
DESIGN AND IMPLEMENTATION OF A LIGHT

WEIGHT, SCALABLE AND ASSISTIVE APPLICATION

PROGRAMMING INTERFACE FOR INTERNET OF

THINGS

Ahesh Perera

(168251M)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

June 2018

DESIGN AND IMPLEMENTATION OF A LIGHT

WEIGHT, SCALABLE AND ASSISTIVE APPLICATION

PROGRAMMING INTERFACE FOR INTERNET OF

THINGS

Hetti Arachchige Ahesh Suranga Perera

(168251M)

Thesis submitted in partial fulfillment of the requirements for the degree

Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

June 2018

i

DECLARATION

I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another person

except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and

distribute my dissertation, in whole or in part in print, electronic or other medium. I

retain the right to use this content in whole or part in future works (such as articles or

books).

Signature: ……………… Date: ……………….

Name: H.A.A.S. Perera

The above candidate has carried out research for the Masters Thesis under my

supervision.

Name of the supervisor: Dr. Indika Perera

Signature of the supervisor: …………………………. Date: ……………….

ii

Abstract

Cloud computing and Internet of Things (IoT) brings various physical devices which generate
and exchange data with the services promoting the integration between the physical world and
the computer world into a single common page. Together they have been providing various
applications, use cases and services over the past few years, that has made a significant benefit
on both industrial applications as well as day to day needs of humans.

On the other side of the coin, programming of the IoT based applications has become very
challenging due to the vast knowledge base required in various technical domains, from low-
power networking to the embedded operating systems, from low level calculations to the
distributed algorithms and so on. It is certain that a well designed, reliable and scalable, easy
configurable and high performance Application Programming Interfaces (APIs) are much
needed in this paradigm to offer sophisticated services for an IoT cloud. APIs are generally
exposed to its consumers as service endpoints to get pre-defined jobs done, and are offering
convenient ways for developers to design and implement applications as well as vendors
(OEMs) to design and manufacture their devices.

In this research I have mainly focused and discussed about the true challenges, issues and the
concerns that we may face when designing and implementing high performance APIs for IoT
cloud. I have also elaborated the technical and theoretical limitations come along with the
performance issues in such APIs. Most importantly I have tried to design a platform for small
start-ups who start developing their IoT based products with a limited knowledge, time, funds
and resources so that they can build their products without worrying about the production level
challenges in terms of scaling and performance once the business is grown up.

This research will provide a solution for most of the challenges when it comes to IoT cloud in
terms of self configurations and elasticity with auto scaling whilst keeping better performance.
Considering the massive variety of devices and the resource constraints we have in IoT, an
architecture has been proposed for devices to be self-configured to the maximum extent with the
API. The proposed solution will have a well designed RESTful API which comes in plug-and-
play mode with developer convenience, supporting horizontal scaling as and when needed. In a
nut-shell this gives a framework which takes care of all the architectural level challenges and
best practices in IoT cloud where the engineering team focuses more on the business and the
product.

iii

ACKNOWLEDGEMENTS

I am grateful to Dr. Indika Perera, my supervisor for accepting my research under his
supervision and for the guidance, continuous support and the direction given throughout
to make this research a success.

My sincere appreciation goes to my family for the support and the motivation given for
making this thesis a success.

I would also like to thank my colleagues at work place, Sysco Labs for spending their
valuable time with me to discuss about my research and opening gates to discover new
areas.

Finally, I wish to thank all the academic and nonacademic staff of Department of
Computer Science and Engineering, University of Moratuwa and my colleagues of
MSC’16 batch for the support and encouragement provided throughout past 2 years.

iv

TABLE OF CONTENTS

DECLARATION i	

Abstract ii	

ACKNOWLEDGEMENTS iii	

TABLE OF CONTENTS iv	

LIST OF FIGURES viii	

LIST OF TABLES x	

LIST OF ABBREVIATIONS xi	

Chapter 1	 INTRODUCTION 1	

1.1	 Background 2	

1.2	 APIs are Driving the Internet of Things 3	

1.3	 Common IoT Challenges 4	

1.4	 Problem Statement 5	

1.5	 Motivation 6	

1.6	 High Level Research Objectives 8	

Chapter 2	 LITERATURE REVIEW 10	

2.1	 IoT based related work 11	

2.2	 Web Service Protocol for Interoperable IoT Tasking Capability 11	

2.2.1 Capabilities of IoT 12	

2.2.2 IoT Architecture 13	

2.3	 Integrated Middleware Framework for Heterogeneous Internet of Things 14	

2.3.1 Requirements of M2M APIs for IoT Architecture 15	

2.3.2 Convergence of M2M APIs to RESTFul Web services 16	

2.4	 Web API Management Meets the Internet of Things 17	

2.4.1 Challenges for the Internet of Things and Web APIs 18	

2.4.2 IoTGw - an API Gateway for IoT protocols 18	

2.5	 Problems and Limitations when designing a WEB-API of IOT 20	

2.5.1 Implementation issues 20	

v

2.6	 A Self-Configuration Architecture for Web-API of IoT 21	

2.6.1 Requirements of WEB APIs in IoT 21	

2.6.2 Related work 24	

2.6.2.1	 ThingSpeak 25	
2.6.2.2	 NimBits 25	
2.6.2.3	 Cosm 25	
2.6.2.4	 SensorCloud 25	
2.6.2.5	 Evrythng 26	
2.6.2.6	 iDigi 26	
2.6.2.7	 GroveStreams 26	

2.7	 Ad Hoc Networks 27	

2.7.1 Data Confidentiality 28	

2.7.2 Privacy 28	

2.7.3 Trust 29	

2.8	 RESTful Sensor Data Back-end 31	

2.9	 WSO2 IoT Server 33	

2.9.1 Architecture 34	

2.9.2 Limitations for the target group 36	

Chapter 3	 METHODOLOGY 37	

3.1	 Proposed Solution 38	

3.2	 Components 40	

3.2.1 Cloud API 40	

3.2.2 Front End Dashboard 40	

3.2.3 Device / Agent 40	

3.3	 Cloud API 41	

3.4	 Technology stack 42	

3.4.1 Node JS 42	

3.4.2 JSON 43	

3.4.3 Mongo DB 44	

3.5	 High Level Modular Architecture 44	

3.6	 How does this work? 46	

vi

3.6.1 IoT devices registration 46	

3.6.2 Agents registration 46	

3.7	 Evaluation Plan 48	

3.7.1 API performance 48	

3.7.2 Ability to scale 48	

3.7.3 Accuracy of the configuration scripts 49	

Chapter 4	 SOLUTION ARCHITECTURE AND IMPLEMENTATION 50	

4.1	 Solution Architecture 51	

4.2	 Implementation 52	

4.2.1 Cloud API 53	

4.2.2 Agent API 54	

4.3	 How does Scaling work? 55	

4.3.1 Database layer 56	

4.3.2 Configurations Scripts store 56	

4.3.3 API Service layer 56	

4.3.4 Congestion Controller / Queue Management Layer 56	

4.3.5 Front End Application 57	

4.3.6 Analytics Engine 58	

4.4	 Sample Results 58	

4.4.1 How will Agent send data? 59	

4.4.2 How will Cloud API receive data? 59	

4.4.3 How will Database save data? 60	

4.5	 Best Practices 61	

Chapter 5	 SYSTEM EVALUATION 63	

5.1	 How was the evaluation done? 64	

5.2	 Tools used for the evaluation 65	

5.2.1 How K6 works? 65	

5.2.2 Sample Evaluation Results for API Performance 67	

5.3	 Ability to Scale 70	

vii

5.3.1 What is PM2? 70	

5.3.2 Sample Evaluation Results in terms of Scaling ability 71	

Chapter 6	 CONCLUSION 77	

6.1	 Research Contributions 78	

6.2	 Research Limitations 78	

6.3	 Future Work 79	

REFERENCES 80	

viii

LIST OF FIGURES

Figure 2-1 : Architecture of Internet of things ... 14	
Figure 2-2 : Overall System Architecture .. 19	
Figure 2-3 : Graphical representation of security challenges in Internet-of-Things 30	
Figure 2-4 : Overview of the first PHP-based RESTful IoT Back-end prototype 32	
Figure 2-5 : High level System Architecture of WSO2 IoT Server 35	
Figure 3-1 : High-level Architecture of the system ... 39	
Figure 3-2 : Modular Architecture of the API ... 45	
Figure 3-3 : Registration process ... 47	
Figure 4-1 : Components diagram of API .. 52	
Figure 4-2 : Source Structure of Cloud API .. 53	
Figure 4-3 : Source Structure of Agent API .. 54	
Figure 4-4 : Components level scaling architecture .. 55	
Figure 4-5 : LM-35 .. 58	
Figure 4-6 : Console logs when agent sends data to Cloud API 59	
Figure 4-7 : Console logs when Cloud API receives the same data 60	
Figure 4-8 : Database snapshot of current data set .. 61	
Figure 5-1 : 10 Virtual users send request per second for 5 seconds 66	
Figure 5-2 : 1000 Virtual users send request per second during 10 seconds for 4 times . 68	
Figure 5-3 : Average values for 1000 users , send requests during 10 Seconds for 4 times
.. 69	
Figure 5-4 : PM2 shows a single node process is running in cluster mode 71	
Figure 5-5 : HTOP shows how the CPU and the memory are utilized for single node
process .. 71	
Figure 5-6 : Average values for 1000 users , send requests in 10 Seconds in a single
instance .. 72	
Figure 5-7 : HTOP shows how the CPU and the memory are utilized for two node
processes .. 72	
Figure 5-8 : PM2 shows that 2 node processes are running in cluster mode 72	
Figure 5-9 : Average values for 1000 users, send requests during 10 Seconds in 2
instances ... 73	
Figure 5-10 : HTOP shows how the CPU and the memory are utilized for 4 node
processes .. 73	
Figure 5-11 : PM2 shows that 4 node processes are running in cluster mode 73	
Figure 5-12 : Average values for 1000 users , send requests during 10 Seconds in 4
instances ... 74	

ix

Figure 5-13 : HTOP shows how the CPU and the memory are utilized for 8 node
processes .. 74	
Figure 5-14 : PM2 shows that 8 node processes are running in cluster mode 74	
Figure 5-15 : Average values for 1000 users, send requests during 10 Seconds in 8
instances ... 75	
Figure 5-16 : Sent and Received data variation against number of clusters 76	

x

LIST OF TABLES

Table 3-1 Initially identified modules 38	
Table 5-1: K6 Built in Matrices 67	

xi

LIST OF ABBREVIATIONS

Abbreviation Description

OEM
WWW

Original Equipment Manufacturer
World Wide Web

IoT
RFID
ITU

Internet of Things
Radio Frequency Identification
International Telecommunication Union

