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Abstract 

Having strong built-in security features has become a paramount requirement in any system.  

There is a clear difference between bolted vs. built-in security, where in bolted security, the 
security of the system will depend on the security strength of its bolted parts, where as in built-in 

security, it is embedded to the system by design. Therefore in order to ensure security, it is 

required to build security features in to the system by design so that the ultimate security of the 

system will be ensured by default; ensuring security by design and by default.  

The execution of a computer program is not stand alone, but instead is a collaborative execution 
of several programs. Generally at run time, a given program will call functions from other 

programs and also transfer its control to other program segments, introducing a change to its 

control flow. In most cases caller (the main program) is not fully aware about its callee (the 
called program), in the context of its vulnerabilities and security risks. In addition to that, this 

control transfer will potentially change the trust boundary of the system, while increasing the 

attack surface of the program in terms of Control Flow Integrity (CFI). On the contrary, 

completely eliminating this execution behavior is impractical since it is required to build 
applications having such a modular design due to various reasons, such as performance. 

Complexity is treated as the enemy of computer security. The more complex a system gets, 

harder to make it secure. This principle has been studied in detail in the context of program 
complexity and its relation with security. This research explicitly addresses the question “what is 

the risk that a microprocessor undergoes due to the execution of user programs?” This opens up 

a new dimension in security by imposing the importance of runtime program analysis.  

The research introduces RECSRF; a novel framework to quantitatively evaluate the security of 
an execution in line with the impact it makes over the microprocessor. RECSRF consists of two 

components; a novel concept called The Runtime Execution Complexity (REC) of a program 

execution, which evaluates the tradeoff between performance vs. security, while adhering the 

Control Flow Integrity (CFI) of programs, and an information theoretic technique to 
approximate the Security Risk Factor (SRF), which approximates the risk of a particular 

execution by analyzing dynamically disassembled machine instructions. The RECSRF value 

allows software designers to select the most secure resource combination among given set of 
resources, and software implementers to decide whether to proceed or not with a software 

change. The method can also be used to detect control flow hijacks at runtime by using it as an 

intrusion detection mechanism which allows transforming the same to an intrusion preventer 

upon successful implementation. The most notable feature of RECSRF is that it can be applied 

on highly volatile microprocessors such as on microprocessors hosting virtualized environments. 
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CHAPTER 1  

1.  The Analysis of Software Systems and their Indirect Security 

Impacts 

 

1.1. Introduction 

Modern software systems have a nearly an uncontrolled growth in complex requirements 

that is fueled by the need to interact with multiple other complex systems. While some 

of the complexity increases due to activities such as bug fixes which are unavoidable, 

other activities such as expanding and enhancing functionality of a software system 

becomes a risky endeavor to undertake as responding to the complexity increases 

requires scarce resources including technical expertise and time.  

This chapter provides an introductory overview about the background, the problem and 

the motivational factors that have paved the way for this research. Starting with an 

analysis on software complexity and its relation with security, section one shows how 

adverse impacts are being made on software system as a result of complexity. 

Interestingly, it has been identified that some well-established software design principles 

are also contributing indirectly to make systems complex, making things even more 

complex. The next section of the chapter has detailed the analysis of these problems 

along with its resulting motivational factors that have driven this research.  

The objectives were identified as critical requirements to be addressed due to its highly 

practical nature, and these have been detailed under research objectives section. At next, 

research questions were detailed to check whether the research problem and the 

objectives are in line. The chapter concludes with an analysis of the research outcomes 

where the research questions were taken in to account, and finally with the chapter 

conclusion. 
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1.2. The Art of Complexity and Software Security 

 

The escalation of software complexity can be treated as a natural byproduct of the 

functional complexity increases that in turn impact the program code base of the 

software.  There are two types of complexities; Essential Complexity and Accidental 

Complexity [4]. Essential complexity is unavoidable and is required to fulfill the 

functional requirements, whereas, the accidental complexity on the other hand is the 

additional complexity introduced due to design issues and lack of complexity 

management. However, all these will be reflected in terms of code complexity, results in 

numerous problems.  

In software engineering, there are number of methods to evaluate complexity, such as 

seize measures, control flow based method, information flow based and software science 

based matrices [5]. Out of different software complexity measures, McCabe’s 

complexity evaluation [2] that comes under control flow based technique is the widely 

accepted one due to its applicability to the practical nature. The Cyclomatic Complexity 

[5] is a code complexity measure that is being correlated to the number of linearly-

independent paths through a program module. It is calculated by developing a Control 

Flow Graph [7] of that particular code segment. High complexity results in leaving 

untested program segments in a given code base, and that will introduce a security risk. 

Software complexity is a major concern among organizations, which used to manage 

numerous technologies and applications within a multi-tier infrastructure. Therefore it is 

extremely important to manage the interactions between different layers and components 

in an application. To make this interaction efficient and manageable, software 

engineering principles states that object orientation and modular design [10] concepts as 

best practices that can be used to avoid complexity. Object orientation encourages 

writing programs in a modular way, i.e. by sub dividing the program into smaller 

functionally grouped sub parts (called modules). A modular system can be treated as a 

system having a functional partitioning into discrete and scalable modules where the 

reusability, performance, maintainability and efficiency are ensured. 
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In contrary, it can be argued that this design principle will negatively be an impact to the 

overall security of the system because due to this modular execution behavior, a given 

main program has to jump back and forth between different program segments to invoke 

different functionalities. With this execution behavior, the program control will be 

transferred to different segments, where the control is not with the original author of the 

main program. An application accessing the database using an API provided by the 

database vendor, where the source code is not available to the application developer is a 

classic example for this. A vulnerable return from the database API program will 

potentially compromise the entire application, regardless of the security strength of the 

application, i.e. the victim.  Conventional security evaluation methods such as static 

evaluation [8], dynamic testing, fuzz testing [9] or that matter conventional complexity 

matrices cannot be used to capture these risks, i.e. the risk that a procedural program or a 

function call introduces to the main program. This is because those measures do not take 

the impact of its linked programs in to account.  

Although cyclomatic complexity is useful, relying only with that will probably produce 

false positives. A module can be complex, but it might have few interactions with 

outside modules. That will produce a bad number in terms of complexity. Similarly a 

module can be relatively simple, but highly coupled to many other modules raising its 

overall complexity, producing a good complexity number. However, the results can be 

deceptive. Therefore it is utmost important to take the coupling and cohesion [10] nature 

of the modules also in to account in order to get a true system wide complexity measure. 

Deriving these characteristics is not straight forward since the author of the main 

program st will not always be fully aware about all its modular programs, hence there is 

no way to get an understanding about the overall complexity the program produces. As a 

conclusion, it can be stated that deriving a complexity measure considering all these 

practical constrains is truly challenging.  

By excavating these practical aspects, it has been observed that it is vital to have a 

method that is capable in deriving the security of the system considering the overall 

impact of all the modular programs involved during the execution. To address that need, 

this research introduces a novel technique to evaluate the security strength of an 
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execution, followed by few security concepts. Disassembled machine instructions 

generated by a program during its runtime have become the main data stream of this 

evaluation technique. The method is effective since it encounters the impact of modular 

programs as well. 

1.3. Research Inspiration 

Based on the introduction above, it can be stated that the observations mentioned in this 

section were inspired to carry out this research. 

 It has been observed that there is a rapid growth in software industry and 

application development is playing a major role in it. Due to ever growing client 

needs, bug fixes and with continuous development process, software programs 

are getting complex and sometimes grows beyond the expected boundaries. 

 

 Consequently, it has been observed that complex software results in leaving 

untested parts in a program, introducing a risk to the entire application. In 

addition to that, immensely complex software will introduce a whole lot of new 

problems including difficulties in testing, maintaining and increased costing.  

Most of all complex software will decrease the security of the system due to its 

complex nature.  Additionally the probability in leaving backdoors behind the 

system will also considerably increase with increased complexity. 

 

 The analysis on complexity measures reviled that there are number of software 

complexity measures to evaluate complexity on high level code segments. 

However, it is questionable whether such methods can be fully adopted when 

practically analyzing code segments. It has also being observed that, even the 

widely used code complexity matrices will provide false positives due to having 

inadequate interactions with other relevant program segments. This has become 

the motivational factor which allowed being in deriving a new security measure 

considering the practical nature of program execution. This has enlightened to 

adopt machine instructions as the key source of information in this research.  
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 Additionally, it has been observed that different operating systems will introduce 

different risk levels to their systems because; the underlying data structures, 

algorithms and code bases on different operating systems are different. In 

addition to that, the architectural designs on different OSs are also different; for 

an example a UNIX like operating systems has a monolithic kernel whereas 

Windows has a micro kernel. On top of that if the system is virtualized, then 

hypervisor characteristics will also come in to play, making the overall 

complexity of the program massively complex. Unfortunately no proper research 

was carried out in this area to detect architecture specific security threats that 

software programs are imposing. 

 

 Interestingly it was observed that some well-established software design 

principles are also contributing to increase the overall complexity of programs. 

This is because, due to modular software design characteristics, program control 

will be transferred frequently to different program segments, where the invoked 

program is not fully under the control of the original program author. This 

introduces a risk to the overall system, due to its interaction with unknown 

program segments. Unfortunately, currently available software complexity 

matrices are not capable in evaluating this risk. This has become a motivational 

fact to research ways in evaluating the overall complexity that programs will 

introduce over the system. 

 

 The analysis on quantitative methods about security strength of programs, have 

shown very poor results and it has been observed that there are no effective 

means in quantifying security. This has been observed as a major drawback in 

security, compared to other disciplines such as performance. This has motivated 

to research ways in deriving methods to quantitatively measure security of a 

program.  

 

 Upon analyzing different attacks that software complexity introduces, some 

common characteristics have been observed, such as control hijacking prior to 
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privilege escalations. These will be in the form of machine instructions, and the 

state of the microprocessor will also get changed due to these instructions. This 

state change of the microprocessor increases the attack surface, opening the 

doors for processor level attacks on the system, which are extremely powerful 

and vigorous. However it was observed that a very little attention was paid on 

these attack vectors, which are triggered simply due to the instructions generated 

by high level programs. This factor motivated to research on the security impacts 

that user program instructions are imposing on the underlying microprocessor; a 

challenging but an interesting topic.  

 

 The analysis on future computing platforms where software systems will be 

hosted, it has been observed that virtualization will be the key selection due to its 

scalability and cost effectiveness. With rapid growth in this technology, 

microprocessor vendors have introduced changes to their existing processor 

architectures and also have introduced changes to their Instruction Set 

Architecture (ISA) to better support virtualization. With newly introduced 

processor modes on Intel-VT microprocessor, a rapid state transition is possible 

in the system, due to guest system instructions. It has been identified the 

importance in analyzing the potential security risk such a virtualized system 

undergoes due to the microprocessor state changes resulted in machine 

instructions.  This has motivated to carry out research on security impacts that 

Intel-VT microprocessors introduces over the system as a result of the complex 

nature of software programs.  

1.4. The Research Problem  

Inspired by the factors mentioned above, this research has successfully addressed the 

problems mentioned in this section. At high level, the problems were listed below,  

1. Lack of risk quantification mechanisms for security: 

Unlike in other disciplines, there are no effective methods to quantify security. 

The importance in quantifying security as a risk has been emphasized in this 

research. 
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2. Software complexity and the security impact due to the modular nature of 

programs: 

There are no proper means in analyzing or measuring software complexity that 

will be presented as a result of the collaborative nature of program execution.  

The importance of this has been emphasized in this research, i.e. the impact of 

complexity on software security, and how certain software engineering best 

practices increases the overall program complexity. 

 

3. The need to extend and redefine some existing security concept to consider 

dynamic execution nature of programs: 

It has been observed that some security theories and principles that are there, are 

not correctly addressing some practical aspects of program executions. It has 

been emphasized the importance in extending some of these concepts to better 

support the practical aspects of program execution. 

 

4. The microprocessor state change due to dynamic execution complexity and 

threats it introduces to the system: 

The attacks on microprocessors are extremely vigorous, but currently there are 

no methods to evaluate this risk. It has been noted that due to the complex nature 

of programs, the microprocessor will undergo on different risks 

 

5. The risk analysis on Intel based processors specifically designed to support 

virtualization: 

With ever growing popularity in virtualization technologies, microprocessor 

vendors have introduced modifications to their processor architectures including 

some special instructions to better support virtualization. It is still unanswered 

the level of security risk that these newly designed special purpose 

microprocessors will produce due to the complex nature of its program 

executions. 
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1.4.1. Software based Analysis 

By following the above mentioned research inspirations and problems, a comprehensive 

analysis has been performed about research problem. This section has detailed the major 

areas of interest, along with its applicability.  

1.4.1.1. Issues of Software Complexity 

The main problem addressing in this research is the impact that code complexity 

introduces to the overall security of the system. With ongoing development and bug 

fixes, the complexity of programs will keep on be increasing and this is something that 

cannot be completely avoided. On top of that, it has been observed that with object 

oriented and modular design principles, program complexity will be cyclomatically 

increased, causing an additional threat to the system. This is a practical concern in 

software development and there should be a mechanism to evaluate programs against a 

given complexity measure. This is something lagging in security. 

1.4.1.2. Quantification of Security Risks 

Currently there are no effective measures of quantifying security and this research 

enforce the importance in this quantification. This is a major drawback in this area.  

Comparing this with other disciplines in technology such as performance, which has a 

lot of quantifying methods, security can be treated as if it is in a primitive stage. A 

measurement is important, because it provides ways of continuously evaluating the state 

of a program. The ability to quantify something is vital in many ways such as in 

maintenance, planning and costing.  

1.4.1.3. Complexity vs. Modular Program Design 

Even though cyclomatic complexity is useful, it has been observed that relying only on 

that is problematic and it will produce false positives. This is because a given program 

author will not always be fully aware about its invoked programs, in terms of 

vulnerabilities and threats it produce. This is risky, i.e. the risk a given program imposes 

over system due to its integrated nature of execution. This is practical, yet an 

unaddressed problem. 
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1.4.2. Hardware based Analysis 

1.4.2.1. Complexity Impact on the Microprocessor 

The other notable problem is the security impacts that microprocessor state changes 

imposes over the system. Depending on the machine instructions it receives, the 

microprocessor will oscillate among different states. These state changes will introduce 

a risk to the system in terms of control hijacking [14], i.e. by fooling the processor to 

execute malicious instructions. Due to its low level nature, these attacks are extremely 

powerful, but will not be detectable by conventional security evaluation techniques. The 

research has proposed a novel technique to identify this risk at the microprocessor, and 

an approximation to quantify this security risk.  

1.4.2.2. Complexity Introduced by Machine Instructions 

Consequently, considering the processor level program execution nature at runtime all 

these will be about machine instructions. The CPU will execute these instructions 

sequentially, in spite of checking the authenticity of instructions, i.e. whether a given 

instruction has come from a legitimate program or from a malicious program segment. 

The microprocessor doses not perform any checks on the authenticity of instructions that 

are required to be executed. This loophole at the processor introduces a greater risk to 

the execution, including malicious modifications and microprocessor level privilege 

escalations [24]. These are powerful, yet extremely vigorous security concerns at low 

level machine boundaries.   

1.4.2.3. Demand in Virtualization 

The other problem that have taken in to account is the security impact that virtualization 

has introduced. The main reason for the popularity the virtualization has gained over the 

years is its cost. Apart from the other benefits such as feasibility and extendibility, the 

cost reduction has captured the attention of many organizations. Unfortunately a very 

little attention was paid on its security aspects in this whole process. In a virtualized 

environment, guest systems are running on hardware where the underlying hardware 

ownership is not under the control of the guest system. Traditional Virtual Machine 

Monitors [15] (VMMs) were relying on “ring compression [section 3.3.1]” or “de-

privileging”. Hardware-assisted virtualization [section 6.9.3] has become the preferred 
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choice because it has revolutionized this technology by allowing the guest operating 

system to run its own native ring 0. This has vastly improved performance barriers that 

were there with previous techniques, but we have observed that it has opened up a whole 

lot of new threats to the system.  

These critical concerns and their practical constrains have paved the way to think out of 

the box and led to come up with the novel technique RECSRF [chapter 7], followed by 

introducing The Runtime Execution Complexity (REC) [section 7.4.1], The Security 

Risk Factor (SRF) [section 7.5] and the concept of a Threat Block (TB), to quantitatively 

approximate the security strength of an execution. 

1.5. The Research Design 

This section contains the details about the construction of the research. 

1.5.1. Research Objectives 

Having observed some natural byproducts that software complexity produces, it has 

been motived to follow a research to detect existing gaps between complexity and 

security. Additionally, the researches on quantitative measures about security have 

shown that there are no formal means to quantitatively measure security. As a result, 

deriving a technique to quantitatively measure security has become one of the major 

objectives in this research. Apart from that, analyzing machine instructions to detect 

complex nature of programs has become another objective. The evaluation of security 

risk on virtualization enabled system and quantitative evaluation of its security risks has 

become our final objective.  

1.5.2. Research Questions 

In order to achieve the research objectives, it is required to have a complete, clear and a 

well-defined set of questions. In parallel to this, below research questions were 

formulated.  

 What approach should be followed to analyze software complexity of 

 programs? 

The focus of this question is the research approach. An approach has to be supported by 

a sound theoretical foundation. Therefore, it is vital to design a number of appropriate 
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research sub-questions to guide the research to find a solution to the main research 

question. Such questions are supplementary to the main research question and helped in 

arriving at a feasible solution. Few sub-questions were raised they are listed below. 

 How to address tradeoffs between modular program design principles and its 

 adverse impact in line with security? 

In software design, object orientation and modular design concepts are treated as best 

practices to adhere with, when writing programs. However, observing this from 

disassembled instruction point of view, this has reflected in terms of program control 

transfers, which introduces a risk to the program.  

 How to extend the currently available principles in software complexity to take 

 it to a new dimension that incorporates the practical nature of execution? 

Currently available software complexity principles cannot be used effectively in 

evaluating security risks that programs are introducing. The main reason is that those 

measures does not take the risk that modular programs are introduces to the system. Due 

to this reason, it has been identified the requirement in deriving a new method to analyze 

this risk factor. 

 What is the risk that the microprocessor undergoes due to execution of 

 machine instructions? 

Microprocessor has to change its state depending on the machine instructions it is 

executing. This state change will introduces a risk to the system. However it is vital to 

have a method to quantify this risk. 

 What is the risk that a virtualized system undergoes as a result of newly 

 introduced virtualization extensions?  

In order to support virtualization, processors designers have introduced instruction set 

extensions. In that context, special instructions were introduced to better deal with 

virtualization needs. The in-built processor level instruction sets are heavily used by the 

critical applications running on top of such virtualized systems, hence, any security 

loophole in those instructions will put the entire system in danger. 
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1.5.3. Research Outcomes 

The overall outcome of the research is shaped by research objectives and with related 

main research questions. According to the research objective and the main research 

question, the essence of this research will be an approach that can be used by Software 

Developers, Architects, and Security Professionals or even by Chief Information 

Officers. The approach present in this research can effectively be adopted in secure 

program development process.  

The first research sub question is concerned about software complexity and approaches 

that can be used to implement it. This imposes the importance in analyzing different 

approaches to measure software complexity. This requires adopting an information 

theoretic method to analyze software complexity, and therefore the approach consists of 

a sound theoretical base. The next sub question is concerned about the limitations that 

currently available software complexity matrices are having. This requires performing a 

comprehensive gap analysis about their capabilities. Apart from that, in order to address 

certain practical aspects, it is required to extend some existing principles to better 

address those needs. 

The next sub question draws the attention on the potential threats that the underlying 

microprocessor undergoes as a result of executing instructions. This is an area where not 

much attention was paid, but the importance behind it in the context of microprocessor 

based attacks has been emphasized in this research. Finally with the forth sub question, 

the risk that virtualized systems undergoes as a result of these microprocessor state 

changes were taken in to account. Due to the changes introduced on microprocessors, it 

can introduce a risk to the execution environment, which the research is arguing as 

something that should be measured quantitatively. 

1.6. Summary 

This chapter has provided a broad introduction to the research and its background. A 

comprehensive analysis has been performed around the research problem and its 

practical nature. The relationship between software complexity and security has been 

identified as an art due to the tightly coupled nature of those two disciplines. The chapter 
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has shown how complex software decreases security, and how that complex nature 

contributes in increasing the attack surface of the underlying microprocessor. 

The analysis of the research problem has shown that it is not limited to a particular area 

only, but can be applied to several other areas. It has reviled that it is difficult to 

completely isolate a particular problem and come up with a specific solution; hence what 

could be done is to go in search of an optimum solution that will successfully address 

several problems.  

The two main problems identified under research problem are lack quantification 

methods and software complexity impact on systems especially on microprocessors. 

Research objectives and questions were the driving forces of this research and those 

have been detailed having research problems in background. Finally a comprehensive 

outcome analysis was done considering the research objectives and questions. 

  



14 

 

CHAPTER 2 

2. Computer Architecture and Security Mechanisms  

 

2.1. Introduction 

This chapter contains the details about computers and their organization.  The chapter 

starts with an analysis on the Turing machine and the Von Newman architecture 

followed by an analysis on different layers of a computer system. An evaluation about 

the instruction set architectures was also performed in this chapter along with an 

introduction to different types of ISAs. The chapter then details the information about 

the Central Processing Unit and its components related to this research. Finally an 

analysis was done on X86 architecture and assembly language. 

The Part 2 of the chapter focuses on Security Kernels. The security kernel is a critical 

part of a computer system focuses on the design aspects of hardware, firmware, the 

kernel, and trusted services that could be verified to implement a specific security 

policy. Low level protection mechanisms are the mechanisms inside a computer system 

that by design ensures security of the system. This chapter discusses about security 

kernels and its underlying low level protection mechanisms focusing the x86-

architecture. During the research, the details mentioned under this chapter were studied 

in detail, in order to get an understanding about the current situation of security.  

