

SCATTER-GATHER BASED APPROACH IN SCALING

COMPLEX EVENT PROCESSING SYSTEMS FOR

STATEFUL OPERATORS

Sriskandarajah Suhothayan

(168268V)

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

February 2019

SCATTER-GATHER BASED APPROACH IN SCALING

COMPLEX EVENT PROCESSING SYSTEMS FOR

STATEFUL OPERATORS

Sriskandarajah Suhothayan

(168268V)

Thesis submitted in partial fulfillment of the requirements for the degree Master of

Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

February 2019

i

DECLARATION

I declare that this is my own work and this MSc project report does not incorporate

without acknowledgment any material previously submitted for degree or Diploma in

any other University or institute of higher learning and to the best of my knowledge

and belief it does not contain any material previously published or written by another

person except where the acknowledgment is made in the text.

Also, I hereby grant to the University of Moratuwa the non-exclusive right to

reproduce and distribute my dissertation, in whole or in part in print, electronic or

another medium. I retain the right to use this content in whole or part in future works

(such as articles or books).

Signature:

Date: ...

Name: Sriskandarajah Suhothayan

We certify that the declaration above by the candidate is true to the best of our

knowledge and that this report is acceptable for evaluation for the CS6997 MSc

Research Project qualifying evaluation.

Supervisors

..................................

Dr. H. M. N. Dilum Bandara Dr. Srinath Perera

..................................

Date Date

ii

ABSTRACT

With the introduction of Internet of Things (IoT), scalable Complex Event

Processing (CEP) and stream processing on memory, CPU, and bandwidth constraint

infrastructure have become essential. While several related work focuses on

replication of CEP engines to enhance scalability, they do not provide expected

performance while scaling stateful queries for event streams that do not have pre-

defined partitions. Most of the CEP systems provide scalability for stateless queries or

for the stateful queries where the event streams can be partitioned based on one or

more event attributes. These systems can only scale up to the pre-defined number of

partitions, limiting the number of events they can process. Meanwhile, some CEP

systems do not support cloud-native and microservices features such as startup time in

milliseconds.

In this research, we address the scalability of CEP systems for stateful

operators such as windows, joins, and pattern by scaling data processing nodes and

connecting them as a directed acyclic graph. This enabled us to scale the processing

and working memory using the scatter and gather based approach. We tested the

proposed technique by implementing it using a set of Siddhi CEP engines running on

Docker containers managed by Kubernetes container orchestration system. The tests

were carried out for a fixed data rate, on uniform capacity nodes, to understand the

processing capacity of the deployment. As we scale the nodes, for all cases, the

proposed system was able to scale almost linearly while producing zero errors for

patterns, 0.1% for windows, and 6.6% for joins, respectively. By reordering events the

error rate of window and join queries was reduced to 0.03% and 1% while introducing

54ms and 260ms of delays, respectively.

iii

ACKNOWLEDGMENT

I would like to take this opportunity to express my deep sense of gratitude and

a profound feeling of admiration to my project supervisors. Many thanks go to all those

who helped me in this work. My special thanks to the University of Moratuwa for

giving an opportunity to carry out this research project.

I would like to gratefully acknowledge Dr. Dilum Bandara, the internal project

supervisor, for his continuous guidance and support throughout the whole duration of

the project, under whose supervision that I gained a clear concept of what I should do.

I would also like to extend my heartfelt gratitude to Dr. Srinath Perera, the external

supervisor of the project, for sharing the experiences and expertise with the project

matters. Last but not least, I thank all those who like to remain anonymous although

the help they provided to me was valuable.