API
M2M
REST
SDK

Application Programming Interfaces
Machine to Machine
Representational State Transfer
Software Development Kit

SLA Service Level Agreement
HTTP
MQTT
CoAP

IOT-OAS
ROM
XML

YAML
JSON
URI
IP

IDE
LAN
URL

XMPP

Hypertext Transfer Protocol
MQ Telemetry Transport
Constrained Application Protocol
IoT Open Architecture System
Read Only Memory
Extensible Markup Language
Yet Another Markup Language
JavaScript Object Notation
Uniform Resource Identifier
Internet Protocol
Integrated Development Environment
Local Area Network
Universal Resource Locator
Extensible Messaging and Presence Protocol

1

Chapter 1 INTRODUCTION

2

Today Cloud computing, Semantic Web and mobile devices along with the enormous

bandwidth capacity have come to the next level of the WWW which is now known as an

enormous global computer. The Web has come a long way over the past 10,000 days,

and the predictions of Kevin Kelly has become true in many ways [47]. According to

him our mobile phones, tablets, watches, wearable, TVs and all portals are coming into

this single supercomputer, known as the Web. The most impactful change that has

happened since Kelly’s Ted talk in 2007 [47], has been the massive explosion of mobile

devices. Siri from Apple Inc. [48] is an amazing example for this where he predicted a

years ago.

The Internet of Things (IoT) is an infrastructure that interconnects uniquely-identifiable

devices though the Internet. It is not a brand new concept though it is attracting attention

from various fields. From the early stage of the 21st century when the internet was not

so popular and had no bandwidth like today, similar concepts were proposed, and some

related communication technologies like the radio, barcodes, the Internet and radio

frequency identification (RFID) were also invented [1,2]. But those ideas weren’t so

popular and come to an actual implementation level due to the limitations we had back

in the days as above.

At the very early stage of the IoT, the main focus was to identify and track every

physical thing, and many applications such as warehouse management and logistics

applications applied RFID technology to prove the concept [1,3] but not in the mass

scale level as an industry.

1.1 Background

The Internet of Things is the part of the Internet that is made up of “Uniquely

Identifiable Embedded Computing Devices” as Wikipedia states. Just like the World

Wide Web runs over the Internet, so does the IoT. Similarly, the way of becoming the

Web is a mesh of computers, so does the IoT. The billions of devices in the IoT such as

3

the little computers embedded in thermostats, house keys, baby monitors, trash cans, fire

extinguishers give us insights and access to a massive amount of data of the

environments where those devices are placed.

With the advances of communication and sensor technologies in the recent past years,

the definition and scope of IoT have been extended. For an example, the International

Telecommunication Union (ITU) defined the IoT as “A global infrastructure for the

information society, enabling advanced services by interconnecting (physical and

virtual) things based on existing and evolving interoperable information and

communication technologies” [4].

For the IoT to take off and grasp the industry at a higher level, the programming of IoT

devices needs to be as easy as scripting a simple Web application. At the same time for

IoT to be useful, the devices that make up this mesh of computers must be connected to

the cloud where users can access from anywhere. The easiest and efficient way that we

can achieve this is through an Application Programming Interface (API).

Cloud-based services are the way in which the IoT is connected to the data we collected

from various IoT devices. APIs are the bridges which have IoT on one side, useful

information and plenty of data crunching capabilities on the other side. APIs make IoT

useful, turning limited little things into a powerful portals of possibilities.

1.2 APIs are Driving the Internet of Things

APIs are the inter-connector which provides the interface between the Internet and the

Things. Java World’s Andrew Oliver [49] calls APIs “The glue and interesting part

where the Internet of Things starts to become useful and more than a buzzword.” APIs

are exposing the data that enables multiple devices to be combined and connected to

solve new and interesting workflows. A solid, well-designed Machine to Machine

(M2M) API will provide the basis for the simplified management of resources.

4

Additionally, the main advantage of such an API is that it is providing the abstraction

layer necessary to realize the interactions between IoT devices uniformly. The starting

point for defining the actual services for the IoT endpoints should be exposed via this

M2M APIs.

Inevitably the Internet of Things will need to engage with Web APIs. Of course, many

IoT devices have been already doing this, but the current usage has become very limited

compared to the the full potential. Currently, most of the IoT devices are connected to

services that are created by the provider of the hardware, and so they are using private

APIs. There are a set of companies that are providing common cloud services and

corresponding APIs for IoT such as Xively [5]. Also there are some emerging API

standards for IoT devices to communicate with other sources such as HyperCat [6].

However, the strength of the IoT will be emerged when data from multiple sources can

be aggregated, analyzed and acted upon. This will create a much greater demand for IoT

devices to communicate with open Web APIs.

1.3 Common IoT Challenges

As more and more devices are connected to the internet, however, certain recurring

problems must be solved. Overcoming the challenges presented by the IoT is hard.

There is a lot of protocols to know, computer engineering to do, odd legacy systems to

deal with, and a bunch of bit twiddling. Providing an API that achieves critical mass is

also really hard.

Platform dependency and the necessity of having vast area of knowledge base are major

issues we need to address. We can either continue to address these over and over again,

or we can develop a common solution like a framework for the challenges introduced by

the IoT everyday.

5

An important part of solving these problems is being addressed at the API layer. If we

can make APIs interoperable, secure, scalable, well-documented, and discoverable, we

have come a long way in solving many of the difficulties brought by the IoT. We also

need to find reusable ways of building secure and persistent, real-time communication

between these cloud-based services and the little devices running on the IoT.

1.4 Problem Statement

The research challenges I have identified of which will prevent us having a single self-

configurable easy set-up platform or an Application Programming Interface for IoT can

be pointed out as below.

1. What is the best architecture of the API where we have all the required modules

at the minimal level to start off an IoT start-up?

2. Does our initial system allow us to continue adding more devices as we move on

while supporting to different types of devices to be self-configured as easy as

plug and play?

3. If the business needs to scale it up over time, does our initial product or the

platform have all the required components which supports scaling up with a

minimal time and effort?

4. Can our system be high performance all the time?

5. Does this product facilitate for a dashboard of reliable tracking and monitoring of

the connected devices for end users?

6

Therefore, it’s clearly visible that there is a high demand and a need of having a cloud

based API where users can plug and play with their devices with minimal installations as

well as auto configurations up to the maximum extent given that the API is capable

enough of supporting different types of IoT devices and sensors.

At the same time the API should be able to scale up whenever there is a demand in

compliance with the industry standard and the best practices so that the developers can

pay more attention on their business rather than spending time to re-design the existing

product.

1.5 Motivation

Even though there are many researches going on in this particular area of the field and

many work have already been carried out by the other researchers, still there is a plenty

of things left to discover. Also it’s always a challenging to deal with IoT based

applications where everyday we see new things coming in to the market and the

evolving industry, hence people are always in a need of getting a one single platform

where they can easily plug and play with the new devices, sensors and so on.

IoT will allow new business sectors to emerge and new products to be created.

Embedded electronics and everyday objects will come together to create new products.

When the smart devices are created to follow universal standards, it may perhaps also

give rise to services similar to app-stores. With a number of interconnected smart

devices available, the users will be able to buy, download and install software to get new

functionality.

7

For manufacturers and companies, IoT will bring wide applicability in existing sectors

and provide new opportunities. For instance, by adding Radio- Frequency Identification

(RFID) to products, or carts moving products around, companies are able to track their

journey through the supply-chain and monitor parameters like temperatures and bacterial

composition. This allows retailers to keep track of their inventory in real-time and

guarantee the required quality final products, which will benefit both companies and

consumers.

Smart clothes monitoring health parameters, could serve workers in the health sector and

the patients by for instance combining various historical data to provide better

understanding of each individual’s health. With a common underlying communication

platform, IoT technologies will open up new business opportunities that will give rise to

new cross-cutting applications and services.

This area has a lot of business value as IoT is getting more popular day by day. Today

we see there is a lot of new start-ups are coming in in to the industry focusing on IoT,

but on the other hand they are lacking of the right resources, right guidelines towards a

successful and a reliable platform to start off at the beginning without considering the

facts which will come up later when the products get matured. So it’s a high cost for

them to decide what platform they need to build their product on at the early stages in

case if it needs a re-design or sometimes a re-engineering from the scratch.