Part 1:  Computer Organization 

2.2. Computer Organization and Architecture 

Computer organization refers to the operational units and their interconnections that 

realize the architectural specifications. This at high level includes hardware details that 

are transparent to the programmer, such as control signals, interfaces between the 

computer and peripherals; and related memory technologies. Architecture on the other 

hand refers to the attributes of system visible to programmer or those attributes that have 

a direct impact on the logical execution of the program, such as architectural attributes 
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include instruction set, the number of bits used to represent the data types, I/O 

mechanism and techniques of addressing memory.  

A computer system consists of a number of layers of components, where each layer is 

tightly coupled with its both lower and upper layers. These layers were shown in Figure 

2.1 given below. 

 

 Figure 2.1: Different layers of a computer system 

2.2.1. The Turing Machine 

A Turing machine [18] invented by Alan Turing in 1937 is a theoretical computing 

machine, served as an idealized model for mathematical calculation. It can be treated as 

a state machine, where at any time the machine is in any one of a finite number of states. 

A Turing machine consists of a line of cells known as "tapes" that can be moved back 

and forth, an active element known as the "head" that possesses a property known as 

"state" and that can change the property known as "color" of the active cell underneath 

it. Instructions for a Turing machine consist in specified conditions under in which the 

machine will transition between one state and another.  For this grate innovation that 

revolutionized the field of computer science, Turing is treated as the father of modern 

computer science.  
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2.2.2. The Von Neumann Architecture 

The Von Neumann Architecture [19] was named after the mathematician John von 

Neumann, forms the core of nearly every computer system in use today. This 

architecture in contrast to a Turing machine has a random-access memory (RAM), 

where each successive operation and read or write any memory location, independent of 

the location accessed by the previous operation. The architecture also has a central 

processing unit (CPU) with one or more registers that hold data that are being operated 

on.  

 

Figure 2.2: The Von Neumann Architecture 

The CPU obtains its data from an external memory unit, and writes back the results to 

the memory unit. The memory unit is also used to hold the program instructions, which 

control the processing unit and instructs on how to manipulate data. The idea of keeping 

both data and the instructions in the memory unit is the essence of the stored-program 

architecture. The CPU has a set of built-in operations (its instruction set ) that is far 

richer than with the Turing machine, e.g. adding two binary integers, or branching to 

another part of a program if the binary integer in some register is equal to zero 

(conditional branch). It can also interpret the contents of memory either as instructions 

or as data according to the fetch-execute cycle. Von Neumann considered parallel 

computers but recognized the problems of construction and hence settled for a sequential 

system. For this reason, parallel computers are sometimes referred to as non-von 

Neumann architecture. 
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2.2.3. Early Inventions in Microprocessors  

A microprocessor is one of the most central parts in a modern personal computer or in 

any advanced computer device [21]. It integrates the functions of a central processing 

unit, the portion of a computer responsible for carrying out programmed instructions, 

onto a single integrated circuit that couples the important thinking devices of the 

machine with the electrical infrastructure needed to support them. Microprocessor 

design is able to incorporate a tremendous amount of processing power in a very small 

space rather than any other component of the modern computer. 

 

Before the development of the microprocessor, there were a variety of early technologies 

for simulating logic functions in computing devices. Many of these early inventions 

were spurred by wartime necessity during World War II. These early technologies were 

extremely expensive, slow, and prone to failure. Computing technologies based on 

vacuum tubes and transistors helped make IBM a giant in the large-scale computing 

industry, but were not realistic for business or home use due to their prohibitive costs 

and intensive maintenance schedules. Early integrated circuits appeared in calculators, 

of all things, before Intel began work on the first recognizable microprocessor. Another 

view of evolution of the microprocessor from a more technical perspective, focusing on 

the different companies and competition involved at various stages of microprocessor 

design.   

 

2.2.4. Microprocessors Today 

Today's microprocessors are immensely powerful, capable of executing complex 

instructions at a faster rate than ever before. The continued forward march of 

microprocessor technology depends as much on pure computing research as it does on 

cutting edge developments in other fields of science. It is indisputable that today's 

microprocessors are more powerful than anything that could have been imagined at the 

dawn of the computing age over half a century ago. As increasingly globalized societies 

demand better computing technology, more great advances are sure to be made.   
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2.3. An Introduction to Instruction Set Architecture (ISA)  

 The Instruction Set, also called Instruction Set Architecture (ISA), [21] is a part of the 

computer that refers to programming, which is basically the machine language. The 

Instruction Set provides commands to the processor, to tell it what it needs to do. 

Instructions direct the computer in terms of data manipulation. A typical instruction 

consists of two parts; Opcode and Operand. Opcode or operational code is the 

instruction applied. It can be loading data, storing data etc. Oprand is the memory 

register or data upon which instruction is applied. The Instruction Set consists of 

multiple pieces including addressing modes, instructions, native data types, registers, 

memory architecture, interrupt, and exception handling, and external input output.  

    

Figure 2.3: Instruction Set Architecture  

An example of an instruction set is the x86 instruction set, which is common to find on 

computers today. Different computer processors can use almost the same instruction set, 

while still having very different internal design. Both the Intel Pentium [22] and AMD 

Athlon processors [23] use nearly the same x86 instruction set. An instruction set can be 

built into the hardware of the processor, or it can be emulated in software, using an 

interpreter. The hardware design is more efficient and faster for running programs than 

the emulated software version.  

2.3.1. CISC Architecture 

Complex Instruction Set Computing (CISC) refers to computers designed with a full set 

of computer instructions that were intended to provide needed capabilities in the most 

efficient way [25] The obvious reason for this classification is the “complex” nature of 

its Instruction Set Architecture (ISA). The motivation for designing such complex 
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instruction sets is to provide an instruction set that closely supports the operations and 

data structures used by Higher-Level Languages (HLLs).  

 

The decision of CISC processor designers to provide a variety of addressing modes leads 

to variable-length instructions. For an example, instruction length increases if an 

operand is in memory as opposed to in a register, because it has to specify the memory 

address as part of instruction encoding. This complicates instruction decoding and 

scheduling. The side effect of providing a wide range of instruction types is that the 

number of clocks required to execute instructions varies widely. This again leads to 

problems in instruction scheduling and pipelining. Later, it was discovered that, by 

reducing the full set to only the most frequently used instructions; the computer would 

get more work done in a shorter amount of time for most applications.  

2.3.2. RISC Architecture 

Reduced Instruction Set Computer (RISC) is a microprocessor that is designed to 

perform a smaller number of types of computer instructions so that it can operate at a 

higher speed [25]. Since each instruction type that a computer must perform requires 

additional transistors and circuitry, a larger list or set of computer instructions tends to 

make the microprocessor more complicated and slower in operation. There is no precise 

definition of what constitutes a RISC design. Since both CISC and RISC have their 

advantages and disadvantages, modern processors take features from both classes.  

2.3.3. MIPS Architecture 

Microprocessor without Interlocked Pipeline Stages (MIPS) [26] is a reduced instruction 

set computer (RISC) instruction set (ISA) developed by MIPS Technologies. There are 

different extensions to the original MIPS architecture as listed below.   

 MIPS I, implemented in the R2000 and R3000  

 MIPS II, implemented in the R6000  

 MIPS III, implemented in the R4400  

 MIPS IV, implemented in the R8000 and R10000  
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Figure 2.4: MIPS Extensions 

2.4. The Central Processing Unit 

The Central Processing Unit [27], canonically called The CPU, treated as the central 

brain of the computer, is the main component which carries out all the logical and 

arithmetic operations. It is the main component which carries out all the logical and 

arithmetic operations inside the computer. A CPU contains three main sections; the 

register section, the arithmetic-logic unit (ALU), and the control unit. These sections 

work together to perform the sequences of micro-operations needed to perform the fetch, 

decode, and execute cycles of every instruction in the CPU’s instruction set. 

2.4.1. CPU Instruction Cycle  

Instructions are processed under direction of the control unit step-by-step, called the 

Fetch-Decode-Execute cycle, also called the Fetch-Execute Cycle. This execution as a 

function of time is shown below.  

 

                      Figure 2.5: The Fetch-Execute Cycle  

 The Fetch-Decode-Execute cycle is the process by which the CPU;  

 Fetches a program instruction from its memory, 

 Determines what the instruction wants to do, and  

 Carries out those actions. 



21 

 

This cycle is continuously repeated by the CPU, from boot-up till the computer is shut 

down. In modern computers this means completing the cycle billions of times a second. 

2.4.1.1. Fetch 

The first step the CPU carries out is to fetch some data and instructions (program) from 

main memory then store them in its own internal temporary memory areas. These 

memory areas are called “registers”. This is called the 'fetch' part of the cycle. For this to 

happen, the CPU makes use of a vital hardware path called the “address bus”. The CPU 

places the address of the next item to be fetched on to the address bus. Data from these 

address then moves from main memory into the CPU by travelling along another 

hardware path called the “data bus”. 

 

            Figure 2.6: Fetch-execute cycle 

2.4.1.2. Decode 

The next step is for the CPU to make sense of the instruction it has just fetched. This 

process is called “decode”. The CPU is designed to understand a specific set of 

commands. These are called the “instruction set” of the CPU. Each make of CPU has a 

different instruction set. The CPU decodes the instruction and prepares various areas 

within the chip in readiness of the next step 

2.4.1.3. Execute 

This is the part of the cycle when data processing actually takes place. The instruction is 

carried out upon the data (executed). The result of this processing is stored in yet another 

register. Once the execute stage is complete, the CPU sets itself up to begin another 

cycle once more 
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2.4.2. CPU Registers 

A register (also called a circuit) is a special, high-speed storage area within the CPU. It 

is a discrete memory location within the CPU designed to hold temporary data and 

instructions. All data must be represented in a register before it can be processed. When 

a register is being used to move data or instructions from one part of the system to 

another, this is called a buffer. If it is being fetched from the main memory (The RAM), 

then that would pass through a buffer before being loaded into another internal register. 

In the Fetch-Execute cycle, registers are used extensively to move data and instructions 

around the CPU. Registers are used during the Fetch-Execute cycle are; 

 Program Counter (PC): 

A program counter contains the address of the instruction being executed at the 

current time, upon which for each fetched instruction the program counter 

increases its stored value by 1. After fetching an instruction, the program counter 

points to the next instruction in the sequence where the program counter 

normally reverts to 0.  

 

 Memory Buffer Register (MBR): 

Memory Buffer Register, also called the Memory Data Register (MDR) 

temporarily holds data or program instructions once fetched from memory. It 

contains the data value being fetched or stored. MBR has two inputs and two 

outputs, in which the data is loaded into MBR either from the memory bus or 

from the internal processor bus.  

 

 Memory Address Register (MAR): 

The memory address register has its output hooked up to the address bus, 

allowing the communication between the CPU and the address bus. 

 

 Current Instruction register (CIR): 

Having been fetched from memory, CIR holds the current instruction to be 

executed. 
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 Control Unit (CU): 

Control Unit decodes the program instruction in the CIR, selecting machine 

resources such as a data source register and a particular arithmetic operation, and 

coordinates activation of those resources 

 

 Arithmetic logic unit (ALU): 

ALU performs mathematical and logical operations inside the CPU. 

2.5. An Evaluation of Intel x86 Machine Instructions 

X86 is the world's predominant personal computer CPU platform, used in Windows and 

Linux PCs, Macs and Chrome-books. x86 is a generic name for the series of Intel 

microprocessor families that is based on the Intel 8086 CPU [27]. The 8086 was 

launched as a fully 16-bit extension of Intel's early 8-bit based microprocessors and also 

introduced segmentation to overcome the 16-bit addressing barrier of earlier chips. The 

term x86 derived from the fact that early successors to the 8086. This series has been the 

provider of computing for personal computers since the 80286 was introduced in 1982. 

The x86 line was developed by Intel and includes the Core, Xeon, Pentium.  

The electronic operation that a processor core can perform is called a machine operation. 

A processor performs these one at a time, but billions of them in a second. A machine 

instruction consists of several bytes in memory that tells the processor to perform one 

machine operation. The processor looks at machine instructions in main memory one 

after another, and performs one machine operation for each machine instruction. The 

collection of machine instructions in main memory is called a machine language 

program or (more commonly) an executable program. 

2.5.1. Instruction Types 

There are different instruction types and some of them listed below. These instruction 

types will be used with in the processor upon executing instructions. In general these can 

be stated as data manipulation mechanisms with in the processor.  

 Data movement instructions.  

 Dyadic operations.  
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 Monadic operations.  

 Comparisons and conditional branches.  

 Procedure-call instructions.  

 Loop control.  

 Input/output.  

 

Details about different instructions according to their categorization are available in 

Appendix section. 

2.5.2. X86 Instruction Classification and Architecture Analysis 

Instruction classification can be listed as below.  

 A Complex Instruction Set Computer (CISC) has many specialized instructions, 

some of which may only be rarely used in practical programs.  

 Reduced Instruction Set Computer (RISC) simplifies the processor by only 

implementing instructions that are frequently used in programs. Unusual 

operations are implemented as subroutines, where the extra processor execution 

time is offset by their rare use.  

 Minimal Instruction Set Computer and the One Instruction Set Computer are 

theoretically important types but these are not implemented in commercial 

processors.  

 Very Long Instruction Word (VLIW) is another variation where the processor 

receives many instructions encoded and retrieved in one instruction word.  

2.5.3. The  Importance of Control Transfer Instructions 

The x86-architecture provides both conditional and unconditional control transfer 

instructions to direct the flow of execution. Conditional control transfers depend on the 

results of operations that affect the flag register. Unconditional control transfers are 

always executed. 
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2.5.3.1. Conditional Transfer Instructions 

The conditional transfer instructions are jumps that may or may not transfer control, 

depending on the state of the CPU flags when the instruction executes. 

2.5.3.2. Unconditional Transfer Instructions 

JMP, CALL, RET, INT and IRET instructions transfer control from one code segment 

location to another [28]. These locations can be within the same code segment (near 

control transfers) or in different code segments (far control transfers). The variants of 

these instructions that transfer control to other segments are discussed in a later section 

of this chapter. If the model of memory organization used in a particular 80386 

application does not make segments visible to applications programmers, intersegment 

control transfers will not be used. 

 Jump Instruction 

JMP (Jump) unconditionally transfers control to the target location. JMP is a one-way 

transfer of execution; it does not save a return address on the stack. The JMP instruction 

always performs the same basic function of transferring control from the current location 

to a new location. Its implementation varies depending on whether the address is 

specified directly within the instruction or indirectly through a register or memory. 

 Call Instruction 

CALL (Call Procedure) activates an out-of-line procedure, saving on the stack the 

address of the instruction following the CALL for later use by a RET (Return) 

instruction. CALL places the current value of EIP on the stack. The RET instruction in 

the called procedure uses this address to transfer control back to the calling program. 

 Return From Procedure Instruction 

RET (Return from Procedure) terminates the execution of a procedure and transfers 

control through a back-link on the stack to the program that originally invoked the 

procedure. RET restores the value of EIP that was saved on the stack by the previous 

CALL instruction 

 Return from Interrupt Instruction 
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IRET (Return from Interrupt) returns control to an interrupted procedure. IRET differs 

from RET in that it also pops the flags from the stack into the flags register. The flags 

are stored on the stack by the interrupt mechanism. 

2.5.4. Disassembled Code 

In programming terminology, to disassemble is to convert a program in its executable 

(ready-to-run) form into a representation in some form of assembler language so that it 

is readable by a human. In essence, a disassembler is the exact opposite of an assembler. 

Where an assembler converts code written in an assembly language into binary machine 

code, a disassembler reverses the process and attempts to recreate the assembly code 

from the binary machine code.  

2.5.5. Conditional Execution in Assembly Language 

Assembly language is a low-level programming language used to interface with 

computer hardware. X86 machine instruction can be classified in to different groups 

based on their function such as floating point, arithmetic, control transfer instructions 

etc. 

X86 assembly provides both conditional and unconditional control transfer instructions 

to direct the flow of execution. Conditional control transfers depend on the results of 

operations that affect the flag register. Unconditional control transfers are always 

executed. JMP, CALL, RET, INT and IRET instructions transfer control from one code 

segment location to another. The JMP instruction always performs the same basic 

function of transferring control from the current location to a new location. CALL (Call 

Procedure) activates an out-of-line procedure, saving on the stack the address of the 

instruction following the CALL for later use by a RET (Return) instruction. CALL 

places the current value of EIP on the stack. The RET instruction in the called procedure 

uses this address to transfer control back to the calling program. T (Return from 

Procedure) terminates the execution of a procedure and transfers control through a back-

link on the stack to the program that originally invoked the procedure. RET restores the 

value of EIP that was saved on the stack by the previous CALL instruction. 

Almost all programming languages have the ability to change the order in which 

statements are evaluated, and assembly is no exception. The instruction pointer 
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(EIP/RIP) register contains the address of the next instruction to be executed. To change 

the flow of control, the programmer must be able to modify the value of EIP. This is 

where control flow functions come in. We cannot directly access or change the 

instruction pointer because this register will be changed only by programs. However, 

instructions that control program flow, such as calls, jumps, loops, and interrupts, 

automatically change the instruction pointer. Programs change Instruction Pointer (or the 

Program Counter) by:  

1) Unconditional Jumps 

2) Conditional Jumps  

3) Procedure calls and  

4) Return instructions. 

2.5.6. The Importance of Security Analysis in Assembly 

Information theory is concerned with the amount of information contained in a message, 

or a string of symbols. Its basic premise is that the occurrence of a symbol with low 

probability provides more information (or uncertainty or surprise) than the occurrence of 

a symbol with high probability. There are several information theory software 

complexity metrics based on the frequency of program elements (Eg Harrison and 

Leighton) [5]. The probability of an operator is the number of the times the particular 

operator occurs in relation to the total occurrences of operators. The information 

theoretic complexity measure that Berlinger has developed [5] is based on the frequency 

of program tokens in the program. His complexity measure M is defined by 

 M = - Σ pi*log2 pi  

Where fi is the frequency of the ith token and pi is the probability of the ith token. M is 

sensitive to the frequency and probability of tokens. M will have a low value if many 

high probability (e.g. familiar) tokens are used. Cook came up with an approach to 

mitigate practical limitations of Berlinger’s method. He came up with an approach to 

group instructions into classes and to consider the classes as tokens, and finally defined 

below information based complexity measure (M’). 

 M’=M/(Number of instructions)  
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2.5.7. Privilege levels in Assembly 

Operating systems have protection mechanism called privileged rings. A "Ring", in Assembly 

Language, represents the level of protection and control the program has over the system. Ring 0 

programs have absolute control over everything within a system, while ring 3 has less control. 

The smaller the ring number, the more control (and less level of protection), the software has. A 

Ring is more than a concept; it is built into the processor architecture.  

Part 2:  Security Kernels 

2.6. The Operating System  

An Operating System is low-level software that enables a user and application software 

to interact with computer hardware, data and other programs stored on the computer. It 

manages the hardware and software resources of the system; something utmost 

important, as various programs and input methods compete for the attention of the 

central processing unit (CPU) and demand memory, storage and input/output (I/O) 

bandwidth for their own purposes. It also performs activities, such as recognizing input 

from the keyboard, sending output to the display screen, keeping track of files and 

directories on the disk, and controlling peripheral devices. In this context, the operating 

system can be treated as if it is playing the role of a good parent, making sure that each 

application gets the necessary resources while playing nicely with all the other 

applications, while catering the limited capacity of the system to the greatest good of all 

the users and applications.  

Another notable feature of an operating system is that, it provides a stable, consistent 

way for applications to deal without creating a need for it to interact with the underlying 

hardware system.  This is especially important if there is to be more than one of a 

particular type of computer using the operating system, such as virtual machines or if the 

hardware making up the computer is ever open to change. 

2.6.1. The Kernel 

The kernel is a piece of software that constitutes the central core of a computer operating 

system, which has complete control over everything that occurs in the system [29]. 

Direct hardware access is cumbersome task due to its complex nature and therefore, 

kernels are in use to provide a set of hardware abstractions. These abstractions hide the 



29 

 

above mentioned complexity and provide a uniform interface to the underlying 

hardware, making application development easy. 

It is interesting to note that though kernels are useful, they are not mandatory. We can 

easily load and execute programs at specific addresses without any kernel involvement. 

In fact, this is how the early computer systems worked. However, it was eventually 

realized the drawbacks of this approach, and the importance of having a convenient and 

an efficient way to deal with hardware accessing methods. These modular programs 

were gradually evolved to be operating system kernels. Security Kernel is essentially the 

hardware firmware and software elements of a TCB [section 3.4.2] that implement the 

reference monitor concept [section 3.4.1]. It must mediate all accesses, be protected 

from modification, and be verifiable as correct.  

2.6.2. Kernel Space vs. User Space 

The kernel vs. user space concept comes in line with computer memory. The memory of 

a computer system can be divided in to two distinct areas, called the user space and the 

kernel space, in which the user space consists of a set of locations where normal user 

processes are running,  whereas that of the kernel space is in which the code of the 

kernel is stored, and executes under.  

2.6.2.1.The Kernel Mode 

As mentioned above, in Kernel mode [30], the code under execution has complete and 

unrestricted access to the underlying hardware. It can execute any CPU instruction and 

reference any memory address. Kernel mode is generally reserved for most trusted 

functions of the operating system and crashes in kernel mode are catastrophic 

2.6.2.2. The User Mode 

In User mode [30], the code under execution has no direct access to hardware or 

reference memory. Code running in user mode must delegate to system APIs to access 

hardware or memory. Due to the protection afforded by this isolated nature, in most 

situations crashes in user mode are recoverable. 
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2.6.3. Different Operating system Architectures 

2.6.3.1.Monolithic kernel 

A monolithic kernel [31] is an operating system software framework that holds all 

privileges to access input-output devices, memory, hardware interrupts and the CPU 

stack.  All kernel services exist and execute in the kernel address space and it can invoke 

functions directly. Examples of monolithic kernel based OSs: UNIX, Linux. 

