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ABSTRACT  

 
With the introduction of Internet of Things (IoT), scalable Complex Event 

Processing (CEP) and stream processing on memory, CPU, and bandwidth constraint 

infrastructure have become essential. While several related work focuses on 

replication of CEP engines to enhance scalability, they do not provide expected 

performance while scaling stateful queries for event streams that do not have pre-

defined partitions. Most of the CEP systems provide scalability for stateless queries or 

for the stateful queries where the event streams can be partitioned based on one or 

more event attributes. These systems can only scale up to the pre-defined number of 

partitions, limiting the number of events they can process. Meanwhile, some CEP 

systems do not support cloud-native and microservices features such as startup time in 

milliseconds. 

 

In this research, we address the scalability of CEP systems for stateful 

operators such as windows, joins, and pattern by scaling data processing nodes and 

connecting them as a directed acyclic graph. This enabled us to scale the processing 

and working memory using the scatter and gather based approach. We tested the 

proposed technique by implementing it using a set of Siddhi CEP engines running on 

Docker containers managed by Kubernetes container orchestration system. The tests 

were carried out for a fixed data rate, on uniform capacity nodes, to understand the 

processing capacity of the deployment. As we scale the nodes, for all cases, the 

proposed system was able to scale almost linearly while producing zero errors for 

patterns, 0.1% for windows, and 6.6% for joins, respectively. By reordering events the 

error rate of window and join queries was reduced to 0.03% and 1% while introducing 

54ms and 260ms of delays, respectively. 
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