Having said that, the exponential growth of the new technologies and the vast number of

opportunities over there with the current trends, Internet of things forced me to think of a

single, reliable and self-configurable API where most of the developers are dreaming of.

8

1.6 High Level Research Objectives

As per the research challenges I have identified and mentioned in the problem statement

section, the following list will be the high level objectives and the outcome of my

research.

• Identify the minimal set of components and the modules for the API to have in

order to start off an IoT based applications,

o provides the easiness of starting the development

o all the required modules should be there in case of scaling up later on

• Identify the limitations and the possible issues we get when we want to add

different devices from different vendors into the same system as we move on.

• Design a way of avoiding such limitations and a mechanism to continue adding

different devices whilst the API functions with high performance.

• Design and implement configuration scripts which allow multiple IoT devices to

be self configured up to the maximum extent as easy as plug and play with

minimal manual inputs.

• Design and implement an API which fulfils all of above objectives and supports

thousands of devices concurrently.

• Design and implement of a front end web application with a dashboard where

users can track the devices in terms of health and related information as well as

to generate reports as required.

9

• A comprehensive guideline and a documentation for the developers for easy

integration.

The next chapters will walk you through about how I achieved above objectives across

this research.

10

Chapter 2 LITERATURE REVIEW

11

2.1 IoT based related work

As many of the related research papers elaborates, the IoT is not only having a broad

impact on our everyday life in the near future, but also create a new ecosystem involving

a wide array of players such as device developers, service providers, software

developers, network operators, and service users. It facilitates the entrance into the IoT

related mass market, and establishing a global IoT ecosystem with the worldwide use of

devices and software.

Since the approaches towards an Internet of Things span various research fields. Here, I

have summarized in particular how existing IoT based applications have usually been

developed, what are the limitations and problems the researchers have come across, how

they have tried to resolve them while catering for the high demand with a reliable

services and also the opportunities that are available.

2.2 Web Service Protocol for Interoperable IoT Tasking Capability

Currently, IoT devices created by different manufacturers follow different proprietary

protocols and are locked in many closed ecosystems. This heterogeneity issue impedes

the interconnection between IoT devices and damages the potential of the IoT.

To address this issue, this research [7] proposes an interoperable solution called tasking

capability description that allows users to control different IoT devices using a uniform

web service interface. This research demonstrates the contribution of the proposed

solution by interconnecting different IoT devices for different applications.

12

2.2.1 Capabilities of IoT

In general, the IoT has two main capabilities [7]:

• Sensing capability

o The sensing capability monitors devices’ statuses or the environmental

properties of their surroundings. People can use different sensors to collect

not only the environmental properties like temperature, humidity, and

location information, but also the status of devices such as “On” or “Off”.

Generally, the sensing capability allows users to remotely monitor device

statuses and various properties through the internet, and consequently, users

can utilize the sensor observations to support automatic and efficient

applications [7].

• Tasking capability

o The tasking capability allows other devices or users to actuate devices via the

Internet so the users can easily control the devices to execute feasible tasks

remotely. While the sensing capability allows users to continuously monitor

the statuses of devices and the environmental properties, the tasking

capability can help users to make adjustments accordingly by controlling

devices remotely [7].

13

2.2.2 IoT Architecture

To understand and define the scope of this research, we need to look at the IoT

architecture. As shown in Figure 2.1, four main layers can be seen as Device Layer,

Gateway Layer, Web service Layer and the Application Layer [2].

• Device Layer

o Contains the devices connecting to the Internet, such as appliances and smart

sensors. With the ability to connect to the Internet, devices can upload sensor

observations to a web service or be controlled by users via the Internet.

However, devices can be divided into two types. The first type of device has

enough computation resource to directly connect to the Internet. The second

type of device is the device that is too resource-constrained to directly

connect to the Internet by itself.

• Web Service Layer

o Contains services that may receive data from gateways or directly from

devices. Different services may provide different functionalities, such as data

processing, data storing, data management and data querying. Application

Layer is where applications retrieve the resources from the Web services and

usually provide graphical user interfaces for users to operate and consume the

IoT data.

• Gateway Layer

o An additional layer called the Gateway Layer is required to serve as an

intermediate layer to connect the resource-constrained devices on one end

14

and connect to the Internet on the other end [7]. Usually, gateways act as a

translator converting the device protocol to the web service protocol and vice

versa.

Figure 2-1 : Architecture of Internet of things

2.3 Integrated Middleware Framework for Heterogeneous Internet of Things

This paper basically talks about their journey to develop IoT framework starting from

M2M APIs towards scalable service oriented architecture that leverages various

opportunities to develop various applications using the same. The paper discusses about

intrinsic characteristics of IoT with requirements of M2M APIs for IoT framework [10].

Some researchers think that IoT is for addressing physical objects and some think that

IoT is ubiquitous with feature of “everything connected, intelligently controlled and

15

anywhere covered”. In IoT, things can be classified as into two types i.e. physical things

which include objects, behaviors, tendencies and physical events and the virtual things

which include entities; actions that indicate the processing of virtual things and services

that are offered for certain goals.

Machine to Machine (M2M) is paradigm in which end to end communication is

executed without human intervention connecting various things to IT core network.

Here, things involve commercial terminals that act automatically or on remote request

[10].

2.3.1 Requirements of M2M APIs for IoT Architecture

Given the heterogeneous nature of the applications and device categories targeted in the

IoT, the M2M API concept needs to be adaptable to the capabilities and requirements of

the specific use case and can be categorized as:

• Requirements of communication

• Requirements of device control - includes the configuration of the device as well

as support for remotely activating, deactivating or updating the device

• Requirements of server and client communication models

• Requirements of device status monitoring

• Communication failure notification

• Device Capabilities

To address these challenges, the emerging IEEE 802.11ah specifications are proposing a

number of improvements and new features [13].

16

2.3.2 Convergence of M2M APIs to RESTFul Web services

According to the researches, we already witnessed the era of connecting machine-to-

machine. Today more communication service providers are opening infrastructure to 3rd

party developers through open APIs. Hence API growth rate converging towards

services from Web 2.0 is increased in past few years.

• M2M

o In M2M, the problem is constrained devices might not be connected all the

time and thus they cannot immediately interact to all transactions in the

network.

• REST

o REST is based on concept of resources identified by URI, hence it provides

placeholder to M2M device to store their states and data.

With the help of handling transactions in resource based communication, the REST

based architecture provides efficient solution to the problem in M2M network.

17

2.4 Web API Management Meets the Internet of Things

In this paper they have outlined the challenges of working with Web APIs for large scale

Internet of Things (IoT) projects. The key aspects of Web APIs and the active

management of them are:

• Publication of metadata

• Access control and key management aspects

• Monitoring and Monetization of the interactions as well as throttling of usage

They have proposed a model for solving these issues and also have outlined the creation

of a prototype system that implements that model with evaluated performance results

[11].

API Management is an emerging area that aims to solve multiple challenges with Web

APIs. These challenges include [11]:

• Publishing details of the APIs, documentation, SDKs and other human and

machine-readable material in a portal aimed at developers.

• Allowing developers to sign up, define application clients, subscribe to APIs and

test out Web APIs.

• Managing access control and authentication of API clients using “API keys” or

tokens.

• Throttling traffic to specific clients based on a Service Level Agreement (SLA)

• Monitoring the usage of specific clients in order to be able to limit access or

charge back for API usage.

In the area of providing API management for non-HTTP protocols, there is some work

on identity and access management.

18

However, these do not address the wider issues around API Management including

monitoring, key issuing, developer portals, and monetization.

2.4.1 Challenges for the Internet of Things and Web APIs

There is no accurate number of connected devices, but the best estimates all agree that

there are more devices currently than humans on the planet. Cisco forecasts that there

will be multi billion connected devices by 2020 [12].

The available approaches in the market do not address two main aspects.

1. Firstly, the Web APIs for IoT are all aiming to become the dominant or leading

API for IoT. This is a common pattern in emerging technologies where there is a

battle between competing standards to become dominant. However, the history

of the Internet shows us that the power of the Web is having a heterogeneous set

of APIs that work together in consort.

2. The second issue is that many IoT devices are using low-bandwidth binary

protocols such as MQTT and CoAP to reduce energy and work with cheaper,

smaller components. There is very little work exploring this area.

2.4.2 IoTGw - an API Gateway for IoT protocols

They have built a system that allows the capabilities of existing API management

solutions to be utilized with IoT protocols.

19

Following figure illustrates the overall system architecture of API Gateway for IoT

protocols.

Figure 2-2 : Overall System Architecture

20

2.5 Problems and Limitations when designing a WEB-API of IOT

This paper talks about how different technologies like REST, cloud computing and

embedded operating system in order to obtain mechanisms capable of self-configuration.

As per the researches, it was possible to conclude that the Web-API proposed which

increases useful techniques for the implementation of systems that want to run the self-

configuration as well as assist in setting up networks of computers that work with

wireless sensors and IoT. They have proposed a new Web-API for the internet of things

that implements a self-configuring architecture devices [15].

2.5.1 Implementation issues

The paper states some problems were encountered when the implementation phase and

only some of them have been resolved while others had to be circumvented.