Monolithic kernels are relatively larger than other kernels because they incorporate with 

so many aspects of processing at the lowest level, and as a result monolithic kernels 

have to incorporate code that interfaces with many devices, I/O and interrupt channels, 

and other hardware operators. A monolithic kernel is a kernel where services like file 

systems, VFS, device drivers as well as core functionalities including scheduling and 

memory allocation. 

 

            Figure 2.7: Monolithic kernel 

One consequence of all parts of the kernel running in the same address space is that if 

there is an error somewhere in the kernel it will be an impact to the entire address space, 

for an example, a bug in the subsystem that takes care of networking might crash the 

kernel as a whole, resulting a reboot in the system.  

2.6.3.2. Microkernels 

In microkernels [31], the kernel is broken down into separate processes, known as 

servers. Some of the servers are running in kernel space and some are running in user-

space. All servers are kept separately running in different address spaces which invoke 
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"services" from each other by sending messages via IPC (Inter-process Communication). 

This separation has the advantage that if one server fails, all the other servers still can 

work efficiently. Examples of microkernel based OSs: Mac OS X and Windows NT. 

Essentially micro kernels are designed to fix the problem of limiting the damage a bug 

can cause. This has been achieved by taking the parts of the kernel away from the 

dangerous kernel space into user space.  

 

                    Figure 2.8: Microkernel  

The bug in the networking subsystem which crashed monolithic kernel as mentioned in 

the above example will have far less severe results in a microkernel design. In that 

context, the networking sub system will crash, leaving the other sub systems to function 

properly. Many microkernel operating systems have an in-built sub system, whose 

functionality is to reload crashed servers. Though this design seems to be elegant, it has 

few downsides compared to monolithic kernels, i.e. added complexity and performance 

penalties. 

In a microkernel design, the kernel space consists of a small subset of the tasks 

compared to that of a monolithic kernel. The part residing in kernel space i.e. the actual 

microkernel takes care of the communication between the servers running in user space; 

called inter-process communication (IPC). These servers provide functionality such as 

sound, display, disk access, networking, and so on. In a monolithic design, this IPC 

communication is not needed as all the servers are tied into one big piece of computer 

code, instead of several different pieces. The result is that a monolithic kernel will 

generally out perform a micro kernel, given that they are similar feature-wise.  
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2.7. Processor level Hardware Security Features in x86 Architecture 

Operating system designers and hardware designers tend to put a lot of thought into how 

the kernel can be protected from user-space processes. The security of the system as a 

whole depends on that protection. But there can also be value in protecting user space 

from the kernel. 

Among several different low-level protection mechanisms inside a computer system, 

CPU ring concept can be treated as the most sort-after feature. It controls which CPU 

instructions are allowed to be executed. The second and third protection mechanisms are 

related to memory access, called “Paging" and "Segmentation" respectively. They 

control which areas of memory are allowed to be accessed and how those areas of 

memory are allowed to be accessed. 

2.7.1. CPU Ring Concept 

Privilege levels, is the mechanism whereby the OS and CPU conspire to restrict what 

different programs can do in a computer system [27]. There are four different Ring 

Levels, with the most outer ring being the least privileged and the inner most ring being 

the most privileged. Under this context, three main resources being protected: memory, 

I/O ports, and the ability to execute certain machine instructions. At any given time an 

x86 CPU is running in a specific privilege level, which determines what the programs 

can and cannot do. These privilege levels are described as protection rings, where the 

innermost ring is corresponding to the highest privilege. 

                          

                             

Figure 2.9: Privilege Rings 
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Details about different CPU rings and their details are given below. 

2.7.1.1. Ring 0 

Ring 0 is the kernel mode. This is also known as the supervisor mode, which has the 

least protection and the most access to resources. The operating system upon booting up, 

and interrupt handlers runs in this privilege level.  

2.7.1.2. Rings 1 and 2 

Ring 1 and 2 are most of the times used for device drivers. These rings offer more 

protection, but not as much as the protection provides at ring 3. 

2.7.1.3. Ring 3 

This is the ring that most operating systems are using for its applications. Ring 3 offers 

the most protection, but least resource access.  

In most cases operating systems are using ring 0 and 3 only, due to the fact that device 

drivers can run in either ring. In some situations, application requires to access system 

resources, which cannot be performed from the ring level it is running. A General 

Protection Fault interrupt will occur in such a situation upon trying to execute 

unauthorized instructions. At these situations, the application must somehow interact 

with the kernel; the component providing the hardware abstraction. This is facilitated by 

System Calls. 

2.7.1.4. Current Privilege Level (CPL) 

CPL [1] indicates the current mode of the processor. In general CPL=0 is considered to 

be privileged mode while CPL=Non Zero is considered to be unprivileged mode. Certain 

instructions are privileged and they can be executed only when CPL=0. These 

instructions are said to be CPL sensitive. Set of x86 Privileged instructions are listed 

below. These instruction can be executed if and only if the current privilege level of the 

processor is equals to zero, i.e. when CPL=0. 

 LGDT - Load Global Descriptor Table 

 LLDT - Load Local Descriptor Table 

 LTR - Load Task Register 

 LIDT - Load Interrupt Descriptor Table Register 
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 MOV (to and from control registers only) - Control Register is used to change 

the CPU behavior, related to interrupt control, addressing mode, paging and 

coprocessor control. 

 MOV (to and from debug registers only) - Debugging programs, and use to set 

debugging controls. 

 LMSW - Load Machine Status Word 

 CLTS  - Clear Task Switched 

 INVD - Invalidate Cache 

 WBINVD - Write Back and Invalidate Cache 

 INVLPG  - Invalidate TLB Entry 

 HLT - Halt; halts the CPU and causing it to wait for the next interrupt. 

 RDMSR - Read From Model Specific Register 

 WRMSR - Write to Model Specific Register 

 RDPMC - Read Performance Monitoring Counters 

 RDTSC  - Read Time Stamp Counter 

2.7.1.5. I/O Privilege Level (IOPL) 

IOPL [32] is an import feature in x86-architecture that determines which rings have 

unrestricted access to I/O ports. It is a two bit number set in the EFLAGS register. Ring 

0 has full I/O permissions while those greater than it have none. FLAGS register 

contains the current state of the processor. It is a 16 bit register. Bits 12 and 13 of 

FLAGS register contain the value of IOPL (I/O Privilege Level). IOPL value indicates 

the minimum CPL value required to execute certain privileged I/O instructions. These 

instructions are said to be IOPL sensitive and mainly include: IN, INS, OUT, OUTS, 

CLI and STI instructions. 

2.7.2. Page Level Protection 

2.7.2.1. Paging 

Paging [33] is playing the role of a memory optimizer, where it optimizes the use of 

RAM (The Random Access Memory) by dumping unused memory pages in to the 

virtual memory of the hard disk. Paging essentially plays a role in memory management 

for computer’s operating system. 



35 

 

2.7.2.2. Segmentation 

Segmentation [33] is involved with loading programs into memory. Being a low-level 

protection mechanism inside the operating system segmentation is used as memory 

protection mechanism. A segment has a set of permissions, where the currently running 

process is allowed by the permissions to make the type of reference to memory that it is 

attempting to make, and the offset within the segment is within the range specified by 

the length of the segment, the reference is permitted; otherwise, a hardware exception is 

raised. 

2.7.3. Supervisory Protection Mechanisms 

2.7.3.1. Supervisor Mode Execution Protection (SMEP) 

With a new generation of Intel processors based on the Ivy Bridge architecture [34] a 

new security feature has been introduced called Supervisor Mode Execution Protection 

(SMPE). SMEP is a powerful security feature, which can combat against a considerable 

percentage of exploits in terms of kernel level privilege escalations. It prevents 

execution of a code located on a user-mode page at a CPL = 0. This feature significantly 

complicates an exploitation of kernel-mode vulnerabilities because there’s just no place 

for a shellcode [35] to be stored, hence will make things complicate for an attacker. 

Usually while exploiting some kernel-mode vulnerability an attacker would allocate a 

special user-mode buffer with a shellcode and then trigger vulnerability gaining control 

of the execution flow and overriding it to execute prepared buffer contents. With this 

innovation, attackers find it difficult to execute the malicious shellcode.  

2.7.3.2. Supervisor Mode Access Protection (SMAP) 

Supervisor Mode Access Prevention (SMAP) is a new security feature disclosed by Intel 

in revision 014 of the Intel Architecture Instruction Set Extensions [38]. This extension 

defines a new SMAP bit in the CR4 control register; when that bit is set, any attempt to 

access user-space memory while running in a privileged mode will lead to a page fault. 

Essentially, when SMAP is active, the kernel cannot normally access pages that are in 

user space.  Since the kernel does have the need to access user space pages under 

specific circumstances, an override is provided, where the kernel can access user space 

pages if EFLAGS.AC=1.   
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2.7.3.3. Write Protection (WP)  

Write protection (WP) is a very old feature [38], controlled by CR0.WP bit. When this 

bit is set, it inhibits supervisor mode code from writing into read-only pages, and when it 

is cleared, it allows supervisor mode code write into read-only pages, regardless of the 

U/S bit setting. These flag are often used to protect the kernel mode code sections, since 

those code sections will be configured as read-only pages. A hardware CPU exception 

will be triggered whenever it detects a malicious modification on kernel code pages, 

which are mostly triggered by kernel rootkits. Write protection feature is also used to 

protect kernel static data sections, which are not being modified at runtime.  

2.8. Layered Design Principle in x86 Architecture 

The x86-architecture is based on a layered design, according to which the execution 

space delivered by processor is divided into four protected security domains, each of 

which have its own level of privileges assigned. The goal of this design principle is to 

ensure that the code under execution will be executed with least possible privilege; 

hence it ensures the principle of least privilege. Apart from that, the layered protection 

design states that the control cannot be passed arbitrary among different security 

domains. To facilitate the control transfer between less privilege code segments to high 

privilege code segments, a feature called “Gate” has been introduced by the x86-

architecute.  

The Gate Concept 

A gate is a special memory address that facilitates the connection between low-privilege 

segments to high-privilege ones. When a low-privilege program calls a gate, it 

automatically raises its CPL to the higher level, whereas upon returning from a gate 

subroutine, CPL automatically dropped to original level. A gate essentially is used to 

transfer control of execution across different segments. Privilege level checking is done 

differently depending on the type of destination and instruction used. There are three 

types of gates in the x86-architecture.   
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 Call gate 

The purpose of a call gate is to allow less privileged code to call code with a higher 

privilege level. It transfer control from lower privilege code to higher privilege code, and 

it uses the CALL and JMP instructions. A call gate plays an important role in memory 

protection by allowing the user applications to use system calls as well as kernel 

functions in a way that can be controlled by the operating system.   

 Trap gate 

The trap gate is called by the INT instruction, which can be stored only in the interrupt 

descriptor table (IDT). This gate just passes the control to the particular address 

specified in the trap gate descriptor in the more privileged segment.  

 Interrupt gate  

Similar to the trap gate, the interrupt gate is called by the INT instruction, but 

additionally it prohibits future interrupt acceptance by automatically clearing of the IF 

flag in the EFLAGS register.  

2.9. Summary 

The Part 1 of this chapter provides details about the importance of security kernels and 

processor level security mechanisms in place by design. It was identified that even 

though there exists a number of processor level security mechanisms, those mechanisms 

were implemented on different microprocessors. This is a drawback due the non-

existence of a central microprocessor with all the important security features 

implemented. The section essentially provides an introduction to the hardware level 

security mechanisms that were embedded in microprocessors. However the chapter has 

shown that the mentioned security mechanisms are not highly available features in 

general.   

The Part 2 of the chapter has three major areas; the computer organization and its 

evolution, the central processing unit and its execution cycle and the importance of 

machine instructions. The chapter provides theoretical facts behind these sections that 

are used in this research. The instruction cycle of the CPU has been detailed in this 
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research since it plays as a major contributor in the in deriving the novel framework 

presented in this research. Additionally an analysis was performed about x86 

architecture and its components related to the research including a study on control 

transfer instructions, and the characteristics about unconditional control transfer 

instructions were greatly helped in deriving the concept of a threat block (section 5.4). 
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CHAPTER 3 

3. Information Theoretic Concepts in Security  

 

3.1. Introduction 

This chapter details the theoretical background behind software complexity and its 

relation with information theory. Information theory is the main building block in 

complexity and entropy. Starting with an overview about information theory, the chapter 

provides details about information theoretical quantification methods and its relation 

with security. At next the Shannon entropy has been discussed in detail along with its 

applications. This is a very important section in this research since information 

quantification was done using the method invented by Shannon. In addition to that 

different software complexity measures were also discussed in the chapter, highlighting 

the McCabe’s cyclomatic complexity method.  

The part 2 of the chapter provides an overview about secure system design concepts, 

security models, and the importance in maintaining control flow integrity in programs in 

the context of security attacks. It can be stated that the concepts detailed under Part 2 

were greatly helped in deriving the novel concept proposed in this research; RECSRF. It 

starts with core security concepts that any system should adhere at their design stage, 

which will ultimately be the security backbone of any system. This enforces the 

importance in building security in to the system, rather than bolting it in. The next 

section starts with an overview of different security models that can be applied 

depending on the application in use. Next, it focuses on control flow graphs and control 

flow integrity along with its role with respect to modern attack vectors. The chapter 

concludes with an overview on software attacks and the importance in maintaining 

control flow integrity of programs. 
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Part 1: Information Theory 

3.2. Information Theory Concepts 

Information theory [3] is concerned with the amount of information contained in a 

message, or a string of symbols. Its basic premise is that the occurrence of a symbol with 

low probability provides more information than the occurrence of a symbol with high 

probability. Information theory is a concept that has revolutionized the field of computer 

science, by its innovative method that is capable in quantifying information. Since its 

inception the revolutionized paper by Shannon entitled "A Mathematical Theory of 

Communication". The concept has been broadly applied in many areas such as in 

cryptography, natural language processing, neurobiology and statistics etc. 

Information theory is based on probability theory and statistics, which is often, concerns 

itself with measures of information of the distributions associated with random variables 

and studies the transmission, processing, utilization, and extraction of information. The 

most notable quantities of information are entropy, which measures the information in a 

single random variable, and mutual information, a measure of information in common 

between two random variables. 

3.2.1. Information sources  

An information source is a mathematical model for a physical entity that produces a 

succession of symbols in a random manner. The symbols produced may be real numbers 

such as binary numbers as in computer data, voltage measurements from a transducer, 

continuous or discontinuous waveforms, and so on. The space containing all of the 

possible output symbols is called the alphabet of the source and a source is essentially an 

assignment of a probability measure to events consisting of sets of sequences of symbols 

from the alphabet. 

3.2.2. Quantification of Information 

There are few information quantification methods [5] and those will measure 

information with several quantities of information, in which the selection of the 

logarithmic base will determine the unit of information.   
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3.2.2.1. Self-Information  

Self-information [39] is a measure of the information content associated with an event in 

a probability space or with the value of a discrete random variable. It attempts to 

describe the amount of information gained from a specific outcome of an experiment. 

Intuitively, if an experimental outcome gives a surprising result, then the information 

gain is said to be high and vice versa. The idea behind this concept is that, a surprising 

result changes understanding of the world whereas an expected result supports the 

current understanding. The amount of self-information contained in a probabilistic event 

depends only on the probability of that event, i.e. smaller the probability, larger the self-

information associated with receiving the information that the event indeed occurred.  

Self-information is a function of I, where;  

      (3.1) 

Considering these properties, the self-information I(X) associated with outcome X with 

probability P(X) is; 

  I(X) = log (1/ P(X)) = -log (P(X))       (3.2) 

3.2.2.2. Entropy 

Entropy (or uncertainty) and its complement, information, are perhaps the most 

fundamental quantitative measures in cybernetics, extending the more qualitative 

concepts of variety and constraint to the probabilistic domain. 

3.2.2.3. Joint Entropy 

The joint entropy H(X, Y) of a pair of discrete random variables with a joint distribution 

p(x, y) is defined as 
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         (3.3) 

3.2.2.4. Conditional Entropy 

The conditional entropy H(Y |X) is defined as, 

         (3.4) 

3.2.2.5. Shannon Entropy 

A key measure in information theory is entropy which quantifies the amount of 

uncertainty involved in the value of a random variable. The idea of entropy by Claude 

Shannon provided the beginnings of information theory and related measures.  The 

Shannon entropy equation provides a way to estimate the average minimum number of 

bits needed to encode a string of symbols, based on the frequency of the symbols.  

The entropy of a discrete random variable X is defined by, 

             (3.4) 

Entropy is always positive, i.e. H(X) ≥ 0 since 0 ≤ p(x) ≤ 1 for all p(x). 

3.2.3. Entropy vs. Security 

Entropy was introduced by Shannon [5] as a quantitative measurement of the uncertainty 

associated with random phenomena. It is said that one phenomenon represents less 

uncertainty than a second one if we are more confident about the result of 

experimentation associated with the first phenomenon than we are about the result of 

experimentation associated with the second one. 

3.3. Software Complexity 

3.3.1. An Overview of Software Complexity 

Cyberspace is becoming less secure even as security technologies improve. There are 

many reasons for this seemingly paradoxical phenomenon, but they can all be traced 

back to the problem of complexity. It has been found [2] that the complexity of a 

program is inversely proportional to the security of that program. With too many 
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“moving parts” or interfaces between programs and other systems, the system or 

interfaces become difficult to secure while still permitting them to operate as intended. 

The reasons are complex and can get very technical. A flavor of the rationale can be 

listed as below. Complex systems,  

 Have more lines of code and therefore more security bugs.  

 Have more interactions and therefore more security bugs.  

 Harder to test and therefore are more likely to have untested portions.  

 Harder to design securely, implement securely, configure securely and use 

securely.  

 Harder to understand.  

There are different types of software complexity metrics [4] such as  

 Size measures (Eg: Lines of code (LOC), Function counts) 

 Data structure matrices 

 Control flow metrics (Eg: McCabe cyclomatic complexity) 

 Knot count 

 Information flow metrics 

 Software science metrics  

 

There are different methods to evaluate software complexity of programs. 

3.3.2. Cyclomatic Complexity 

Cyclomatic complexity [5] is defined as measuring the amount of decision logic in a 

source code function. It is a source code complexity measurement that is being 

correlated to a number of coding errors. There are graph theoretic complexity measures 

which illustrate how those can be used to manage and control program complexity. It 

explains how graph-theory concepts apply and gives an intuitive explanation of the 

graph concepts in programming terms. 

Cyclomatic complexity is calculated by developing a Control Flow Graph [25] of the 

code that measures the number of linearly-independent paths through a program module. 

Lower the Cyclomatic Complexity in a program, lower the risk to modify and easier to 

understand. The Cyclomatic Complexity of a structured program can be defined with 

reference to the control flow graph of the program, which is a directed graph containing 
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the basic blocks of the program, with an edge between two basic blocks if control may 

pass from the first to the second. Mathematically the Cyclomatic complexity can be 

expressed in below formulas.  

 M = E − N + 2P,  

 Where,  

 E = the number of edges of the graph.  

 N = the number of nodes of the graph.  

 P = the number of connected components.  

This may be seen as calculating the number of linearly independent cycles that exist in 

the graph, i.e. those cycles that do not contain other cycles within themselves, because 

each exit point loops back to the entry point, there is at least one such cycle for each exit 

point. For a single program (or subroutine or method), P is always equal to 1. So a 

simpler formula for a single subroutine is,     

M = {
                           
                              

                           (3.5) 

 

3.3.3. McCabe Cyclomatic Complexity Number 

McCabe [2] showed that the Cyclomatic Complexity (CC) of any structured program 

with only one entrance point and one exit point is equal to the number of decision points. 

McCabe's Cyclomatic Complexity is a software quality metric that quantifies the 

complexity of a software program. Complexity is inferred by measuring the number of 

linearly independent paths through the program. The higher the CC number the more 

complex the code. Studies show a correlation between a program's Cyclomatic 

Complexity and its maintainability and testability, implying that with files of higher 

complexity there is a higher probability of errors when fixing, enhancing, or refactoring. 

It is accepted that the programs with high McCabe numbers (e.g. > 10) are likely to be 

difficult to understand and therefore have a higher probability of containing defects. 

The selected threshold is based on categories established by the Software Engineering 

Institute (SEI). This is shown in Table 3.1 below. 
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                  Table 3.1 SEI recommendation for cyclomatic complexity 

Cyclomatic Complexity Risk Evaluation 

1-10 A simple module without much risk 

11-20 A more complex module with moderate risk 

21-50 A complex module of high risk 

51 and greater An untestable program of very high risk 

Part 2: The Importance of Secure System Design and Control Flow Integrity 

3.4. Secure System Design Principles 

Security Concepts 

In most situations, computer security principles are designed around three well known 

objectives; 

 Confidentiality; which ensures that the system resources on a system can be 

accessed by authorized parties.  

 Integrity; which ensures that the assets can only be modified or deleted only by 

authorized parties in authorized ways. 

 Availability; which ensures that the assets are accessible to the authorized parties 

in a timely manner. 

3.4.1. The Reference Monitor 

A reference monitor [40] is a separable module that enforces access control decisions, 

where all sensitive operations are routed through the reference monitor. The concept is 

essentially an access control concept that refers to an abstract machine that mediates all 

accesses to objects by subjects. As an abstraction, the reference monitor concept does 

not refer to any particular policy to be enforced by a system, nor does it address any 

particular implementation. However the concept does not judge whether a policy is 

appropriate.  
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The concept states that a computer system can be depicted in terms of subjects, objects, 

an authorization database, an audit trail, and a reference monitor. The reference monitor 

is the main control center whose function is to authenticate subjects and to implement 

security policies for each and every access that a subject makes over an object. The 

reference monitor enforces the security policy by authorizing the creation of subjects, by 

granting subjects access to objects based on the information in the authorization 

database, and by recording events, as necessary in the audit trail. The concept can be 

shown in Figure 5.1 below. 

