
 

 

 

AUTONOMOUS RETINAL IMAGE ANALYSIS AND 

CONTENT-BASED RETRIEVAL SYSTEM FOR 

DIAGNOSING DIABETIC RETINOPATHY USING DEEP 

CONVOLUTIONAL FEATURE EXTRACTION 

 

 

 

 

W.O.K.I.S. Wijesinghe 

 

188081J 

 

 

 

 

Degree of Master of Science 

 

Department of Computer Science & Engineering 

University of Moratuwa 

Sri Lanka 

 

November 2019



i 

 

DECLARATION 

I declare that this is my own work and this dissertation does not incorporate without 

acknowledgement any material previously submitted for a Degree or Diploma in any 

other University or institute of higher learning and to the best of my knowledge and 

belief, it does not contain any material previously published or written by another 

person except where the acknowledgement is made in the text.  

Also, I hereby grant to the University of Moratuwa the non-exclusive right to 

reproduce and distribute my dissertation, in whole or in part in print, electronic or 

another medium. I retain the right to use this content in whole or part in future works 

(such as articles or books).  

 

Signature:         Date:  

Name: W.O.K.I.S. Wijesinghe 

 

The above candidate has carried out research for the Masters thesis/dissertation under 

my supervision.  

 

Signature of the supervisor:        Date:  

Name of the supervisor: Dr. Charith Chitraranjan 

 

  



ii 

 

ABSTRACT 

The automatic classification and content-based image retrieval (CBIR) for a given retinal 

image of diabetic retinopathy (DR) are very essential since this is the leading source of 

permanent loss of vision in the working-age individuals all over the world today. Current 

clinical approaches require a well-trained clinician to manually evaluate fundus photographs 

of retina and locate lesions associated with vascular abnormalities due to diabetes, which is 

time-consuming. The principal objective of this research is to classify the severity level and 

retrieve semantically similar retinal imageries to a given query image for effective treatment. 

Recently, deep CNN-based feature extraction has been used to predict DR from fundus 

images with reasonable accuracy whereas effective and comprehensive deep retinal image 

retrieval model for DR is not available in the literature. However, techniques such as 

singular value decomposition (SVD), global average pooling (GAP) and ensemble learning 

have not been used in automatic prediction of DR. 

In this research, it is suggested a combination of deep features extracted from an ensemble of 

pretrained-CNNs (VGG-16, ResNet-18, and DenseNet-201) as a single feature vector to 

accomplish the research objectives. The experimental outcomes of this research demonstrate 

a promising accuracy of over 98% for both tasks. A classification model was built as the first 

step and then it was extended it to a retrieval model by using a deep supervised hashing 

approach in order to perform efficient retinal image retrieval, where it implicitly learn a good 

image representation along with a similarity-preserving compact binary hash code for each 

image. This research was evaluated using prominent CNN architectures (VGG, ResNet, 

InceptionResNetV2, InceptionV3, Xception, and DenseNet) that can be used for transfer 

learning. Moreover, GAP and SVD were used as dimensional reduction techniques in order 

to diminish processing time and memory utilization while preserving classification accuracy 

and retrieval performance. 
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1. INTRODUCTION 

1.1 Background 

During the past few decades, diagnosing diseases by analyzing medical images has 

been a prominent research field in the biomedical area. The rapid growth of the 

volume of real-world data collected through medical treatments has produced 

incredible excitement in the healthcare domain. Digital colour fundus imagery 

provides a significant effect in order to develop novel bits of knowledge and disrupt 

the concerns of retinal diseases among this gathered information. 

Today, medical imaging is broadly used for diagnosing diseases, prioritizing 

treatments and judging responses to treatments. One of the key reasons is that the 

workload significantly increases for a specialist because of an extensive number of 

patients taking part in the disease screening process and thus patients should stay at 

the hospitals for a very long period of time. For example, the number of diabetic 

patients is growing every year making it problematic for the health-care system to 

frequently diagnose complications such as diabetic retinopathy by analyzing retinal 

fundus images through a screening process and provide necessary instructions in 

order to minimize the risk of life-long conditions such as vision loss. DR is the most 

common vision-threatening retinal disease due to diabetes over a prolonged period of 

time. The following is a brief background description of the anatomy of the human 

vision system, retinal fundus photography and diabetic retinopathy. 

1.1.1 Anatomy of the Human Vision System 

The human vision system includes three key functional parts namely the eye, the 

LGN (lateral geniculate nucleus) and the visual cortex which is a part of the cerebral 

cortex in the brain that deals with visual information. The eye is a roughly spherical 

and sensitive organ which is responsible for all the visual information that passes to 

the brain. The human brain performs complex image processing whereas the eye acts 

as a biologically equivalent camera.  
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The light rays that enter the eye through the cornea, pupil, and lens, subsequently 

pass over the vitreous (clear gel-like substance that fills the middle of the eye) before 

concentrating on the surface of the retina. The retina, which is a light-sensitive tissue 

that detects light rays, converts them into electrochemical signals using 

photoreceptors (rods and cones) and sends them through the optic nerve to the visual 

centers in the brain [1]. The LGN, which is the principal central connection for the 

optic nerve to the visual cortex, collects visual information directly from the ganglion 

cells in the retina (see Figure 1.1). 

 

Figure 1.1: Anatomy of the human eye [1] 

1.1.2 Retinal Fundus Photography 

There are diverse diagnostic tools available in order to capture the interior structure 

of the human eye including digital colour fundus photography and OCT (Optical 

Coherent Tomography). These aforementioned two approaches are non-invasive 

imagery tests. OCT delivers cross-sectional pictures of the retina. However, retinal 

fundus photography affords images of the interior structure of the human eye 

covering the retina, optic disc, blood vessels, macula and fovea [2]. The OCT 

imagery is supportive if eye diseases are identified in ocular tissues. In contrast, 
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digital colour fundus photographs are very effective if the eye diseases are detected 

at the retina [2]. Moreover, retinal fundus imaging is the quicker and easier technique 

to observe the abnormal features of the retina. 

Fundus photography is most frequently used for early disease identification and 

clinical educations. There are two types of retinal fundus photography namely 

standard and wide-field. Standard colour fundus photographs, which capture 30 

degrees of the posterior pole of a patient eye including the macula and the optic 

nerve whereas wide-field colour fundus photographs capture the seven fundus fields 

of a patient eye and combined together to generate a montage image that displays a 

75-degree of view.  The left-side image in Figure 1.2 is an example for a standard 

fundus photograph and the right-side is an example for a wide-field photograph. 

 

1.1.3 Diabetic Retinopathy 

Diabetic Retinopathy (DR) is a retinal disease that can affect individuals with 

diabetes. It occurs due to the presence of high glucose levels in the blood, bringing 

harm to the small veins in the human retina. There are diverse types of abnormal 

lesions that occur due to DR such as microaneurysms, hemorrhages, soft exudates, 

hard exudates, and neovascularization. These are extremely crucial in order to 

classify whether images show clinical signs of the disease. Microaneurysms, the 

minor bulges that form on the tiny blood vessels, are the earliest clinically detectable 

lesions through retinal fundus photographs. Neo-vascularization occurs in the PDR 

Figure 1.2: Standard and wide-field fundus photographs 
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(Proliferative Diabetic Retinopathy) level and formation of new fragile blood vessels, 

causing hemorrhages. These hemorrhages may cause severe vision difficulties. Hard 

exudates are protein and lipid formations leaked from damaged blood vessels and 

appear in yellow coloured clusters in the retinal surface. Soft exudates are due to 

obstruction of retinal arterioles [3]. 

DR will lead to blindness if untreated whereas timely treatment can stop or slow 

down the loss of vision. Therefore, people with diabetes should undergo regular eye 

screening for DR. Typically well-prepared specialists and ophthalmologists utilize a 

five-class severity scale, as shown in Table 1.1, to depict the severity grading of DR, 

to be specific diabetes without retinopathy, Mild-NPDR (Mild non-proliferative DR), 

Moderate-NPDR (Moderate non-proliferative DR), Severe-NPDR (Severe non-

proliferative DR) and PDR [4]. Figure 1.3 shows an example retinal imagery 

captured from ophthalmoscope/funduscope for each severity stage indicated in Table 

1.1. 

Table 1.1: Diabetic Retinopathy Severity Stages 

Disease Severity Level Findings Observable via Ophthalmoscopy 

Diabetes without 

Retinopathy 
No visible signs of abnormalities 

Mild-NPDR Presence of MAs only 

Moderate-NPDR More than MAs and less than severe NPDR 

Severe-NPDR 

Any of the clinical symptoms below: 

• >twenty intraretinal hemorrhages 

• Venous bleeding 

• Intraretinal microvascular abnormalities 

• No symptoms of PDR 

PDR 

Any or all of the following: 

• Neo-vascularization 

• Vitreous hemorrhage 
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Figure 1.3: Severity stages of DR 

1.2 Motivation for the Research 

According to a report provided by the WHO (World Health Organization), DR had 

affected almost 145 million people (35% of those with diabetes) all over the world in 

2015, with almost 45 million people suffering from PDR that could lead to severe 

vision loss [5]. Today, most of the individuals who are suffering from DR all over 

the world do not undergo regular documented screening according to the guidelines 

provided by the AAO [4]. 

Early diagnosis of DR by analyzing retinal images is in high demand as numerous 

people are left out from the healthcare centers due to restricted assets, particularly in 

rural areas, such as qualified clinicians or appropriate equipment. In contrast, the 

traditional DR diagnosing system requires a manual assessment process, which is 

tedious and depends heavily on the skill of ophthalmologists and well-prepared 

specialists. The current framework will turn out to be significantly inadequate [6] as 

the number of individuals with diabetes increases. Hence, automatic severity stage 

classification and similar case(s) retrieval from a retinal image database can be used 

for screening and treatment prioritization in order to assist and accelerate the clinical 

decision-making process for DR to diminish irreversible vision loss among diabetic 

patients.  



6 

 

1.3 Research Statement 

Previous studies have explored the use of machine learning and image processing 

techniques for automatic classification and CBIR systems of DR [7][8][9].  When we 

consider the performance of previous studies proposed by numerous research groups, 

there is space for further improvement of classification and retrieval models of DR 

and it can be done by tuning hyperparameters or an ensemble of pretrained CNNs as 

feature extractors or using an ensemble learning approach through weak learners. In 

the recent past, deep feature extraction using pretrained-CNNs has been used to 

predict the five severity stages of DR from fundus images with reasonable accuracy 

whereas an effective and comprehensive deep retinal image retrieval model for DR is 

not available in the literature.  

Hence, the principal research questions to be addressed by this study can be 

formulated as: 

1. Improve the performance (accuracy) of DR classification model through an 

ensemble Deep CNN approach 

2. Improve the mAP (mean Average Precision) of CBIR through a novel deep 

supervised hashing technique 

1.4 Objective of the Research 

Recently, deep convolutional neural networks have manifested superior performance 

in image classification and content-based image retrieval particularly in the 

biomedical field compared to conventional feature extraction-based image 

classification and retrieval methods. Hence, we utilize deep learning strategies so as 

to achieve the research objectives. The principal objectives of this research are as per 

the following: 

1. Build a prediction model to classify the severity level of Diabetic Retinopathy 

using retinal images through an ensemble of deep CNNs. This can be used for 

treatment prioritization and automated screening. 
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2. Build a content-based image retrieval system to search the collections for 

retinal images that have characteristics similar to the case(s) of interest 

because access to clinically relevant stored data will allow for more informed 

and effective treatment. 

1.5 Overview of Research Methodology 

This section describes a brief overview of the research methodology. The extra black 

margins were removed in the retinal imagery as the first step of the preprocessing 

stage and then we transformed them in such a way that it would be feasible for any 

CNN to converge in a reasonable time by rescaling each image into 224px x 224px. 

Subsequently, we evaluate six prominent pretrained-CNN architectures to determine 

the best performing CNN for the severity stage classification task and aim to improve 

the performance compared to the current-state-of the art approaches We propose an 

ensemble of deep feature extraction technique by applying global average pooling 

(GAP) to the last pooling layer of each pretrained CNN and then apply singular value 

decomposition (SVD) for improved prediction of DR. We use GAP and SVD as 

dimensional reduction techniques in order to reduce memory consumption and 

processing time while preserving classification performance.  

As the next step, the classification model is extended to a retrieval model by using a 

novel deep supervised hashing approach in order to perform efficient retinal image 

retrieval, where it implicitly learns a good image representation along with a 

similarity-preserving compact binary hash code for each image. This approach maps 

the image pixels to a lower-dimensional space and then generates compact binary 

codes to speed up the retrieval process. We use hamming distance to retrieve a group 

of candidate retinal images from the retinal database with similar compact binary 

codes for a given query image. The cosine similarity is used over the lower-

dimensional feature space in order to further filter the retrieved candidate list since 

identical compact binary hash codes may produce for clinically similar retinal 

images.  
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1.6 Contributions and Research Articles 

As the first part of this research, a novel ensemble deep CNN architecture has been 

proposed in order to help early diagnosis of diabetic retinopathy by classifying a 

given retinal image based on its severity stage. This prediction model has a 

significant clinical implication for early disease diagnosis since the proliferation of 

DR can occasionally be speedy and leading to irreversible vision loss due to blood 

vessel damage in the retina.  