1. When performing communication, it was necessary to use a proxy to perform the

communication between the client and the server using the Web-API`s

architecture. Once configured, the proxy, it was realized that the return of the

proxy sent messages to the client did not occur. Therefore, it was found that the

engine of CoAP-13 that was running on the client side was not operating with

separate response [15].

Solution: It was necessary to adapt the transaction control of Erbium, the

programming language which had been used to implement this. That change was

made through the creation of storage of all transactions in memory using a list of

transactions that are now mapped mid, which is the variable responsible for the

transaction ID.

21

2. The second problem was the implementation of the codes sent to the devices,

even having received the code correctly when elf_load (file) function was called

the ELFLOADER_NO_SYMTAB error occurred, which states that the symbol

table was not found. [17]

Solution: However, when generating a full symbol table using CoAP macros and

other necessary overflow occurred again to the ROM memory of more than 1000

bytes. The solution to validate the architecture was to create manually a table of

minimum symbols for the program to be run properly.

2.6 A Self-Configuration Architecture for Web-API of IoT

The configuration and installation of devices that will integrate a large and complex

systems within the IoT is a challenge that is time consuming and error prone, even for

the specialists [16].

This paper aims to introduce a mechanism of self-configuration for the Internet of

Things, where the main idea is to make easier the configuration of devices and Web-

APIs that will control the environment.

2.6.1 Requirements of WEB APIs in IoT

Fundamental features are described in this article in order to enumerate some of the

concepts that can be used to serve as basis for self configuration mechanism, such as the

form of communication with Rest (Zeng, 2011) [18], storage and standardization

communication through the use of markup data languages (XML, YAML, JSON)

(Xively 2013) [5].

22

• Open source

o Even though this doesn't help directly the devices, it was regarded as

important for that in the future people will work on top of existing Web-APIs

and make your code to be improved and become Customer self-configurable.

• REST

o The REST-based architecture is considered "the true architecture of the Web"

(Zeng, 2011) [18], it is based on the concept that everything is modeled as

resource using the HTTPURI. Thus, customers can identify the resources

they need through the URI, manipulating them through traditional HTTP

commands like: PUT, GET, POST and DELETE.

o Another important feature is that REST works with stateless requests,

treating each request independently, and this may not require a server to store

session information or the status as is each of the multiple acquisitions.

However, state full interactions can be supported in REST through the use of

hyperlinks, so the states of the resources can be transferred by means of URIs

for cookies or hidden fields (Zeng, 2011) [18].

• Standardization

o As the APIs and the devices are usually developed in different languages, it

must be pre-established a format of data communication between the receiver

and transmitter and how they will exchange messages to inform how the data

is separated and what the content within it represent.

• Centralized Architecture

23

o Due to the limitations of the devices many of the activities more robust need

to be sent to a server that has capacity to perform a greater load of processing

and storage. Therefore, currently the Web-APIs, tend to be centered on a

server that is able perform this type of activity and to communicate with a

server that is receiving data and managing the devices in the network.

• Security

o In IoT, recognition of each device with the use of traditional IPs. Despite

this, only a network identification is not sufficient to ensure the safety, it is

necessary a profile control to inform if this equipment has access to the

service that it is requesting. As in IoT these services are provided by APIs,

the controls of inflows are usually made by API-Keys.

• Self-configuration

o The autonomic computing is inspired in the human being’s nervous system.

Its main objective is to develop applications that can self-according to

guidelines imposed by human beings at a high level. Thus with the policies

established at a high level it is possible to make the systems self-reliant to

self- configure, self-healing, self-optimization and the self-protection

(Kephart, 2003) [19].

o This is also responsible for automated configuration of system components,

with it the system will automatically adjust and it always will adjust based on

policies of self- configuration. The self-optimizing components and systems

continually seeking opportunities to improve their own performance and

efficiency.

24

Self- healing the system automatically detects, diagnoses and repairs

problems of software and hardware located. The Self-Protection system

automatically if defends against malicious attacks or cascading failures.

• Code-source Device

o As each device needs to communicate with the Web-API through the REST,

many of these offer codes-sources for which the user copy and paste in

Integrated Development Environment (IDE) responsible for programming the

device. It is important to realize that although there may be a useful source

code available for the used equipment perform the copy and paste codes for

multiple appliances can be an arduous task and subject to errors even for the

specialists, once that may exist dozens of these to be configured in a single

environment.

• Storage

o As the WEB-APIs are on a server that contains high processing power and

storage capacity, they are usually responsible for the storage of data that is

captured and transmitted by devices. For this reason, it is used the concept of

Feeds (system risers). These feeders are a specific part of the API that works

with the reading and writing of data from the system.

2.6.2 Related work

This paper talks about the main existing Web-APIs and what features they have related

to the requirements that were previously seen.

25

2.6.2.1 ThingSpeak

ThingSpeak is an API for "Internet of Things" open- source that stores and retrieves data

from devices using the Hypertext Transfer Protocol (HTTP) over the Internet or simply

of a LAN (Local Area Network). With this API it is possible to create applications in

sensors for data records in a given environment, tracking, location and social networks

of "things" (ThingSpeak, 2013) [20].

The data manipulation occurs by means of its channels, which have eight fields to be fed

with data numeric and alphanumeric pagers, in addition to fields such as latitude and

longitude, elevation and status.

2.6.2.2 NimBits

It is a collection of software components designed to record data of time series, such as

for example, the changes in temperature read by a given sensor (NimBits, 2013) [21].

This API has the drive of events (triggers) during the recording of data. In This way, it is

possible to perform calculations or trigger alerts along with your receipt.

2.6.2.3 Cosm

This tool (formerly called Pachube) was developed to be a platform as a service (PaaS)

for the Internet of things. With it, you can manage multiple devices through the RESTful

resources, thus it is possible to deal with all the components of the API (Feeds, triggers,

datastreams and datapoint) using commands via HTTP URLs.

2.6.2.4 SensorCloud

26

The SensorCloud is a tool storage for sensors "things". SensorCloud provides a Rest API

to allow the upload of data to the server. The API implementation is based on patterns of

HTTP commands. Soon, it is easily adapted to any platform (SensorCloud, 2013) [22].

2.6.2.5 Evrythng

It is a platform for powering applications or services directed by dynamic information

about physical objects. Your goal is that all things must be connected, thus sets a world

where all 'Thng' have a digital presence of assets on the Internet, even in social networks

if desired, allowing the rapid development of Web applications using real-time

information flowing from, any object in the world (Evrythng 2013) [23].

2.6.2.6 iDigi

It is a platform in the cloud for managing network devices. It offers management

gateways and endpoints on the network. It presents security policies of leaders in the

industry, and great scalability for the exponential growth of devices on the network

(Etherios, 2013) [24].

2.6.2.7 GroveStreams

GroveStreams is one of the most powerful platforms in clouds capable of providing real-

time decision making for millions of users and devices. Among several of its qualities is

the code generation per device. In this API it is possible that when you choose your

device and the function that it will play a code that can be used to synchronize the device

with the API is generated, thus there is only a need to copy this code paste in compiler

used by the device and send to motto for which the code was generated (GroverStream,

2013) [25].

27

2.7 Ad Hoc Networks

Daniele Miorandi [45] presented a survey article giving an overview of IoT and its

research challenges. They see IoT as a major trend that may represent the next big leap

forward in the Information and Communication Technologies sector.

They refer to as smart devices as physical objects associated to at least one name or

address with communication abilities. In addition to that, it should possess a unique

identifier and may also be able to sense physical phenomena.

In this paper they talk about the Security in IoT in terms of Data confidentiality, Privacy

and trust aspects. Security represents a critical component for enabling the widespread

adoption of IoT technologies and applications. Without guarantees in terms of system-

level confidentiality, authenticity and privacy the relevant stakeholders are unlikely to

adopt IoT solutions on a large scale.

In early-stage IoT deployments, security solutions have mostly been devised in an ad-

hoc way. This comes from the fact that such deployments were usually vertically

integrated, with all components under the control of a single administrative entity. In the

perspective of an open IoT eco-system, where by different actors may be involved in a

given application scenario a number of security challenges do arise. In this section, we

aim at revising and discussing the major security challenges to be addressed to turn

Internet-of-Things technology into a mainstream, widely deployed one.

28

2.7.1 Data Confidentiality

Data confidentiality represents a fundamental issue in IoT scenarios, indicating the

guarantee that only authorized entities can access and modify data. This is particularly

relevant in the business context, whereby data may represent an asset to be protected to

safeguard competitiveness and market values.

In the IoT context not only users, but also authorized objects may access data. This

requires addressing two important aspects,

1. The definition of an access control mechanism

2. the definition of an object authentication process with a related identity

management system

2.7.2 Privacy

Privacy defines the rules under which data referring to individual users may be accessed.

The main reasons that makes privacy a fundamental IoT requirement lies in the

envisioned IoT application domains and in the technologies used. Health-care

applications represent the most outstanding application field, whereby the lack of

appropriate mechanisms for ensuring privacy of personal and/or sensitive information

has harnessed the adoption of IoT technologies.

In addition, in the IoT vision, a prominent role will be played by wireless

communication technologies. The ubiquitous adoption of the wireless medium for

exchanging data may pose new issue in term of privacy violation. In fact, wireless

29

channel increases the risk of violation due to the remote access capabilities, which

potentially expose the system to eavesdropping and masking attacks. Hence privacy

represents a real open issue that may limit the development of the IoT.

2.7.3 Trust

The concept of trust is used in a large number of different contexts and with diverse

meanings. Trust is a complex notion about which no consensus exists in the computer

and information science literature, although its importance has been widely recognized.

