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ABSTRACT

The automatic classification and content-based image retrieval (CBIR) for a given retinal
image of diabetic retinopathy (DR) are very essential since this is the leading source of
permanent loss of vision in the working-age individuals all over the world today. Current
clinical approaches require a well-trained clinician to manually evaluate fundus photographs
of retina and locate lesions associated with vascular abnormalities due to diabetes, which is
time-consuming. The principal objective of this research is to classify the severity level and
retrieve semantically similar retinal imageries to a given query image for effective treatment.

Recently, deep CNN-based feature extraction has been used to predict DR from fundus
images with reasonable accuracy whereas effective and comprehensive deep retinal image
retrieval model for DR is not available in the literature. However, techniques such as
singular value decomposition (SVD), global average pooling (GAP) and ensemble learning
have not been used in automatic prediction of DR.

In this research, it is suggested a combination of deep features extracted from an ensemble of
pretrained-CNNs (VGG-16, ResNet-18, and DenseNet-201) as a single feature vector to
accomplish the research objectives. The experimental outcomes of this research demonstrate
a promising accuracy of over 98% for both tasks. A classification model was built as the first
step and then it was extended it to a retrieval model by using a deep supervised hashing
approach in order to perform efficient retinal image retrieval, where it implicitly learn a good
image representation along with a similarity-preserving compact binary hash code for each
image. This research was evaluated using prominent CNN architectures (VGG, ResNet,
InceptionResNetV2, InceptionVV3, Xception, and DenseNet) that can be used for transfer
learning. Moreover, GAP and SVD were used as dimensional reduction techniques in order
to diminish processing time and memory utilization while preserving classification accuracy
and retrieval performance.
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