As the second part of this research, we have developed a content-based retinal image 

retrieval model based on a novel deep supervised hashing technique by extending the 

aforementioned classification model. This would allow clinicians to retrieve 

clinically similar images from a database of retinal images for a given image (Top k 

image retrieval). 

These two approaches are beneficial for practitioners to diagnose the progression of 

the disease more accurately while prioritizing the treatment plans for the patients. 

Moreover, the following research papers have been accepted and presented so far. 

• “Transfer Learning with Ensemble Feature Extraction and Low-rank Matrix 

Factorization for Severity Stage Classification of Diabetic Retinopathy”, 

W.O.K.I.S. Wijesinghe, H.V.L.C. Gamage, C. Chitraranjan, Accepted and 

presented at the 31st International Conference on Tools with Artificial 

Intelligence (ICTAI), USA, 2019. 

• “Deep Supervised Hashing through Ensemble CNN Feature Extraction and 

Low-rank Matrix Factorization for Retinal Image Retrieval of Diabetic 

Retinopathy”, W.O.K.I.S. Wijesinghe, H.V.L.C. Gamage, C. Chitraranjan, 

Accepted and presented at the 19th International Conference on 

BioInformatics and BioEngineering (BIBE), Greece, 2019. 

• “A Smart Telemedicine System with Deep Learning to Manage Diabetic 

Retinopathy and Foot Ulcers”, W.O.K.I.S. Wijesinghe, H.V.L.C. Gamage, I. 

Perera, C. Chitraranjan, Accepted and presented at the Moratuwa Engineering 

Research Conference (MERCon), 2019. (Collaborative Research Work) 
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1.7 Organization of the Thesis 

The topics covered in this dissertation is structured as per the following. Chapter two 

encompasses the previous studies that have explored the use of image processing and 

machine learning techniques for automatic DR classification and content-based 

retinal image retrieval. Chapter three explains the datasets that we used during our 

research. Chapter four describes the methodology of the autonomous DR 

classification and CBIR model architectures in detail. Chapter five outlines not only 

the experimental analysis but also the evaluations of our methodology for each task 

in terms of accuracy, F1-measure, and mAP (mean Average Precision) and compares 

them with other state-of-the-art approaches. The final chapter, chapter six 

summarizes our findings and concludes the overall results by comparing it with other 

recently published works. 
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2. LITERATURE REVIEW  

This chapter elaborates on the literature related to automated fundus image analysis 

for the assessment of diabetic retinopathy and divided into three main sections. 

Section 2.1 describes deep learning techniques, particularly convolutional neural 

networks that were used for image analysis tasks. Section 2.2 explicates the content-

based image retrieval techniques and its limitations that have been studied during the 

past few decades including semantic compact binary hash code embedding 

approaches in order to retrieve similar case(s) for given query imagery. Section 2.3 

explains the diabetic retinopathy analysis methods and their limitations that have 

been published in previous years based on severity stage classification, abnormal 

lesion detection methods, retinal blood vessel segmentation methods and CBIR 

system to retrieve a similar case(s) of DR in retinal images. Finally, section 2.4 

comprises a summary of this chapter. 

2.1 Deep Learning for Image Analysis 

The computerized techniques for analyzing the images are challenging tasks as a 

result of the heterogeneity and complexity of digital colour imagery. Human 

intervention usually requires for diagnosing ailment by recognizing the most 

distinctive features through images [10]. Machine learning methods [11] demonstrate 

better performance through supervised and unsupervised learning techniques by 

addressing the aforementioned challenges. Recently, Convolution Neural Networks 

(CNNs) show their remarkable performance and impressive learning power in 

analyzing numerous types of images including medical images [12] where tasks that 

are heavily dependent on feature extraction, such as image classification and 

localization [13], video analysis [14], object detection [15] and other numerous tasks 

such as segmentation [16]. CNN based approaches normally beat other different 

methodologies in the previously mentioned fields, which proves that CNNs can 

capture the semantic information of the imagery by learning robust features. Hence, 

the most reasonable route is to utilize deep learning to learn semantic features for the 
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image datasets. The succeeding subsections enlighten about Convolution Neural 

Networks and the parameters required to implement different CNN architectures. 

2.1.1 Convolutional Neural Networks 

In Artificial Neural Networks (ANN), the most commonly applied type in the 

domain of image classification, object detection, and CBIR tasks is the 

Convolutional Neural Network (CNN) [17]. The effectiveness and efficiency of 

CNNs in image recognition tasks are one of the key reasons why the research 

communities in Artificial Intelligence has woken up to the usefulness of deep 

learning in the recent past. CNNs are notable designs in deep learning area that 

inspired by the natural visual perception mechanism of living animals. The history 

behind the Convolutional Neural Networks begins with a research experiment done 

by two scientists namely, Wiesel and Hubel in 1959. They discovered that the 

biological cells in the visual cortex, which process visual stimuli of animals, are 

responsible in order to detect light in the receptive fields. LeCun et al. [18] published 

research work in the early 90s by introducing a novel neural network architecture, 

LeNet-5, in order to classify the handwritten digits. During the model training 

process, they used the backpropagation algorithm in order to learn the weights. 

However, the proposed deep CNN architecture did not perform well due to limited 

resources such as computational power and data availability. In the past few decades, 

many research groups have been implemented with various techniques in order to 

overcome the difficulties faced during the training process of CNNs. Krizhevsky et 

al. [19] introduced AlexNet, a CNN architecture, which was won the ImageNet 

challenge in 2012 and showed significant performance and learning power compared 

to the previous approaches. Numerous deep CNN architectures have been developed 

by various research groups to obtain more accurate experimental results, to be 

specific VGGNet [20], InceptionV3 [21], Xception [22], ResNet [23], and DenseNet 

[24] with the success of AlexNet architecture. 

A CNN typically consists of two basic parts namely, a feature extractor or a feature 

learning part and a classifier (see Figure 2.1). Feature extractor includes an input 
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layer, multiple stages of convolutional layers with filters (Kernels) followed by an 

activation function and pooling layers where classifier consists of a standard MLP 

(Multilayer Perceptron) Neural Network which comprises fully connected layers 

including the classification layer (i.e. softmax layer as shown in Figure 2.1). The 

layers in a CNN are organized in such a way that they distinguish much simpler 

patterns such as lines, curves, textures through the early layers and more complex 

patterns (i.e. faces, objects, etc.) from later layers. Figure 2.1 shows a complete flow 

of a CNN architecture. 

 

Figure 2.1: Deep Convolutional Neural Network (CNN) for classification 

Input Layer 

The Input layer also is known as input volume in CNN is an image represented by a 

three-dimensional matrix [width x height x depth/channels]. First, the input image 

needs to reshape into a vector format. For example, if the image dimension is 64 x 64 

x 3, then convert it into 12288 x 1 before feeding into the input layer. But if the batch 

size is N (when we apply batch or mini-batch gradient descent) then the dimension of 

the input will be (12288, N). 

Convolutional Layer 

These are the core building blocks of any CNN architecture. A convolutional layer 

comprises of several filters that are learned through backpropagation in order to 

extract different features through the input volumes. These filters ensure that a 
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neuron in the next layer is connected to a small region of the previous layer (input), 

known as the local receptive field.  Each local receptive field of the input volume is 

connected to each filter in the convolution layer to perform convolution operation 

and take the dot product between the filter and the local receptive field in order to 

compute a single value of the output volume (feature map). Then we move the filter 

over the subsequent local receptive field of the same input volume by a certain Stride 

value and apply the same aforementioned operation again. We then repeat the same 

process until we go through the whole input volume. The output volume will be the 

input to the succeeding layer. The number of channels of the input image is as same 

as the channels of a filter in the corresponding convolution layer. Here all 

neighborhood responsive fields of the input volume share each filter in order to 

create feature maps. The benefit of sharing weights concept is to decrease the 

complication of the model by reducing the number of learnable weights to accelerate 

the training process. Then add bias terms to the feature map and pass it through a 

non-linear activation function in order to create an activation map. 

Activation Function 

CNNs consist of linear and non-linear functions. The activation functions that we use 

in order to create activation maps are the non-linear components. These activation 

functions apply after the convolutional layers to introduce non-linear behaviour to 

distinguish non-linear features and improve the model performance in the CNN. 

The ReLU (Rectified Linear Unit) activation function is a non-linear function that is 

widely used in CNN architectures. A previous study [25] has been revealed that we 

can train CNNs competently when we use the ReLU as the activation function in 

convolutional and fully-connected layers, except the classification layer. The 

mathematical formula of the ReLU function is described below.  

a[L] = max(z[L], 0), where z[L] is the input to the activation function in the Lth layer and 

a[L] represents the output. ReLU retains the z[L] if it is positive and prunes to zero if 

Z[L] is negative. 
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Pooling Layer 

The pooling layer is used to shrink the spatial dimensions of the input image after 

applying the convolution operation. The main purpose of having this kind of layer is 

to reduces the required amount of computational time and learnable parameters by 

lowering the resolution of the activation maps. It takes the activation map that is 

generated through the convolutional layer followed by an activation function and 

outputs a single value per each local receptive field according to the window size. 

The pooling operation is performed on every channel of the input volume 

individually. There are four types of Pooling filters namely, Max Pooling, Min 

Pooling, Average Pooling, and Global Average Pooling (GAP). Max Pooling returns 

the maximum value from each local receptive field of the image covered by the 

pooling filter. Min Pooling returns the minimum value from each local receptive 

field of the input volume covered by the pooling kernel. In contrast, Average Pooling 

returns the average of all the values from each local receptive field of the input 

volume covered by the filter. The following figure (Figure 2.2) shows Min, Max, and 

Average Pooling operations relative to the given 2D input image. 

Figure 2.2: Min, Average and Max Pooling with 2 × 2 filters and stride 2 
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In the recent past, data scientists have used GAP layers to minimize over-fitting by 

reducing the total number of learnable parameters in CNN models. However, these 

layers perform a more extreme type of dimensional reduction, where an input feature 

map with dimensions h x w x d is reduced in size to have dimensions 1 x 1 x d. GAP 

layers reduce each feature map to a single number by obtaining the average of all cell 

values as shown in Figure 2.3. 

 

Fully Connected Layers 

Fully connected layers [19] are used after the convolutional and pooling layers 

(feature extraction part) for classification tasks. The main purpose of having these 

layers is to generate specific semantic representation. Each neuron in a fully 

connected layer connects to every neuron in the preceding layer. This structure leads 

to a simple matrix-vector computation when calculating the output of each layer, but 

it also leads to a vast set of learnable parameters. An artificial neural network (ANN) 

that comprises dense (fully-connected) layers can be very effective for low 

dimensional data, but the computational cost can turn out to be very high for high 

dimensional data such as images. In order to overcome the overfitting problem due to 

Figure 2.3: Global Average Pooling operation 
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huge trainable parameters, usually, researchers add a dropout layer after the fully 

connected layers. 

Regularization 

One of the most challenging problems that face during the training process of any 

CNN model is a high-variance problem also known as overfitting. Due to this, the 

model cannot generalize to new instances that did not appear in the training set, since 

it memorizes the local patterns of the training dataset. Thus, overfitting is a crucial 

problem that needs to handle in deep CNNs [26]. Numerous research works have 

been published to reduce the high-variance problem. The most commonly used 

techniques are dropout [27] and L2 regularization (ridge regression) [26]. 

Dropout 

Dropout is a regularization technique that is used in the machine learning algorithm 

in order to prevent overfitting problems. The main purpose of a dropout layer is that 

it disables or ignores the neurons randomly in each iteration during the training 

phase.  The dropping out of a neuron indicates that we temporarily eliminating it 

from the neural network along with its all incoming and outgoing connections during 

Figure 2.4: An illustration of an ANN by applying dropout for each layer 
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a particular forward and backward pass. Figure 2.4 represents an illustration of 

smaller ANN produced by applying dropout for each layer. Dropout can also be used 

subsequently to the convolutional layers on CNNs. However, it is not desirable to 

apply the dropout value in the early convolutional layers since it affects the 

information to vanish in the entire neural network [28], and this leads to 

downgrading the network performance. Moreover, the dropout layers are not actively 

involved during the testing time. 

L2 Regularization 

L2 regularization also is known as ridge regression delivers a technique to 

downgrading the high-variance problem (overfitting) of any deep neural network 

architecture on the training set while improving the performance on unseen data. 

This method adds the sum of squared magnitude of weights as penalty term to the 

cost function (e.g. cross-entropy) in order to penalize the weight matrices from being 

too large and it leads to achieving much simpler models. 

In an ANN, error or cost function depends on all the learnable parameters including 

bias terms, W[1], b[1] through W[L], b[L], where L represents the number of layers in the 

given neural network. The cost function is the sum of all the losses over the m 

number of training examples. When we apply L2-regularization,  we add an extra 

term to the cost function namely L2 regularization cost as shown in Figure 2.5, 

which indicates the sum over the squared norm of the parameters W divided by λ 

(i.e. regularization parameter) over 2m. Here, the norm of weight matrix W[l] is 

defined as the sum from k=1 through k=n[l-1] and sum from j=1 through j=n[l], since 

W[l] is an n[l-1] by n[l] dimensional matrix, where n[l] represents the number of neurons 

in a given layer l. 

Figure 2.5: An L2-regularized version of the cost function used for an ANN 
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2.2 Content-based Image Retrieval 

There are a growing number of medical images such as retinal, endoscopy, CT scan, 

MRI and x-rays are taken daily in numerous hospitals and health-care centers [29]. 