Different definitions are possible depending on the adopted perspective. A main problem

with many approaches towards trust definition is that they do not lend themselves to the

establishment of metrics and evaluation methodologies.

In this paper they have illustrated the security challenges come in Internet-of-Things in a

single frame as below.

30

Figure 2-3 : Graphical representation of security challenges in Internet-of-Things

Summarizing, the open research challenges in terms of privacy-preserving mechanisms

for IoT, as reported in above Figure 2-3 are given by:

• Definition of a general model for privacy in IoT

• Development of innovative enforcement techniques, able to support the scale and

heterogeneity characterizing IoT scenarios.

• Development of solutions that balance the need of anonymity presented by some

applications with the localization and tracking requirements of some other ones.

This entails the definition of privacy policies, that specify under which

31

conditions it is possible to identify and localize a smart object. Moreover, it

needs to specify when it is possible to access sensitive data.

2.8 RESTful Sensor Data Back-end

This paper [47] provides how PHP can be used to implement a RESTful back-end API

for Internet of things. They talk about the benefits of REST from an IoT perspective

which is easily apparent, as it is a relatively lightweight approach to building

intercommunicating services while also being fully-featured in the sense that there are

not many things that can be done with Web Services that can't be realized with a

RESTful software architecture in one way or another.

Furthermore, REST itself is not a "standard” as there will never be a formal W3C

specification for REST, for example. A concrete implementation of a RESTful

distributed service always follows the following four key design principles:

• Resources expose easily understood directory structure-like URIs.

• Transfer JSON or XML to represent data.

• Messages use HTTP methods explicitly (GET, POST, PUT, DELETE)

• Based on stateless interactions. No client context information is stored on the

server between requests.

Some of the main benefits of implementing a RESTful service for the Internet of Things

are as follows:

• Platform-independency

• Language-independency

• Standards-based (e.g. HTTP)

• Easy to work with firewalls

32

To outline the structure of the LAMP-based first version of the prototype, a diagram

illustrating the main components is given in following figure.

Figure 2-4 : Overview of the first PHP-based RESTful IoT Back-end prototype

Utilizing RESTful architectures in the context of IoT or M2M applications is nothing

new in and of itself. Indeed, others have successfully designed approaches for such

systems before based on REST.

The SlimPHP micro-framework proved to be an excellent tool in alleviating many of the

problems and concerns with plain PHP-code or the heavier full-scale PHP frameworks,

but as running PHP as the back-end code still required separate underlying Web server.

33

2.9 WSO2 IoT Server

WSO2 IoT Server is a comprehensive open source IoT solution which was released to

public very recently even after I started this research. It enables enterprises to manage

their mobile and Internet of Things (IoT) devices.

The WSO2 IoT platform is a combination of the following areas:

• Core offering

The IoTS core offering is centralized around device management focusing on

device plugins, event stream management and more.

• IoT Analytics

The data gathered via the devices are analyzed to produce information that will

be useful to the end-user.

• Extended Platform

WSO2 IoTS can then be extended so that it can be used with the integration,

machine learning, workflows and many other areas.

 For example, the extended platform will involve the WSO2 Business Process Server

(BPS) to handle the workflows and business processors in an organization [27].

WSO2 IoT Server is another product which was built on top of WSO2 Carbon therefore

all the features come along with Carbon will be inherited on this too. All its capabilities

are exposed through industry standard Swagger annotated REST APIs. It allows device

34

manufacturers to create their own device types and enroll and manage them securely. It

is designed in a way to protect both devices as well as its data. It also provides analytics

capabilities to gather sensor data, visualize them real time, identify patterns and convert

these to responsive action. You can also extend its capabilities to securely manage

mobile devices [27].

WSO2 IoT Server (IoTS) provides the essential capabilities required to implement a

scalable server-side IoT Platform. These capabilities involve device management,

API/App management for devices, analytics, customizable web portals, transport

extensions for MQTT, XMPP and much more.

2.9.1 Architecture

WSO2 IoT server has first started out as a complete platform to manage mobile devices

and later evolved to a more complex system by incorporating capabilities to manage

mobile devices as well as all types of IoT devices. The initial release came with the

ability to manage Android and iOS, and Windows mobile device management and

application management was added later [28].

Following figure illustrates the architecture of WSO2 IoT server.

35

Figure 2-5 : High level System Architecture of WSO2 IoT Server

36

2.9.2 Limitations for the target group

As stated in WSO2 IoT server system requirements page, prior to installing any WSO2

Carbon based product, it is necessary to have the appropriate prerequisite software

installed on your system. You need to make sure that your environment has the

supported operating system and development platforms before starting the installation

[29].

Following platform level limitations can be found at their official System Requirements

page [29] where small start-ups will not be capable enough of providing all the time at

their initial stages.

• “All WSO2 Carbon-based products are Java applications that can be run on any

platform that is JDK 7 or 8 compliant. Also, we do not recommend or support

OpenJDK.”

• “All WSO2 Carbon-based products are generally compatible with most common

DBMSs. The embedded H2 database is suitable for development, testing, and

some production environments. For most enterprise production environments,

however, we recommend you use an industry-standard RDBMS such as Oracle,

PostgreSQL, MySQL, MS SQL, etc. Additionally, we do not recommend the H2

database as a user store.”

• “It is not recommended to use Apache DS in a production environment due to

scalability issues. Instead, use an LDAP like OpenLDAP for user management.”

37

Chapter 3 METHODOLOGY

38

3.1 Proposed Solution

The primary objective of this research is to identify the minimal set of components and

the modules for implementing a light weight, developer assistive API which is easy to

start the development as well as supports scaling and allows easy integration with

different IoT devices with a minimal configuration as a single platform. Therefore, the

intended methodology will require a proper analysis and an identification of the minimal

list of components and modules for the API in order to support scaling and the other

objectives. This analysis will have a list of possible issues and challenges, performance

barriers and modeling issues and also the technical limitations and relevant workarounds

to overcome them.

Initially identified components and modules:

Module Name Description

API Services All the service end points exposed to out side

Databases All the database connections / DAO layer

Consumers Everything related to other consumers this API

consumes

Helpers Helper functions

Middleware Middleware functionalities / Authentication &

Validation functionalities

Utilities All the utility functions

Tests Unit testing modules / Mocked data

Configurations All the configuration JSONs

Cluster Support Node JS Cluster modules

Git Hooks / ES Lint Code quality matrices

Deployment Scripts Deployment scripts / CI CD scripts

Table 3-1 Initially identified modules

39

Based on the results of the initial analysis, this intended methodology will have a

comprehensive architecture for the API. All the instructions required for installing and

initial configurations will be scripted and stored in a common space in cloud so that any

agent can make an API call for fetch the relevant configuration script.

Following figure provides a representation of the proposed high level architecture

design and more descriptive diagrams will follow.

Figure 3-1 : High-level Architecture of the system

40

Device 1 to Device n represents the IoT layer which can be a sensor, a camera, smart

home unit or a similar device which will connect to an Agent and will send data to the

API periodically.

3.2 Components

As stated in Figure 3.1 the main components of this proposed solution are described as

below.

3.2.1 Cloud API

o Includes all the API endpoints for IoT devices to connect and

communicate, Database CRUD operations and serving the configurations

scripts for devices to be self configured. This will also have framework

level scaling support following industry level best practices.

3.2.2 Front End Dashboard

o This is a web based front end application which facilitates for tracking

and monitoring all the connected devices. This application will display

alerts, warnings based on the device health as well as it sends

notifications where an anomaly device is detected.

3.2.3 Device / Agent

o This unit will be a minimal version of the same API as Cloud API which

allows different type of IoT devices (example: sensors) to be registered

41

and connected with the Cloud API. Once the registration is done this can

send data to Cloud API periodically. Single Agent can have one or more

IoT devices connected to it as applicable.

3.3 Cloud API

The main and most important component of this IoT platform is the Cloud API. This

API should have following capabilities in order to fulfil research objectives.

1. API should be light weight as well as developer friendly so that small start-ups

don’t hesitate to start off with it.

2. Architecture should be solid and should support elasticity, Auto scaling and

micro services with minimal time and effort so that there is no re-engineering as

and when the business grows up.

3. API should provide RESTFul services for IoT Agents to register with it and

should be able to receive and process data with high performance.

4. API should provide RESTFul service end points for any Front End Web

Application to be connected and fetch monitoring and health diagnosis

information of the connected devices and relevant analytics data as well as

generate reports as required.

5. API should resolve the common problems come in to picture when scaling such

as session management, data consistency, high availability of the services and so

on.

42

3.4 Technology stack

Considering the target group in which I am trying to address across this research and

also the potential capabilities comes by default, Node JS seems to be the best approach

for this API as the tech stack. Node JS has a massive open source community support

available through NPM.

3.4.1 Node JS

Node.js is an open source JavaScript-based platform built on top of Google Chrome's

JavaScript V8 Engine [40]. As it provides an event-driven architecture and a non-

blocking I/O API making it very lightweight and efficient it is especially suitable for

building data-intensive real-time applications that are scalable and run across distributed

devices. Node.js facilitates the creation of highly scalable servers without using

threading by using a simplified model of event-driven programming and providing a rich

library of various usable JavaScript modules greatly simplifying the development of

distributed applications. In the following, some of the key benefits of Node.js for IoT

applications are listed.