 

Figure 5.1: The Reference Monitor Concept  

Subjects are the active entities that gain access to information such are user processes or 

services, whereas objects are the passive repositories of information to be protected, 

such as files. The security kernel database (the authorization database) is the repository 

for the security attributes of subjects and objects. This is from where the reference 

monitor determines the kind of access to be authorized.   Audit trial keeps a record of all 

security relevant events and access attempts, regardless the attempts were successful or 

not.   

3.4.2. Trusted Computing Base (TCB) 

A trusted computing base (TCB) [41] refers to hardware, software and firmware 

components in a system that work collaboratively to provide a system wide secure 

environment. It enforces security policies to ensure security of the system and its 

information, whereby system safety is achieved by provisioning methods, like 

controlling access, requiring authorization to access specific resources, enforcing user 

authentication, safeguarding anti-malware and backing up data. Thus, if any component 
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in the TCB is compromised, then so is the system's security. By having the TCB be 

small, it is less likely to contain vulnerabilities, because it will be easier to understand, 

test, and analyze. Size and complexity of a reference monitor implementation is 

therefore a reasonable metric of quality.  

A TCB can be defined according to the requirement, but commonly it contains; 

 The kernel  

 The configuration files that control system operation 

 Any program that runs with the privilege or access rights to alter the kernel or the 

configuration files  

 

        Figure 5.2: Reference Monitor and TCB 

Over time, the concepts of trusted systems continued evolve due to the confidence it 

gained with trusted technology and new applications. This, in turn, creates demands for 

new capabilities. This has introduced new alternative approaches to access control 

including non-access control policies, the role of separation kernels to deal with 

complexity, and the presence of multiple access control policies.  

3.4.3. Secure Design Guidelines 

3.4.3.1.  Separation of Duties 

Separation of duties (SoD) is a notable security feature to manage conflict of interest, its 

appearance, and fraud. It restricts the amount of power held by any one individual by 

enforcing barriers in place to prevent fraud that may be perpetrated by one individual. It 

is a key concept of internal controls and is the most difficult and sometimes the most 
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costly one to achieve. This objective is achieved by disseminating the tasks and 

associated privileges for a specific security process.  

3.4.3.2.  Principle of Least Privilege 

The least privilege principle states that every program and every user of the system 

should operate using the least set of privileges necessary to complete their tasks. The 

principle essentially reduces the number of potential interactions among privileged 

programs to the minimum for correct operation, and ensures that unintentional, 

unwanted, or improper uses of privilege are less likely to occur. Primarily, this principle 

limits the damage that can result from an accident or error. With this design strategy, it 

is required to audit a least amount of programs upon detecting misuse of privileges. 

3.4.3.3.  Least Common Mechanism  

Least common mechanism [42] minimizes the amount of mechanisms common to more 

than one user and depended on by all users. With that, every shared mechanism 

represents a potential information path between users and must be designed with great 

care to make sure it does not unintentionally compromise security. 

3.4.3.4.  Economy of Mechanism 

Economy of mechanism is a well-known principle applies to any aspect of a system, but 

it deserves emphasis for protection mechanisms. This ensures that design and 

implementation errors results in unwanted access paths will not be noticed during the 

normal use of operation. Due to this reason different protection mechanisms such as 

line-by-line inspection of software and physical examination of hardware are required to 

be in place. 

3.4.3.5.  Complete Mediation 

This concept states that every access to every object must be checked for authority [42]. 

It forces a system-wide view of access control, which in addition to normal operation 

including initialization, recovery, shutdown, and maintenance etc. systematically applied 

complete mediation will be the primary underpinning of the protection system in any 

system. The principle also restricts the caching of information, which often leads to 

simpler implementations of mechanisms.  
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Whenever a subject attempts to read an object, according to this principle the operating 

system should mediate the action. First, it determines if the subject is allowed to read the 

object. If allowed, it provides the resources for the read to occur. The system should 

check that the subject is still allowed to read the object upon user retrying to read the 

object again. Most systems would not make the second check. They would cache the 

results of the first check and base the second access on the cached results, which 

introduces a potential security risk to the system.  

3.4.3.6.  Open Design  

This principle suggests that complexity does not add security, which is another 

supportive factor in analyzing the relationship between complexity and security. The 

principle states that the design should not be a secret and the designers and implementers 

of a program must not depend on secrecy of the details of their design and 

implementation to ensure security. If the security strength of a program depends on the 

ignorance of the user, then is it highly likely that a user with adequate knowledge will 

defeat that security mechanism. This behavior is described by the concept call the 

“security through obscurity”.  

The principle strongly holds for cryptographic software and systems; since cryptography 

is a highly mathematical subject, vendors in cryptographic business or the ones are in 

use cryptography to protect user data are frequently trying to keep their algorithms 

secret. However in this context, keeping cryptographic keys and passwords secret does 

not violate this principle, because a key is not an algorithm, whereas keeping the 

enciphering and deciphering algorithms secret would violate it.  

3.4.4. Security models 

3.4.4.1.  The Chinese-wall Security Policy 

The Chinese-wall Security Policy [43] is a principle that derives from the ability to read 

or write information. The principle states that information with mutual interest on an 

environment where there is a conflict of interest should be prohibited.  There are three 

different levels in Chinese Wall Model:  
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 Objects: is the lowest level of the chart. For an example an object can be any 

information about a company. 

 Company: Group of businesses in the same class. 

 Conflict of Interest Class: Type of business. (Eg: business in two different 

domains, i.e. a bank and a oil company) 

3.4.4.2.  Simple Security 

The basis of the Chinese-wall policy is that objects are only allowed access to 

information which is not held to conflict with any other objects that they already 

possess. 

3.4.4.3.  Bell-La Padula Model (BLP) 

The Bell-La Padula Model of protection systems deals with the control of information 

flow [44]. It is a linear non-discretionary mode which consists of the following 

components: 

 A set of subjects, a set of objects, and an access control matrix. 

 Several ordered security levels. Each subject has a clearance and each object has 

a classification which attaches it to a security level. Each subject also has a 

current clearance level which does not exceed its clearance level. 

3.4.4.4.  Biba Model 

The Biba model has a similar structure to the BLP model, but it addresses integrity 

rather than confidentiality. Under this model objects and users are assigned integrity 

levels that form a partial order, similar to the BLP model. The Biba integrity model is 

similar to the BLP model for confidentiality uses subjects and objects, in which, it 

controls object modification in the same way that BLP controls disclosure. Integrity 

levels in the Biba model indicate degrees of trustworthiness, or accuracy, for objects and 

users, rather than levels for determining confidentiality. 

3.4.4.5.  Clark-Wilson Model 

The Clark-Wilson model defines a set of rules based on commercial data processing 

practices [45]. It concerned with information integrity using an integrity policy that 

defines enforcement rules (E) and certification rules (C). The model built upon 
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principles of change control rather than an integrity level, which establishes a system of 

subject-programs -object relationship. 

3.5. Control flow Graphs and Integrity 

3.5.1. Control Flow Graphs 

A control flow graph is a directed graph in which each node represents a basic block and 

each edge represents the flow of control between basic blocks [19]. A basic block is a 

sequence of consecutive statements in which flow of control enters at the beginning and 

leaves at the end without halt or possibility of branching except at the end. The 

approaches differ with respect to the handling of branching and the merging of branches, 

and the representation of segments of statements that are always executed together. 

3.5.2. Secure Control Flow 

Most of the sophisticated attacks against computers take advantage of software flaws, 

such as buffer-overflow or integer-overflow vulnerabilities.  

 

                   Figure 5.3: A sample code segment and its control flow graph 
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3.5.3. Control Flow Integrity 

Control-Flow Integrity (CFI) means that the execution of a program dynamically follows 

only certain paths, along with a static policy. CFI can prevent attacks that, by exploiting 

buffer over- flows and other vulnerabilities, such as attempts to control program 

behavior. Control-flow integrity has historically been considered a strong defense 

against control-flow hijacking attacks and Return Oriented Programming (ROP) attacks, 

if implemented to its fullest extent.  

Arbitrary malicious code execution, caused by buffer overflow and stack or heap 

manipulations are one of major threats in computer security. Due to the fact that many 

hardware-enforced security features are introduced in recent processors, the attackers are 

starting to explore the other advanced techniques. As stated in chapter 3, SMEP, SMAP 

and NX enforcements are powerful security features that can significantly prevent 

malicious code modification and execution. They make traditional attacking methods, 

like code injection or user arbitrary code execution, extremely harder than ever. As a 

result of that, attackers have begun excavating other opportunities like control flow 

hijacking by misusing the existing machine code execution without code injection to 

achieve the same or similar malicious behaviors.  

Control flow integrity effectively provides a way that can prevent control flow hijacking 

attacks from arbitrarily controlling program behaviors. Unlike a legitimate control flow 

execution in an application, the hijacked control flow generally has many significant 

differences, like too many indirect JMP, CALL, and RET instructions, calling a 

procedure without corresponding RET (or vice versa) etc. 

3.6. Related Software Attacks 

Memory related attacks have become the most popular, yet powerful type of attack 

vectors in the reason past, due to the use of memory-unsafe programming languages in 

software development. Operating systems and compiler vendors have introduced various 

protection mechanisms to combat these potential system level exploitations. 

Unfortunately those hardening techniques are still inadequate to completely mitigate 

these attacks. This section highlights few notable control flow integrity based software 

attacks. 



53 

 

3.6.1. Control-Flow Hijacking 

Hijacking the control flow of the program in order to execute the malicious code or 

already-existing code inside the address space of the program is a common way of 

exploiting a memory corruption [46]. These techniques led to memory corruption bugs 

to change the target of indirect branch instructions such as CALL*, JMP* or RET, 

which allows an attacker to gain the complete control of the next instruction to be 

executed.   Control flow based hijacking is possible when an attacker gains control of 

the instruction pointer register. 

3.6.2. Code-Reuse Attack 

Code-reuse attacks are software exploits in which an attacker directs control flow 

through existing code with a malicious result. It allows attackers to execute arbitrary 

code on a compromised machine. As an example, ROP is an effective code-reuse attack 

in which  short code sequences ending in a ret instruction are found within existing 

binaries and executed in arbitrary order by taking control of the stack. This is an attack 

exemplified by return-oriented and jump-oriented programming approaches, thus 

avoiding the need for explicit injection of attack code on the stack. Since the executed 

code is reused existing code, the attack bypass the current hardware and software 

security measures that prevent execution from data or stack regions of memory. 

3.6.3. Non-Control-Data Attacks 

A non-control-data attack is an attack where memory corruption vulnerability is used to 

corrupt only data, but not any code pointer. Depending on the circumstances, these 

attacks can be as effective as arbitrary code-execution attacks; for an example by 

corrupting the parameter to a sensitive function may allow an attacker to execute 

arbitrary programs. An attacker may also be able to overwrite security configuration 

values and disable security checks. Due to the fact that most defense mechanisms focus 

on the protection of code pointers, these attacks are realistic threats and hard to defend 

against. 

3.6.4. The Stack  

A stack is contiguous block of memory which is used by functions, two instructions are 

used to put or remove data from stack, PUSH puts data on stack, & POP removes data 



54 

 

from stack. The stack works on Last in First out LIFO basis and grows downwards 

towards lower memory addresses on Intel based systems. 

3.6.5. Buffer Overflow Attacks 

A buffer overflow, probably the most common security vulnerability occurs when a 

program attempts to put more data in a buffer than it can hold or else when a program 

attempts to put data in a memory area past a buffer. A buffer is a section in memory in 

which is allocated to contain anything from a character string to an array of integers. 

Writing outside the bounds of a block of allocated memory can corrupt data, crash the 

program, or cause the execution of malicious code. Attackers use buffer overflows to 

corrupt the execution stack of programs, by sending carefully crafted input to the 

application, in a way such that the attacker can cause the application to execute 

malicious code of his interest, and thereby effectively taking over the machine. 

Essentially the buffer overflow exploit takes the advantage of programs that requires 

user inputs.  The attack can exploit in two forms; stack based and heap based. In a stack-

based buffer overrun, programs are being exploited by the stack. In a normal situation 

the stack will be empty until and unless a program requires a user input. At that point, 

the program writes a return memory address to the stack and then the user's input is 

placed on top of it. On the other had heap-based attacks flood the memory space 

reserved for a program, but the difficulty involved with performing such an attack makes 

them rare. 

3.7. Summary 

This chapter provides details about information theory entropy and its significance with 

security. The details mentioned in this chapter were directly adopted in the research at 

the information quantification phase. The chapter provides a significant amount of 

information to the research in the context security principles and potential attacks. It has 

been identified that traditional software attacks can be mitigated to a great extent by 

adopting different software and hardware based mechanisms that are available, such as 

microprocessor level enhancements. However, the attack surface has been significantly 

changed over time, and at present different set of attack vectors exists that can be hardly 
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addressed by existing security mechanisms. This chapter has shown the importance in 

deriving techniques to analyze the security of systems with ever changing security 

world.  
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CHAPTER 4 

4. Security Design Concepts for Virtualized Environments 

 

4.1. Introduction 

This chapter provides details about virtualization, their challenges and solutions on x86-

architecture. Starting with an introduction to virtualization, the chapter then moves 

towards the virtualization requirements and traditional challenges on x86 that hindered 

introducing virtualization. It also discuss about hypervisors and their contribution 

towards virtualization followed by different virtualization techniques. 

Apart from virtualization methods, the chapter has paid its close attention on hardware 

assisted virtualization and the enhancements introduced by Intel-VT microprocessors. 

The last few sections of the chapter have evaluated the microprocessor level extensions 

that Intel-VT has introduced and their applications.  

4.2. Background of Virtualization Technologies  

The concept of Virtualization is originated in the mainframe days in the late 1960s and 

early 1970s, when IBM invested a substantial time and effort in developing robust time-

sharing solutions. Time-sharing refers to the shared usage of computer resources among 

a large group of users, targeting to increase the efficiency of both the users and the 

expensive computer resources they share [2]. This model represented a major innovation 

in computer technology: the cost of providing computing capability dropped 

considerably and it became possible for organizations, and even individuals, to use a 

computer without actually owning one. Similar reasons are driving Virtualization for 

industry standard computing today: the capacity in a single server is so large that it is 

almost impossible for most workloads to effectively use it. The best way to improve 

resource utilization, and at the same time simplify data center management, is through 

Virtualization.  

Data centers today use Virtualization techniques to make the ideas of physical hardware, 

create large aggregated pools of logical resources consisting of CPUs, memory, disks, 

file storage, applications, networking, and offer those resources to users or customers in 
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the form of agile, scalable, consolidated virtual machines. Even though the technology 

and use cases have evolved, the core meaning of virtualization remains the same 

enabling a computing environment to run multiple independent systems.  

4.3. Why there is a Big Demand for Virtualization?  

Among the leading business challenges confronting CIOs and IT managers today are: 

cost-effective utilization of IT infrastructure; responsiveness in supporting new business 

initiatives; and flexibility in adapting to organizational changes. Driving an additional 

sense of urgency is the continued climate of IT budget constraints and more stringent 

regulatory requirements. Virtualization [15] is a fundamental technological innovation 

that allows skilled IT managers to deploy creative solutions to such business challenges 

Virtualization technology is possibly the single most important issue in IT and has 

started a top to bottom overhaul of the computing industry. The increasing awareness of 

the returns provided by virtualization technology is brought about by economic factors 

of scarce resources, government regulation, and more competition.  

Virtualization is being used by a growing number of organizations to reduce power 

consumption and air conditioning needs and trim the building space and land 

requirements. Virtualization also provides high availability for critical applications, and 

streamlines application deployment and migrations. Virtualization can simplify IT 

operations and allow IT organizations to respond faster to changing business demands.  

4.4. Security Issues Associated  

Virtualization systems are complex systems and they are susceptible to vulnerabilities. 

Vulnerability in an operating system or an application may lead to the compromise of a 

single server within an infrastructure. When that vulnerable operating system or 

application is of a single compromise can increase across all other virtual machines 

within the same physical machine.  

Virtualized infrastructure associates risks with virtualization. When the boundary 

between a virtual machine and a host machine becomes transparent (through 

vulnerabilities), the risk of significant data exposure and system compromise increases 

dramatically. Classifying the data and types of virtual machines that run on the same 

physical machine can reduce this exposure.  
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Major security issues associated with virtualization have been listed below.  

 I/O service based DoS attacks.  

 Unauthorized memory dumps  

 Memory reuse without scrubbing  

 Direct Memory Access (DMA) attacks  

 

The recent increase in the use of Virtualization products and services has been driven by 

many benefits. One of the most common reasons for adopting virtualization is 

operational efficiency, and as a result of that the organizations got the ability to use their 

existing hardware (and new hardware purchases) more efficiently by putting more loads 

on each computer. In general, servers using virtualization technologies can use more of 

the computer’s processing and memory resources than servers running a single OS 

instance and a single set of services. Recent advances in CPU architectures have made 

virtualization capabilities faster than it was just a few years ago, and similar advances 

are expected to continue to be made both by CPU vendors and Virtualization software 

vendors. Also, CPU architecture changes have made virtualization more secure by 

strengthening hypervisor restrictions on resources. 

 

Different approaches were taken to address security issues in virtual systems, but most 

of them are software based approaches. Most of the research approaches taken with 

respect to secure virtualization are hypervisor based and are vendor specific. The issue 

with these software based approaches is that they are vulnerable to any hardware based 

attack. There is need in having security assurance in hardware level and this research 

addresses that requirement. 

4.5. Need for Secure Virtualization 

Virtualization technologies do not just enable software abstraction but can also give 

stricter control over the computing platform resources, which in turn, allows creation of 

secure execution environments on server and application platforms [47]. For single CPU 

systems the performance and security tradeoffs provided through different virtualization 

technologies are rather well understood. However, this is not true for multi-core systems.  
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Virtualization adds layers of technology, which can increase the security management 

burden by requiring additional security controls. Combining many systems onto a single 

physical computer can cause a larger impact if a security compromise occurs. Further, 

some Virtualization systems make it easy to share information between the systems; this 

convenience can turn out to be an attack route if it is not carefully controlled. In some 

cases, virtualized environments are quite dynamic, which makes creating and 

maintaining the necessary security boundaries more complex. 

 

Security in virtual environments will be the key feature in near future. There are, of 

course, many ways to implement virtualization in an organization. Some of those ways 

include server virtualization, network virtualization, storage virtualization, and desktop 

virtualization. Many companies choose to use one of multiple methods to bring their 

businesses up to date with all the latest technology, but each type does present 

challenges when confronting security risks. That’s why there are security solutions for 

each virtualization strategy. It’s important to note that while virtualization can improve 

security. 

4.6. Challenges in virtualizing x86 Architecture 

To address the different virtualization challenges, hypervisor designers have developed 

novel solutions by modifying guest software. Paravirtualization offers high performance 

and does not require making changes to guest applications. A disadvantage of 

paravirtualization is that it limits the range of supported operating systems. For example, 

Xen cannot currently support an operating system that its developers have not modified. 

There are number of challenges in introducing virtualization to x86 platform, and some 

notable factors are described below. 

4.6.1. Ring Aliasing 

Ring aliasing [27] where the exact privilege level of a guest OS is exposed, contrary to 

the belief of the guest that it is running in ring 0. It refers to problems that arise when 

software is run at a privilege level other than the level for which it was written, for 

example, executing a PUSH instruction on the CS register, which includes the current 
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privilege level, and then subsequently examining the results would reveal the privilege 

discrepancy 

4.6.2. Address-space Compression 

Address space compression [27] is another hurdle for virtualizing the x86 architecture. 

The operating systems are expecting to have access to the full virtual address space of 

the processor. Protecting these memory areas is truly challenging, hence this problem 

address space compression.   

4.6.3. Non-faulting Access to Privileged State 

An attempt to access protected portions of the CPU is a security concern, prevented by 

privilege based protection mechanisms. It ensures that unprivileged software cannot 

access certain components of CPU state. However such access attempts result in faults, 

allowing a hypervisor to emulate the desired guest instruction, but the IA- 32 

architecture includes instructions that access privileged state and do not fault when 

executed with insufficient privileges. This is a big security concern. 

4.6.4. Interrupt Virtualization  

Managing external interrupts is challenging on IA-32 architecture due to the fact that the 

mechanisms it provides for masking external interrupts, preventing their delivery when 

the OS is not ready for them. Even if it were possible to prevent guest modifications of 

interrupt masking without intercepting each attempt, challenges would remain when a 

VMM has a “virtual interrupt" to deliver to a guest. A virtual interrupt should be 

delivered only when the guest has unmasked interrupts. To deliver virtual interrupts in a 

timely way, a VMM should intercept some, but not all, attempts by a guest to modify 

interrupt masking. Doing so could significantly complicate the design of a VMM. 

4.6.5. Ring Compression 

IA-32 architecture has two mechanisms to protect the hypervisor from guest software at 

ring de-privileging situations; called segment limits and paging. However segment limits 

do not apply in 64-bit mode, therefore paging must be used in this mode. With this 

behavior, the guest OS will run at the same privilege level as guest applications and will 
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introduces a security risk, due to the fact that the IA-32 paging does not distinguish 

privilege levels 0-2, the guest OS must run at privilege level 3. 

4.7. Popek and Goldberg Virtualization Requirements 

The Popek and Goldberg virtualization requirements [48] are a set of conditions 

sufficient for computer architecture to support system virtualization efficiently. Even 

though the requirements are derived under simplifying assumptions, they still represent a 

convenient way of determining whether computer architecture supports efficient 

virtualization and provide guidelines for the design of virtualized computer 

architectures. Popek and Goldberg provide a set of sufficient (but not necessary) 

conditions for virtualization. The authors have classified the Instruction Set Architecture 

in to three different groups. 

 Privileged instructions  

Instructions that are providing traps if the processor is in user mode and do not 

provide traps if it is in system mode (supervisor mode). 

 

 Control sensitive instructions  

Those that attempt to change the configuration of resources in the system. 

 

 Behavior sensitive instructions 

Instructions, whose behaviors or result depend on the configuration of resources. 