Medical image retrieval has tremendous importance, particularly in clinical decision 

support and in research fields such as medical image analysis and education. Medical 

image retrieval is in high-demand for decision-making processes because the 

historical imagery of different patients in hospitals and health-care centers have vital 

information for the forthcoming diagnosis, where an application that retrieves similar 

case(s) can assist in making a more precise diagnosis and deciding on prioritizing 

treatments. 

 

 

 

 

 

 

 

In CBIR, query image and images in the database are encoded into real-valued 

features through an image processing or a deep learning technique. The easiest mode 

of searching for related imageries is to rank the images in the database by utilizing a 

distance metric (e.g. Euclidean distance) relative to the query image and then 

retrieving the neighboring ones in the feature space. Nevertheless, the memory and 

time consumption are very high for an image database with a considerable number of 

Figure 2.6: Architecture diagram of a content-based image retrieval system 
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images if we perform a linear search through the entire database. The architecture 

diagram of a CBIR system is shown in Figure 2.6. 

2.2.1 Hashing Techniques for Content-based Image Retrieval 

Hash embedding methods are proposed to map image contents to compact binary 

hash codes in order to address the inadequacy of real-valued features [30]. The 

memory and time consumption for the searching process can be significantly reduced 

since the images are denoted by compact binary hash codes instead of real-valued 

feature vectors. Numerous hashing algorithms [31]-[32] have been proposed for 

content-based image retrieval. These hash code embedding approaches we can be 

divided into two major classes namely supervised and unsupervised approaches. 

Locality Sensitive Hashing (LSH) [31] is the most representative approach for 

unsupervised methods, where it is used to generate hash codes by projecting the data 

points to random hyperplanes in order to map images to a new feature space. Recent 

studies [33] have revealed that utilizing supervised hashing can enhance the binary 

codes learning performance. 

The most important part of the supervised hashing technique is the real-valued 

feature vectors that are used to derive the hash code. The quality of extracted features 

directly affects the accuracy of the retrieval model. Recently, convolutional neural 

networks have shown their remarkable learning-power and the impressive 

performance in tasks that are heavily dependent on feature extraction, in particular, 

image classification and localization [34], video analysis [35], object detection [36] 

and other numerous tasks such as segmentation [37]. CNN based approaches 

typically outflank conventional approaches in the previously mentioned fields, which 

proves that CNNs can learn powerful features by capturing the semantic information 

of the imagery. Hence, deep learning is the most suitable way to learn compact 

binary codes. Hashing methods using deep learning techniques [38]-[32] in content-

based image retrieval demonstrate high performance over the conventional hashing 

techniques such as LSH [31], KSH [33], MLH [39] and SH [40], since the shallow 

techniques limit the retrieval performance of the learned compact binary hash codes 
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due to the lack of semantic information under the drastic appearance variations in 

data. 

Although state-of-the-art deep learning-based techniques [41][42][32] have 

accomplished very good performance in image retrieval, they either have very high 

memory or training-time requirements. DSH [42] uses a matrix decomposition 

technique in order to learn the hash codes for images in the preprocessing stage. This 

method requires a pair-wise similarity matrix of the dataset as the input. But it is not 

favorable in the situations where the considerable amount of data since it needs both 

significant storage in order to store a large sparse matrix for representing the 

similarity between data points in the training set and computational time. DLBHC 

[32] uses end-to-end learning rather than using feature extraction through transfer 

learning. This approach required more computational time in the training process to 

achieve substantial performance. DNNH [41] consists of triplet-based constraints in 

order to describe more complex semantic relations. Hence the training process 

becomes more difficult because the output layer comprises of the parameterized 

piece-wise threshold function and sigmoid non-linearity. Thus, DNNH performs 

inferior to the pairwise deep-learning technique compared to the DSH technique, 

where the constraints based on the image triplets generation cannot provide more 

information than the pairwise ones since the imageries only contain category labels. 

2.3 Overview of DR Analysis Methods 

The early diagnosis of DR is a vital importance factor to slow down the disease 

progression and allow for planning the treatments. Rapid growth in computer-aided 

systems based on abnormal feature detection, severity stage classification and 

clinically similar case(s) retrieval for DR analysis and other eye-related diseases 

developed over the past few periods [43]. This section elaborates on four subsections 

as follows. The first part is based on the severity stage classification approaches for 

DR analysis. The next part is based on abnormal feature detection approaches for DR 

analysis. The following subsection is based on the blood vessel segmentation and the 

last subsection is based on content-based image retrieval methods. 
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2.3.1 DR Classification Methods 

During the recent past, there has been a rapid development of autonomous disease 

grading systems. The main idea of using computerized systems to assist with the 

disease diagnosis through medical images is more practical. Previous studies have 

explored the use of image processing, machine learning, pattern recognition and 

statistical methods for automatic DR classification through digital colour fundus 

images according to the different grading systems including the international 

standard grading scale [4]. The different approaches can be categorized into two 

parts namely, explicit feature extraction and implicit feature extraction, i.e., deep 

learning. A more robust autonomous system plays a vital role in the early detection 

of the disease and supports ophthalmologists to recommend treatment prioritization 

on a timely basis. The existing approaches for automatic severity stage classification 

of DR are explicated below. 

Explicit Feature Extraction Methods 

Former studies have used shallow machine learning classifiers to diagnose diabetic 

retinopathy through image processing-based feature detectors by localizing the optic 

disc and the blood vessels and count the presence of abnormalities such as red 

lesions, microaneurysms, cotton wool spots, hemorrhages, and hard exudates.  

Lee et al. [44] developed an automatic DR diagnosis approach for the NPDR stage 

through the techniques of image processing including image normalization and noise 

removal by detecting three lesions to be specific, microaneurysms and hemorrhages, 

cotton-wool spots (soft exudates) and hard exudates. They detected the 

aforementioned lesions on the basis of the contrast of the colour between the retinal 

background and lesions. The authors achieved an accuracy of 81.7% at the NPDR 

level. Later, Roychowdhury et al. [45] developed a two-stage hierarchical 

classification architecture where in the first stage, the non-lesions removed and in the 

second stage, the red lesions classified as microaneurysms and hemorrhages and the 

bright regions classified as cotton wool spots and hard-exudates. The authors have 
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analyzed their dataset with Support Vector Machine (SVM), K-Nearest Neighbour 

(KNN) and Gaussian Mixture Models (GMM) utilizing Ada Boost as for the feature 

ranking algorithm. This system used to classify fundus images only for the severity 

stages of NPDR (mild, moderate and severe) and achieved 0.904 Area Under Curve 

(AUC) with 100% sensitivity and 53.16% specificity. 

The methods described in [44][45] are only suitable for classifying the severity stage 

of NPDR and recommending treatment, but their classification performance needs to 

be evaluated on other severity stages such as diabetes without retinopathy and PDR 

as well. 

Acharya et al. [46] extracted four features microaneurysms, blood vessels, 

hemorrhages and exudates from the green channel of colour retinal images using 

image processing techniques, and fed them into an SVM. The authors achieved a 

sensitivity of 82% and specificity of 86%. They used 331 fundus images for their 

study. Moreover, they used a similar grading system (five severity stages of DR) 

according to the international guidelines, but there is room for further improvement 

of model accuracy and it can be done by increasing the number of features, tuning 

hyperparameters or combining weak learners in ensembles for classification. 

The authors in [47] reported an accuracy of 93%, sensitivity of 90%  and specificity 

of 100% on a three-severity level classification task (non-DR, NPDR, and PDR) by 

extracting features such as area of blood vessels, area of exudates, and texture 

features utilizing image processing techniques for 140 images and then fed into a 

small ANN. But according to the international standard, NPDR can be further 

divided into mild, moderate and severe and therefore, the authors should re-evaluate 

their model performance for these subcategories as well. 

Sinthanayothin et al. [48] trained an MLP (Multilayer Perceptron) neural network by 

feeding the features extracted through image processing techniques in order to 

classify retinal images to normal, abnormal or unknown. They have taken into 

consideration of exudate regions detection as the prior criteria for the normal and 
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abnormal retinal image classification since they failed to detect microaneurysms and 

hemorrhages from their system. In contrast, optic disk detection used as the prior 

criteria for unknown images. The authors used 484 normal fundus images and 283 

retinal images with DR for their study and achieved 80.21% sensitivity and 70.66% 

specificity. Larsen et al. [49] developed a DR prediction system to classify whether a 

given patient suffers from diabetic retinopathy or not. The authors used 260 retinal 

imagery for their study and among them 137 taken from diabetic patients. They have 

done their experiments through automated lesion detection by extracting 

microaneurysms and hemorrhages using image processing techniques. This approach 

demonstrated 96.7% sensitivity and 71.4% specificity.  

Later, Singalavanija et al. [50] developed a computer-aided system to classify retinal 

images into three categories namely, normal, abnormal or unknown by recognizing 

the exudates, hemorrhages, MAs, blood vessels, optic disc and fovea from DR 

imageries through image processing techniques with a sensitivity of 74.8% and a 

specificity of 82.7%. The authors preprocessed the raw images by enhancing the 

local contrast in order to obtain more uniform images. Blood vessels, fovea and optic 

disk were detected by recognizing the location, intensity variation and the continuity 

of the vascular network. They used a recursive region growing segmentation 

algorithm and a colour and template matching technique to identify the exudates 

regions and hemorrhages respectively. They used 900 retinal images including 600 

from normal patients and 300 images from diabetic patients for their research. Kahai 

et al. [51] proposed an automated binary classification system (normal or abnormal) 

for diagnosing DR. During their study, the authors used only an NPDR (moderate to 

severe stages) dataset. They considered these three stages in NPDR for the case of 

the presence of microaneurysms. The model displayed a YES decision (abnormal) 

related to the presence of MAs (microaneurysms) for the moderate to severe cases of 

NPDR and a NO decision (normal) related to the absence of MAs. They used the 

Bayesian optimality technique for the classification in order to recognize the 

pathologies (MAs). Their approach was successful in classifying DR to normal or 

abnormal with 100% sensitivity and 67% specificity.  
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Giraddi et al. [52] have been proposed an approach to classify the input retinal image 

into two classes namely normal or abnormal based on the colour and GLCM texture 

features of hard exudates. The authors used SVM and KNN classifiers in order to 

give a comparative analysis. Finally, they have achieved 83.4% true positive rates for 

SVM and 92% for KNN. Moreover, they have concluded that KNN beats SVM for 

both colour and texture features based on their evaluation results. 

These approaches [48]-[52] can be used for analyzing the presence of pathologies in 

retinal images and panning treatment based on normal or abnormal, but not effective 

for the severity stage classification of DR through retinal images since the authors 

did not evaluate their model performance in mild-NPDR, moderate-NPDR, severe-

NPDR and PDR stages. 

Yun et al. [53] developed an early diagnosis system for severity stage classification 

of DR. During their study, they analyzed 124 colour fundus images, which classified 

into four groups, in particular, normal retina, moderate-NPDR, severe-NPDR and 

PDR. The authors extracted features from techniques of image processing and fed 

them into a three-layer ANN classifier for classification. This approach reaches a 

sensitivity of more than 90% and specificity of 100%. But the authors did not 

consider about mild-NPDR stage since it is the early stage of NPDR. Hence, they 

should re-evaluate their model performance for mild-NPDR as well. 

Li et al. [54] developed a DR screening system and distinguished PDR from NPDR 

automatically utilizing digital colour fundus photographs. The authors evaluated the 

severity of DR by analyzing the blood vessel patterns and the occurrences of bright 

lesions of the retinal imagery. They extracted bright lesions through morphological 

reconstruction. Moreover, they used multiscale matched filters to extract retinal 

blood vessels and vessel net density to analyze vessel patterns. They achieved a 

sensitivity of 80.5%. This approach can be used for NPDR and PDR, but they must 

be validated to analyze their system performance in three subcategories of NPDR 

namely, mild-NPDR, moderate-NPDR, and severe-NPDR as well as diabetes without 

retinopathy.  
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Hasan et al. [55] proposed an approach to recognize PDR by detecting 

neovascularization using image processing techniques such as image normalization, 

morphology-based operator, Gaussian filtering, thresholding and compactness 

classifier. The authors tested their approach using different databases with varying 

quality and resolution of the images. Their approach demonstrated a sensitivity of 

89.4% and specificity of 63.9%. The main drawback of this system is that it detects 

only one severity stage (PDR), but they must be extended their approach to 

recognizing other severity stages based on the abnormal feature detection such as 

MAs, hard and soft exudates, hemorrhages as well. 

Rahim et al. [56] proposed a DR and maculopathy decision support system recently 

by analyzing retinal images using fuzzy image processing techniques such as fuzzy 

filtering and fuzzy histogram equalization along with Circular Hough Transform and 

other different feature extraction methods such as green channel extraction. The 

authors used four retinal localization approaches namely, optic disc localization, 

blood vessel, macula, and fovea detection during the preprocessing stage. After 

extracting features, they have used several classification algorithms (KNN, SVM, 

and Naïve-Bayes) in order to train with the dataset and evaluate the generalized 

performance. This approach accomplished good overall performance with 93% 

accuracy, a sensitivity of 86.79% and a specificity of 100%, but this can only be used 

to analyze the presence of the retinopathy and maculopathy in retinal images. Hence, 

this system is not valid to evaluate the severity stages of the DR. 