There are some other benefits for start-ups to go ahead with Node JS over any other tech

stack,

• Node JS has a fast code execution due to the underlying Google Chrome's V8

JavaScript Engine and it has been released under the open source MIT license.

• All Node JS applications uses “Single Threaded Event Loop Model” architecture

to handle multiple concurrent clients

43

• The event driven asynchronous API ensures that the server never needs to wait

for an API to return data.

• Highly scalable single threaded event mechanism scales better to a larger number

of requests than traditional servers.

• When it comes to IoT there can be lots of various readings, so the application is

essentially IO bound where Node JS gives much advantage.

• Relatively small code base and Regression happens quite easily. Most

importantly Node JS helps Rapid Application development.

• Easy support for deployment tools and process management platforms like PM2

where it makes production deployments and scaling pretty easy and manageable.

3.4.2 JSON

A REST API needs to consume and produce data, encoded in a consistent manner.

Whilst many choices exist (XML, YAML, etc.) a popular choice is JSON. JSON is well

suited to data that needs to be both human and machine-readable. JSON data is,

arguably, easier for a human reader to understand than XML; and can also be easily

parsed by a computer. Tools and libraries to parse JSON exist in all major programming

languages and environments.

JSON’s key-value pair format is ideal for use with regular parametric data such as may

be produced by a sensor device, or transmitted as a command-and-control message to a

device or actuator.

44

From Node or another JavaScript implementation JSON data is already in the native

format & as such requires no further parsing unlike, for example, XML.

3.4.3 Mongo DB

The advantage of the use of a document-oriented database, such as MongoDB is that it

offers a dynamic schema rather than a fixed one [43]. This means that if the data

structure of the database is required to change, as a result of needing to store additional

parameters; new data with a different structure can be accommodated within the

database, alongside earlier data, without the need to perform large scale data

manipulation on the whole database.

MongoDB is also a good choice for storing JSON encoded data. MongoDB internally

stores data in an efficient binary JSON format which allows for quick and easy import

and export. It is also ideally suited to storing and processing large volumes of data. It

can scale to thousands of nodes and petabytes of data [43].

MongoDB also exhibits better runtime performance for simple operations at a small-

scale (single node), than Microsoft SQL Server Express [44].

3.5 High Level Modular Architecture

It is always a good practice to keep things simple and modular. This makes anything to

be more readable and extensible.

In the high level architecture of this proposed approach, it can clearly be seen that

almost all the major components are modularized as easy as to be separated out. Many

45

elements such as parameters, headers, and responses are shared among paths. Thus an

enormous number of lines of code can be saved if proper re-use of components is used

in the swagger specification [50]. Thus all shared definitions, models and parameters are

reused. Code Reuse not only prevents inconsistencies and errors but also increases

readability and extensibility.

The high level modularized architecture of the API is shown in the following figure.

Figure 3-2 : Modular Architecture of the API

46

3.6 How does this work?

This system will have two main registrations:

3.6.1 IoT devices registration

When an IoT device wants to connect to the system it should register with its agent API.

That registration is done by sending an authorized request and it’s a token based

authentication. After a successful registration the agent is ready for registering with the

cloud API.

3.6.2 Agents registration

Now the agent will make a register call to the cloud API. Once the Cloud API returns

the success code of REST [i.e. 200] it states that the request is authorized.

Then the required configuration modules, installations scripts will be started to

download based on the information requested from the agent. This is specific to each

device and it will depend on the vendor and the device types.

47

Figure 3-3 : Registration process

Once the agent who has a set of devices that has been successfully registered and

configured with it, the set up is ready to function.

Next important task in this solution is to design and implement a front end web

application which is more like a dashboard where users can track all the connected

devices’ health and monitor them on demand. React JS will be used for this application

as it supports latest web browser rendering strategies, easy development as well as high

performance.

This dashboard will have all the reports so that users can take some decisions based on

the collected data.

48

Also a comprehensive guideline and a document will be provided for developers to

make the integration as easy as plug and play.

3.7 Evaluation Plan

This proposed methodology can be evaluated by under three main categories in terms of

API performance, ability to scale and the accuracy of the configuration scripts for

different IoT devices.

3.7.1 API performance

API can be tested with a high load of requests created intentionally on virtual

nodes in order to make sure it’s responding as expected. In that case we can

ensure that the congestion controller layer (queue manager) is capable enough of

catering a large no of requests at a time.

Also we should be able to get the upper limit of no of requests where the API is

getting failed to respond so that scaling can come to the action.

3.7.2 Ability to scale

When the business gets much traction it’s clear that the system needs to be scaled

up with a minimal time and an effort.

This proposed solution, we can consider a horizontal scaling mechanism by

deploying in multiple servers with different database replications. This artifact

can be evaluated by doing a critical architecture analysis along with current

49

trends and industrial best practices so that we can see the level of scaling ability

as well as performance trade-offs if there is any.

3.7.3 Accuracy of the configuration scripts

This is kind of a tricky section but we can stick with the original configuration

scripts provided by each vendor/OEM so that we can guarantee that the system

will support for the devices to be self-configured as much as possible.

In this research, for the actual implementation of this methodology I have mocked the

IoT device registration and data collecting layer assuming that the API receives the

device data as expected so that I can focus more on the API performance and Scaling

capabilities of the API.

When it comes to small start-ups the common problems they are having at their early

stages is to select the right platform at the right time without worrying much and

spending more time and money for analyzing available platforms. Since my main target

group is someone who is lacking of such a platform, this research has skipped the

configuration of IoT device layer and it has been paid more attention on resolving API

level issues.

50

Chapter 4 SOLUTION ARCHITECTURE AND
IMPLEMENTATION

51

4.1 Solution Architecture

The proposed solution will have the following system architecture in components level

for the Cloud API. This will be same as for the Agent API also, but in small scale.

This architecture has been designed by considering a lot of industry level best practices.

A few of major items can be highlighted such as;

1. Having a Daemon for initializing all the background services and handling their

life cycles.

2. De-coupling all database related stuff so that database level scaling can be done

easily.

3. Having a separate layer for managing the request load

4. De-coupling Authentication & Authorization as a middleware

52

Figure 4-1 : Components diagram of API

4.2 Implementation

All JavaScript files in source root are trans-piled to be able to run on NodeJs V6. The

root contains four modules, server, app, deamon and eslintrc. The server module creates

the HTTP server and listens on port specified in platform config specific to the running

environment. This also will kick start the daemon services and the ExpressJs application.

The daemon services that run independent of the HTTP server are keeping all the

required clients alive.

53

The app module defines the ExpressJs app configurations. All global express middle-

ware are used within this module. The eslintrc module defines all the lint rules specific

to the sources root. Services that are running independent of the ExpressJs app are

initialized within Daemon module. These services include all daemon services that

should be instantiated before starting the https server, or that can be initiated

asynchronously.

4.2.1 Cloud API

The next figure illustrates how components are built and structured in Cloud API in

order to be easy scalable, minimal configurations for kick off start-ups without

considering much things at the beginning.

Figure 4-2 : Source Structure of Cloud API

54

This source will have all the required best practices such as code commit hooks,

standard rules for following better coding practices and so on.

4.2.2 Agent API

Following figure illustrates the source structure of the minimal version of Agent API.

Figure 4-3 : Source Structure of Agent API

55

4.3 How does Scaling work?

The proposed API can be scaled up in components level as illustrated in following

figure.

The boundaries are to show case what are the components from this system can be easily

taken out and served in different/multiple instances depending on the deployment

environment. Those instances can be AWS EC2 instances, local server machines or data

centers.

Figure 4-4 : Components level scaling architecture

56

4.3.1 Database layer

Multiple Databases can be hosted in different servers as Master/Slave backing up

mechanism and replications so that it will avoid single point of failure as well as the data

will be secured and available when a failure happens.

Also this separation provides an added advantage where we can have a proxy for

different Databases with different connections so that it will allow the system to use a

new database system on demand without touching any of the other sections of the API.

4.3.2 Configurations Scripts store

A cloud storage (ex: AWS S3 bucket) can be used for storing all the configurations

scripts so that those scripts will be available for downloading as and when they are

requested from the client level.

4.3.3 API Service layer

Horizontal scaling can be applied here to scale this layer with a minimal time and effort.

Since the modular architecture contains everything required as modules the separation

can be initiated and maintained easily.

Docker containers come in to the picture as the first option, but Clustering with Node JS

is also another possibility for approaching this. But how we do it and when we do the

scaling will depend on the business requirement of the application.

4.3.4 Congestion Controller / Queue Management Layer

57

This module will be extracted only in very large systems where performance really

matters, otherwise this module can be combined with API level for most of the cases.

This layer takes care of all the requests in terms of handling congestion, request traffic

and it makes sure that no request will get skipped or ignored. Depending on the requests

load even another industry level queue management NPM module can be integrated

easily with the system.

4.3.5 Front End Application

This is a React JS application and can be served from a different AWS instance as well

as the same instance where the API is running. There will be a Backend for the Front

end of application and it does the most when it comes to User Authentication. Almost all

requests to Cloud API from Front end WebAPP are proxied using a middleware known

as cloud-api proxy.

Apart from that, React Scripts infused with WebPack is used to bundle a production

optimized build, ready for deployment. I have also made an effort to write a handy set of

NPM and Gulp scripts which could drop development and CI/CD efforts enormously

which is applicable for API deployment too. For instance, if we need to migrate from

GOCD to Jenkins for CI, it only requires copying the relevant npm scripts.