4.8. Hypervisors 

4.8.1. Different types of VMMs 

The evolution of virtualization greatly revolves around one piece of very important 

software, called the hypervisor. A hypervisor is a program that allows multiple operating 

systems to share a set of common system resources. Under a hypervisor each operating 

system appears to have a processor, memory and other resources dedicated to it.  

However, the hypervisor is actually controlling their underlying hardware resources of 

the host system while making sure the guest operating systems, i.e. the guests cannot 
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disrupt each other. To further clarify the technology, it is important to analyze a few key 

definitions: 

 Guest Machine 

A guest machine the VM, is the workload installed on top of the hypervisor. It has the 

same functionalities as a physical or hosted virtual machine, having its own operating 

system, installed applications, processes, I/O requests and other related services, which 

are provided by the machine on which the guest is hosted. The guest can be a virtual 

appliance, operating system or any other type of virtualization-ready workload. 

 Host Machine 

The host machine is known as the physical host. It is the host and the components that 

make up a virtual machine. The guest machine is an independent instance of an 

operating system and associated software, whereas that of the host machine is the 

hardware component that provide the guest with computing resources such as processing 

power, memory, disk and network I/O. etc. 

There are two different types of hypervisors namely type 1 and type 2 hypervisor 

4.8.1.1. Type I Hypervisor 

Type 1 hypervisor is deployed as a bare-metal installation. This means the hypervisor is 

installed directly on hardware, instead of the operating system. The benefit of this 

method is that the hypervisor will communicate directly with the underlying physical 

server hardware, making the resources Para-virtualized and delivered to the running 

virtual machines. 
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                                              Figure 4.1: Type I hypervisor 

4.8.1.2. Type II Hypervisor  

Type 2 hypervisor is also known as a hosted hypervisor, where the software is not 

installed directly onto the bare-metal, but instead is loaded on top of an already live 

operating system. Bare metal hypervisors (type 1) are faster and more efficient as they 

do not need to go through the operating system and other layers that usually make hosted 

hypervisors slower. Although there is an extra hop for the resources to take when they 

pass through to the virtual machine, the latency is minimal and with modern software 

enhancements, the hypervisor can still perform optimally. In this context, it can be stated 

that native hypervisors run directly on the hardware while a hosted hypervisor needs an 

operating system to do its work. 
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Figure 4.2: Type I hypervisor 

4.9. CPU Virtualization 

X86 operating systems are designed to run directly on the bare-metal hardware, where 

they naturally act as if the system is having the full ownership of the hardware. The CPU 

ring concept [section 3.3.1]) introduced by the X86 architecture allows to maintain a 

logical separation in terms of execution inside the CPU. In that context, the applications 

that are running on the user space runs on ring 3, and the operating system and the other 

programs required direct access towards the memory and hardware runs on ring 0.  

Virtualizing the X86 architecture requires placing a virtualization layer under the 

operating system (which expects to be in the most privileged Ring 0) to create and 

manage the virtual machines that deliver shared resources. Further complicating the 

situation, some sensitive instructions cannot effectively be virtualized as they have 

different semantics when they are not executed in Ring 0 [27]. The difficulty in trapping 

and translating these sensitive and privileged instruction requests at runtime was the 

challenge that originally made x86 architecture virtualization look impossible.  

There were number of solutions proposed for this problem. One notable technique was 

binary translation, which addresses the problem by allowing the VMMs to run in Ring 0, 

while moving the operating system to a user level ring with greater privilege than 
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applications in Ring 3 but less privilege than the virtual machine monitor in Ring 0. 

There are three alternative techniques for handling sensitive and privileged instructions 

to virtualize the CPU on the x86-architecture, and they are listed below: 

 Full virtualization using binary translation 

 OS assisted virtualization or paravirtualization 

 Hardware assisted virtualization (first generation) 

4.9.1. Binary translation 

Binary translation translates kernel code to replace non-virtualizable instructions with 

new sequences of instructions that have the intended effect on the virtual hardware, 

where, the user level code is directly executed on the processor, making the execution 

more efficient. This combination of binary translation and direct execution provides Full 

Virtualization since the guest OS is completely decoupled from the underlying hardware 

by the virtualization layer.  

 

                                    Figure 4.3: Binary translation 

With binary translation, the guest OS is not aware that it is being virtualized and requires 

no modification. However, certain sensitive and privileged instructions were identified 

as the biggest challenge in introducing virtualization to x86-platform.  Full virtualization 

successfully addressed this by eliminating the requirement of having hardware 

assistance or the operating system assist to virtualize sensitive and privileged 

instructions. It offers the best isolation and security for virtual machines, and simplifies 
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migration and portability as the same guest OS instance can run virtualized or on native 

hardware.  

4.9.2. Paravirtualization 

In paravirtualization, the guest operating system is modified, in order to provide a 

special interface that can be used by the virtual layer to translate non-virtualizable 

instructions with hypercalls.  This method is different from binary translation, where the 

unmodified OS does not know it is virtualized and sensitive system calls are trapped 

using binary translation. However paravirtualization introduces a significant number of 

support and maintainability issues, as it required operating system kernel level 

modifications. 

 

                                     Figure 4.4: Paravirtualization  

4.9.3. Hardware Assisted Virtualization  

In hardware-assisted virtualization [12], the hardware provides architectural support that 

facilitates building a virtual machine monitor and allows guest operating systems to be 

run natively on host hardware resources. With this method the operating system kernels 

expect direct CPU access running in Ring 0, which is the most privileged level. Before 

divining in to the details of hardware-assisted virtualization, it is required to have a clear 

understanding on what made hardware-assisted techniques different from software based 

technique.  

With software virtualization, the guest cannot run in Ring 0, due to the fact that the 

virtual machine monitor runs there. Therefore the guest operating systems must run in 
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Ring 1, except some exceptional scenarios. This is because certain x86 instructions run 

only in Ring 0, introducing an overhead to the operating system by introducing a need to 

recompile them. This method is called paravirtualization; an infeasible approach due to 

several drawbacks of it, especially when the source code of the guest operating system is 

unavailable. As a solution, the hypervisor traps these instructions and emulate them on 

behalf of the guest, making an enormous performance hit, and at most making the 

virtualized system significantly slower than a real machine. 

To address the above mentioned drawbacks, microprocessor vendors have introduced 

modifications to their existing processors along with some hardware level capabilities to 

support virtualization. In line with that, Intel [22] and AMD [23] have reviled their new 

virtualization technologies, a handful of new instructions and crucially a novel definition 

to privilege levels, allowing the hypervisor to run at "Ring -1"; which enables the guest 

operating systems can run in Ring 0.  

 

 

                         Figure 4.5: Hardware-assisted virtualization  

Hardware assisted virtualization however requires the CPU that support (Eg: Intel-VT 

and AMD-V). With this method, the virtual layer resides in a new root mode privilege in 

level 0. Privileged and sensitive calls from the guest are set to auto trap to the hypervisor 

while user request are executed directly to the CPU.  
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4.10. Intel Virtualization Technology 

Intel VT is a function to support virtualization within the processor [32]. It works 

similarly to exception handlers in software. The purpose of this section is to describe the 

virtual machine architecture and its newly introduced instructions along with Intel-VT 

implementation. The newly introduces instructions are called Virtual Machine 

Extinctions (VMX) which supports virtualization of processor hardware for multiple 

software environments. 

4.10.1. VMX Instructions 

The Intel VT extensions provide 10 or 12 new instructions, depending on if the CPU 

supports EPT (Extended Page Tables) to the Instruction Set Architecture (ISA) in order 

to support virtualization.  The list of VMX instructions are listed below.   

 VMPTRLD: Loads a physical address from memory, which points to a VMCS 

and marks it active. 

 VMPTRST: Stores a physical address to memory, which points to a VMCS and 

marks it clear. 

 VMCLEAR: Sets the launch state of the VMCS to clear. 

 VMREAD: Reads a field in the VMCS. 

 VMWRITE: Writes a field in the VMCS. 

 VMCALL: Allows the guest OS to explicitly pass execution to the VMM 

(Virtual Machine Manager) or hypervisor. 

 VMLAUNCH: Starts the VM pointed to by the loaded VMCS. 

 VMRESUME: Resumes a launched VM pointed to by the loaded VMCS. 

 VMXOFF: Leave VMX operation. 

 VMXON: Loads a physical address from memory, which points to a VMXON-

region and enters VMX operation. 

 INVEPT: Invalidates entries in the TLB (Translation Look-aside Buffer) 

associated with EPT. 

 INVVPID: Invalidates entries in the TLB associated with EPT and a particular 

VPID (Virtual Process ID). 
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Depending on the status of the execution, i.e. whether the execution succeeds or fails, 

VMX instructions will set particular bits in the flags register. VMCS level manipulations 

are critical and therefore Intel only supports using the VMREAD and VMWRITE 

instructions for access and manipulation of the VMCS. This instruction works similar to 

RDMSR (Read MSR) and WRMSR (Write MSR) that were there on previous Intel 

microprocessors.  

4.10.2. VMX Operation 

Intel-VT has introduced two new processor modes, called “mode of operation”. There 

are two kinds of VMX operations: 

 VMX root operation and   

 VMX non-root operation 

The hypervisor (the Virtual Machine Monitor) runs on in VMX root operation and guest 

software will run in VMX non-root operation. The principle difference in VMX root 

mode and non-root mode is that, all the newly introduced instructions under Intel-VT 

(VMX instructions) can only be executed only when the processor is in root mode. 

Additionally, the values that can be loaded into certain control registers are also limited 

in this mode. 

The processor behavior in VMX non-root mode is restricted and modified to facilitate 

virtualization, while facilitating certain instructions to cause VMExits to the VMM. 

Unlike in VMX-root mode, the functionality in VMX-non root operation is limited, 

giving VMM a greater controllability. This limitation allows the VMM to retain control 

of processor resources. Interestingly in this architecture, there is no software visible bit 

whose setting indicates whether a logical processor is in VMX non-root operation, 

allowing the VMM to prevent its guest software from determining that it is running in a 

virtual machine.  Due to this reason, VMX operation places restrictions even on software 

running with current privilege level (CPL) 0, guest software can run at the privilege 

level for which it was originally designed. This capability may simplify the development 

of a VMM. 
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4.10.3. VMX Transitions  

Transitions between VMX root operation and VMX non-root operation are called VMX 

transitions. There are two kinds of VMX transitions. Transitions into VMX non-root 

operation are called VM entries. Transitions from VMX non-root operation to VMX root 

operation are called VM exits. The figure given below illustrates the life cycle of a VMM 

and its guest software as well as the interactions between them. 

 

                                Figure 4.6: VMM and the guest interaction 

First, the VMXON instruction allows the VMM to enter VMX operation. Using VM 

entries, a VMM can then enter guests into virtual machines, whereas VM exits transfer 

control to an entry point specified by the VMM. In this case the VMM affects a VM 

entry using instructions VMLAUNCH and VMRESUME; it regains control using VM 

exits. 

4.10.4. Virtual Machine Control Structure (VMCS) 

VMX non-root operation and VMX transitions are controlled by a data structure called a 

virtual-machine control structure (VMCS), which is defined for VMX operation. A 

VMCS manages transitions in and out of VMX non-root operation (VM entries and VM 

exits) as well as processor behavior in VMX non-root operation. The access to the 

VMCS is managed through a component of processor state called the VMCS pointer, 

whose values is the 64-bit address of the VMCS, in which manipulated by VMPTRST 

and VMPTRLD instructions. The VMCS is defined for VMX operation, which manages 

transitions in and out of VMX non-root operation as well as processor behavior in VMX 

non-root operation.  
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4.10.5. VMX-non-root Operation 

Under VMX operation, the guest software stack typically runs on a logical processor in 

VMX non-root operation, which is similar to that of ordinary processor operation 

outside of the virtualized environment. VMX non-root mode describes the operation of 

VM entries which allow the processor to transition from VMX root operation to non-

root operation. 

4.10.6. Instructions that cause VMExits 

Certain instructions may cause VM exits if executed in VMX non-root operation. These 

exits can be of below categories; 

 Conditional VMExits 

 Unconditional VMExits 

 APIC Access VMExits 

 Other causes of VMExits 

Details about these scenarios are listed below. 

Certain instructions cause VM exits in VMX non-root operation depending on the 

setting of the VM-execution controls. The following instructions can cause “fault-like” 

VM exits based on the conditions described. 

4.10.6.1. Instructions causing VMExits conditionally 

 CLTS: The CLTS instruction causes a VM exit if the bits in position 3 

(corresponding to CR0.TS) are set in both the CR0 guest/host mask and the CR0 

read shadow. 

 HLT: The HLT instruction causes a VM exit if the “HLT exiting” VM-

execution control is 1. 

 IN, INS/INSB/INSW/INSD, OUT, OUTS/OUTSB/OUTSW/OUTSD: The 

behavior of each of these instructions is determined by the settings of the 

“unconditional I/O exiting” and “use I/O bitmaps” VM-execution controls. 

 INVLPG: The INVLPG instruction causes a VM exit if the “INVLPG exiting” 

VM-execution control is 1 
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 LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR: These instructions 

cause VM exits if the “descriptor-table exiting” VM-execution control is 1 

 LMSW: In general, the LMSW instruction causes a VM exit if it would write, 

for any bit set in the low 4 bits of the CR0 guest/host mask, a value different than 

the corresponding bit in the CR0 read shadow. 

 MONITOR: The MONITOR instruction causes a VM exit if the “MONITOR 

exiting” VM-execution control is 1. 

 MOV from CR3: The MOV from CR3 instruction causes a VM exit if the 

“CR3-store exiting” VM-execution control is 1. The first processors to support 

the virtual-machine extensions supported only the 1-setting of this control. 

 MOV from CR8: The MOV from CR8 instruction (which can be executed only 

in 64-bit mode) causes a VM exit if the “CR8-store exiting” VM-execution 

control is 1. 

 MOV to CR0: The MOV to CR0 instruction causes a VM exit unless the value 

of its source operand matches, for the position of each bit set in the CR0 

guest/host mask, the corresponding bit in the CR0 read shadow. 

 MOV to CR3: The MOV to CR3 instruction causes a VM exit unless the “CR3-

load exiting” VM-execution control is 0 or the value of its source operand is 

equal to one of the CR3-target values specified in the VMCS. 

 MOV to CR4: The MOV to CR4 instruction causes a VM exit unless the value 

of its source operand matches, for the position of each bit set in the CR4 

guest/host mask, the corresponding bit in the CR4 read shadow. 

 MOV to CR8: The MOV to CR8 instruction (which can be executed only in 64-

bit mode) causes a VM exit if the “CR8-load exiting” VM-execution control is 1. 

If this control is 0, the behavior of the MOV to CR8 instruction is modified if the 

“use TPR shadow” VM-execution control is 1. 

 MOV DR: The MOV DR instruction causes a VM exit if the “MOV-DR 

exiting” VM-execution control is 1. 

 MWAIT: The MWAIT instruction causes a VM exit if the “MWAIT exiting” 

VM-execution control is 1. 
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 PAUSE: The behavior of each of this instruction depends on CPL and the 

settings of the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution 

controls. 

 RDMSR: The RDMSR instruction causes a VM exit if any of the following are 

true: 

o The “use MSR bitmaps” VM-execution control is 0. 

o The value of ECX is not in the range 00000000H – 00001FFFH or 

C0000000H – C0001FFFH. 

o The value of ECX is in the range 00000000H – 00001FFFH and bit n in 

read bitmap for low MSRs is 1, where n is the value of ECX. 

o The value of ECX is in the range C0000000H – C0001FFFH and bit n in 

read bitmap for high MSRs is 1, where n is the value of ECX & 

00001FFFH. 

 RDPMC: The RDPMC instruction causes a VM exit if the “RDPMC exiting” 

VM-execution control is 1. 

 RDTSC: The RDTSC instruction causes a VM exit if the “RDTSC exiting” VM-

execution control is 1. 

 RDTSCP: The RDTSCP instruction causes a VM exit if the “RDTSC exiting” 

and “enable RDTSCP” VM-execution controls are both 1. 

 RSM: The RSM instruction causes a VM exit if executed in system-management 

mode (SMM). 

 WBINVD. The WBINVD instruction causes a VM exit if the “WBINVD 

exiting” VM-execution control is 1. 

 WRMSR: The WRMSR instruction causes a VM exit if any of the following are 

true: 

o The “use MSR bitmaps” VM-execution control is 0. 

o The value of ECX is not in the range 00000000H – 00001FFFH or 

C0000000H – C0001FFFH. 

o The value of ECX is in the range 00000000H – 00001FFFH and bit n in 

write bitmap for low  MSRs is 1, where n is the value of ECX. 
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o The value of ECX is in the range C0000000H – C0001FFFH and bit n in 

write bitmap for high  MSRs is 1, where n is the value of ECX & 

00001FFFH. 

4.10.6.2. Instructions causing VMExits unconditionally 

The following instructions cause VM exits when they are executed in VMX non-root 

operation: 

 CPUID, GETSEC, INVD, and XSETBV 

All the instructions introduced with Intel-VT (VMX instructions): which include 

INVEPT, INVVPID, VMCALL, VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, 

VMREAD, VMRESUME, VMWRITE, VMXOFF and VMXON. 

4.10.6.3. APIC-Access VMExits 

An attempt to access memory using a physical address on the APIC-access page causes 

a VM exit if the “virtualize APIC accesses” VM-execution control is 1. These VMExits 

are called an APIC-access VM exit. 

4.10.6.4. Other causes of VMExits 

Apart from the VMExit reasons mentioned above, below conditions will also cause 

VMExits.  

 Exceptions: 

Exceptions happen due to VMExits based on the exception bit map. If the bit is 

1, the exception causes as a VMExit and it is 0, the exception delivered normally 

through the IDT (Interrupt Descriptor Table).  

 

 Triple Faults:  

Under Triple fault a VMExit occurs if the logical processor encounters an 

exception while attempting to call the double-fault handler and that exception 

itself does not cause a VM exit due to the exception bitmap.  
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 External Interrupts: 

An external interrupt causes a VM exit if the “external interrupt exiting” VM-

execution control is 1.  

 

 Non-maskable interrupts (NMIs):  

An NMI causes a VM exit if the “NMI exiting” VM-execution control is 1. We 

have eliminated this due to its conditional nature.  

 

 INIT signals:  

INIT signals can cause VMExits, but if the logical processor is in the wait-for-

SIPI state, INIT signals are blocked. They do not cause VM exits in this case. 

 

 Start-up IPIs (SIPIs):  

If a logical processor is not in the wait-for-SIPI activity state when a SIPI arrives, 

no VM exit occurs and the SIPI is discarded.  

 

 Task Switches:  

Task switches are not allowed in VMX non-root operation. Any attempt to affect 

a task switch in VMX non-root operation causes a VM exit. However there are 

some checks performed by the processor before causing a VMExit.  

 

 System-management interrupts (SMIs):  

If the logical processor is using the dual-monitor treatment of SMIs and system-

management mode (SMM), SMIs cause SMM VM exits. 

 

 VMX-preemption timer:  

A VM exit occurs when the timer counts down to zero. The timer does not cause 

VM exits if the logical processor is outside the C-states C0, C1, and C2. 

4.11. Security Analysis 

Intel Virtualization Technology present on Intel processors enables a new privilege 

space where the VMM software can operate. It reduces the size and complexity of the 
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VMM software improving its efficiency and enabling greater functionality. VT 

capabilities have introduced an extra set of instructions called Virtual Machine 

Extensions (VMX), to better deal with hardware-assisted virtualization. There has not 

been any significant research done with respect to the security strength on Intel-VT 

enabled processors considering the work load of the guest software running on top those 

VMMs.  

It can be argued that the main feature the Intel has introduced with its virtualization 

technology is its processor modes. The VMX non-root processor mode introduced by 

Intel is similar to the user space in a traditional OS, whereas the root mode is similar to 

that of the kernel space. With VT-x the guest OS is running on VMX-non root mode 

with a reduced set of privileges, but in ring 0.  

 

          Figure 4.7: Pre and Post Intel VT-x 

With this design, the guest OS is directly running on hardware with its native ring 0 

privileges, but with reduced privileges, i.e. on non-root mode. It can be stated that this 

feature introduces potential security risk to the system.  The virtual machine monitor 

(the hypervisor) is running with full privileges at VMX-root mode. The guest OS will 

contact the VMM, whenever it is required to run privileged instructions. A VMX 

transition will occur at this situation. A VMX transitions is the other important feature 

that Intel has introduced along with VT. With VMExit instructions, the processor mode 

will be transferred from the VMX-non root mode to the VMX-root mode, causing a 
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privilege elevation. With VMEnter instructions, the processor mode will be transferred 

from the root mode to non-root mode downgrading the privilege level. 

In security’s view point, any privilege elevation is a concern, and therefore should be 

minimized during program execution. Going forward with this principle in line with 

Intel-VT design, VMExit instructions should be treated seriously, assigning a higher 

criticality level. it has been considered that all the VMExit instructions as the set of 

privilege gains during the execution. In this situation along with a VMExit, the processor 

mode will also get changed to a higher privilege, and therefore in between a VMExit and 

a VMEnter, the processor is in a privileged state. That means the processor state will 

oscillate in between these two privilege levels according to the behavior of its user 

programs. This state change of the processor will be taken place not only because the 

main program of our interest is having a large number of VMX transitions, but also as a 

result of its other called or linked programs.  

4.12. Summary  

This chapter contains information about the need of virtualization, virtualization 

challenges, and solutions provided by hardware vendors. In this chapter a 

comprehensive analysis on Intel-VT architecture has been performed along with a 

detailed study about its security aspects. The reason for this analysis is that the 

evaluation method of the novel framework proposed by this research has been done on a 

virtualized system.  

 

 

  



78 

 

CHAPTER 5 

5. A Novel Risk Evaluation Technique: RECSRF 

 

5.1. Introduction 

Being probably the most important chapter of this thesis, this chapter consists of the 

novel evaluation mechanism proposed by this research, called the RECSRF. The chapter 

consists of two main sections; the novel method and its rational. Starting with a brief 

overview of the main problem along with a background study, the chapter then moves 

towards the introduction of the novel evaluation technique. The next section contains the 

proposed methodology, and it has been excavated in the context of its practical usage, 

and finally the chapter concludes with a summary. 