Implicit Feature Extraction Methods 

Most of the recent work in automatic severity stage classification of diabetic 

retinopathy has been used deep CNNs. In a very recent work, Alban et al. [57] 

trained and evaluated three dissimilar CNN models: a custom CNN architecture built 

as a baseline where all convolution and fully connected layers were trained, a 

classifier built using a pretrained AlexNet [58] where only the last fully connected 

layer was retrained, and GoogleNet [59] constructed similarly to AlexNet. The 
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authors achieved best with an AUC of 79% and an accuracy of 45% for the five-class 

severity stage classification using GoogleNet. 

Butterworth et al. [60] used a transfer learning approach to extract features from 

pretrained CNNs. The authors trained a linear SVM from deep features extracted 

from pretrained AlexNet [58] and Resnet-34 [61] architectures and achieved 25% 

and 76% accuracies respectively. Models trained with the standard Categorical 

Cross-Entropy loss function and an MSE (Mean Squared Error) loss function. 

There is a room for further improvement of model accuracy in [57] and [60], and it 

can be done by tuning hyperparameters or developing ensemble architectures using 

weak learners or using an ensemble of pretrained CNNs as feature extractors. 

Thambawita et al. [62] presented a deep ensemble CNN-based approach to improve 

the multi-class classification of Gastrointestinal tract diseases. The authors used the 

combination of pretrained Resnet-152 and Densenet-161 with an additional 

multilayer perceptron (MLP) as the classifier and achieved 95.80% accuracy. 

2.3.2 Abnormal Lesion Detection Methods 

Abnormal lesions in the retina are the key indicators for recognizing the presence of 

a disease. These lesions can be further categorized into bright and dark regions. In 

the DR perspective, abnormal lesion detection approaches are vital importance for 

the ophthalmologists to recognize the pathology or abnormality on the retinal tissue 

and allow them to treat the relevant regions where symptoms appeared. We can 

identify several abnormal lesions such as microaneurysms, hemorrhages, cotton wool 

spots and hard exudates utilizing the colour retinal images. The related literature 

review can be divided into two major sections. The first section is associated with the 

automatic analysis of microaneurysms and hemorrhages and the next section is based 

on the analysis of exudate regions. 
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Automatic Analysis of Microaneurysms and Hemorrhages 

Baudoin et al. [63] proposed an automatic detection of MAs in fluorescein 

angiograms using mathematical morphological concepts. They performed different 

top-hat transformations in order to extract MAs. However, they have faced several 

difficulties when recognizing the MAs with fuzzy boundaries due to the fluorescein 

leakage in the retinal tissue. The authors used 25 angiograms for this study. Later, 

Spencer et al. [64] used a bilinear top-hat transformation and matched filtering to 

segment the image and then applied a thresholding function in order to extract and 

count MAs. They evaluated their approach with MA counts performed manually by 

five clinicians. 

Zhang et al. [65] came up with a new top-down approach to detect retinal 

hemorrhages using PCA. The authors calculated an evidence value for each pixel by 

utilizing SVM after applying the colour normalization in the preprocessing stage. 

They fed features, which were extracted from two-dimensional PCA to the SVM 

classifier. After finding the hemorrhage feature location, they used a post-processing 

step to segment the boundary if the hemorrhages fall in the ROI (region of interest). 

This approach expected to achieve higher accuracy for the classification task. 

Quellec et al. [66] proposed an approach to detect MAs based on local template 

lesion matching with optimal wavelet transform technique in retinal images. The 

results of their approach as evaluated using 120 retinal images, which further 

categorized into three different modalities namely, colour photographs, colour 

filtered photographs, and angiographs. The authors achieved a sensitivity of 89.62%, 

90.24% and 93.74% for the aforementioned three modalities respectively. 

Kande et al. [67] presented an automatic red lesions detection method using ocular 

fundus images. This approach utilized intensities of green and red channels for a 

given fundus image in order to correct non-uniform illumination. They enhanced the 

contrast of the red lesions using matched filtering and then segmented by relative 

entropy-based threshold function. In order to reduce the enhanced vasculature, the 
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authors used morphological top-hat transformation. Moreover, the authors classify 

red lesions from the dark regions utilizing SVM and accomplished 96.22% 

sensitivity and 99.53% specificity. 

Frame et al. [68] compared three classification approaches for the detection of MAs 

using fluorescein angiograms. First, they segmented MAs through image processing 

techniques and extracted a set of features for each candidate in order to train three 

classifiers. They used linear discriminant analysis and an ANN together with a rule-

based system in order to perform a classification task. The authors achieved a higher 

accuracy for the rule-based approach. 

Niemeijer et al. [69] published novel research based on red lesion detection in colour 

retinal images using a hybrid approach by combining two prior works done in [64] 

and [68]. They first separate the red lesions and vascular network from the 

background through a pixel classification technique. Next, they removed the vascular 

network from the segmented image in order to further filter the possible red lesions. 

Finally, they classified these lesions using KNN and accomplished 100% sensitivity 

and 87% specificity. 

Automatic Analysis of Exudate Regions 

Wang et al. [70] published research work to detect exudate lesions in the fundus 

photographs. They used several image processing techniques such as statistical 

classification with brightness adjustment, a local window-based verification, and a 

thresholding strategy. They showed 100% accuracy in terms of exudates detection 

through their experimental results. 

Phillips et al. [71] proposed a technique for detecting and measuring the exudate 

regions from digital colour retinal photographs of individuals with DR. They used a 

global thresholding strategy to detect large high-intensity regions. In contrast, in 

order to segment smaller exudate regions, the authors used a block-wise local 
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thresholding strategy. This is a better approach to detect pixels belong to the exudate 

areas but bounces several false positives. 

Walter et al. [72] developed a system to detect exudates in colour fundus 

photographs to diagnose of DR. First, they localized optic disc in the given retinal 

image by applying watershed transformation and the morphological filtering 

techniques. The authors detected exudates using its high grey level variation. 

Additionally, they used morphological reconstruction techniques to identify the 

contours of the region. They compared their experimental results with a clinician. 

This approach reached 92.8% of sensitivity. 

Sánchez et al. [73] proposed an automatic detection approach for hard-exudate 

regions in fundus imagery. They segmented exudates by applying threshold 

dynamically from the background using mixture models. After this step, the authors 

used an edge detection technique in order to separate hard exudate regions from soft-

exudates and other lesions. Finally, they evaluated this approach using 80 retinal 

images and obtained 90.2% of sensitivity and 96.8% of positive predictive value. 

Xu et al. [74] proposed an approach to detect hard-exudates from retinal imagery by 

extracting feature vectors using gray level co-occurrence matrix (GLCM) and 

stationary wavelet transform (SWT). The authors used a radial basis kernel function 

with SVM to classify the 50 data points and achieved 84% accuracy, 88% sensitivity, 

and 80% specificity. 

Section 2.1.2 mainly focuses on diverse techniques for the automatic abnormal lesion 

detection for the severity stages of DR diagnosis. It is a very challenging task to 

automatically detect MAs, hemorrhages and exudate regions since they appear as 

very tiny spots on the retinal surface. 

2.3.3 Retinal Blood Vessel Segmentation Methods 

This section reveals numerous techniques which are related to the retinal blood 

vessel segmentation in fundus images of healthy and diseased individuals. In this 
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section, we primarily focus on the previous studies that had been done in the areas of 

supervised and unsupervised learning. Most of the algorithms are constructed on 

image processing such as morphological methods, matched filter techniques, the 

grouping of edge pixels, intensity profile techniques, and vessel tracking techniques, 

and conventional machine learning techniques, but few types of research are based 

on deep learning. 

Supervised Learning Approaches 

Nekovei et al. [75] used an ANN as a classifier to detect vascular network in 

angiograms by classifying retinal blood vessel and non-blood vessel pixels. The 

authors classified the center pixel of a given window using gray-scale information. 

They used 75 angiogram images during their experimental evaluation. Later, 

Sinthanayothin et al. [76] developed an approach to localize the vessel network of 

the retinal images. They first preprocessed 112 fundus images by applying adaptive 

local contrast enhancement. After that, the authors applied PCA on the image and 

edge detection of the first principal component in order to derive the inputs. Next, 

they fed these inputs to train an MLP neural network and achieved a sensitivity of 

83.3% and a specificity of 91.0% for vasculature localization. 

Staal et al. [77] developed an approach to segment the blood vessels in 2D colour 

retinal images. First, the authors extract the ridges of the images and then used them 

to construct line elements. After this step, they partitioned the image into patches by 

assigning each pixel value to the closest line segment. Next, they extracted feature 

vectors for every pixel and fed them into a KNN classifier. The dataset consisted of 

40 manually labeled retinal images. This system achieved an AUC of 0.952. 

Soares et al. [78] published a research work based on automatic vasculature 

segmentation in retinal imagery. The authors performed segmentation by classifying 

every pixel in the image into two categories namely. vessel and non-vessel after 

extracting the feature vector of each pixel. The intensity of the pixel and the 

responses of the Gabor wavelet transform taken into consideration when preparing 
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these feature vectors. They used a Gaussian mixture model as the classifier and the 

performance was evaluated based on two publicly available datasets, DRIVE [77] 

and STARE [79]. For the DRIVE dataset, they achieved an AUC of 0.9614. 

Ricci et al. [60] implemented a supervised classification approach to segment retinal 

blood vessels in fundus images by extracting feature vectors using line operators. 

The authors computed line detectors based on fixed-length average gray lines passing 

through the selected pixel at different orientations. They used two segmentation 

approaches. At the first stage, an unsupervised pixel classification performed by 

applying a threshold function. In the next stage, they constructed two orthogonal line 

detectors composed of the gray lines in order to build feature vectors to train a 

classifier. They performed their classification task to identify vessel pixels using 

SVM. They evaluated the model performance on two datasets, DRIVE [77] and 

STARE [79] and accomplished 95.6% and 95.8% accuracies respectively. 

Lupascu et al. [80] developed a system to segment the vascular network in retinal 

images by extracting 41-dimensional feature vectors at a diverse spatial scale and 

then fed them into an AdaBoost classifier. The authors used various filters such as 

Gaussian filters, matched filters, and a two-dimensional Gabor wavelet in order to 

extract these features. They trained the AdaBoost classifier with their dataset in order 

to classify vessel pixels and non-vessel pixels. This approach was tested on the 20 

retinal imagery from the DRIVE dataset [77] and reached AUC of 0.9561. 

You et al. [81] published a research work based on blood vessel segmentation in 

fundus photographs using the radial projection and semi-supervised learning. In 

order to capture the vessel centerlines of narrow and low-contrast blood vessels, they 

apply the radial projection.  The authors used a steerable wavelet technique to 

enhance vessels. Next, they generated a feature vector by calculating the strength of 

the line and applied it to the aforementioned enhanced vessel imagery. For the vessel 

structures extraction, they used the SVM classifier. This approach was evaluated 

based on two publicly available datasets namely, DRIVE [77] and STARE [79] with 

94.3% and 94.9% mean accuracies correspondingly. 
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Recently, Roychowdhury et al. [82] published a research work based on blood vessel 

segmentation using fundus imagery. They used a three-stage process in order to 

develop this novel algorithm. They preprocessed the green channel of each image in 

order to extract a binary mask by applying a high-pass filter in the first stage. At the 

same time, they extracted another binary mask from a morphological reconstruction 

technique. The common areas of both binary masks were extracted to identify the 

major vessel areas. During the second stage, all residual pixels in the aforementioned 

two binary masks were classified utilizing a GMM (Gaussian mixture model). In the 

third stage, the pixels in the major vessels were combined together with classified 

blood-vessel pixels to obtain the last vessel imagery. The proposed approach was 

evaluated based on CHASE-DB1, DRIVE and STARE retinal imagery databases and 

reached a mean accuracy of 95.3%, 95.2%, and 95.1% respectively. 

Wang et al. [83] used pretrained LeNet-5 CNN architecture as a feature extractor for 

addressing tiny blood vessel segmentation. The model consists of three heads at 

different layers of the CNN which then fed into three random forest classifiers. The 

ensemble of the random forest classifiers achieved 0.97 and 0.94 for model accuracy 

and AUC respectively on the DRIVE [77] dataset. 

Unsupervised Learning Approaches 

Salem et al. [84] developed an unsupervised learning algorithm in order to segment 

the blood vessels from colour retinal imagery. The authors used a Radius-based 

Clustering Algorithm (RACAL), which relies on the distance-based principle by 

mapping the distributions of image pixels. They further enhanced this approach to 

detect low contrast blood vessels with small diameters using semi-supervised 

learning. The performance evaluated based on the STARE [79] database and 

achieved 82.1% of sensitivity. 

Kande et al. [85] used an unsupervised approach for blood-vessel segmentation, 

which is based on fuzzy c-means clustering. The authors extracted intensity values 

from red and green channels from the colour retinal imagery in order to address the 



33 

 

uneven illumination problem. They used Matched filtering for contrast enhancement 

of the retinal vascular network relative to the background. As the next step, the fuzzy 

c-means algorithm is used to recognize the pixels of the blood vessel in order to 

obtain a clear segmented vascular network. This approach is evaluated based on the 

two datasets, STARE, and DRIVE. Finally, the authors accomplish an AUC of 

96.02% and 95.18% respectively. 