When it comes to small scale start-ups this area is something they are lacking of at their

initial stages. This proposed architecture boosts up the development as it takes care of all

the developer best practices and assists developers to go beyond their knowledge.

58

4.3.6 Analytics Engine

When the business gets much more traction this module will add a huge value in to the

system where we can take certain business decisions based on the analytics data we

gather within the system.

This module can also be dockerized and made available easily so that the API will use

this engine as and when it’s needed.

As described above at each module level, the scaling of the system will not be a re-think

or re-engineering effort whenever the business requires a scaling up. It is just a matter of

following the instructions provided along with the system.

4.4 Sample Results

This section will have the results of proposed system. For easiness of implementation

and obtain practical results, some of the functions have been mocked due to the

limitation of actual IoT sensors.

These results are based on a mocked LM-35 temperature sensor [26, 37].

Figure 4-5 : LM-35

59

4.4.1 How will Agent send data?

When the agent API is started it will register with the Cloud API and will look for active

sensors which are trying to connect and register. So once a device is registered it will

send the data as follows.

 Figure 4-6 : Console logs when agent sends data to Cloud API

4.4.2 How will Cloud API receive data?

At the same time the Cloud API will receive the same set of data as follows.

60

Figure 4-7 : Console logs when Cloud API receives the same data

4.4.3 How will Database save data?

If we cross check the database (in this case it’s Mongo DB) it will show the received

data as follows.

61

Figure 4-8 : Database snapshot of current data set

4.5 Best Practices

Following list describes the industry level best practices which have been applied

through out this research and the implementation of the proposed system.

• UI components of the front end wed application are tested using Jest [51] and

Enzyme[52].

• A custom helper component can be implemented to make testing of components

which use React Router and Redux [53] to be much simpler.

62

• Reducers are tested using Jest and Deep Freeze to avoid accidental state

mutations.

• For the backend modules, mocha and chai are used with sinon [54] as the test-

double choice. Supertest [55] is another good solution for writing integration

tests.

• As this system is heavily using metadata files for configurations and similar

needs, we use the popular JSON Schema spec for testing the large metadata files.

• Unit test code coverage tools can be used for generating the code coverage

reports.

• A carefully handpicked set of strict ESLint rules are used for maintaining code

quality. SonarQube is also used as a more advanced complementary tool for

eslint.

• Pre-Commit and Pre-Push hooks are also set up to prevent common mistakes by

developers.

• Swagger is used for generating API docs as it’s enforced to use proper JS Docs

in the code.

63

Chapter 5 SYSTEM EVALUATION

64

Since we have a thousands of different IoT devices from various vendors it’s hard to

evaluate in terms of the Accuracy of the configurations scripts. Therefore, considering

the easiness of implementation and evaluation of the system, the IoT layer has been

mocked so that we don’t have to worry about the sensor data.

In system evaluation I have mainly focused on the ability to scale and API performance

aspects.

5.1 How was the evaluation done?

With the rising number of IoT devices, the API can reach its resource limits. Therefore,

the Congestion controller was introduced for handling the request queue and respond

fast. I have come up with a highly customizable congestion control mechanism which

uses the concepts such as memorization, throttling and queueing to control heavy spikes

of the load. While the dirty-checkers can be written by hand, there are several inbuilt

dirty-checker templates which make the solution even smarter.

One of the main advantages of having Node JS is we can utilize industry standard NPM

modules with a very few lines of codes, but with a massive gain.

The best way to understand the benefits of this technique is to compare the prior and

subsequent load average graphs. For this API I have made a high load of requests

created intentionally in order to make sure it’s responding as expected. In that case we

can ensure that the congestion controller layer is capable enough of catering a large no

of requests at a time. Also we should be able to get the upper limit of no of requests

where the API is getting failed to respond.

65

5.2 Tools used for the evaluation

I have used K6 as the main tool for performance evaluation of this Cloud API [30].

K6 is an open source project aimed to provide the ability to test the performance of your

backend infrastructure. Its written using Go and JavaScript. K6 is a modern load testing

tool built on the experience of LoadImpact [32]. It is not the first tool that come up in the

Google search results. But it’s simplicity and ability to export data to InfluxDB to be

visualized by Grafana makes it a powerful tool to load test your application [33].

5.2.1 How K6 works?

K6 uses the concept of virtual users (VU). You can have a multiple number of virtual

users which runs the test script in parallel. Test scripts can be written for your

application using modern ES6 syntax [31].

For testing the Cloud API with K6, I created 10 virtual users who send a request per

second within for 5 seconds window using the following sample script.

The test script used for this load test can be found here:

66

When it was run the results were seen as below.

Figure 5-1 : 10 Virtual users send request per second for 5 seconds

Following table shows the matrices produced by K6 [34].

Matric Description

http_req_blocked Time spent blocked (waiting for a free TCP connection slot) before

initiating request

http_req_connecting Time spent establishing TCP connection to remote host

http_req_sending Time spent sending data to remote host

http_req_waiting Time spent waiting for response from remote host

67

http_req_receiving Time spent receiving response data from remote host

http_req_duration Total time for request, excluding time spent blocked

(http_req_blocked), DNS lookup (http_req_looking_up) and TCP

connect (http_req_connecting) time

Table 5-1: K6 Built in Matrices

5.2.2 Sample Evaluation Results for API Performance

Following set of screen shots will show the values I obtained for 1000 virtual users who

send a request per second for 10 seconds time window and I repeated the same action for

4 times with a 1-minute rest.

T=1

T=2

68

T=3

T=4

Figure 5-2 : 1000 Virtual users send request per second during 10 seconds for 4 times

Since the same load is applied for multiple times the data_received and data_sent values

should be same in all four cases.

When the results are considered in terms of average values following graphs can be

drawn.

69

Figure 5-3 : Average values for 1000 users , send requests during 10 Seconds for 4 times

70

These graphs clearly show that the increasing number of requests make a trend for

overall request duration as expected but the difference of two adjacent points are around

1 second which is a really good figure.

Some other researches has shown [41] that a Node server significantly outperforms both

Apache and Nginx [42] for serving dynamic content. Also the implementation of

JavaScript in Node JS is more than 2.5 times faster than the more traditional PHP

approach, by efficiently utilizing available hardware.

5.3 Ability to Scale

This API was tested in terms of its scaling ability by using Node JS Clustering module

with PM2 clustering feature.

5.3.1 What is PM2?

PM2 is a production level process manager tool specially built for Node.js applications.

PM2 comes with a built-in load balancer where it allows the application to be kept alive

forever. PM2 allows the application to be reloaded with zero-downtime as well as it

facilitates common system admin tasks too [38].

The next series of figures will show the numbers I obtained by putting the same load

intentionally as 1000 virtual users sending requests within 10 seconds duration for 1

cluster, 2 clusters, 4 clusters and 8 clusters respectively.

71

5.3.2 Sample Evaluation Results in terms of Scaling ability

Started the API using PM2 in the cluster mode on a single instance.

Figure 5-4 : PM2 shows a single node process is running in cluster mode

When the htop tool is executed it shows the API process is running as below [39].

Figure 5-5 : HTOP shows how the CPU and the memory are utilized for single node process

Once the manual load is applied through K6 on the single instance following results

were obtained.

72

Figure 5-6 : Average values for 1000 users , send requests in 10 Seconds in a single instance

The same practical was repeated for the same API running in cluster mode on 2

instances on PM2 and the results were shown as follows.

Figure 5-7 : HTOP shows how the CPU and the memory are utilized for two node processes

Figure 5-8 : PM2 shows that 2 node processes are running in cluster mode

73

Figure 5-9 : Average values for 1000 users, send requests during 10 Seconds in 2 instances

To see the results in 4 instances, the same practical was performed on 4 instances as

below.

Figure 5-10 : HTOP shows how the CPU and the memory are utilized for 4 node processes

Figure 5-11 : PM2 shows that 4 node processes are running in cluster mode

74

Figure 5-12 : Average values for 1000 users , send requests during 10 Seconds in 4 instances

Finally, the same thing was performed on 8 instances to see the results.

Figure 5-13 : HTOP shows how the CPU and the memory are utilized for 8 node processes

Figure 5-14 : PM2 shows that 8 node processes are running in cluster mode

75

Figure 5-15 : Average values for 1000 users, send requests during 10 Seconds in 8 instances

These figures give a clear idea about the practical I performed in order to measure the

scaling ability of the API.

When the data_received and data_sent values are taken in to a bar chart the variance can

be seen clearly as below.

76

Figure 5-16 : Sent and Received data variation against number of clusters

As per the results in above figure 5-8, it’s clear that 2 clusters double the amount of data

being treated by the API than in 1 cluster. It increases more when we have 4 clusters but

when it comes to 8 clusters the number will be a bit lower. That latency can be explained

easily as it is a self introduced delay by the clusters because the workers will take a time

when distributing the load among other workers.

So in that case running the API on 4 clusters would be the best case in terms of high

performance.

77

Chapter 6 CONCLUSION

78

In the last few years, IoT technologies have been developing rapidly. Hence IoT cloud

can provide enhanced services and effective utilization of resources for the end-users

with the help of cloud technologies.

The goal of this research is to make building of Internet of Things applications

significantly easier. My goals were to come up with a solution that would empower

developers by hiding protocols details, to embrace system heterogeneity rather than

avoid it and simplify service management and scaling by allowing decisions to be made

autonomously by the runtimes.