5.2. The Impact on Privilege Elevations on Microprocessors 

5.2.1. Privilege Escalations 

A privilege escalation attack [49] is a type of attack where an unauthorized user gains 

elevated access to system or other user resources. It is a type of an intrusion that takes 

advantage of programming errors or design flaws to grant the attacker elevated access to 

the system and its associated data and applications. These attacks typically exploit 

software or hardware bugs as well as poor software configurations. Upon gaining 

elevated privileges, the attacker can access files, view private information (such as 

encryption keys), modify system files or install unwanted software. There are two types 

of privilege escalation:  

 Vertical privilege escalation  

 This attack allows the attackers to grant themselves higher privileges. This is 

 typically achieved by performing kernel-level operations that allow the attacker 

 to run unauthorized code. For instance, injecting and executing code at the kernel 

 space, or performing kernel operations that allow unauthorized code execution. 
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 Horizontal privilege escalation  

 Horizontal privilege escalation requires the attacker to use the same level of 

 privileges he already has been granted, but it is possible to gain access to 

 resources belonging to other processes or users sharing the same privilege levels. 

5.2.2. Privilege Escalation attacks 

Planting a privilege escalation attack requires the existence of distinct privilege levels, 

such as kernel, supervisor, user etc., at the microprocessor architecture specifications. 

Additionally, software mechanisms that are generally imposed by the operating system 

that escalate privileges during normal operation are also required. The degree of 

escalation depends on what privileges the attacker is authorized to possess, and what 

privileges can be obtained in a successful exploit. For an example, a programming error 

that allows a user to gain extra privilege after successful authentication limits the degree 

of escalation, because the user is already authorized to hold some privilege. Likewise, a 

remote attacker gaining super user privilege without any authentication presents a 

greater degree of escalation.  

Not all instruction set architectures, however, include instructions that directly elevate 

privileges. Privilege escalation usually occurs in as-needed basis. Therefore, gaining 

escalated privileges to directly write on kernel structure is another common way that 

allows this attack. Another way to escalate privileges is to overwrite locations which 

contain critical information to the system including information about interrupt handlers, 

shared libraries and operating system specific code etc.  

5.2.3. Context Switching 

A context is the contents of a CPU's registers and program counter at any point in time. 

It is the procedure of storing the state of an active process for the CPU when it has to 

start executing a new one. A register is a small amount of very fast memory inside of a 

CPU (as opposed to the slower RAM main memory outside of the CPU) that is used to 

speed the execution of computer programs by providing quick access to commonly used 

values, generally those in the midst of a calculation. A program counter is a specialized 

register that indicates the position of the CPU in its instruction sequence and which 

holds either the address of the instruction being executed or the address of the next 
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instruction to be executed, depending on the specific system. Context switches are 

resource intensive and most operating system designers try to reduce the need for a 

context switch. They can be software or hardware governed depending upon the CPU 

architecture.  

5.3. The Importance of Microprocessor Security 

It is a conspicuous fact that microprocessors today are ubiquitously deployed in a wide 

variety of applications, from the personal computers to space and automotive 

applications. The microprocessor can be treated as the nucleus of a computer system and 

ensuring its integrity is paramount, since the adverse impacts that it can impose on the 

system can range from simple information leakage to life-threatening and mission 

critical circumstances. Unfortunately, apart from the design level and in-built security 

mechanisms introduced by the underlying architecture and by the processor vendors, a 

diminutive amount of research is done in the past in relation with microprocessor 

security. In fact, the high level software programmers rely on these mechanisms and 

from programmers perspective, the microprocessor is inside the Trusted Computing 

Base (TCB).  

A single CPU cycle itself is pretty complex and consists of data movements, register 

updates, I/O operations, memory access operations and many more. During a program 

execution, millions of machine instructions will be generated, and will be executed by 

the microprocessor. One main reason for this fact is that, a given instruction on a high 

level programming language will contain more than one machine instruction, i.e. unlike 

in assembly, high level programming languages does not have one to one mapping to 

machine instructions. An example of a simple C++ if statement and its corresponding 

assembly mapping given below shows this behavior.  

 

Figure 5.1: High level to Assembly mapping 
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The whole point of this argument is to emphasize the significance in closely monitoring 

microprocessor behavior during program executions. Depending on the instruction 

sequence of the program, the microprocessor will execute them while going through 

numerous different states including privilege escalations. The “state” here is a vital and 

an influential term that has been seriously looked at during this research. As mentioned 

above, it is the job of the microprocessor to set different CPU flags, register operations 

and in essence all the background needs of the operation during an instruction execution. 

Depending on the register values, flag status and other constrains, the microprocessor 

will be on different states with different capabilities. In essence, it can be stated that the 

security risk that a microprocessor imposes on a system by being on a high privilege 

state or by frequent context switching between high-low privilege levels is still a virginal 

area in security.  

The principle of least privilege states that, at a given time the system should be on the 

lowest possible privilege level. However, the application of the principle is 

straightforward in software, but in hardware, due to the complex nature of program 

execution.  Any malfunction, vulnerability or any potential control flow hijacking attack 

[49] during a program execution can cause integrity issues in a system if the system is 

on a higher privilege at the time of the attack. The potential impact an attacker can make 

in such situation is unimaginable.  

With ever growing software attacks and breaches, it can be stated that there are two 

types of systems exists in the world; i.e. the systems that were already attacked, and the 

once to be attacked. This is a dominant challenge that every system or an organization is 

facing today, and because of this reason, security mechanisms were mandated even at 

the SDLC (Software Development Life Cycle) stages. This shows the importance of 

built in security rather than bolt in security and will make sure that security mechanisms 

are in place by-design and by-default. It is however extremely vital to make sure that a 

system is protected to some extent even after it is being attacked. The potential impact of 

an attack will be minimum, given the system was in the least possible privilege at the 

time of the attack. Therefore the control flow integrity of an execution has become a 
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paramount design principle than ever before. This research focuses on ensuring the 

control flow integrity of the microprocessor.  

5.3.1. The Instruction Pointer Register and its Security Impacts 

The role of the instruction pointer register (EIP on 32 bit, or RIP on 64 bit) in the CPU is 

to provide the address of the next instruction to be executed. It is a special purpose 

register, whose function is to point to the next instruction to be executed. In essence, 

microprocessor uses the instruction pointer register to keep track of the location of the 

next instruction to be executed [27]. The register value increases automatically 

whenever an instruction is executed by the length of the encoding of that instruction. 

However this register cannot be directly accessed as there is no legitimate use case to do 

so. Having any arbitrary instruction change IP register would make branch prediction 

very difficult, and would probably open up whole lot of security issues.  

Therefore, any program activity that results in modifying the instruction pointer register 

contents has the potential to create a security risk. The most visible security risk factor 

from a computer architecture perspective is the presence of machine instructions that 

cause instruction pointer register manipulation.  

5.3.2. The Instruction Pointer and Control Transfer Instructions 

When the CPU is in the process of instruction execution, instructions are usually fetched 

sequentially from memory, but control transfer instructions [21] change the sequence by 

placing a new value in the instruction pointer. These include branches, conditional 

expressions, subroutine calls, and returns. A branch ensures that the next instruction is 

fetched from the memory. In addition to branching, a subroutine call will save the 

proceeding contents of the instruction pointer. A return instruction will save contents of 

the instruction pointer and places it back in the instruction pointer, resuming sequential 

execution with the instruction following the subroutine call.  

5.3.3. Software complexity impact on Microprocessor Security 

Complexity is treated as the enemy of computer security [11], i.e. the more complex a 

system gets, harder it is to secure. With too many “moving parts” or interfaces between 

programs and other systems, the system or interfaces become difficult to secure while 
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still permitting them to operate as intended. In this research, it has been observed that the 

machine instructions generated due to the increased cyclomatic complexity of high-level 

programs will increase the number of branched instructions during the execution; 

causing a high volatility in the instruction pointer register.  

5.4. The Novel Risk Evaluation Method 

Considering the practical scenarios mentioned above, it has been observed that even a 

normal user of a system can drive the microprocessor through risky operations. This 

could be either intentional or unintentional, but however the ultimate impact on the 

system is devastating, since it will be an attack to the nucleus of the system. It has been 

notices that it is also possible for a normal user to fool the microprocessor with different 

instructions in a way the processor will be on a higher privilege level, opening the doors 

for privilege escalation attacks. On the other hand, obtrusively present software 

complexity will magnifies this risk making attackers life easier. 

The attempt of this research is to identify the instances which introduce state changes to 

the instruction pointer register inside the microprocessor. Accordingly, it has been 

considered that higher the volatility of the instruction pointer register during a program 

execution will significantly bring down the overall security of the system. The reason for 

this argument is that any change in the IP register would make branch prediction 

extremely difficult, and would increase the probability of system being vulnerable to 

control flow hijack attacks [49].  

To build this argument, a program execution trace has been taken and the points which 

contain unconditional control transfers were taken in to account, and those instructions 

were marked as regions. Since the instruction pointer register manipulation itself is a 

risky operation, any privilege elevation after this state change will be a potential attack 

attempt. The method proposed in this research will identify this behavior and will 

quantitatively measure the risk factor involved. Quantifications were done measuring the 

number of risky regions created and the amount of information generated.  

Unfortunately, it has been observed that existing information theoretic methods cannot 

be used directly, since none of them are capable in dealing with runtime disassembled 

machine instructions. This challenge has become the motivation behind deriving few 
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novel concepts in this research. The traditional concept of complexity has been extended 

to a new dimension in order to better suit with real practical needs. The Runtime 

Execution Complexity (REC) present with this research [section 7.4.1] is a novel 

technique that can be adopted to evaluate the control flow integrity of an execution.  

5.4.1. The Runtime Execution Complexity (REC) Concept 

The execution of a computer program can be treated as a collaborative execution of 

several programs. Generally, at run time, a program will call functions from other 

programs and also transfer its control to other program segments, introducing a change 

to its control flow. In most cases caller (the main program) is not fully aware about its 

callee, in terms of the security risks it has, and vice versa. In addition to that, this control 

transfer will potentially change the trust boundary of the system. Practically it is difficult 

avoid this behavior because it is required to build applications having such a modular 

design due to various reasons. The Runtime Execution Complexity (REC) has been 

defined as the overall complexity a program will produce dynamically due to this 

collaborative execution.  

The REC concept is tightly integrated with program control transfers, which is a 

measure of the number of decision making points in a given program.  These decisions 

making instances will be interpreted to the processor as control transfer machine 

instructions. Essentially the execution flow of the program will be changed at these 

decision making points and it has been considered that this control flow change (IP 

register manipulations) will introduce a security risk to the overall execution and it will 

results in increasing the runtime execution complexity.  

To construct this logic the control transfer instructions were analyzed in depth. As 

mentioned above, control transfer instructions have two forms; conditional and 

unconditional. Though both instruction types will change the control flow of a program, 

this research took only the unconditional control transfers in to account since the 

intention is to derive a lower bound for the risk. The unconditional control transfer 

instructions will always be executed, and therefore, by analyzing the disassembled 

instruction code, it can be exactly stated that at those points the program control has 

changed. The disadvantage with the conditional ones is that, they are always subjected to 
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be executed successfully if and only if some pre conditions are met. Therefore, 

conditional instructions involve bit of an uncertainty by looking at it from the 

disassembled instructions point of view.  These reasons paved the way to consider 

unconditional control transfer instructions in this research. 

The proposed framework considers every unconditional control transfer as a potential 

control flow hijack [49, 52] attack and every return as a malicious return. The details 

of this framework and its evaluation methods have been mentioned in proceeding 

sections of this chapter.  

A is a step by step guide to derive program risk factor has mentioned below. 

Step1: 

First, it is required to attach the process ID (PID) of the program under interest to the 

disassembled code analysis utility. During this process it is required to make sure that a 

minimum amount of programs are running in the background. This is to optimize the 

instruction collection by minimizing the possible instruction contaminations by other 

programs. This will also be helpful in reducing possible false positives.  

Step 2: 

The next step is to extract all the unconditional control transfer instructions from the 

initial instruction trace (the trace obtained from step 1 above). This has been shown in 

Figure 5.2 below. 



86 

 

 

Figure 5.2: Generation of Unconditional Control Transfer Instructions 

Step 3: 

The next step is to calculate the number of unconditional control transfer instructions in 

this extracted instruction trace. Assume that there exists n number of unconditional 

control transfer instructions in total. That means the original instruction trace derived 

during the data collection (at step 1) can be divided in to (n+1) number of regions. 

These regions are called “Threat Blocks” and it has been considered that these threat 

blocks will increase the attack surface of the execution. The reason for this argument is 

that, each threat block is a result of an unconditional control transfer. At each threat 

block exit the program control will be transferred unconditionally to a different region 

(which is again a threat block) that may or may not be under the control of the original 
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author. Without losing generality, it has been considered that every threat block is 

insecure and will introduce a potential risk to the program execution in terms of control 

flow integrity. 

    

    

Figure 5.3: Identification of Threat Blocks 

Even though there are (n+1) number of threat blocks, it is possible to eliminate the very 

first block (Block 0 in Figure 5.3) since it is derived from the main program which the 

system will trust. This is because in this model, the initial program will be trusted and 

considers that it is residing in the Trusted Computing Base (TCB). This argument results 

in having {(n+1) -1}, i.e. n number of threat blocks. 
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Figure 5.4: Program control transfer and threat blocks creation 

Step 4: 

At next, it is required to calculate the amount of privileged information generated during 

this activity. This can be calculated as a measure of information entropy. Assume that 

there exist n’ number of privileged instructions in the original instruction sequence, the 

information entropy generated can be calculated as follows; 
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 Total number of instructions in the trace   = N 

 Total number of privileged instructions   = n’ 

 Entropy generated    H [PRI] = - ∑ {Pi* log (Pi/P)} 

         = - ∑ {n’*log (n’/N)}     (5.1) 

Step 5: 

The amount of privileged instructions generated (H [PRIV]) during this activity, is 

distributed in the above mentioned n of threat blocks. Therefore the approximation for 

the amount of privileged information distributed in a given threat block is H [PRI]/ (n). 

The per threat block privileged information distribution is called the “Security Risk 

Factor”.   

Combining the Runtime Execution Complexity (REC) as mentioned in section 5.4.1 and 

the Security Risk Factor (SRF) mentioned in this section, the novel risk quantification 

method present in this research is called the RECSRF.  

Hence the RECSRF number of the execution is  

     RECSRF = H [PRI]/ (n)     (5.2) 

Note: Since the frame considers only the unconditional control transfer instructions, the 

RECSRF value provides a lower bound for the risk factor for a given program execution.  

5.4.2. Standardization of Data 

Data standardization is the process of reaching agreement on common data definitions, 

formats, representation and structures of all data layers and elements. One challenge of 

this research is that the collected data will not always be on the same scale. Therefore 

different execution traces will contain Threat Blocks of different sizes. Additionally the 

privileged information distribution will also not be on a state that allows a comparison. 

To mitigate this challenge, it is required to standardize the data collected in a way it 

allows comparison. 

According to Figure 5.5 shown below, assume that two instruction traces called, 

instruction trace 1 and instruction trace 2 were collected while executing a task. The data 
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collection will be performed giving an adequate time to complete the execution. Time 

axis has shown that the data collection took place for t number of seconds (obviously, 

the unit of time could be selected appropriately). Take the total number of instructions 

generated by trace 1 to be n1, whereas those of the total generated by trace 2 to be n2.  

 

Figure 5.5: Data Standardization 

 

The data standardization technique has mentioned below. 

 Threat Block Size  

 Size of the threat block on instruction trace 1 = tb1 x {
  

(      )
}         (5.3) 

 Size of the threat block on instruction trace 2 = tb2 x *
  

(      )
+       (5.4) 
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 Privileged Information Distribution 

 Amount of privileged information distribution on instruction trace 1  

       = p1 x *
  

(      )
+      (5.5)  

 Amount of privileged information distribution on instruction trace 2  

       = p2 x *
  

(      )
+      (5.6) 

The standardization techniques mentioned in this section allows performing comparative 

analysis on collected data.   

5.5. The Rational 

The RECSRF framework can be directly analyzed in line with common software attacks. 

In order to gain control of the system, an attacker would intercept the program execution 

somehow and will try to redirect the control flow of the program to his intended zone. 

The technique has modeled this in terms of a threat block. To compromise the system, 

the next step of the attacker would be to gain control of the system, which requires the 

attacker to perform some privilege activities. These privilege activities will be 

interpreted to the processor in terms of privileged instructions. In a nutshell, the 

privilege elevation attempts followed by program control transfers will be evaluated by 

RECSRF number. 

There are number of practical advantages of having this evaluation technique in place. 

This technique can be used in application level intrusion detection and prevention 

systems, as this measure evaluates a number of practical aspects in a program execution 

environment. In addition to that, organizations can adopt the proposed RECSRF value to 

detect malicious code injects and execution redirections in their programs. Additionally 

the number can be used in security assurance process, which will help in maintaining a 

consistent execution complexity.  

The proposed framework can also be successfully implemented in hardened server 

environments as well. In most cases different services such as mail, web, and FTP are 

running separately on different systems under hardened environment. These are security 
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sensitive critical servers, which are running continuously for a long time, leaving no 

room to take a down time to perform any periodic security related tests. Unfortunately, 

these are the main targets if of attackers and that is why it is required to run a minimum 

amount of services on those server boxes.  This hardened environment is very much 

closer the test environment of this research, where a minimum number of background 

programs are running. Using the RECSRF number along with the number of threat 

blocks (Figure 5.6) that were there initially, the system administrators can get an idea 

about the run-time complexity as well as the control flow integrity of the program 

execution. This is vital in determining whether the system is vulnerable to different 

attacks.  
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Figure 5.6: A capture of real threat blocks 

5.6. Summary 

This chapter contains the details about the novel evaluation framework proposed by this 

research called the RECSRF.  The granular information flow and the logical reasoning 

about the problem have laid a solid foundation in further building arguments. It has been 
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identified that privilege escalations and control flow integrity based attacks are powerful 

attacks on any system and ensuring the control flow integrity has become a paramount. 

The chapter has shown how the microprocessor of a system can be vulnerable to control 

flow integrity based attacks due to the nature of machine instruction sequence it 

executes. It also shows how a normal user in a system with least amount of privileges 

can drive microprocessor through risky states allowing a processor level privilege 

escalation attacks in the system.  

The next section of the chapter has shown how to derive the RECSRF number of an 

execution. In addition to that, possible challenges of the method were also discussed 

with a data standardization methodology. Finally a justification has been done about the 

novel framework in the contest of its practical usages and applications.   
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CHAPTER 6 

6. The Evaluation and the Test Results   

6.1. Introduction 

This chapter contains the results for the tests carried out in this research. Essentially, 

what RECSRF will evaluate is the risk factor a given program execution imposes on its 

underlying microprocessor. The number reflects the attack surface or the likelihood of 

an attack that the microprocessor undergoes due to the program execution. The 

technique can be used in risk evaluation under different conditions and constrains 

depending on the user requirement. At software design and baseline evaluation phases, 

there can be instances which requires answering questions of below format; “what is the 

best resource combination that provides maximum security?” This can be successfully 

answered with the RECSRF number. 

This chapter provides the results for an evaluation performed in order to get an 

understanding about the security strength of programs executed as the sudo user and as 

the root user on a virtualized system. In that context, a given task has been performed 

using both methods and a comparative risk analysis has been done at the end with the 

RECSRF number.  

The details of the underlying hardware platform used in this evaluation are listed below. 

 Processor: Intel Core i5 microprocessor 

 Memory: 8GB 

 Hypervisor: KVM 

 Host OS: Fedora 22 

 Guest OS: RHEL 7 

6.2.  An Evaluation of Tools 

This section provides an overview about the tools that has been considered in this 

research. Unfortunately, finding a proper tool that purely deals with disassembled 

machine instructions has become a challenge since, since disassembled code is rarely 
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used in program analysis. However, few tools were closely evaluated in this research 

and those were derailed below. 

 Objdump utility 

Objdump is a utility in Linux is used to provide thorough information on object files. If 

an archive is specified, objdump displays information on each object file in the archive. 

However the tool cannot be used in determining the disassembled code at runtime, the 

utility has been omitted.  

 Gdb 

GUU debugger is a well know stable utility but it will be really effective when it is 

debugging a program that has debugging symbols linked in to it. Additionally gdb can 

only use debugging symbols that are generated by g++. The symbol generation should 

be performed at the time of compilation, and therefore gdb cannot be used in evaluating 

basically any program. Therefore gdb has been omitted in this research. 

 Linux Perf 

Perf is a profiler tool for Linux 2.6+ based systems that abstracts away CPU hardware 

differences in Linux performance measurements and presents a simple command line 

interface. Perf is based on the perf_events interface exported by recent versions of the 

Linux kernel. Perf has been selected in this research mainly because it allows to collect 

run time disassemble code and also facilitate in creating control flow graphs. The results 

were obtained in this research with the help of Perf utility.  

6.3. Theoretical Basis for the Evaluation 

This section summarizes the background details of the aspects that have been taken in to 

account in this particular evaluation.  

6.3.1. SUDO Access 

Sudo stands for "super user do, which effectively allows a user to run a program as the 

root user without sharing the root password. The role of sudo is incredibly important and 

crucial to many Linux distributions, and is treated as a mechanism to achieve "best 

practice security" on Linux. When users are given access via sudo, they are prompted to 
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enter their own password, in which upon authentication, the administrative command is 

executed as if run by the root user. Accessing privileged resources in a system via sudo 

has many advantages. The utility will come handy especially when it comes to server 

hardening, where the root user is completely locked. In such situations the privileged 

resources will be accessed via sudo. Apart from that, there can be situations which 

require different users to execute different privileged resources in the absence of the root 

user.  