Zhao et al. [86] developed an unsupervised learning technique that depends on an 

infinite active contour technique for the blood vessel segmentation from retinal 

images. The authors extracted pixels of the blood vessels using hybrid region 

information of retinal imagery. Their concept is based on an infinite perimeter 

regularizer, which is used to detect tiny blood vessel branching structures. Moreover, 

they used diverse forms of region information in order to obtain good segmentation 

performance. This technique was validated based on three publicly available datasets 

namely, STARE, VAMPIRE and DRIVE and accomplish an accuracy of 95.6%, 

97.7%, and 95.4% respectively. 

Section 2.1.3 illustrated various methods for the automatic retinal blood vessel 

segmentation in order to identify the severity stages of DR diagnosis. It is a very 

challenging task to automatically extract tiny blood vessels in the retinal surface 

since it is difficult to recognize the bifurcations (branching points) and the 

connectivity of blood vessels. 

2.3.4 Retinal Image Retrieval Methods for DR 

During the past few decades, content-based image retrieval (CBIR) has been a 

prominent research area in medical image analysis. It enables retrieving images from 

an image database that are similar to a given query image. Different research groups 

have been proposed numerous types of medical image retrieval approaches in the 

recent past. However, a comprehensive and effective deep neural network-based 

retinal image retrieval architecture for diabetic retinopathy (DR) is not available in 

the literature. The principal objective of CBIR for DR is to efficiently retrieve retinal 
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images that are semantically similar to a given query for effective treatment based on 

the severity stage of the decease. Most of the previous study in Diabetic retinopathy 

has been explored for classification and segmentation. Inadequate efforts have been 

made in CBIR as described below. 

Galshetwar et al. [7] developed a CBIR system using the concept of salient point 

selection of edgy images and local binary patterns (LBP) extracted through inter-

plane relationship. The authors enhanced their results by using color features of the 

original image in combination with LBP features. They conducted experiments on 

1200 retinal images which are categorized in four severity stage groups. They 

achieved a 57.82% mAP. 

C. Baby and D. Chandy [8] proposed a CBIR technique through dual-tree complex 

wavelet transform (DT-CWT). The authors extracted features by using a combination 

of two-dimensional DT-CWT and generalized Gaussian density. They used KL 

divergence (Kullback-Leibler Divergence) in order to calculate the similarity 

measure between two feature sets. They conducted experiments on 1200 retinal 

images which are categorized in four severity stage groups. The mAP at the top five 

retrieved images was obtained as 53.70% and 78.23% for severity stages of DR and 

Macular Edema correspondingly. 

J. Sivakamasundari et al. [9] proposed a CBIR framework that relies on the edge 

detection technique for DR diagnosis. The authors enhanced edge information by 

extracting green channel and morphological operation of normal and abnormal 

retinal images. They used Canny edge-based detection and the Kirsch template 

techniques for segmenting the blood vessels. The extracted features from segmented 

images were used for further analysis. They applied Euclidean distance in order to 

measure the similarity. The authors estimated the performance for the Kirsch 

template-based method using precision and recall and they achieved 90% and 82% 

respectively. Similarly, for the Canny edge method, they achieved 80% and 38% 

correspondingly. 
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The first two literature are based on four severity stage of DR and the last one is built 

on normal and abnormal retinal images, but according to the international standard 

there exists five severity stages, namely diabetes without retinopathy (Non-DR), 

Mild non-proliferative diabetic retinopathy (Mild-NPDR), Moderate non-

proliferative diabetic retinopathy (Moderate NPDR), Severe non-proliferative 

diabetic retinopathy (Severe-NPDR) and Proliferative diabetic retinopathy (PDR) 

[4]. In contrast, there is room for further improvement of the mAP of the 

aforementioned retrieval models. 

2.4 Summary 

This chapter primarily based on related literature which has been conducted during 

the last few decades. Initially, it describes the deep learning approaches especially 

general CNN architecture and its components that have been used for image analysis 

tasks. Secondly, includes a detailed annotation of content-based image retrieval 

techniques and their limitations. Finally describes various image processing and 

machine learning-based approaches that were used to classify, retrieve and segment 

retinal images in order to detect diabetic retinopathy. 
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3. DATASETS 

3.1 Retinal Datasets 

Two retinal imagery datasets were used to train automated classifiers during this 

research. One dataset was drawn from a recent Kaggle competition [87] and the other 

one (DIABRET) was collected from an eye hospital in Sri Lanka. These are a set of 

high-resolution images taken through a funduscope in a variety of conditions 

including colours, lighting and different orientation. Each retinal image is assigned a 

class based on the severity stage of DR, where each image collected from the eye 

hospital was labeled by a well-trained clinician and validated by an eye-consultant. 

Each image is labeled as 0, 1, 2, 3, 4 and the number represents the severity level of 

DR namely Diabetes without Retinopathy, Mild NPDR, Moderate NPDR, Severe 

NPDR, and Proliferative DR respectively.  

The main difference of these two datasets is that Kaggle dataset consists of standard 

colour fundus photographs which captures 30 degree of the posterior pole of a patient 

eye including the macula and the optic nerve whereas DIABRET dataset consists of 

wide-field colour fundus photographs which capture the seven fundus fields of a 

patient eye and combined together to generate a montage image that displays a 75 

degree field of view. 

Moreover, each dataset was divided into training and testing where the training 

dataset represents 80% and the test set represents 20% from the entire dataset. For 

each dataset, we used stratified five-fold cross-validation on its training data in order 

to select the best hypothesis by tuning the hyperparameters, while its test data is used 

to evaluate the performance of this best hypothesis. 

These two datasets consist of imbalanced class labels. Table 3.1 displays the class 

proportion statistics for both of these datasets. 

 



37 

 

Table 3.1: Class distribution of two datasets 

Class Images in Kaggle Images in DIABRET 

Diabetes without Retinopathy 1170 440 

Mild-NPDR 558 217 

Moderate-NPDR 710 191 

Severe-NPDR 200 160 

PDR 162 123 

3.2 Gastrointestinal-tract Endoscopy Dataset 

In order to measure the effectiveness and efficiency of our two approaches 

(classification and content-based image retrieval tasks), we further used another 

medical image dataset called KVASIR [88] which consists of 8000 Gastrointestinal 

tract images captured through endoscopic process which further categorized into 

eight different categories based on the anomaly type where each class holds 1000 

images.   

This dataset comprises three anatomical landmarks namely pylorus, cecum, and z-

lines and three pathological findings; polyps, ulcerative colitis, and esophagitis. In 

contrast, the dataset contains another two types identified with the expulsion of 

polyps called dyed resection margins and lifted and dyed polyp. The dataset was 

divided into 90% and 10% to represent the training and test sets respectively. 

3.2.1 Anatomical Landmarks in GI-tract 

An anatomical landmark is a discernible component inside the GI tract which can 

distinguish effectively through the endoscope. Recognizable region of interest is 

exceptionally vital since the region of interest can be considered as a reference point 

to portray the area for the discoveries and for exploring along the GI tract. 

3.2.1.1 Z-line 

The z-line indicates the esophagogastric intersection between the squamous mucosa 

of the throat and columnar mucosa of the stomach. Figure 3.1 demonstrates a case of 
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a z-line. It is noticeable through an endoscope as an unmistakable limit where the 

white mucosa in the throat meets the red gastric mucosa as should be obvious in 

Figure 3.1. The significance of detecting z-line is to choose whether an ailment is 

accessible or not. 

3.2.1.2 Pylorus 

The pylorus links the stomach into the initial segment of the little bowel called 

duodenum. The significance of distinguishing the pylorus is for endoscopic 

instrumentation to the duodenum which considered a difficult move in endoscopy. 

The subsequent picture in Figure 3.1 demonstrates a case of the pylorus. 

3.2.1.3 Cecum 

The Cecum has a huge cylinder-like structure in the lower stomach hole. Regularly it 

gets undigested nourishments. The significance of perceiving the cecum is the 

verification of complete colonoscopy. The last picture in Figure 3.1 demonstrates a 

case of Cecum. 

 

 

 

 

3.2.2 Pathological Findings 

An obsessive finding is an unusual element inside the GI tract. It is considered as a 

harm in the ordinary mucosa through an endoscope. This harm might be the side 

effects of a progressing or originator of disease. 

Figure 3.1: Anatomical Landmarks of Endoscopic imagery 



39 

 

3.2.2.1 Esophagitis 

This is an aggravation or irritation of the throat. They are observable as a break in the 

esophageal mucosa. The first picture in Figure 3.2 demonstrates a case of 

Esophagitis. 

3.2.2.2 Polyps 

Polyps are masses of injuries that structure inside the entrail. Despite the fact that a 

large portion of the polyps is kind, some of them may prompt colorectal malignancy. 

Consequently, the recognition of polyps is significant. The subsequent picture in 

Figure 3.2 demonstrates a case of polyps. 

3.2.2.3 Ulcerative Colitis 

Ulcerative colitis (UC) is an incendiary entrail disease and it impacts the whole 

entrail. This can cause enduring irritation or wounds in the entrail. The last picture in 

Figure 3.2 demonstrates a case of ulcerative colitis. 

 

 

 

 

3.2.3 Polyps Removal 

At times, polyps expulsion is operated during the endoscopy. One of the techniques 

called Endoscopic Mucosal Resection (EMR) which lifts the polyp from the hidden 

tissue. At that point, it turns into a Dyed and Lifted Polyp as appeared in the left-side 

picture in Figure 3.3. The Dyed Resection Margins appeared in the right-side in 

Figure 3.3 which is essential to guarantee whether the polyp is totally evacuated or 

not. 

Figure 3.2: Pathological Findings of Endoscopic imagery 
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3.3 Summary 

This chapter describes three datasets that were used for our experimental analysis 

during the research. The two of them consists of retinal images of diabetic patients 

that were collected from a recently published kaggle dataset and another dataset 

provided to us by an ophthalmic clinic in Sri Lanka. The GI-tract dataset is a publicly 

available endoscopic dataset that was used to further evaluate our CNN-based model 

architectures. 

 

 

 

 

 

 

 

 

 

  

Figure 3.3: Polyp evacuation of Endoscopic imagery 
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4. METHODOLOGY 

This chapter describes the research methodology that we performed in order to 

develop our classification and content-based retinal image retrieval tasks. Section 4.1 

explicates the data preprocessing techniques that were used before feeding images 

directly to the CNN-based model architectures. Section 4.2 illustrates how we 

handled the class imbalance problem for our two retinal datasets. In section 4.3, we 

discuss the overview of the methodology of our classification model and the last 

section demonstrates the detailed description of the methodology of our retrieval 

model.  

4.1 Preprocessing 

The extra black margins (unwanted background) were removed in the retinal imagery 

as the first step of the preprocessing stage. In contrast, we required to transform the 

images in such a way that it would be feasible for any CNN to converge in a 

reasonable time. Retinal images were standardized by resizing all images into 224px 

x 224px since they were in different dimensions and aspect ratios. Moreover, poor 

quality low-resolution (bad-lighting conditions) and occluded images were removed 

from the datasets before feeding them into the models. 

4.2 Addressing Class Imbalance 

The retinal dataset contains unbalanced class distributions. This data imbalance 

problem creates additional overheads for the classification model. The imbalanced 

problem was handled by incorporating the weights of the classes into the cost 

function. The class weights were adjusted inversely proportional to class frequencies 

in the input data and then passed into the fit function of models as a parameter when 

training. The stratified cross-validation was used during the training process. Hence, 

each fold contains roughly the same proportion of observations as in the training 

dataset. 
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4.3 Overview of Classification Model Architecture 

In this research task, we attempted different approaches of feature extraction using 

pretrained CNNs on two retinal imagery datasets. In order to obtain the predicted 

class label through an independent classifier, we used diverse combinations of 

extracted feature vectors. The steps of our proposed methodology for the severity 

stage classification are described below. Each dataset was preprocessed as described 

in the preprocessing section 4.1 as the first step and addressed the class imbalance 

problem for the training retinal datasets as described in section 4.2. Secondly, six 

different CNN architectures followed by a GAP layer were used to produce feature 

vectors. Next, the last feature vector was acquired by joining vectors from the past 

advance for classification. This method can be referred to as a CNN Transfer 

Learning Ensemble feature extraction approach. 

The set of experiments described in chapter 5 revealed that ResNet-18, VGG-16, and 

DenseNet-201 pretrained CNNs as feature extractors produced the most accurate 

results both in cross-validation and predictions on the test data. Therefore, we 

decided to use a combination of features extracted from VGG-16, ResNet-18, and 

DenseNet-201 pretrained CNNs in order to build an ensemble model. Each image 

from each dataset is used as input for the DenseNet-201 CNN and 1920 features 

extracted from the feature extractor by applying the global average pooling layer. 

Similarly, each dataset was processed through both VGG-16 and ResNet-18 similar 

to the DenseNet-201 and we received two sets of 512 features each. Subsequently, 

for each image we got a vector with 2944 (1920 + 2x512) features that represent the 

image. As the next step, in order to eliminate redundant and noisy features, we 

normalized and applied SVD on this concatenated feature vector. The optimal 

number of features was selected by using truncated SVD with a variance threshold of 

95%. 

