

SCALABLE HIGH PERFORMANCE STREAMING

PROCESSING APPLICATION INSTRUMENTATION

FRAMEWORK VIA IMPROVING DYNAMIC

CONCURRENCY.

S. R. M. D. T. S. Wijesekara

179360M

Degree of Master of Science in Computer Science

Department of Computer Science and Engineering

University of Moratuwa.

Sri Lanka

May 2019

SCALABLE HIGH PERFORMANCE STREAMING

PROCESSING APPLICATION INSTRUMENTATION

FRAMEWORK VIA IMPROVING DYNAMIC

CONCURRENCY.

S. R. M. D. T. S. Wijesekara

(179360M)

Thesis submitted in partial fulfillment of the requirements for the degree Master

of Science, Specialized in Software Architecture

Department of Computer Science and Engineering

University of Moratuwa.

Sri Lanka

May 2019

i

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without

acknowledgement any material previously submitted for degree or Diploma in any other

University or institute of higher learning and to the best of my knowledge and belief it does not

contain any material previously published or written by another person except where the

acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and

distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the

right to use this content in whole or part in future works (such as articles or books).

Signature: Date:...................

Name: S. R. M. D. T. S. Wijesekara

The supervisor/s should certify the thesis/dissertation with the following declaration.

I certify that the declaration above by the candidate is true to the best of my knowledge and that

this report is acceptable for evaluation for the CS5999 PG Diploma Project.

Signature of the supervisor: Date:

Name: Dr. Indika Perera.

ii

ABSTRACT

The world has already moved to a highly technological stage and internet-based services plays a

vital part of day to day life. Performance of those internet based services is a key factor of quality

of the service and developers are forced to develop the best possible performant system. Usually

gaining the best possible performance is hard due to low visibility and flexibility of the system in

performance improvement phase.

This research is focusing on developing the framework ‘concor: A framework for high performance

streaming applications, instrumentation in-built’ by combining the pre-placing instrumentation

probes and data flow based architectures. The framework provides an API to form data flows, while

providing in-built performance monitoring capabilities. Furthermore, the possibility of

implementing a dynamic thread reconfiguration mechanism is also researched and included in the

framework. Dynamic thread reconfiguration mechanism is used in simplifying the bottleneck

isolation. Apart from this, dynamic thread configuration mechanism effectively lifts the initial

concurrency design overhead from the developers and provides a new dimension of runtime

performance tuning.

Keywords: Instrumentation, Concurrency framework, Dynamic concurrency, Runtime

performance tuning, dynamically assigned thread pools. Bottleneck identification, data-flow

architecture, event streaming.

iii

ACKNOWLEDGEMENT

I would like to express my gratitude and appreciation to my project supervisor Dr. Indika Perera,

for the knowledge, guidance, encouragement and suggestions throughout this research project,

which was a drive force behind completion of this work on time.

I would like to thank my current company hSenid Mobile Solutions, especially to CEO, Mr. Dinesh

Saparamadu, CTO; Mr. Harsha Sanjeewa , Senior Management Team, my architect, my project

manager and colleagues for the endless support and words of encouragements throughout.

My heartfelt gratitude to my friends especially to Mr. Ryan Benjamin, Miss. Tirsha Melani, Ms.

Nithila Shanmuganandan, and all other friends which was not mentioned here whose friendship,

hospitality and support in the preparation and completion of this study.

Finally, I would like to extend my deepest gratitude to my parents for their never ending support

and encouragement.