Considering these advantages and most of all due to its highly practical nature in 

application use, program execution with sudo and root has been taken in to account in 

this research. Additionally a virtualized system has been considered as the underlying 

platform, due to its high demand caused by its cost effective nature. In fact, what the 

research has taken in to account is the microprocessor level risk that privilege elevations 

will impose on a virtualized system when a given operation is performed either directly 

as the root user or as a sudo user.   

6.3.2. Practicality of the Scenario 

In a corporate network, many service oriented servers are running on the DMZ 

(Demilitarized Zone) on virtual machines (VMs), in which a given service will run 

solely on a dedicated VM. In that context, as an example a dedicated VM for the mail 

server, and another dedicated VM for the web server etc.  

Due to the server hardening requirements, in most cases, it is required to completely 

lock down the root account. Sudo access will be the obvious choice in those situations, 

which allows the access to privileged system resources. Unfortunately a security 

evaluation will not be performed in such situations, i.e. it will not be checked whether 

the sudo execution is actually secure than that of the root execution. Detailed below is a 

RECSRF calculation performed on different activities executed as the sudo user and as 

the root user.    

 

 



98 

 

6.3.3. The Logic 

Take H(S, P), where S = {s1, s2,…., sn} is the source alphabet, and P = {p1, p2…pn} is 

the probability distribution.  The set details are listed below.   

  S = {all unconditional VMExit instructions} 

  P = {probability of each VMExit instruction} 

   

In this equation, b is the base of the logarithm used. Common values of b are 2, Euler's 

number e, and 10, and the unit of entropy is Shannon for b = 2, Nat for b = e, and 

Hartley for b = 10.  When b = 2, the units of entropy are also commonly referred to as 

bits.  The entropy has been calculated for VMExit instructions generated as a result of 

different program executions. 

6.4. Test Results 

Below mentioned tests were carried out with this evaluation. 

 Modification of privileged log files 

 Performing a SUID program – ping command 

 Change of system level networking related file 

 Tcp dump on an interface 

 Modifications to the firewall status of the system 

 Change SELinux modes 

 Stopping security sensitive daemons 

6.4.1.  Modification of privileged Logs 

System wide log files are a key resource in ensuring the integrity of a system. In that 

context, the integrity of dmesg utility has been taken in to account. Logs from dmesg are 

dumped in /var/log/messages, which contains all the system messages including from 

starting of the system. In this scenario a system-wide log file has been modified, as sudo 

user and as a root user separately and the risk has been calculated.   
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6.4.1.1. Program execution as sudo 

 Total number of instructions = 20660 

 Total number of Unconditional Control Transfer instructions = 2245  

 The number of Treat Blocks generated in the execution = (2245+1) -1 = 2245 

Table 6.1: Modification of privileged logs – sudo execution 

Instruction Total (fi) Probability (pi) 
Calculation 

Pi log (pi) 

CPUID 0 0 0 

GETSEC 0 0 0 

INVD 0 0 0 

XSETBV 2 2/20660 -0.00038858667 

INVEPT 0 0 0 

INVVPID 0 0 0 

VMCALL 0 0 0 

VMCLEAR 0 0 0 

VMLAUNCH 1 1/20660 -0.000208864 

VMPTRLD 0 0 0 

VMPTRST 0 0 0 

VMREAD 108 108/20660 -0.01192760448 

VMRESUME 1 1/20660 -0.000208864 

VMWRITE 2 2/20660 -0.00038858667 

VMXOFF 0 0 0 

VMXON 1 1/20660 -0.000208864 

 

 H (SUDO) = - {-0.00038858667-0.000208864-0.01192760448-0.000208864-

   0.00038858667-0.000208864} 

 H (SUDO) = 0.01333136982 
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6.4.1.2. Program execution as root 

 Total Instructions = 36660  

 Total number of Unconditional Control Transfer instructions =3743 

 The number of Treat Blocks generated in the execution = (3743 +1) -1 = 3743 

Table 6.2: Modification of privileged logs – root execution 

Instruction Total Probability (pi) 
Calculation 

Pi * log (pi) 

CPUID 0 0 0 

GETSEC 0 0 0 

INVD 0 0 0 

XSETBV 3 3/36660 -0.00033445754 

INVEPT 0 0 0 

INVVPID 0 0 0 

VMCALL 0 0 0 

VMCLEAR 0 0 0 

VMLAUNCH 1 1/36660 -0.00012450061 

VMPTRLD 1 1/36660 -0.00012450061 

VMPTRST 0 0 0 

VMREAD 101 101/36660 -0.00705256355 

VMRESUME 1 1/36660 -0.00012450061 

VMWRITE 2 2/36660 0.00023257842 

VMXOFF 0 0 0 

VMXON 1 1/36660 -0.00012450061 

 

 H (ROOT) = - {-0.00033445754-0.00012450061-0.00012450061-  

 0.00705256355-0.00012450061-0.00023257842-0.00012450061} 

 H (ROOT) =0.00811760195 
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6.4.1.3.  Results Analysis 

 Threat Block (TB) normalization 

 On sudo  = 2245 x *
(     )

(           )
+   

   = 809.171318911   ~ 810 

 On root  = 3743 x *
(     )

(           )
+   

   = 2393.90055827 ~ 2394 

 VMExit Information normalization 

 On sudo  = 0.01333136982 x *
(     )

(           )
+  

   = 0.00480506106 

 On root  = 0.00811760195 x *
(     )

(           )
+ 

   = 0.00519175309 

 RECSRF evaluation  

 On sudo  = 0.00480506106/810 = 5.932175e-6 

 On root = 0.00519175309/2394 = 2.1686521e-6 

 The ratio = 5.932175e-6/2.1686521e-6 = 2.7354 

According to the results, it can be stated that the threat blocks under sudo execution 

contains more privilege elevations than that of the root execution. There is a significant 

difference, i.e. the activity via root execution can be treated as if the security risk 

involved is one third of that of the sudo execution.  

6.4.2. A SUID program execution - ping command 

Ping is a utility which indicates whether the connections among different computing 

resources are working correctly. It is used diagnostically to ensure that a host computer 

the user is trying to reach is actually operating. Ping works by sending an Internet 

Control Message Protocol (ICMP) Echo Request to a specified interface on the network 
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and waiting for a reply. Ping can be used for troubleshooting to test connectivity and 

determine response time.  It is interesting to note that ping is a SUID program, i.e. it can 

be executed even by less privileged users with root privileges. Due to this notable 

capability in UNIX, SUID has become an important feature that will be used in security 

sensitive operations. In this scenario, the ping to local host command has been issued as 

a sudo user and as the root user. 

6.4.2.1.  Program execution as sudo 

 Total Instructions = 24073  

 Total number of Unconditional Control Transfer instructions = 2735 

 The number of Treat Blocks generated in the execution = (2735 + 1) -1 = 2735 

Table 6.3: Ping command execution as a sudo user 

Instruction Total (fi) Probability (pi) 
Calculation 

Pi*log (pi) 

CPUID 0 0 0 

GETSEC 0 0 0 

INVD 0 0 0 

XSETBV 2 2/24073 -0.00033901052 

INVEPT 2 2/24073 -0.00033901052 

INVVPID 2 2/24073 -0.00033901052 

VMCALL 0 0 0 

VMCLEAR 0 0 0 

VMLAUNCH 1 1/24073 -0.00018201014 

VMPTRLD 1 1/24073 -0.00018201014 

VMPTRST 0 0 0 

VMREAD 107 107/24073 -0.01045485269 

VMRESUME 1 1/24073 -0.00018201014 

VMWRITE 2 2/24073 -0.00033901052 
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VMXOFF 0 0 0 

VMXON 1 1/24073 -0.00018201014 

 

 H (SUDO) = - {-0.00033901052-0.00033901052-0.00033901052- 

 0.00018201014-0.00018201014 -0.01045485269-0.00018201014-

 0.00033901052-0.00018201014} 

 H (SUDO) = 0.01217491505 

6.4.2.2.  Program execution as root 

 Total Instructions = 23923  

 Total number of Unconditional Control Transfer instructions = 2769  

 The number of Treat Blocks generated in the execution = (2769 + 1) – 1 = 2769 

 

Table 6.4: Ping command execution as the root user 

Instruction Total (fi) Probability (pi) 
Calculation 

Pi log (pi) 

CPUID 0 0 0 

GETSEC 0 0 0 

INVD 0 0 0 

XSETBV 2 2/23923 -0.00034090922 

INVEPT 0 0 0 

INVVPID 0 0 0 

VMCALL 0 0 0 

VMCLEAR 0 0 0 

VMLAUNCH 1 1/23923 -0.00018303789 

VMPTRLD 0 0 0 

VMPTRST 0 0 0 

VMREAD 100 100/23923 -0.00994363432 
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VMRESUME 1 1/23923 -0.00018303789 

VMWRITE 2 2/23923 -0.00034090922 

VMXOFF 0 0 0 

VMXON 0 0 0 

 

 H (ROOT) = - {-0.00034090922-0.00018303789-0.00994363432- 

 0.00018303789-0.00034090922} 

 H (ROOT) = 0.01099152854 

6.4.2.3.  Results Analysis 

 Threat Block (TB) standardization 

 On sudo  = 2735 x *
      

(            )
+   

   = 1371.77379362    ~ 1370  

 On root  = 2769 x *
     

(            )
+   

   = 1380.17307692 ~1380 

 VMExit Information standardization 

 On sudo  = 0.01217491505 x *
      

(            )
+  

   = 0.0061064824150613136605 = 6.12x     

 On root  = 0.01099152854 x *
     

(            )
+ 

   = 0.00547858857 = 5.479x      

 RECSRF evaluation  

 On sudo  = 6.12x    /1370 = 4.4573e-6 

 On root = 5.479x    /1380= 3.97e-6 

 The ratio = 4.4573e-6/3.97e-6= 1.1227 
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The test results have shown that there is not much deviation on RECSRF values when 

the activity is performed either via root or as sudo. The difference here is insignificant 

and this means that both the executions are equally secure. 

6.4.3. Change of System Level Networking related file 

Under this activity the /etc/resolve.conf file, which a critical file in DNS operations, has 

been modified as the sudo user as well as the root user.  

6.4.3.1.  Command execution as sudo 

 Total Instructions = 46597 

 Total number of Unconditional Control Transfer instructions =  5530 

 The number of Treat Blocks generated in the execution = (5530 +1) -1 = 5530 

 

Table 6.5: Modification of privileged network file as sudo  

Instruction Total (fi) Probability (pi) 
Calculation 

Pi log (pi) 

CPUID 0 0 0 

GETSEC 0 0 0 

INVD 0 0 0 

XSETBV 2 2/46597 -0.00018745103 

INVEPT 0 0 0 

INVVPID 0 0 0 

VMCALL 0 0 0 

VMCLEAR 0 0 0 

VMLAUNCH 1 1/46597 -0.0001001858 

VMPTRLD 0 0 0 

VMPTRST 0 0 0 

VMREAD 107 107/46597 -0.00605983726 

VMRESUME 1 1/46597 -0.0001001858 



106 

 

VMWRITE 2 2/46597 -0.00018745103 

VMXOFF 0 0 0 

VMXON 1 1/46597 -0.0001001858 

 

 H (SUDO) = - {-0.00018745103-0.0001001858-0.00605983726-0.0001001858-

   0.00018745103-0.00018745103} 

 H (SUDO) = 0.00682256195  

6.4.3.2.  Command execution as root 

 Total Instructions = 35604  

 Total number of Unconditional Control Transfer instructions = 3711 

 The number of Treat Blocks generated in the execution = (3711 + 1) – 1= 3711 

 

Table 6.6: Modification of privileged network file as root 

Instruction Total (fi) Probability (pi) 
Calculation 

Pi log (pi) 

CPUID 0 0 0 

GETSEC 0 0 0 

INVD 0 0 0 

XSETBV 3 3/35604 -0.00034330784 

INVEPT 0 0 0 

INVVPID 0 0 0 

VMCALL 0 0 0 

VMCLEAR 0 0 0 

VMLAUNCH 1 1/35604 -0.00012783672 

VMPTRLD 0 0 0 

VMPTRST 0 0 0 

VMREAD 109 109/35604 -0.0076967161 
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VMRESUME 1 1/35604 -0.00012783672 

VMWRITE 2 2/35604 -0.00023876355 

VMXOFF 0 0 0 

VMXON 1 1/35604 -0.00012783672 

 

 H (ROOT) = - {-0.00034330784-0.00012783672-0.0076967161- 

 0.00012783672-0.00023876355-0.00012783672} 

 H (ROOT) = 0.00866229765 

6.4.3.3.  Results Analysis 

 Threat Block (TB) standardization 

 On sudo  = 5530 x *
     

(           )
+   

   = 3134.77220471 ~ 3134 

 On root  = 3711 x *
     

(           )
+   

   = 1607.35810997 ~ 1607 

 VMExit Information standardization 

 On sudo  = 0.00682256195 x *
     

(           )
+  

   = 0.00386748238  

 On root  = 0.00866229765 x *
     

(           )
+ 

   = 0.00375193057 

 RECSRF evaluation  

 On sudo  = 0.00386748238/3134 = 1.2340e-6 

 On root = 0.00375193057/1607= 2.3347e-6 

 The ratio = 1.2340e-6/2.3347e-6 = 0.53 
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In this scenario the results have shown that the threat block on root execution contains 

more privilege gains than that of the sudo execution (almost twice). With that, it can be 

concluded that the more secure operation is sudo execution in this case. 

6.4.4. TCP dump on an Interface 

The tcpdump command is a powerful and widely used command-line packets sniffer 

used in packet analysis which is used to capture or filter TCP/IP packets that received or 

transferred over a network on a specific interface the utility is available under most of 

the Linux/Unix based operating systems. In this scenario, tcpdump command has been 

issued for the Ethernet interface and captured packets separately as sudo user and as the 

root user. 

6.4.4.1.  Command execution as sudo 

 Total Instructions = 22262 

 Total number of Unconditional Control Transfer instructions = 2577 

 The number of Treat Blocks generated in the execution = (2577 + 1) = 2577 

 

Table 6.7: Execution of TCP Dump command as sudo 

Instruction Total (fi) Probability (pi) 
Calculation 

Pi log (pi) 

CPUID 0 0 0 

GETSEC 0 0 0 

INVD 0 0 0 

XSETBV 2 2/22262 -0.00036353734 

INVEPT 0 0 0 

INVVPID 0 0 0 

VMCALL 0 0 0 

VMCLEAR 0 0 0 

VMLAUNCH 1 1/22262 -0.00019529081 

VMPTRLD 0 0 0 
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VMPTRST 0 0 0 

VMREAD 106 106/22262 -0.01105737944 

VMRESUME 1 1/22262 -0.00019529081 

VMWRITE 2 2/22262 -0.00036353734 

VMXOFF 0 0 0 

VMXON 1 1/22262 -0.00019529081 

 

 H (SUDO) = - {- 0.00036353734 - 0.00019529081 -0.01105737944 -  

   0.00019529081-0.00036353734 - 0.00019529081} 

 H (SUDO) = (2x0.00036353734) + (3x0.00019529081) + 0.01105737944 

 H (SUDO) = 0.01237032655 

6.4.4.2.  Command execution as root 

 Total Instructions = 20377 

 Total number of Unconditional Control Transfer instructions= 2272 

 The number of Treat Blocks generated in the execution = (2272 + 1) = 2272 

 

Table 6.8: Execution of TCP Dump command as root 

Instruction Total (fi) Probability (pi) 
Calculation 

Pi log (pi) 

CPUID 0 0 0 

GETSEC 0 0 0 

INVD 0 0 0 

XSETBV 2 2/20377 -0.00039339551 

INVEPT 2 2/20377 -0.00039339551 

INVVPID 2 2/20377 -0.00039339551 

VMCALL 0 0 0 

VMCLEAR 0 0 0 
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VMLAUNCH 1 1/20377 -0.00021147078 

VMPTRLD 0 0 0 

VMPTRST 0 0 0 

VMREAD 100 100/20377 -0.0113320913 

VMRESUME 1 1/20377 -0.00021147078 

VMWRITE 2 2/20377 -0.00039339551 

VMXOFF 0 0 0 

VMXON 1 1/20377 -0.00021147078 

 

 H (ROOT) = - {-0.00039339551- 0.00039339551-0.00039339551-  

 0.00021147078-0.0113320913-0.00021147078-0.00039339551-0.00021147078} 

 H (ROOT) = (4x0.00039339551) + (3x0.00021147078) + 0.0113320913 

 H (ROOT) = 0.01354008568 

6.4.4.3.  Results Analysis 

 Threat Block (TB) standardization 

 On sudo  = 2577 x *
     

(           )
+   

   = 1345.46246  ~ 1345 

 On root  = 2272 x *
     

(           )
+   

   = 1085.7793  ~ 1085 

 VMExit Information standardization 

 On sudo  = 0.01237032655 x *
     

(           )
+  

   = 0.00655859916170876427683576068857 

 On root  = 0.01354008568 x *
     

(           )
+ 

   = 0.00647075039051947747367433570206 
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 RECSRF evaluation  

 On sudo  = 0.00645859916170876427683576068857/1345= 4.8019e-6 

 On root = 0.00647075039051947747367433570206/1085= 5.9638e-6 

 The ration = 4.8019e-6/5.9638e-6= 0.8052 

The results have shown that threat block generated via root execution contains more 

privileged gains than that of the sudo execution. However there is no significant 

difference in between the two executions, and therefore it can be stated that both 

sections are on the same range.  

6.4.5. Modifications to the Firewall Status of the System 

A firewall is either hardware or software-based and controls incoming and outgoing 

network traffic based on a set of pre-defined rules. In this scenario the software based 

system firewall on the host system is disabled and enabled. The VMExit instruction 

distribution for this activity is as follows. 

6.4.5.1.  Command execution as sudo 

 Total Instructions = 31276 

 Total number of Unconditional Control Transfer instructions = 3631 

 The number of Treat Blocks generated in the execution = (3631 + 1) – 1 = 3631 

 

Table 6.9: Firewall modification as sudo 

Instruction Total (fi) Probability (pi) 
Calculation 

Pi log (pi) 

CPUID 0 0 0 

GETSEC 0 0 0 

INVD 0 0 0 

XSETBV 3 3/31276 -0.00038541596 

INVEPT 0 0 s0 

INVVPID 0 0 0 
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VMCALL 0 0 0 

VMCLEAR 0 0 0 

VMLAUNCH 1 1/31276 -0.00014372717 

VMPTRLD 0 0 0 

VMPTRST 0 0 0 

VMREAD 108 108/31276 -0.0085008647 

VMRESUME 1 1/31276 -0.00014372717 

VMWRITE 2 2/312761 -0.00026820445 

VMXOFF 0 0 0 

VMXON 1 1/31276 -0.00014372717 

 

 H (SUDO) = - {-0.00038541596-0.00014372717-0.0085008647-  

   0.00014372717-0.00026820445-0.00014372717} 

 H (SUDO) =  0.00038541596 + (3x0.00014372717) + 0.00026820445 +  

   0.0085008647 

 H (SUDO) = 0.00958566662 

6.4.5.2.  Command execution as root 

 Total Instructions = 25871  

 Total number of Unconditional Control Transfer instructions= 3017 

 The number of Treat Blocks generated in the execution =  (3017 + 1) – 1 = 3017 

Table 6.10: Firewall modification as sudo 

Instruction Total (fi) Probability (pi) 
Calculation 

Pi log (pi) 

CPUID 0 0 0 

GETSEC 0 0 0 

INVD 0 0 0 

XSETBV 2 2/25871 -0.00031786813 
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INVEPT 0 0 0 

INVVPID 0 0 0 

VMCALL 0 0 0 

VMCLEAR 0 0 0 

VMLAUNCH 1 1/25871 -0.00017056987 

VMPTRLD 0 0 0 

VMPTRST 0 0 0 

VMREAD 103 103/25871 -0.00955500471 

VMRESUME 1 1/25871 -0.00017056987 

VMWRITE 2 2/25871 -0.00031786813 

VMXOFF 0 0 0 

VMXON 0 0 0 

 

 H (ROOT) = - {-0.00031786813-0.00017056987-0.00955500471-  

   0.00017056987-0.00031786813} 

 H (ROOT) = (2 x 0.00031786813) + (2 x 0.00017056987) + 0.00955500471 

 H (ROOT) = 0.01053188071 

6.4.5.3.  Results Analysis 

 Threat Block (TB) standardization 

 On sudo  = 3631 x *
     

(            )
+   

   = 1987.2112  ~ 1987 

 On root  = 3017 x *
      

(            )
+   

   = 1365.8251  ~ 1365 

 VMExit Information standardization 

 On sudo  = 0.00958566662 x *
     

(            )
+  
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   = 0.00524614256578858032792622534866 

 On root  = 0.01053188071 x *
      

(            )
+ 

   = 0.00476788433073319684322886590722 

 RECSRF evaluation  

 On sudo  = 0.00524614256578858032792622534866/1987= 2.640e-6 

 On root = 0.00476788433073319684322886590722/1365= 3.4930e-6 

 The ratio = 2.640e-6/3.4930e-6= 0.756 

The obtained results have shown that the average privilege information distribution on a 

threat block on root execution is higher than that of the sudo execution, and therefore it 

can be stated that sudo execution is more secure the root execution in this scenario.  

6.4.6. Change SELinux Modes 

SELinux is a security enhancement to Linux which allows users and administrators more 

control over access control. It provides a mechanism to enforce the separation of 

information based on confidentiality and integrity requirements. This allows threats of 

tampering and bypassing of application security mechanisms to be addressed and 

enables the confinement of damage that can be caused by malicious or flawed 

applications. In this scenario, the SELinux mode has been changed on runtime as the 

sudo user and as a root user separately. 