Finally, we fed this into a 128 units single hidden layer (with the ReLU activation) 

ANN (Artificial Neural Network) model with a softmax activation layer to obtain the 

best classification accuracy. For the model training process, we used a stratified five-
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fold cross-validation. Each fold has the same proportion of observations as in the 

training dataset. The overall architecture of our novel classification model is shown 

in Figure 4.1. We tried numerous model configurations for our classifiers before we 

found the best solution (single hidden layer ANN) that worked for our specific 

problem. The mini-batch stochastic gradient descent (SGD) algorithm was used in 

order to train the ANN classifier. The batch size was set to 64 for training sets as 

well as validation datasets and momentum was set to 0.9. We penalized large weights 

by a factor of 1 x 10-3 by using ridge regression (L2-regularization). The dropout was 

set to 0.8 probability to stop the activations for the hidden layer in the ANN 

Figure 4.1: Ensemble Method 
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classifier. In order to normalize the activation values of the hidden layer, we used 

Batch Normalization [89] and it is focused on faster optimization by reducing the 

internal covariate shift, which constantly changes the distribution of the activations 

during model training. The cost function was categorical cross-entropy and the 

learning-rate we set to 1 x 10-3. After 400 epochs, the gradient descent converged to 

the optimal solution and the training took approximately seven hours. All weights in 

the ANN were initialized using the He [90] initialization scheme. 

4.4 Overview of Retrieval Model Architecture 

The main objective of this study is to find a hash function which solves the CBIR 

task for diabetic retinopathy. Given N number of retinal images X={x1, x2, ……, xN} 

belonging to five categories as described in section 3.1. The class label is defined as 

Y={y1, y2, …….., yN} where each yi ϵ{0, 1, 2, 3, 4}. Our goal is to learn a hash 

function H(x) which maps retinal images to compact binary hash codes bi=H(xi) and 

bi ϵ {0, 1}D where D represents the length of the hash code. This hash function 

satisfies the two properties as per the following. bi and bj are close to each other in 

the hamming space when yi=yj and far away when yi ≠ yj. 

There are three main components of this approach. The first component is to train the 

ensemble CNN model as described in section 4.3 using the retinal image dataset to 

learn rich mid-level signatures of the images. The second component is used to train 

another ANN which comprises a single hidden layer with sigmoid activation as 

shown in Module 2 of Figure 4.2 by feeding the extracted features from the feature 

extractor of our classification model to learn binary hash codes. The third component 

retrieves retinal images similar to the query image through the hierarchical deep 

search as described in section 4.4.2. This step is used as a coarse-to-fine strategy to 

retrieve similar clinically relevant retinal images by utilizing the learned compact 

binary codes and mid-level signatures of the images. Our approach for learning 

compact binary hash embeddings is explained in section 4.4.1. Moreover, the 

combination of two retinal imagery datasets was used for this study. The proposed 

image retrieval architecture through hierarchical deep search is shown in Figure 4.2.  
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4.4.1 Learning Binary Hash Codes 

We can use rich mid-level signatures of the images that are extracted from our 

feature extractor (by removing the softmax layer) as shown in Module 2 of Figure 

4.2 to perform the similarity measurement with the given query image. However, 

these image representations are high-dimensional feature vectors that are inefficient 

for content-based image retrieval in a corpus which consists of a considerable 

number of images. A feasible approach in order to perform efficient image retrieval 

is to transform the feature vectors into binary hash codes to reduce memory and time 

consumption. Then such compact binary codes can be rapidly compared using 

Hamming distance. 

We attempted to learn good image signatures and a hash function through our 

ensemble CNN model architecture. In order to learn a hash function, we assumed 

that the final predictions of the classification layer with softmax activation rely on a 

Figure 4.2: Image Retrieval CNN-based Architecture 
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set of hidden neurons with each neuron being on or off according to a given 

threshold. That is to say, retinal images inducing similar binary activations would 

have the same severity stage of DR. In order to accomplish this approach, we fed 

extracted features of our dataset from the feature extractor as shown in module 2 of   

Figure 4.2 to another single hidden layer ANN (ANN-2) classifier where each neuron 

in the hidden layer contains sigmoid activation. The sigmoid layer is a dense layer 

(fully connected layer), which is connected to the succeeding softmax layer that 

accomplishes classification. All weights were initialized using the He [90] 

initialization scheme before we train the ANN (ANN-2). We used the sigmoid layer 

as the feature extractor to retrieve the semantic binary codes for each retinal image 

by removing the softmax layer from the ANN (ANN-2). We have done experiments 

by changing the number of neurons into 28, 64, 128 and 256 of the sigmoid layer at 

each time when the model is training in order to identify the best suitable length of 

the binary code to retrieve similar retinal images with higher accuracy. 

4.4.2 Hierarchical Deep Search for Image Retrieval 

In order to retrieve the retinal images with higher accuracy, we implemented a 

coarse-to-fine search strategy. First, we computed the hamming distance using the 

generated binary codes in order to retrieve a group of candidates that are similar to 

the query image. This candidate list then sorted using the cosine similarity with the 

query image based on the rich mid-level signatures of the images that are extracted 

from the feature extraction part of the classification model since clinically similar 

retinal images may have identical compact binary hash codes. 

In the coarse level search strategy, first, we extracted features through the sigmoid 

layer as described in section 4.4.1 for a given image as the image signature. The 

binary codes were then obtained by binarizing each activation value of the sigmoid 

layer by 0.5 thresholds. If an activation value greater than or equal to the 0.5 then it 

outputs one else zero. 
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Let X={x1, x2, x3, ……, xN} represent the retinal dataset of N images for the retrieval 

task. The corresponding binary codes of all the retinal images are denoted as Hb={b1, 

b2, b3, ……., bN} with bi ϵ {0, 1}D. Given a query image Iq and its binary codes bq, 

we identify an m candidate pool, L={x1, x2, x3, ……, xm}, if the Hamming distance 

between bq and bi ϵ Hb is lower than or equal to 0.5 thresholds. 

During the fine level search, we used rich mid-level features extracted from the 

feature extractor (see Module 2 of Figure 4.2) of our classification model for all the 

retrieved m retinal images in the candidate list L in order to rank them according to 

the distance with respect to the query image. Here we took the cosine similarity 

between each rich mid-level feature vector of our candidate list L with the real-

valued feature vector of the query image Iq. The similarity of the two images is in 

higher value if they have larger cosine similarity. We retrieve top k (e.g. k=20) 

ranked images by ranking m (m ≥ k) candidates in the list L in descending order 

according to the similarity score. 

4.5 Summary 

This chapter explicates the methodology for our two tasks namely classification 

model construction to predict severity stages of the diabetic retinopathy and similar 

case(s) retrieval for a given query image according to the proposed research 

objectives. First, we built a classification model by extracting deep features through 

an ensemble of pretrained-CNNs (VGG-16, DenseNet-201, and ResNet-18) followed 

by a GAP layer as a single feature vector and then extend it to a retrieval model by 

using a deep supervised hashing approach in order to perform efficient retinal image 

retrieval, where we implicitly learn a good image representation along with a 

similarity-preserving compact binary hash code for each image. Moreover, we used a 

technique of reducing memory consumption and processing time while preserving 

classification and retrieval performance by using dimensional reduction based on 

SVD. 
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5. EXPERIMENTAL ANALYSIS & MODEL EVALUATION 

This chapter describes the experimental setup and the model evaluation that we 

conducted in order to properly evaluate our classification and content-based retinal 

image retrieval tasks. Section 5.1 elucidates the experimental analysis for 

classification task including fine-tuning CNN models and feature extraction through 

pretrained-CNN models. Section 5.2 explains the current state-of-the-art deep 

learning-based ensemble approaches for the comparison with our approach. In 

sections 5.3 and 5.4, we discuss the evaluation and results of the ensemble classifier 

and retrieval model respectively. 

5.1 Experimental Analysis for Classification Model 

We experimented with six different prominent CNNs using two methods as 

described in sections 5.2 and 5.3. The subsequent set of experiments measures the 

accuracy and F1-measure of our two retinal test datasets separately using CNNs and 

classifiers. We attempt to improve the accuracy of validation sets by fine-tuning 

different hyperparameter values. Moreover, we have done experimental analysis for 

the GI-tract dataset as well. In order to prove the effectiveness and efficiency of our 

classification approach, we further test it on another medical image dataset called 

KVASIR which is described in section 3.2. 

5.2 Fine-tuning CNN Models 

In our first experiment, we attempt to perform DR classification by fine-tuning 

pretrained-CNNs, which included DenseNet-201 [24], ResNet-18 [23], InceptionV3 

[21], InceptionResNetV2 [91], VGG-16 [20] and Xception [22]. First, we load a 

domain transferred standard CNN architecture and replace the last fully connected 

layer (output layer) with a custom softmax layer which comprises five neurons to 

perform the classification task. We initialize the weights of layers from the input 

layer to the last pooling layer using ImageNet weights and weights of the custom 

softmax layer using the He [90] initialization scheme. 
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We first froze up to the last pooling layer and warm-up the newly added fully 

connected head by fine-tuning the randomly initialized weights, because if we allow 

the gradient to backpropagate from these random weights through the entire network, 

we risk vanishing the powerful low-level features from the pretrained early 

convolutional layers. Next, we unfroze the rest of the network (allow all layers to 

train including softmax layer) and continue the training process. 

Table 5.1: Results of Fine-tuning Pretrained CNN Models 

We fine-tuned each CNN up to 400 epochs using the mini-batch Stochastic Gradient 

Descent (SGD) algorithm and set the momentum to 0.9. The learning rate was set to 

0.001 and we used a minibatch size of 64. We set the L2- regularize parameter to 

Dataset Pretrained CNN Accuracy F1-Measure 

DIABRET DenseNet-201 68.24% 0.6581 

ResNet-18 65.33% 0.6332 

VGG-16 66.41% 0.6339 

InceptionV3 63.87% 0.6063 

Xception 65.93% 0.6395 

InceptionResnetV2 59.36% 0.5721 

Kaggle DenseNet-201 77.87% 0.7551 

ResNet-18 77.43% 0.7479 

VGG-16 74.17% 0.7231 

InceptionV3 71.56% 0.6902 

Xception 72.82% 0.6779 

InceptionResnetV2 71.58% 0.6586 

KVASIR DenseNet-201 74.13% 0.7257 

ResNet-18 74.07% 0.7203 

VGG-16 73.24% 0.6828 

InceptionV3 67.77% 0.6329 

Xception 70.43% 0.6778 

InceptionResnetV2 65.71% 0.6303 
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0.001 to penalize large weights. The best result for both datasets is achieved using 

the DenseNet-201 architecture. Moreover, we have done the same experimental 

setup for the KAVISIR dataset as well. The experimental result for this approach is 

shown in Table 5.1. This approach presented low accuracy and required more 

computational time. Hence, we discarded this method. 

5.3 Feature Extraction Based on CNN Models 

In our second experimental setup, we first extracted the features of the retinal image 

using a deep CNN. Then, we fed the extracted features to a classification model in 

one of three different approaches. The simplest is that we fed the features directly to 

the classification model (see Table 5.2, Table 5.5 and Table 5.8). In the second 

approach, we applied the Global Average Pooling (GAP) before feeding the 

extracted features to the classification model (see Table 5.3, Table 5.6 and Table 

5.9). In the third approach, we applied truncated Singular Value Decomposition 

(SVD) in addition to Global Average Pooling (GAP) before feeding the extracted 

features to the classification model (see Table 5.4, Table 5.7 and Table 5.10). 

We experimented with each pretrained CNN described in section 5.2 for feature 

extraction. As for the classification model, we experimented with SVMs, ANNs and 

Random Forest. Altogether, this leads to 6x3x3 experimental combinations 

corresponding to the 6 different feature extractors, 3 different approaches of feeding 

the features to the classifier and the 3 different types of classification models. The 

summary of the results is in Table 5.2 to Table 5.10  for the ANN, Random Forest 

classifiers and SVM, for each dataset. 

We have achieved the best result with the DenseNet-201 feature extractor for both 

datasets along with a GAP layer and SVD, and a single hidden layer ANN as the 

classifier. The accuracy values reported in Table 5.2 to Table 5.10 for each 

experiment are based on predictions for the test datasets. Cross-validation on the 

training sets too confirm a similar ranking of configurations in terms of accuracy/F1 

measure. According to these results, we proposed a combination of feature vectors 
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extracted through VGG-16, DenseNet-201, and ResNet-18 CNN architectures as 

shown in Figure 4.1 to increase our classification accuracy. 