iv

TABLE OF CONTENT

DECLARATION i

ABSTRACT ii

ACKNOWLEDGEMENT iii

TABLE OF CONTENT iv

LIST OF FIGURES vii

LIST OF TABLES viii

LIST OF EQUATIONS ix

LIST OF APPENDIX x

LIST OF ABBREVIATIONS xi

Chapter 1 1

1 INTRODUCTION 1

1.1 Instrumentation Properties. 1

1.1.1 Performance Optimization Process 3

1.1.2 Cost of finding the bottlenecks 3

1.2 Data-flow architectures 5

1.3 Dynamic Concurrency 5

1.4 Type Safety and developer friendliness. 6

1.5 Problem Statement 6

1.6 Motivation 7

1.7 Objectives 7

1.8 Scope 8

1.9 Structure of the thesis 8

2 LITERATURE REVIEW 9

2.1 Instrumentation and Profiling. 9

2.2 Data-flow architectures 11

v

2.2.1 SEDA[4] architecture 11

2.2.2 Actor systems 13

2.2.3 Architecture comparison. 14

2.2.4 Stage analysis 14

2.2.5 Queue implementations. 16

3 METHODOLOGY 18

3.1 Framework 19

3.2 Dispatcher 19

3.3 Virtual stages 20

3.4 Manager 21

3.5 User Interface. 21

3.6 Operation 21

3.7 Constraints and problematic areas as a framework. 22

3.8 Summery 23

4 PROOF OF CONCEPT IMPLEMENTATION 24

4.1 Scope of the implementation. 24

4.2 Framework. 25

4.3 Performance monitoring tool. 28

4.4 Sample application: Messaging MO Flow 29

4.5 Sample Application 2: USSD server. 29

4.6 Sample application 3: Mobile money tracker 30

4.7 Performance Simulator. 30

4.8 Wiremock[35] Instance. 31

4.9 Summery 31

5 EVALUATION 32

5.1 Usability 32

5.2 Performance 33

vi

5.2.1 Experiment 1: Runtime performance overhead. 33

5.2.2 Experiment 2: Overhead of thread pool switching 40

5.3 Analysis 41

5.4 Summery 42

6 CONCLUSION AND FUTURE WORKS 43

6.1 Conclusion 43

6.2 Future Works 44

REFERENCES 45

APPENDIX A: Sample simple task implementation 48

APPENDIX B: Sample single threaded task implementation 49

APPENDIX C: Sample Synchronous remote task implementation 50

APPENDIX D: Sample Synchronous remote task implementation 51

APPENDIX E: Sample Catch task implementation 52

APPENDIX F: Sample Flow composition 53

vii

LIST OF FIGURES

Figure 2.1: SEDA stage: source: SEDA: An Architecture for Well-Conditioned,

Scalable Internet Services. 11

Figure 3.1: High-level architecture of 'concor' framework. 19

Figure 3.2: Computation Unit 20

Figure 3.3: Virtual Stage 20

Figure 4.1: A runtime view of a flow in ‘concor’ UI. 27

Figure 4.2: Runtime thread model update view. 28

Figure 5.1: Throughput and latency profile in a beginning of a performance test. 34

Figure 5.2: Dynamic impulse in throughput and latency profile at a near saturation situation. 35

Figure 5.3: Throughput and latency profile of a performance failure. 35

viii

LIST OF TABLES

Table 5-1: Results of messaging flow performance test with starting 200 TPS 36

Table 5-2: Results of messaging flow performance test with starting 300 TPS 37

Table 5-3: Object count comparison 37

Table 5-4: Results of messaging flow performance test after bottleneck removal 38

Table 5-5: Results of USSD application performance test. 38

Table 5-6: Results of Mobile Money Tracker application performance test 39

Table 5-7: Final calculation of the results and comparison to the error margin. 40

Table 5-8: Throughput impact on thread pool addition and removal 41

ix

LIST OF EQUATIONS

Equation 1: Average TPS Calculation 36

Equation 2: Number of requests calculation 37

Equation 3: Performance overhead percentage calculation 39

Equation 4: Error margin calculation 40

x

LIST OF APPENDIX

APPENDIX A: Sample simple task implementation 48

APPENDIX B: Sample single threaded task implementation 49

APPENDIX C: Sample Synchronous remote task implementation 50

APPENDIX D: Sample Synchronous remote task implementation 51

APPENDIX E: Sample Catch task implementation 52

APPENDIX F: Sample Flow composition 53

xi

LIST OF ABBREVIATIONS

Abbreviation Description

API Application programming Interface

TPS Transactions per Second

CPU Central Processing Unit

IO Input/Output

GC Garbage Collection

JVM Java Virtual Machine

JMC Java Mission Control

SEDA Stage Event Driven Architecture

GUI Graphical User Interface

PoC Proof of Concept

DI Dependency Injection

UI User Interface

MO Mobile Originated

AT Application Terminated

DB Database

async. Asynchronous

JMX Java Management Extensions

HTTP Hypertext Transfer Protocol

JSON Javascript Object Notation

USSD Unstructured Supplementary Service Data

NDC Nested Diagnostic Context

DB Gigabyte

CEO Chief Executive Officer

