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ABSTRACT 

The world has already moved to a highly technological stage and internet-based services plays a 

vital part of day to day life. Performance of those internet based services is a key factor of quality 

of the service and developers are forced to develop the best possible performant system. Usually 

gaining the best possible performance is hard due to low visibility and flexibility of the system in 

performance improvement phase. 

 

This research is focusing on developing the framework ‘concor: A framework for high performance 

streaming applications, instrumentation in-built’ by combining the pre-placing instrumentation 

probes and data flow based architectures. The framework provides an API to form data flows, while 

providing in-built performance monitoring capabilities. Furthermore, the possibility of 

implementing a dynamic thread reconfiguration mechanism is also researched and included in the 

framework. Dynamic thread reconfiguration mechanism is used in simplifying the bottleneck 

isolation. Apart from this, dynamic thread configuration mechanism effectively lifts the initial 

concurrency design overhead from the developers and provides a new dimension of runtime 

performance tuning.  

 

Keywords: Instrumentation, Concurrency framework, Dynamic concurrency, Runtime 

performance tuning, dynamically assigned thread pools. Bottleneck identification, data-flow 

architecture, event streaming. 
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