Table 5.2: Results for different CNN feature extractors with ANN 

 

 

 

Dataset Pretrained CNN Accuracy F1-Measure 

DIABRET DenseNet-201 59.43% 0.4915 

ResNet-18 61.56% 0.5078 

VGG-16 55.36% 0.4703 

InceptionV3 57.89% 0.4851 

Xception 61.37% 0.4923 

InceptionResnetV2 62.15% 0.5310 

Kaggle DenseNet-201 80.86% 0.7163 

ResNet-18 79.01% 0.6664 

VGG-16 77.43% 0.6435 

InceptionV3 71.59% 0.6033 

Xception 71.85% 0.6052 

InceptionResnetV2 70.48% 0.5871 

KVASIR DenseNet-201 67.52% 0.6683 

ResNet-18 68.27% 0.6781 

VGG-16 65.39% 0.5907 

InceptionV3 67.11% 0.5892 

Xception 63.12% 0.5839 

InceptionResnetV2 64.89% 0.5767 
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Table 5.3: Results for different CNN feature extractors followed by a GAP layer with 

ANN 

 

 

 

 

 

Dataset Pretrained CNN Accuracy F1-Measure 

DIABRET DenseNet-201 92.94% 0.9212 

ResNet-18 91.60% 0.9028 

VGG-16 90.28% 0.9001 

InceptionV3 84.64% 0.8144 

Xception 84.62% 0.8224 

InceptionResnetV2 83.25% 0.8123 

Kaggle DenseNet-201 87.89% 0.8234 

ResNet-18 87.68% 0.8199 

VGG-16 86.70% 0.8152 

InceptionV3 75.94% 0.6824 

Xception 79.17% 0.6957 

InceptionResnetV2 77.28% 0.6831 

KVASIR DenseNet-201 90.74% 0.9003 

ResNet-18 88.43% 0.8731 

VGG-16 84.37% 0.8411 

InceptionV3 80.72% 0.7947 

Xception 79.93% 0.7792 

InceptionResnetV2 77.57% 0.7591 
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Table 5.4: Results for different CNN feature extractors followed by a GAP layer and 

SVD with ANN 

 

 

 

 

 

Dataset Pretrained CNN Accuracy F1-Measure 

DIABRET DenseNet-201 97.20% 0.9691 

ResNet-18 96.71% 0.9627 

VGG-16 96.58% 0.9624 

InceptionV3 96.47% 0.9613 

Xception 96.14% 0.9587 

InceptionResnetV2 95.71% 0.9559 

Kaggle DenseNet-201 92.88% 0.9146 

ResNet-18 90.09% 0.8740 

VGG-16 88.58% 0.8567 

InceptionV3 86.53% 0.8395 

Xception 87.16% 0.8462 

InceptionResnetV2 87.42% 0.8314 

KVASIR DenseNet-201 95.28% 0.9496 

ResNet-18 93.26% 0.9319 

VGG-16 92.87% 0.9228 

InceptionV3 90.71% 0.9006 

Xception 90.96% 0.8933 

InceptionResnetV2 91.91% 0.9172 
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Table 5.5: Results for different CNN feature extractors with SVM 

 

 

 

 

 

 

Dataset Pretrained CNN Accuracy F1-Measure 

DIABRET DenseNet-201 65.22% 0.5420 

ResNet-18 64.07% 0.5236 

VGG-16 54.22% 0.4475 

InceptionV3 60.70% 0.5027 

Xception 62.21% 0.4893 

InceptionResnetV2 64.76% 0.5506 

Kaggle DenseNet-201 84.95% 0.7402 

ResNet-18 76.82% 0.6550 

VGG-16 74.09% 0.6113 

InceptionV3 71.83% 0.5929 

Xception 74.02% 0.6175 

InceptionResnetV2 71.24% 0.5880 

KVASIR DenseNet-201 70.22% 0.6991 

ResNet-18 69.12% 0.6243 

VGG-16 67.15% 0.5325 

InceptionV3 61.50% 0.5045 

Xception 60.19% 0.5864 

InceptionResnetV2 59.76% 0.5436 
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Table 5.6: Results for different CNN feature extractors followed by a GAP layer with 

SVM 

 

 

 

 

 

Dataset Pretrained CNN Accuracy F1-Measure 

DIABRET DenseNet-201 68.02% 0.6283 

ResNet-18 66.76% 0.5941 

VGG-16 64.57% 0.5747 

InceptionV3 58.38% 0.5254 

Xception 60.55% 0.5342 

InceptionResnetV2 59.55% 0.5419 

Kaggle DenseNet-201 84.06% 0.7705 

ResNet-18 74.16% 0.6369 

VGG-16 71.67% 0.6041 

InceptionV3 69.46% 0.5823 

Xception 70.48% 0.6010 

InceptionResnetV2 67.47% 0.5612 

KVASIR DenseNet-201 72.42% 0.7204 

ResNet-18 70.53% 0.6971 

VGG-16 69.41% 0.6738 

InceptionV3 64.83% 0.6499 

Xception 61.25% 0.5942 

InceptionResnetV2 60.78% 0.5812 
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Table 5.7: Results for different CNN feature extractor followed by a GAP layer and 

SVD with SVM 

 

 

 

 

 

Dataset Pretrained CNN Accuracy F1-Measure 

DIABRET DenseNet-201 71.34% 0.6520 

ResNet-18 69.43% 0.6213 

VGG-16 68.80% 0.5997 

InceptionV3 61.70% 0.5407 

Xception 65.64% 0.5754 

InceptionResnetV2 64.78% 0.5772 

Kaggle DenseNet-201 85.27% 0.7790 

ResNet-18 80.37% 0.6621 

VGG-16 78.63% 0.6147 

InceptionV3 75.49% 0.5971 

Xception 76.98% 0.6266 

InceptionResnetV2 75.00% 0.5943 

KVASIR DenseNet-201 79.52% 0.7830 

ResNet-18 77.82% 0.7431 

VGG-16 73.51% 0.6998 

InceptionV3 69.50% 0.6569 

Xception 64.94% 0.6033 

InceptionResnetV2 62.51% 0.5976 
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Table 5.8: Results for different CNN feature extractors with Random Forest 

 

 

 

 

 

Dataset Pretrained CNN Accuracy F1-Measure 

DIABRET DenseNet-201 60.12% 0.4989 

ResNet-18 58.63% 0.4767 

VGG-16 51.64% 0.4663 

InceptionV3 54.93% 0.4819 

Xception 55.21% 0.4338 

InceptionResnetV2 60.36% 0.5045 

Kaggle DenseNet-201 70.59% 0.5459 

ResNet-18 68.03% 0.5364 

VGG-16 67.77% 0.5127 

InceptionV3 61.96% 0.4863 

Xception 63.86% 0.5435 

InceptionResnetV2 60.06% 0.5302 

KVASIR DenseNet-201 79.53% 0.7734 

ResNet-18 76.32% 0.7561 

VGG-16 74.65% 0.7088 

InceptionV3 70.36% 0.6743 

Xception 70.06% 0.6610 

InceptionResnetV2 67.56% 0.6286 
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Table 5.9: Results for different CNN feature extractors followed by a GAP layer with 

Random Forest 

 

 

 

 

 

Dataset Pretrained CNN Accuracy F1-Measure 

DIABRET DenseNet-201 68.09% 0.5562 

ResNet-18 67.21% 0.6214 

VGG-16 66.34% 0.5700 

InceptionV3 58.98% 0.5199 

Xception 60.19% 0.5166 

InceptionResnetV2 60.10% 0.5137 

Kaggle DenseNet-201 74.16% 0.6516 

ResNet-18 70.22% 0.6372 

VGG-16 69.11% 0.6137 

InceptionV3 64.87% 0.5381 

Xception 60.32% 0.4838 

InceptionResnetV2 61.60% 0.5287 

KVASIR DenseNet-201 80.05% 0.7964 

ResNet-18 78.91% 0.7652 

VGG-16 75.31% 0.7261 

InceptionV3 72.30% 0.6813 

Xception 70.15% 0.6714 

InceptionResnetV2 68.11% 0.6402 
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Table 5.10: Results for different CNN feature extractor followed by a GAP layer and 

SVD with Random Forest 

 

 

 

 

Dataset Pretrained CNN Accuracy F1-Measure 

DIABRET DenseNet-201 69.20% 0.6625 

ResNet-18 68.04% 0.6291 

VGG-16 67.62% 0.5815 

InceptionV3 62.98% 0.5546 

Xception 57.58% 0.4983 

InceptionResnetV2 60.78% 0.5377 

Kaggle DenseNet-201 77.18% 0.6525 

ResNet-18 71.72% 0.6014 

VGG-16 69.92% 0.5929 

InceptionV3 66.85% 0.5844 

Xception 65.34% 0.5555 

InceptionResnetV2 65.94% 0.5652 

KVASIR DenseNet-201 82.31% 0.8045 

ResNet-18 80.89% 0.7991 

VGG-16 78.52% 0.7601 

InceptionV3 74.93% 0.7092 

Xception 71.63% 0.6824 

InceptionResnetV2 69.05% 0.6541 
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5.3.1 Hyperparameter-tuning 

For the ANN model, hyperparameters were selected from the parameter space using 

the orthogonalization concept (a randomized search strategy). In this approach, we 

examined our five-fold cross-validation error and the training error results. If the 

training error is low (i.e. does not under-fit the data) but the gap between the training 

error and cross-validation error is high, we observed that our model failed to 

generalize to new examples. Hence, in order to deal with such an overfitting 

problem, we used regularization techniques such as dropout, L2 regularization, 

batch-normalization and normalize extracted features by removing the mean and 

scaling to unit variance. In contrast, if the training set is not performed well on the 

cost function, we first increased the number of epochs to run gradient descent longer. 

As the next step, we made an effort to use Adam optimizer for all the cases, because 

it leads to a much faster convergence time. However, we achieved the best results for 

the two datasets through SGD with momentum. We settled on a learning rate of 

0.001 for all of these situations because changing the learning rate below or beyond 

did not lead to noticeable improvements for our results. In addition to the 

aforementioned steps, we changed the number of hidden layers (1 to 3 layers) and 

neurons per layer (64, 128, 256 and 512) to improve our model performance. We got 

the highest prediction percentage over the five-fold cross-validation for a single 

hidden layer with ReLU activations (128 hidden units) ANN for our two datasets. 

In random Forest, we fine-tuned n-estimators, max features, min samples leaf, and 

max depth parameters through GridSearchCV, which is an exhaustive search strategy 

over specified parameter values for a given estimator. N-estimators denotes the 

number of trees in the random forest. Typically, the higher the number of trees the 

better to learn the model. Though adding a lot of decision trees slow down the 

training process and accuracy considerably, thus we did a hyper-parameter search to 

find the best number of trees. We used an array of values ranging from 100 to 1000 

by steps of size 100 for N-estimators. The best number of trees we have got was 500 

for both cases. Max depth denotes the depth of each tree in the forest. The deeper the 

decision tree, the more splits it has and it captures further information about the 
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dataset. We fitted each decision tree with depths (max depths) ranging from 5 to 35 

by steps of size 5. Min samples leaf is the minimum number of samples that required 

to be at a leaf node and we used the values ranging from 10 to 50 by steps of size 10. 

Max features denote the number of features to consider when looking for the best 

split and the values ranging from 10 to 150 by steps of size 10. The best values for 

max depth, min samples leaf, and max features were 5, 40 and 20 respectively for the 

best fit random forest model for the Vision Care dataset. For the Kaggle dataset, we 

achieved maximum accuracy with 10, 40 and 30 for the aforementioned hyper-

parameters respectively. 

Similarly, for SVM we used GridSearchCV to find the optimum values for the kernel 

(linear or RBF) and soft-margin parameter (C). In SVM, kernel supports to find a 

hyperplane in the higher dimensional space without increasing the computational 

cost much. We used linear and radial basis function as the kernels. For large values 

of soft-margin parameter C, the learning algorithm will select a smaller margin 

hyperplane if that hyperplane does a better job of getting all the training data 

classified properly. Conversely, a very small value of C will cause the algorithm to 

look for a larger margin separating hyperplane, even if that hyperplane misclassifies 

more data points. In our case, we used different values in the range of 0 to 1 (0.25, 

0.5, 0.75, 1). Best classification accuracy achieved with the linear kernel when C = 

0.5 and C = 0.75 for Vision Care and Kaggle datasets respectively. 

We used different batch sizes such as 8, 16, 32, 64 and 128. But we achieved 

maximum performance when we use mini-batch size as 64. 

5.4 Comparison Models for the Classification Task 

In order to perform a proper comparison of our proposed approach relative to the 

current state-of-the-art classification approaches, we used three deep learning models 

from the literature and we evaluated them using our two retinal datasets. This section 

describes the models that we used for the comparisons and Table 5.11 summarizes 

the obtained results. 
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5.4.1 Method 1 : ResNet-152 + DenseNet-161 + ANN 

For the first model, we used the ensemble CNN-based approach based on pretrained 

ResNet-152 and DenseNet-161 described in [92] to extract the features and feed into 

a single hidden layer ANN. We achieved the best performance for the SGD 

optimizer with a 0.001 learning rate and 32 hidden neurons with ReLU activation. 

We used 200 epochs in order to train the model. All weights in the ANN were 

initialized using the Xavier initialization scheme. 

5.4.2 Method 2: Ensemble of ResNet-50 and Inception V3 

Shahin et.al [93] have proposed a deep ensemble CNN based architecture to classify 

the seven different types of skin lesions. They have used two pre-trained CNN 

architectures namely Inception V3 and ResNet-50 in their architecture. They 

calculated the average of the output probabilities from the previously mentioned 

CNNs and choose the class with the highest probability. We implemented this 

architecture and trained on our two DR datasets. We could achieve the highest 

accuracies with the learning rate of 0.001 along with Adam optimizer and in 100 

epochs. We used ImageNet pre-trained weights in order to initialize the network 

parameters for the convolutional blocks. The mini-batch size was set to 32 for both 

models. 

5.4.3 Method 3 : Ensemble of AlexNet and GoogLeNet + PCA + one-vs-one 

multi-class SVM 

Kumar et.al [94] have developed a deep ensemble technique to classify the medical 

images. Their high-performance model architecture consists of AlexNet and 

GoogLeNet feature extractors, Principle Component Analysis (PCA) as a feature 

selector and a one-vs-one multi-class SVM as the classifier. They extracted features 

from the fine-tuned GoogLeNet and AlexNet and then fed them to a one-vs-one 

multi-class SVM classifier for the training. The feature vectors extracted from each 

CNN have concatenated to form a single-dimensional vector. In order to reduce the 

dimensionality, they used PCA. We used this architecture with our DR datasets and 
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we could achieve the best accuracy with Adam optimizer, 0.005 learning rate, and 

dropout 0.5 in 400 epochs. 

