output voltage	47
4.15	Solar PV converter circuit part in the final multi-port power con-	
	$verter \ design \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	49
4.16	Experimental setup.	49

50

51

52

- 4.17 Experimental waveforms at 100% load: (a) the gate-source voltage (V_{GS1}) of S_1 , the drain-source voltage (V_{DS1}) of S_1 and the drain current (I_{S1+D1}) of S_1 (b) the boost inductor L_1 current (I_{L1}) (c) the voltage across HF transformer primary winding (V_{pri}) (d) the voltage across the inductor L_{lk} (V_{lk}) (e) the gate-source voltage of S_3 (V_{GS3}) , the drain-source voltage of S_3 (V_{DS3}) and the drain current of S_3 (I_{S3+D3}) (f) the output voltage (V_{out}) and output current (I_{out}) .
- 4.18 Experimental waveforms at 60% load: (a) the gate-source voltage (V_{GS1}) of S_1 , the drain-source voltage (V_{DS1}) of S_1 and the drain current (I_{S1+D1}) of S_1 (b) the boost inductor L_1 current (I_{L1}) (c) the voltage across HF transformer primary winding (V_{pri}) (d) the voltage across the inductor L_{lk} (V_{lk}) (e) the gate-source voltage of S_3 (V_{GS3}) , the drain-source voltage of S_3 (V_{DS3}) and the drain current of S_3 (I_{S3+D3}) (f) the output voltage (V_{out}) and output current (I_{out}) .
- 4.19 Experimental waveforms at 60% load with 20V input: (a) the gatesource voltage (V_{GS1}) of S_1 , the drain-source voltage (V_{DS1}) of S_1 and the drain current (I_{S1+D1}) of S_1 (b) the boost inductor L_1 current (I_{L1}) (c) the voltage across HF transformer primary winding (V_{pri}) (d) the voltage across the inductor L_{lk} (V_{lk}) (e) the gate-source voltage of S_3 (V_{GS3}) , the drain-source voltage of S_3 (V_{DS3}) and the drain current of S_3 (I_{S3+D3}) (f) the output voltage (V_{out}) and output current (I_{out}) .
- 4.21 (a) Gain comparison of the converter with and without the secondary MOSFETs body diode reverse recovery loss (b) Efficiency comparison between the modified converter and the converter in chapter 3.
 55

4.22	Estimated loss distribution of the power converter operating at full	
	load condition. \ldots	56
4.23	Thermal image of the converter operating at full load condition	56
5.1	The proposed bi-directional high step-up/down DC-DC converter.	60
5.2	The charging mode (a) active switch control signals and (b,c)	
	equivalent circuits of the operation. \ldots \ldots \ldots \ldots \ldots \ldots	61
5.3	Active switch control signals during the charging mode - DCM	
	operation. \ldots	63
5.4	The inductor voltage (v_{L1}) and current (i_{L1}) in the DCM	63
5.5	The discharging mode (a) active switch control signals and (b,c)	
	equivalent circuits of the operation. \ldots \ldots \ldots \ldots \ldots \ldots	65
5.6	The inductor voltage (v_L) and current (i_L) in the DCM	66
5.7	Control block diagram of the constant current $/$ constant voltage	
	charging circuit.	67
5.8	Control block diagram of the battery discharging circuit. \ldots	68
5.9	Bi-directional high step-up/down converter part in the final multi-	
	port power converter design	69
5.10	Waveforms of voltage across inductor L_1 , current through inductor	
	L_1 , voltage across the primary winding of the HFT : (a) CCM	
	operation (b) DCM operation	69
5.11	Waveforms of voltage across inductor L_1 , current through inductor	
	L_1 , voltage across the primary winding of the HFT : (a) CCM	
	operation (b) DCM operation	70
5.12	(a) Gate signal of switch S_1 , current through switch S_1 , and drain	
	to source voltage across switch S_2 (b) gate signal of switch S_1 and	
	current through inductor L_1	70
5.13	Gate signal of switch S_1 , drain to source voltage across switch S_1	
	and current through switch S_1	71
5.14	Efficiency of the converter in charging mode and discharging mode.	72
6.1	Efficiency vs duty ratio graphs of the bi-directional high step-	
	up/down converter	76
A.1	Matlab Simulink model used to generate the code of the controller.	79
A.2	Matlab Simulink model used to generate the code of the CC-CV	
	Controller	80

A.3	Matlab Simulink model used to generate the code of the controller	
	- Battery discharging controller	80

List of Tables

3.1	Parameters used in the simulation of solar-PV converter	22
4.1	Component parameters of the soft-switch integrated simulation	45
	model of solar-P v converter.	45
4.2	Component parameters of the soft-switched integrated hardware	
	prototype of solar-PV converter	48
5.1	Component parameters used in the simulation and experimental	
	models of the bi-directional high step-up/down converter	68

List of Abbreviations

Abbreviation Description

\mathbf{AC}	Alternating Current
BMS	Battery Management System
CC	Constant Current
CCM	Continuous Conduction Mode
CV	Constant Voltage
DC	Direct Current
DCM	Discontinuous Conduction Mode
EMI	Electro-Magnetic Interference
HF	High Frequency
IEC	International Electrotechnical Commission
LED	Light Emitting Diode
LC circuit	Inductor Capacitor circuit
MIMO	Multiple Input Multiple Output
MISO	Multiple Input Single Output
MPPT	Maximum Power Point Tracking
PCB	Printed Circuit Board
ΡV	Photovoltaic
PWM	Pulse Width Modulation
RCD	Resistor Capacitor Diode
RMS	Root mean Square
SIMO	Single Input Multiple Output
SISO	Single Input Single Output
SoC	State of Charge
SRC	Series Resonant Converter
SWT	Small Wind Turbine
ZCS	Zero Current Switching
ZVS	Zero Voltage Switching