6.1 Research Contributions

I have proposed an architecture for IoT applications that simplifies the Web of Things

idea by merging IoT and cloud through a RESTful web service.

From an IoT based start-up perspective, this API resolves a few major challenges at the

starting stage of building IoT applications. In particular, it is a way of consolidating the

micro-service trend with single-purpose small devices waiting to be scaled up to the

maximum extent as and when the business grows up.

For device manufacturers and vendors, this framework provides a way to increase the

attractiveness of their products for developers by providing a self on board capability to

expose their configurations via cloud service as a plug-and-play mode in addition to the

traditional device driver installations.

Finally, several experiments have been carried out to evaluate the performance of the

designed API under different conditions.

6.2 Research Limitations

This API is still in its early stages of development, and currently not all the desired

functionality is fully implemented.

79

One of the main limitations I faced across this research was evaluating the elasticity with

auto scaling capability of the API. There were many aspects to consider when designing

the API in that manner but it was hard to measure scalability levels with figures.

Clustering via PM2 was helpful to achieve this up to some extent but there is a room for

further improvements too.

Since this has been started on Node JS, a community can form around this platform and

explore its possibilities to the fullest by making this available under an Open Source

license and making the architecture extensible.

6.3 Future Work

This phase of the work has mainly focused on making sure the foundation sounds well

so that it will start getting traction. Next immediate piece of work would be making this

available in a public Open Source Repository (example: github.com) as a starting

template along with a developer documentation so that anyone who is interested in can

try it out. Next phases of this research will be mainly on device level enhancements in

terms of configuring them as easy as plug and play, security mechanisms required to

make autonomous scaling smooth and so on but there are many aspects left to explore.

Further comparisons and quantitative measurements on the performance and scalability

of these sort of APIs are one major topic of future interest. Enhanced security features

for data privacy and system robustness are another item considered as next steps.

Also, comparing the suitability of different database technologies as the amount of

incoming sensor data starts nearing Big Data volumes and different processing engines

for data analytics become necessary, is another topic left for future work.

Important parts such as auto scaling with AWS EC2 instances along with Kubernetes

[36], adopting to micro services architecture, production deployment and service

management enhancements are topics for future researches whilst this reference

implementation are in place.

80

REFERENCES

[1] Weiser, M. The computer for the 21st century. Sci. Am. 1991, 265, 94–104.

[2] Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput.

Netw. 2010, 54, 2787–2805.

[3] Ashton, K. That ‘Internet of Things’ thing. RFiD J. 2009, 22, 97–114

[4] ITU Telecommunication Standardization Sector. Overview of Internet of Things;

ITU-T: Geneva, Switzerland, 2012.

[5] Xively by LogMeIn Business Solutions for the Internet of Things: https://

xively.com/

[6] Evans,D. The internet of things. How the Next Evolution of the Internet is

Changing Everything, Whitepaper, Cisco Internet Business Solutions Group

(IBSG) (2011).

[7] Chih-Yuan Huang and Cheng-Hung Wu: A Web Service Protocol Realizing

Interoperable Internet of Things Tasking Capability

[8] Matthias Kovatsch, Martin Lanter and Simon Duquenno: Actinium: A RESTful

Runtime Container for Scriptable Internet of Things Applications

[9] Geoffrey C. Fox, Supun Kamburugamuve, Ryan Hartman: Architecture and

Measured Characteristics of a Cloud Based Internet of Things API

[10] Bhagyashri Katole , Suresh V., Gita Gosavi, Amit Kudale, Gokul Thakare,

Girishchandra Yendargaye, Ch. Pradeep Kumar: The Integrated Middleware

Framework for Heterogeneous Internet of Things (IoT)

[11] Paul Fremantle, Benjamin Aziz: Web API Management Meets the Internet of

Things

[12] Zetta - An API-First Internet of Things (IoT) Platform - Free and Open Source

Software, [Online] Available: http://www.zettajs.org/

81

[13] Ali Hazmi, Mikko Valkama and Juho Pirskanen, “IEEE 802.11AH: promising

technology for IoT and M2M applications”, Internet-of-things magazine,

Finland, pp. 22

[14] Kopecky, J., Fremantle, P., Boakes, R.: A history and future of web apis.

Informa- tion Technology (2014)

[15] Eric Bernardes Chagas Barros, Admilson de Ribamar L. Ribeiro, Edward David

Moreno: PROBLEMS AND LIMITATIONS FOR DESIGNING A WEB-API

OF IOT

[16] Barros, Eric. Ribeiro, Admilson. A Self- Configuration Architeture for Web-API

of Internet of Things.10th International Conference on Web Information Systems

and Technologies. 2014.

[17] Orenstein, David. Application Programming Interface. COMPUTER WORLD

Jan 2000. [Online] Available: http://www.computerworld.com/s/article/43487

/Application_Programming_Inter_face

[18] Zeng D., Guo S, and Cheng Z. The Web of Things: A Survey. Journal of

Communications, vol. 6, setembro 2011.

[19] Kephart, Jeffrey O. The vision of Autonomic Computing. IEEE Computer

Society. 2003.

[20] ThingSpeak [Online]. Available: https://www.thingspeak.com/ last accessed

October 14, 2013.

[21] NimBits [Online]. Available: http://www.nimbits.com/ last accessed October 14,

2013.

[22] Sensor Cloud [Online]. Available:

http://www.sensorcloud.com/sites/default/files/SensorCloud_Open_Data_API.pd

f

[23] Evrythng [Online]. Available: http://www.evrythng.com/

[24] Etherios [Online]. Available: http://www.etherios.com/

[25] Grovestreams [Online]. Available: https://grovestreams.com/

82

[26] LM35 Precision Centigrade Temperature Sensors [Online]. Available:

https://www.engineersgarage.com/sites/default/files/LM35.PDF

[27] WSO2 IoT Server [Online]. Available:

https://docs.wso2.com/display/IoTS300/Overview

[28] WSO2 IoT Server Architecture [Online]. Available:

https://wso2.com/library/articles/2017/07/an-introduction-to-wso2-iot-

architecture/

[29] WSO2 IoT Server System Requirements [Online]. Available:

https://docs.wso2.com/display/IoTS300/System+Requirements

[30] Welcome to the k6 Documentation [Online]. Available:

https://k6.readme.io/docs/welcome

[31] How to Load Test Your Node.js App Using K6 [Online]. Available:

https://medium.com/codeinsights/how-to-load-test-your-node-js-app-using-k6-

74d7339bc787

[32] Load Impact [Online] Available: https://loadimpact.com/

[33] InfluxDB Grafana [Online] Available: https://docs.k6.io/docs/influxdb-grafana

[34] K6 Metrics [Online] Available: https://docs.k6.io/docs/result-metrics

[35] Auto Scaling Real-Time Node JS Applications on AWS [Online] Available:

https://medium.com/@eyalronel1984/auto-scaling-real-time-nodejs-applications-

on-aws-the-last-tutorial-youll-need-eba1d2c88a4c

[36] Kubernetes Documentation [Online] Available: https://kubernetes.io/docs/home/

[37] LM 35 Specification and Pin Diagram [Online] Available:

https://cdn.instructables.com/FE0/DHQ4/HV2AIB01/FE0DHQ4HV2AIB01.ME

DIUM.jpg

[38] Welcome to the PM2 Quick Start [Online]. Available:

http://pm2.keymetrics.io/docs/usage/quick-start/

[39] htop - an interactive process viewer for Unix [Online]. Available:

http://hisham.hm/htop/

[40] J. R. Wilson, Node.js the right way. Pragmatic Programmers, 2014.  

83

[41] I. K. Chaniotis, K.-I. D. Kyriakou, and N. D. Tselikas, “Is Node.js a viable

option for building modern web applications? A performance evaluation study,”

Computing, pp. 1–22, 2014. [Online]. Available:

http://dx.doi.org/10.1007/s00607- 014-0394-9

[42] Welcome to NGINX Wiki’s documentation. [Online]. Available:

https://www.nginx.com/resources/wiki/

[43] MongoDB. [Online]. Available: https://www.mongodb.com/use-cases/internet-

of-things

[44] Z. Parker, S. Poe, and S. V. Vrbsky, “Comparing NoSQL MongoDB to an SQL

DB,” Proceedings of the 51st ACM Southeast Conference on - ACMSE ’13,

2013. [Online]. Avail- able: http://dl.acm.org/citation.cfm?id=2498328.2500047

[45] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich Chlamtac.

Internet of things: Vision, applications and research challenges. Ad Hoc

Networks, 10(7):1497–1516, 2012.

[46] Antti Iivari and Jani Koivusaari VTT Technical Research Centre of Finland Ltd

Oulu, Finland, A RESTful Sensor Data Back-end for the Internet of Things –

2016

[47] How technology evolves: Kevin Kelly on TED.com [Online] Available

https://blog.ted.com/how_technology/

[48] Siri from Apple: [Online] Available https://www.apple.com/ios/siri/

[49] Andrew C. Oliver, the founder of the Apache POI project [Online] Available:

https://en.wikipedia.org/wiki/Andrew_C._Oliver

[50] The Best APIs are Built with Swagger Tools [Online] Available:

https://swagger.io/

[51] Jest [Online] Available: https://facebook.github.io/jest/

[52] Enzyme [Online] Available: https://github.com/airbnb/enzyme

[53] Redux [Online] Available: https://redux.js.org/

[54] Sinon [Online] Available: http://sinonjs.org/

[55] Supertest [Online] Available: https://www.npmjs.com/package/supertest