We use the same strategy with stratified cross-validation as described in section 4.2 

to handle class imbalance problems when we train the aforementioned three 

classifiers. 

5.5 Ensemble Classifier Evaluation and Results 

In order to train our proposed ensemble classifier, we used each training set of our 

datasets. The corresponding test sets used to estimate the unbiased performance of 

the generalized models. We used two main metrics namely accuracy and F1-score for 

the performance evaluation of the proposed CNN ensemble approach on the three 

datasets. Moreover, we used three comparison models described in section 5.4 in 

order to compare the performance of our proposed approach. 

Table 5.11: Our approach with comparison models 

Approach Dataset Accuracy F1-Measure 

Our ensemble method 

DIABRET 98.69% 0.9867 

Kaggle 98.63% 0.9834 

KVASIR 97.38% 0.9721 

Method 1  

(see section 5.4.1) 

DIABRET 83.28% 0.8176 

Kaggle 89.60% 0.8736 

KVASIR 86.09% 0.8132 

Method 2 

(see section 5.4.2) 

DIABRET 77.81% 0.7377 

Kaggle 81.33% 0.7651 

KVASIR 79.55% 0.7493 

Method 3 

(see section 5.4.3) 

DIABRET 85.47% 0.8510 

Kaggle 90.48% 0.8926 

KVASIR 88.61% 0.8508 

The experimental results in terms of the aforementioned evaluation metrics are 

shown in Table 5.11. As indicated by the outcomes that appeared in Table 5.1 to 
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Table 5.11, our proposed novel CNN architecture achieved a higher classification 

accuracy and F1-measure of over 98% compared to the comparison models and 

single CNN model architectures depicted in sections 5.2 and 5.3. In order to further 

understand how the classification is performing with respect to individual classes for 

each test set, we have provided F1-measure as shown in Table 5.12. 

Table 5.12: F1-measure for individual classes 

 

 

 

 

 

 

 

 

 

 

 

5.6 Retrieval Model Evaluation and Results 

We demonstrate the experimental results of the proposed image retrieval method 

throughout this section. In order to analyze the quality of our proposed approach, we 

used three evaluation metrics namely, mean Average Precision (mAP) with different 

Dataset Class Label F1-Measure 

DIABRET Diabetes without Retinopathy 0.9971 

Mild-NPDR 0.9922 

Moderate-NPDR 0.9881 

Severe-NPDR 0.9598 

PDR 0.9963 

Kaggle Diabetes without Retinopathy 0.9957 

Mild-NPDR 0.9905 

Moderate-NPDR 0.9876 

Severe-NPDR 0.9483 

PDR 0.9949 

KVASIR Dyed-lifted-polyps 0.9701 

Dyed-resection-margins 0.9636 

Esophagitis 0.9954 

Normal-cecum 0.9568 

Normal-pylorus 0.9342 

 Normal-z-line 0.9869 

 Polyps 0.9981 

 Ulcerative-colitis 0.9717 
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hash code length by setting the number of neurons in the sigmoid layer, precision-

recall curves, and Precision curves with respect to different numbers of top returned 

images. Moreover, We compared the performance of our proposed approach against 

seven state-of-the-art hashing techniques, including two unsupervised approaches 

namely LSH [31] and SH [40], two shallow supervised approaches KSH [33] and 

MLH [39], and three deep supervised approaches DNNH [41], DHN [42], and 

DLBHC [32]. Even though the deep learning-based state-of-the-art approaches 

demonstrate significant improvements, they were still inferior to our proposed 

retrieval approach (see results below). This indicates that our proposed deep 

supervised approach is much more beneficial than the comparison models. The 

performance gaps among state-of-the-art-approaches and the proposed approach are 

based on the model architecture. All techniques use similar training and test sets for a 

fair comparison. 

5.6.1 Results on the Retinal Dataset 

In order to evaluate the accuracy and the quality of our retrieval approach, we use 

our test dataset as the query images and extracted top-ranked similar images for 

quantitative evaluation. In Figure 5.2, we illustrate three sample queries with 

different DR severity stages and the top five corresponding retrieved examples using 

our deep CNN ensemble approach. 

We directly used the image pixels as input for the deep learning-based techniques 

including DHN, DNNH, and DLBHC. For the shallow learning-based techniques, we 

use the same approach as mentioned in [33] and [95] in order to represent each image 

by a 512-dimensional GIST vector.   



66 

 

 

Figure 5.1: The results of comparison methods on the retinal and KVASIR datasets: 

(a)-(b) precision-recall curves @ 28-bits; (c)-(d) precision w.r.t. top returned samples 

curves @ 28-bits 

The results of LSH are gained through our own implementation. The mAPs of the 

other baseline approaches are achieved through the open-source implementations 

provided by the corresponding authors. Moreover, we fine-tune each CNN 

architecture DNNH, DHN, and DLBHC up to 600 epochs with mini-batch Stochastic 

Gradient Descent (SGD) algorithm. We set the momentum of 0.9 and continue the 

training process with stratified cross-validation in order to give a fair comparison 

with our approach. We used a 0.0001 learning rate and a mini-batch size of 64. We 

set the L2- regularize parameter to 0.005 for penalizing the large weights. 

We set the number of neurons with sigmoid activation in that layer to 28, 64, 128 and 

256 to measure the effectiveness of the sigmoid layer in the ANN. Then, we apply 

the same configuration as described in the latter part of section 4.3 to train our model 

on the retinal dataset. Our approach with 28 and 64 sigmoid neurons achieved 

99.30% mAP as shown in Table 5.13 and performs well against most of the test 
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images. We achieved 97.26% and 95.71% mAPs for 128 and 256 hash code lengths 

respectively for the top twenty returned images. This may be due to the over-fitting 

of our model when adding more neurons (such as 128 and 256 neurons) to the hidden 

layer. The experimental results are shown in Table 5.13 realize that the Hamming 

space becomes increasingly sparse and very few data points fall within the given 

Hamming ball when using longer binary hash codes. This explicates why our 

approach reaches the best performance for the relatively compact hash codes. Such 

compact binary representations are beneficial to save space whereas preserving 

retrieval accuracy. 

Moreover, compared to the LSH, SH, KSH, MLH, DNNH, DLBHC and DHN our 

approach produces similarity-preserving binary hash codes using the retinal dataset 

with higher accuracy. 

Table 5.13: Comparison of mAP of our approach with different hashing methods for 

the retinal dataset for top 20 returned images 

Hashing method 28-bits 64-bits 128-bits 256-bits 

Our approach 99.30% 99.30% 97.26% 95.71% 

DHN 90.71% 86.75% 86.91% 87.84% 

DNNH 83.37% 86.03% 85.78% 86.85% 

DLBHC 82.45% 84.07% 84.40% 83.87% 

KSH 73.33% 71.71% 71.71% 77.16% 

MLH 67.24% 69.88% 70.13% 70.47% 

SH 65.31% 65.67% 62.11% 61.24% 

LSH 39.19% 43.38% 45.12% 51.07% 
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Figure 5.2: Top five returned results from the retinal image dataset 

5.6.2 Results on Another Medical Dataset 

We further test it on another medical image dataset called KVASIR [88] in order to 

demonstrate the effectiveness and efficiency of our approach. This dataset comprises 

8000 Gastrointestinal tract images through the endoscopic process and these 

imageries are further categorized into eight different classes based on the anomaly 

type.  

First, we have done our experiment with the classification task by setting 128 hidden 

layer neurons with ReLU activation and eight neurons with softmax activation for 

the classification layer of the ANN classifier. We then fine-tuned our classifier with 

stratified cross-validation using the entire training dataset. After 400 epochs, our 

proposed approach achieved 95.03% testing accuracy for the classification task. 

During the next stage, we extracted features from the above-trained classifier and fed 

it into another single hidden layer ANN as described in section 4.4.1 in order to learn 

similarity preserving compact binary hash codes. Finally, we evaluated the retrieval 
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performance with respect to the KVASIR dataset and achieved 97.87% maximum 

mAP for the 28-bit hash code length as shown in Table 5.14. In Figure 5.3, we 

demonstrate three sample queries with different Gastrointestinal tract anomaly types 

and the top five corresponding retrieved examples using our deep CNN ensemble 

approach. 

Table 5.14: Comparison of mAP of our approach with different hashing methods for 

KVASIR dataset for top 20 returned images 

Hashing method 28-bits 64-bits 128-bits 256-bits 

Our approach 97.87% 96.41% 95.65% 94.01% 

DHN 91.11% 89.59% 88.19% 88.85% 

DNNH 88.66% 88.15% 87.04% 85.93% 

DLBHC 80.27% 84.83% 84.41% 82.95% 

KSH 75.69% 69.15% 73.54% 74.81% 

MLH 63.16% 67.58% 65.23% 69.91% 

SH 57.18% 56.42% 57.35% 55.77% 

LSH 35.71% 39.95% 41.29% 44.33% 

 

Figure 5.3: Top five returned results from KVASIR image dataset 
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Figure 5.1 shows the experimental results of precision-recall curves (see (a) and (b) 

in Figure 5.1) and precision curves with 28-bits relative to the different numbers of 

top returned images (see (c) and (d) in Figure 5.1) on the retinal and KVASIR 

datasets respectively. Moreover, these curves demonstrate that our proposed novel 

technique generally beats CNN-based comparison hashing techniques by a 

considerable margin and the conventional hash learning methods by a large margin 

for both datasets. Our approach is desirable for precision-oriented content-based 

image retrieval systems since it accomplishes particularly decent results at lower 

recall levels for both datasets. 

5.7 Summary 

This chapter describes the experimental results and model evaluation for our two 

tasks defined according to the objectives of this research to accomplish the 

classification model to predict the severity stages of the diabetic retinopathy and 

similar case(s) retrieval for a given query image. We used two main metrics namely 

accuracy and F1-score for the performance evaluation of the proposed CNN-based 

classification architecture and used three evaluation metrics to evaluate our retrieval 

model namely, mean Average Precision (mAP) with different hash code length by 

setting the number of neurons in the sigmoid layer, precision-recall curves, and 

Precision curves with respect to different numbers of top returned images. Moreover, 

this chapter gives a detailed experimental analysis and evaluation relative to the 

recently published studies. 
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6. CONCLUSION 

This chapter elaborates on the contribution related to this dissertation and future 

directions. The contribution of this dissertation depends on the two tasks, in 

particular, the classification and retrieval approach based on the objectives of the 

thesis. The last section describes the future work of this research study. 

6.1 Contribution 

Early detection of DR by examining retinal images is in high demand as various 

individuals are left out from the medicinal services because of limited resources, 

especially in provincial territories, for example, qualified clinicians or suitable 

equipment. Conversely, the conventional DR diagnosing framework requires a 

manual evaluation process, which is monotonous and depends overwhelmingly on 

the aptitude of ophthalmologists and well-trained practitioners. In addition, the 

present structure will end up being altogether deficient because of the number of 

people with diabetes increases. Hence, automatic severity stage classification and 

similar case(s) retrieval from a retinal image database can be used for screening and 

treatment prioritization in order to assist and accelerate the clinical decision-making 

process for DR to diminish irreversible vision loss among diabetic patients. 

There is space for further improvement of classification and retrieval models of DR 

compared to the previous studies that have been proposed by numerous research 

groups and it can be done by tuning hyperparameters or an ensemble of pretrained 

CNNs as feature extractors or using an ensemble learning approach through weak 

learners.  

In order to overcome the limitations mentioned in 2.2 and 2.3, this research 

introduced an ensemble model based on transfer learning with CNNs for the 

classification and content-based image retrieval tasks. A concatenated deep feature 

vector was produced by an ensemble of pretrained CNNs (ResNet-18, VGG-16, and 

DenseNet-201) in order to predict five-class severity levels of diabetic retinopathy. 

Moreover, we describe a dimensionality reduction technique with the combination of 
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GAP and SVD in order to reduce processing time while preserving classification 

accuracy. A global average pooling layer was applied after the last pooling layer of 

each pretrained CNN before performing the feature extraction. Next, we 

concatenated extracted features of each pretrained CNN, normalized and then applied 

truncated SVD. Due to the usage of this combination, we could overcome the over-

fitting problem while maximizing the F1-measure compared to the current state of 

the art techniques. The proposed method with pretrained CNNs shows a promising 

F1-measure of over 98%. 

Moreover, this classification approach was extended to a retrieval model, which 

learned good image signatures in order to represent the retinal images as well as a 

hash function through an ensemble CNN model for retinal image retrieval of diabetic 

retinopathy. The proposed retrieval model architecture with pretrained CNNs shows 

a considerable improvement compared to the other several recently published 

hashing techniques on the retinal and KVASIR datasets. 

6.2 Future Works 

This dissertation presents considerable improvements to the retinal image 

classification and content-based image retrieval tasks for diabetic retinopathy when 

compared to the previous studies described in section 2. Hence, there are numerous 

directions that can be engaged in future research studies. These future directions are 

described as follows. 

A large clinical evaluation of the proposed classification and retrieval techniques can 

be undertaken for further validation to make commercialized software to analyze the 

diabetic retinopathy. This computerized analysis of fundus images allows better 

identification of the progress of the disease, enabling early treatment for the 

individuals. Moreover, a complete automated DR system can be developed in order 

to segment the normal (such as optic disc) and abnormal features through deep 

learning techniques, to analyze the quality of images. 
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