6.4.6.1.  Command execution as sudo  

 Total Instructions = 18402 

 Total number of Unconditional Control Transfer instructions = 2137 

 The number of Treat Blocks generated in the execution =(2137 + 1) – 1 = 2137 
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Table 6.11: SELinux mode change as sudo 

Instruction Total (fi) Probability (pi) 
Calculation 

Pi log (pi) 

CPUID 0 0 0 

GETSEC 0 0 0 

INVD 0 0 0 

XSETBV 2 2/18402 -0.0004308048 

INVEPT 2 2/18402 -0.0004308048 

INVVPID 2 2/18402 -0.0004308048 

VMCALL 0 0 0 

VMCLEAR 0 0 0 

VMLAUNCH 1 1/18402 -0.00023176095 

VMPTRLD 0 0 0 

VMPTRST 0 0 0 

VMREAD 105 105/18402 -0.01280219277 

VMRESUME 1 1/18402 -0.00023176095 

VMWRITE 2 2/18402 -0.0004308048 

VMXOFF 0 0 0 

VMXON 1 1/18402 -0.00023176095 

 

 H (SUDO) = - {-0.0004308048-0.0004308048-0.0004308048-0.00023176095-

   0.01280219277-0.00023176095-0.0004308048-0.00023176095} 

 H (SUDO) = (4x0.0004308048) + (3x0.00023176095) + 0.01280219277 

 H (SUDO) = 0.01522069482 

6.4.6.2.  Command Execution as Root  

 Total Instructions = 14909 

 Total number of Unconditional Control Transfer instructions = 1707 
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 The number of Treat Blocks generated in the execution = (1707 + 1) – 1 = 1707 

Table 6.12: SELinux mode change as root 

Instruction Total (fi) Probability (pi) 
Calculation 

Pi log (pi) 

CPUID 0 0 0 

GETSEC 0 0 0 

INVD 0 0 0 

XSETBV 3 3/14909 -0.0007437777 

INVEPT 0 0 0 

INVVPID 0 0 0 

VMCALL 0 0 0 

VMCLEAR 0  0 

VMLAUNCH 1 1/14909 -0.00027992813 

VMPTRLD 0 0 0 

VMPTRST 0 0 0 

VMREAD 106 106/14909 -0.01527286342 

VMRESUME 1 1/14909 -0.00027992813 

VMWRITE 2 2/14909 -0.00051947394 

VMXOFF 0 0 0 

VMXON 1 1/14909 -0.00027992813 

  

 H (ROOT) = - {-0.0007437777-0.00027992813-0.01527286342-  

   0.00027992813-0.00051947394-0.00027992813} 

 H (ROOT) = 0.0007437777 + (3x0.00027992813) + 0.00051947394 +  

   0.01527286342  

 H (ROOT) = 0.01737589945 
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6.4.6.3.  Results Analysis 

 Threat Block (TB) standardization 

 

 On sudo  = 2137 x *
     

(           )
+   

   = 1180.5432  ~ 1180 

 On root  = 1707 x *
     

(           )
+   

   = 764.002  ~ 764 

 VMExit Information standardization 

 On sudo  = 0.01522069482 x *
     

(           )
+  

   = 0.00840837039049082885533307315902 

 On root  = 0.01737589945 x *
     

(           )
+ 

   = 0.00777692908949145927771606976674 

 RECSRF evaluation  

 On sudo  = 0.00840837039049082885533307315902/1180= 7.1257e-6 

 On root = 0.00777692908949145927771606976674/764= 1.0179e-5 

 The ration = 7.1257e-6/1.0179e-5= 0.7000 

According to the results obtained, in this scenario the privilege information density on 

sudo threat block is lesser than that of the root threat block. Therefore, sudo execution 

can be treated as secure in this scenario. 

6.4.7. Stopping Security Sensitive Daemons 

In this scenario, the audit daemon of the system has been stopped and started separately 

as the sudo user and as the root user. 
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6.4.7.1.  Command execution as sudo  

 Total Instructions = 25874 

 Total number of Unconditional Control Transfer instructions = 2972 

 The number of Treat Blocks generated in the execution = (2972 + 1) – 1 = 2972 

 

Table 6.13: Stopping the system wide audit daemon as sudo 

Instruction Total (fi) Probability (pi) 
Calculation 

{Pi*log (pi)} 

CPUID 0 0 0 

GETSEC 0 0 0 

INVD 0 0 0 

XSETBV 2 2/25874 -0.00031783516 

INVEPT 0 0 0 

INVVPID 0 0 0 

VMCALL 0 0 0 

VMCLEAR 0 0 0 

VMLAUNCH 1 1/25874 -0.00017055204 

VMPTRLD 1 1/25874 -0.00017055204 

VMPTRST 0 0 0 

VMREAD 106 106/25874 -0.00978129075 

VMRESUME 1 1/25874 -0.00017055204 

VMWRITE 1 1/25874 -0.00017055204 

VMXOFF 0 0 0 

VMXON 1 1/25874 -0.00017055204 

 

H (ROOT) = - {-0.00031783516-0.00017055204-0.00017055204-0.00978129075-

  0.00017055204-0.00017055204-0.00017055204} 

H (ROOT) = 0.00031783516 + (5x0.00017055204) + 0.00978129075 
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H (ROOT) = 0.01095188611 

6.4.7.2.  Command execution as root 

 Total Instructions = 31084 

 Total number of Unconditional Control Transfer instructions = 3953 

 The number of Treat Blocks generated in the execution = (3953 + 1) -1 = 3953 

Table 6.14: Stopping the system wide audit daemon as root 

Instruction Total (fi) Probability (pi) 
Calculation 

Pi log (pi) 

CPUID 0 0 0 

GETSEC 0 0 0 

INVD 0 0 0 

XSETBV 2 2/31084 -0.00026968903 

INVEPT 0 0 0 

INVVPID 0 0 0 

VMCALL 0 0 0 

VMCLEAR 0 0 0 

VMLAUNCH 1 1/31084 -0.00014452891 

VMPTRLD 0 0 0 

VMPTRST 0 0 0 

VMREAD 115 115/31084 -0.00899695958 

VMRESUME 1 1/31084 -0.00014452891 

VMWRITE 2 2/31084 -0.00026968903 

VMXOFF 0 0 0 

VMXON 1 1/31084 -0.00014452891 

 

 H (ROOT) = - {-0.00026968903-0.00014452891-0.00899695958-  

   0.00014452891-0.00026968903-0.00014452891} 
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 H (ROOT) = (2x0.00026968903) + (3x0.00014452891) + 0.00899695958 

 H (ROOT) = 0.00996992437 

 

6.4.7.3.  Results Analysis 

 Threat Block (TB) standardization 

 On sudo  = 2972 x *
     

(           )
+   

   = 1350.0742  ~ 1350 

 On root  = 3953 x *
     

(           )
+   

   = 2483.0266  ~ 2483 

 VMExit Information standardization 

 On sudo  = 0.01095188611 x *
     

(           )
+  

   = 0.00497505356947470065662417921978  

 On root  = 0.00996992437 x *
     

(           )
+ 

   = 0.00626248088584811865982298023683 

 RECSRF evaluation  

 On sudo  = 0.00497505356947470065662417921978/1350= 3.6852e-6 

 On root = 0.00626248088584811865982298023683/2483= 2.5221e-6 

 The ratio = 3.6852e-6/2.5221e-6= 1.4612 

The test results have shown that privileged information density on root execution is 

lesser than that of the sudo execution.  
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6.5. The Evaluation of Test Results 

The RECSRF ratio can be used along with a scale. This scale can be determined 

according to the need of the requirement. In order to compare the results, below scale 

has been used. 

Take X=  
      (    )

      (    )
 

Table 8.15 shows the scale that has been adopted in this evaluation. 

Table 6.15: RECSRF ratio evaluation scheme 

Ratio Risk Note 

X < 0.25 LOW 

Both executions can be treated as equally 

secure; hence either method can be used in 

this scenario. 

0.25 <= X < 0.75 MEDIUM 

The risk factor ratio is moderate. However 

the execution with lower RECSRF number 

is preferred to be selected. 

X >= 0.75 HIGH 

There is a significant difference in the risk 

factor involved on two executions. 

Therefore it is highly recommended to 

select the execution with the lower 

RECSRF number. 

 

The evaluation scheme given above is an example of a custom made scale. It essentially 

provides a base reference in quantifying the risk. The scale can be customized depending 

on the requirement. 

The results obtained during the test have been summarized in Table 6.16 below in line 

with an evaluation according to Table 6.15 above. 
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Table 6.16: The Evaluation of Results 

Test 

RECSRF 

Ratio 

(sudo/root) 

Risk 

Comparison 
Comment 

Modification of 

privileged logs 
2.7354 HIGH 

The results have shown that the 

per threat block privileged 

information density on root 

execution is almost 250% times 

compared to the sudo execution. 

Therefore the execution via root 

is the secure method. 

SUID program 

execution (ping 

request) 

1.1227 HIGH 

The root execution is almost 

100% times secure than the sudo 

execution. Hence the root 

execution is the recommended 

method.   

Change of DNS 

config file 
0.5300 MEDIUM 

The ratio indicates that the per 

threat block privileged 

information density on the root 

execution is almost twice 

compared to that of the sudo 

execution. Therefore the sudo 

execution is preferred in this 

scenario. 

Network analysis 

with tcpdump 

utility 

0.8052 HIGH 

The results obtained have shown 

that there exists high privilege 

density on a root threat block. 

Hence the sudo execution is more 

secure than the root execution. 

Modification of 

software firewall 
0.7560 HIGH 

The sudo execution is more 

secure than the root execution. 

Change of SELinux 

modes 
0.7000 MEDIUM 

The sudo execution is more 

secure than the root execution. 

Stopping the audit 

daemon 
1.4612 HIGH 

The per-threat block privileged 

information density on sudo 

execution is higher than that of 
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the root execution. Therefore it 

can be stated that the execution 

via root is more secure than the 

sudo execution. 

 

Generally, the execution via sudo is treated as secure, since it does not require root 

password to execute programs. However the analysis has shown that there is a 

significant difference in risk factors involved, when the same activity is performed as 

sudo and as root. In some situations, the per-threat block privileged information density 

in sudo is significantly higher, compared to that of the root execution; which makes the 

sudo execution more susceptible to privilege escalation attacks. The evaluation carried 

out in this research has taken sudo vs. root execution. However, the RECSRF framework 

allows the other operations also to be evaluated comparatively and a quantitatively in 

order to get an understanding about different execution methods. 

6.6.  Other Observations 

Apart from the main objective of the research; the execution evaluations via RECSRF, 

this section summarizes the other observations made during the research. 

6.6.1. Observations related to VMX Instructions 

The task of the VMLAUNCH is to start the VM pointed to by the loaded VMCS, 

whereas unloading the VM loaded by the VMCS is the task of the VMRESUME 

instruction. During the data collection and analysis phase of the research, it has been 

observed that the KVM hypervisor carefully handles VMX extensions provided by Intel-

VT. The Figure 8.1 is a real disassembled instruction trace, and given below is an 

extract. 

 ffffffffa07185f7: jne 0xffffffffa07185fe 

 ffffffffa07185f9: vmlaunch 

 ffffffffa07185fc: jmp 0xffffffffa0718601 

 ffffffffa07185fe: vmresume 

 ffffffffa0718601: mov %rcx,%0x8(%rsp) 
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The disassembled code has shown that VMLAUNCH will be executed if and only of the 

JNE command is unsuccessful. The JNE instruction is directly pointing to the memory 

location of the VMRESUME instruction (0xffffffffa07185fe), which means, if the 

inequality is satisfied, it will directly execute the VMRESUME instruction.  

On the other hand, after executing VMLAUNCH (which is a privilege reduction 

operation) a JMP instruction occurred and it directly points to the MOV instruction at 

ffffffffa0718601. The region in between VMLAUNCH and VMRESUME is a critical 

region because the microprocessor will perform a VMX transition along with these 

instructions. With VMLAUNCH a microprocessor level privilege switching will take 

place, i.e. the processor state will be changed from VMX-non-root mode to the VMX-

root mode, causing a privilege reduction. However, the VMRESUME is the exact 

opposite of this, i.e. a VMX-non-root to VMX-root mode change will occur in that case 

causing a microprocessor level privilege elevation. Apart from that, interestingly the 

branch instruction in between VMLAUNCH and VMRESUME is an unconditional 

control transfer instruction (JMP), which means that there is no room for conditional 

executions. This has dramatically bought down the probability of control flow hijacking 

attacks via privilege elevations.  
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Figure 6.1: The Principle of Least Privilege Example 

6.6.2. Observations related to VMX Instruction Distribution 

The test results on section 8.3 have shown that all VMX instructions are not equally 

distributed. Some instructions were very rarely occurred, and some are frequently 

occurred. Instructions such as VMLAUNCH, VMRESUME, VMXON and VMXOFF 

were rarely used whereas VMWRITE was moderately used. VMREAD is the VMX 

instruction that is most frequently used. In the context of privilege elevations, this is 

another notable plus point ensured by the KVM hypervisor.  
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These observations have shown that KVM has adopted Intel-VT extensions in a way 

such that it will ensure reasonable execution resilience in the context of security. 

Commands such as VMLAUNCH and VMRESUME can be treated as highly volatile 

security commands, as those will contribute in VMCS manipulations which introduce a 

risk. Having a lesser amount of these instructions will help in ensuring system-wide 

integrity.  The most frequently used VMX instruction in these executions; the VMREAD 

command will only performs read operations on VMCS, which is less volatile, hence it 

imposes a lower risk. 

6.7.  Summary 

This chapter contains the detailed results of the tests that have been performed using the 

RECSRF framework. The question that was successfully addressed is in this chapter is 

“what is the most secure execution when a give task is performed as the sudo user and as 

the root user?” in that context, a set of security sensitive operations were selected and 

the same task has been executed as sudo and as root separately and finally a comparative 

analysis performed using the obtained RECSRF number. 

At the end of the section a comprehensive analysis was performed with regard to the 

obtained results. Finally the chapter concludes with some observations related to 

program security form disassembled instruction point of view, including some notable 

feature about the KVM hypervisor and its interaction with Intel-VT. 
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Appendix  

This section summarizes the categorization of Intel x86 machine instructions  

Data Transfer Instructions 

Instruction Description 

MOV Move 

CMOVE/CMOVZ Conditional move if equal/Conditional move if zero 

CMOVNE/CMOVNZ Conditional move if not equal/Conditional move if not zero 

CMOVA/CMOVNBE Conditional move if above/Conditional move if not below or equal 

CMOVAE/CMOVNB Conditional move if above or equal/Conditional move if not below 

CMOVB/CMOVNAE Conditional move if below/Conditional move if not above or equal 

CMOVBE/CMOVNA Conditional move if below or equal/Conditional move if not above 

CMOVG/CMOVNLE Conditional move if greater/Conditional move if not less or equal 

CMOVGE/CMOVNL Conditional move if greater or equal/Conditional move if not less 

CMOVL/CMOVNGE Conditional move if less/Conditional move if not greater or equal 

CMOVLE/CMOVNG Conditional move if less or equal/Conditional move if not greater 

CMOVC Conditional move if carry 

CMOVNC Conditional move if not carry 

CMOVO Conditional move if overflow 

CMOVNO Conditional move if not overflow 

CMOVS Conditional move if sign (negative) 

CMOVNS Conditional move if not sign (non-negative) 

CMOVP/CMOVPE Conditional move if parity/Conditional move if parity even 

CMOVNP/CMOVPO Conditional move if not parity/Conditional move if parity odd 

XCHG Exchange 

BSWAP Byte swap 

XADD Exchange and add 

CMPXCHG Compare and exchange 

CMPXCHG8B Compare and exchange 8 bytes 

PUSH Push onto stack 

POP Pop off of stack 

PUSHA/PUSHAD Push general-purpose registers onto stack 

POPA/POPAD Pop general-purpose registers from stack 
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IN Read from a port 

OUT Write to a port 

CWD/CDQ Convert word to doubleword/Convert doubleword to quadword 

CBW/CWDE Convert byte to word/Convert word to doubleword in EAX register 

MOVSX Move and sign extend 

MOVZX Move and zero extend 

 

Binary Arithmetic Instructions 

Instruction Description  

ADD Integer add 

ADC Add with carry 

SUB Subtract 

SBB Subtract with borrow 

IMUL Signed multiply 

MUL Unsigned multiply 

IDIV Signed divide 

DIV Unsigned divide 

INC Increment 

DEC Decrement 

NEG Negate 

CMP Compare 

 

Decimal Arithmetic 

Instruction Description  

DAA Decimal adjust after addition 

DAS Decimal adjust after subtraction 

AAA ASCII adjust after addition 

AAS ASCII adjust after subtraction 

AAM ASCII adjust after multiplication 

AAD ASCII adjust before division 
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Logic Instructions 

Instruction Description  

AND And 

OR Or 

XOR Exclusive or 

NOT Not 

 

Shift and Rotate Instructions 

Instruction Description  

SAR Shift arithmetic right 

SHR Shift logical right 

SAL/SHL Shift arithmetic left/Shift logical left 

SHRD Shift right double 

SHLD Shift left double 

ROR Rotate right 

ROL Rotate left 

RCR Rotate through carry right 

RCL Rotate through carry left 

 

Bit and Byte Instructions 

Instruction Description  

BT Bit test 

BTS Bit test and set 

BTR Bit test and reset 

BTC Bit test and complement 

BSF Bit scan forward 

BSR Bit scan reverse 

SETE/SETZ Set byte if equal/Set byte if zero 

SETNE/SETNZ Set byte if not equal/Set byte if not zero 

SETA/SETNBE Set byte if above/Set byte if not below or equal 

SETAE/SETNB/SETNC Set byte if above or equal/Set byte if not below/Set byte if not carry 
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SETB/SETNAE/SETC Set byte if below/Set byte if not above or equal/Set byte if carry 

SETBE/SETNA Set byte if below or equal/Set byte if not above 

SETG/SETNLE Set byte if greater/Set byte if not less or equal 

SETGE/SETNL Set byte if greater or equal/Set byte if not less 

SETL/SETNGE Set byte if less/Set byte if not greater or equal 

SETLE/SETNG Set byte if less or equal/Set byte if not greater 

SETS Set byte if sign (negative) 

SETNS Set byte if not sign (non-negative) 

SETO Set byte if overflow 

SETNO Set byte if not overflow 

SETPE/SETP Set byte if parity even/Set byte if parity 

SETPO/SETNP Set byte if parity odd/Set byte if not parity 

TEST Logical compare 

 

Control Transfer Instructions 

Instruction Description  

JMP Jump 

JE/JZ Jump if equal/Jump if zero 

JNE/JNZ Jump if not equal/Jump if not zero 

JA/JNBE Jump if above/Jump if not below or equal 

JAE/JNB Jump if above or equal/Jump if not below 

JB/JNAE Jump if below/Jump if not above or equal 

JBE/JNA Jump if below or equal/Jump if not above 

JG/JNLE Jump if greater/Jump if not less or equal 

JGE/JNL Jump if greater or equal/Jump if not less 

JL/JNGE Jump if less/Jump if not greater or equal 

JLE/JNG Jump if less or equal/Jump if not greater 

JC Jump if carry 

JNC Jump if not carry 

JO Jump if overflow 

JNO Jump if not overflow 

JS Jump if sign (negative) 
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JNS Jump if not sign (non-negative) 

JPO/JNP Jump if parity odd/Jump if not parity 

JPE/JP Jump if parity even/Jump if parity 

JCXZ/JECXZ Jump register CX zero/Jump register ECX zero 

LOOP Loop with ECX counter 

LOOPZ/LOOPE Loop with ECX and zero/Loop with ECX and equal 

LOOPNZ/LOOPNE Loop with ECX and not zero/Loop with ECX and not equal 

CALL Call procedure 

RET Return 

IRET Return from interrupt 

INT Software interrupt 

INTO Interrupt on overflow 

BOUND Detect value out of range 

ENTER High-level procedure entry 

LEAVE High-level procedure exit 

 

String Instructions 

Instruction Description  

MOVS/MOVSB Move string/Move byte string 

MOVS/MOVSW Move string/Move word string 

MOVS/MOVSD Move string/Move double word string 

CMPS/CMPSB Compare string/Compare byte string 

CMPS/CMPSW Compare string/Compare word string 

CMPS/CMPSD Compare string/Compare double word string 

SCAS/SCASB Scan string/Scan byte string 

SCAS/SCASW Scan string/Scan word string 

SCAS/SCASD Scan string/Scan double word string 

LODS/LODSB Load string/Load byte string 

LODS/LODSW Load string/Load word string 

LODS/LODSD Load string/Load double word string 

STOS/STOSB Store string/Store byte string 

STOS/STOSW Store string/Store word string 

STOS/STOSD Store string/Store double word string 
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REP Repeat while ECX not zero 

REPE/REPZ Repeat while equal/Repeat while zero 

REPNE/REPNZ Repeat while not equal/Repeat while not zero 

INS/INSB Input string from port/Input byte string from port 

INS/INSW Input string from port/Input word string from port 

INS/INSD Input string from port/Input double word string from port 

OUTS/OUTSB Output string to port/Output byte string to port 

OUTS/OUTSW Output string to port/Output word string to port 

OUTS/OUTSD Output string to port/Output double word string to port 

 

Flag Control Instructions 

Instruction Description  

STC Set carry flag 

CLC Clear the carry flag 

CMC Complement the carry flag 

CLD Clear the direction flag 

STD Set direction flag 

LAHF Load flags into AH register 

SAHF Store AH register into flags 

PUSHF/PUSHFD Push EFLAGS onto stack 

POPF/POPFD Pop EFLAGS from stack 

STI Set interrupt flag 

CLI Clear the interrupt flag 

 

Segment Register Instructions 

Instruction Description  

LDS Load far pointer using DS 

LFS Load far pointer using FS 

LGS Load far pointer using GS 

LSS Load far pointer using SS 

 

Miscellaneous Instructions 
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Instruction Description  

LEA Load effective address 

NOP No operation 

UB2 Undefined instruction 

XLAT/XLATB Table lookup translation 

CPUID Processor Identification 
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