Thank you.

iv

TABLE OF CONTENTS

DECLARATION i
ABSTRACT ii
ACKNOWLEDGMENT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
LIST OF ABBREVIATIONS ix
1. INTRODUCTION 1

1.1 Background 1
1.2 Motivation 1
1.3 Problem statement 3
1.4 Objectives 3
1.5 Outline 4

2. LITERATURE REVIEW 5
2.1 Complex Event Processing Systems 5
2.2 CEP functionalities 6

2.2.1 Filtering events based on attributes 6
2.2.2 Aggregation on sliding windows 6
2.2.3 Joining multiple streams 7
2.2.4 Pattern matching and sequence detection 7

2.3 Understanding characteristic of single node CEP 8
2.4 Distributed architectures for scaling CEP nodes 9

2.4.1 Running multiple CEP nodes in a cluster 10
2.4.2 Distributing different type of queries to different CEP nodes 10
2.4.3 Distributing execution via Publish/Subscribe infrastructure 11
2.4.4 Distributing events by partitioning each stream 12
2.4.5 Distributing events as batches 14

2.5 Distributing CEP operations over multiple CEP nodes 14
2.5.1 Scalability of stateless operators 15
2.5.2 Scalability of stateful operators 16

2.6 Summary 20

v

3. PROPOSED SOLUTION 22
3.1 Proposed solution 22

3.1.1 Scaling window operators 22
3.1.2 Scaling pattern operators 25
3.1.3 Scaling join operators 29

3.2 Summary 32
4. IMPLEMENTATION 33

4.1 Scaling window operators 33
4.2 Scaling of pattern operators 37
4.3 Scaling join operators 40
4.4 Summary 41

5. PERFORMANCE EVALUATION 43
5.1 Data set 43
5.2 Experimental setup 44
5.3 Analysis on system scalability 45

5.3.1 Analysis on scalability of window operation 45
5.3.2 Analysis of pattern operation scalability 51
5.3.3 Analysis on scalability of join operation 54

5.4 Analysis on latency and accuracy 57
5.5 Applicability to other CEP systems 60
5.6 Summary 61

6. SUMMARY 62
6.1. Conclusion 62
6.2. Research limitations 63
6.3. Future work 64

REFERENCES 66

vi

LIST OF FIGURES

Fig. 2.1: Overview of CEP 5

Fig. 2.2: Vertical scaling with multiple CEP nodes 10

Fig. 2.3: Distributed deployment of Oracle CEP 12

Fig. 2.4: Anatomy of Kafka Topic 13

Fig. 2.5: Scaling stateless CEP queries 16

Fig. 2.6: Parallelizing operator graph using partitions 17

Fig. 2.7: Combining partitioning and pipelining 17

Fig. 2.8: Optimization on streaming aggregation 18

Fig. 2.9: StreamCloud query parallelization strategy 19

Fig. 3.1: Scaling sliding time window 23

Fig. 3.2: Scaling pattern based on Brenna at el 26

Fig. 3.3: Scaling pattern based on stream type 26

Fig. 3.4: Scaling pattern based on distributed streams 27

Fig. 3.5: Scaling pattern by replicating distributed streams 27

Fig. 3.6: Scaling join of small and large windows 30

Fig. 3.7: Scaling join of two large windows 30

Fig. 4.1: Deployment of standard sliding time window test 33

Fig. 4.2: Deployment of scalable sliding time window test 34

Fig. 4.3: Deployment of standard pattern test 38

Fig. 4.4: Deployment of scalable patterns based on streams 38

Fig. 4.5: Deployment of scalable pattern based on distributed streams 38

Fig. 4.6: Deployment of standard join test 41

Fig. 4.7: Deployment of scalable join test 41

Fig. 5.1: Throughput of 1, 3, 5, 9 and 17 node time windows 46

Fig. 5.2: Memory consumption of 1, 3, 5, 9 and 17 node time windows 46

Fig. 5.3: CPU utilization of 1, 3, 5, 9 and 17 node time window 47

Fig. 5.4: Maximum time interval supported by the number of nodes 48

Fig. 5.5: Event consumption throughput by the number of nodes

 while supporting maximum time interval 48

vii

Fig. 5.6: Average number of events stored in each window node 48

Fig. 5.7: Average bandwidth of window processing nodes (events/Sec) 49

Fig. 5.8: Average CPU utilization of window processing nodes 49

Fig. 5.9: Maximum window length supported by the number of nodes 50

Fig. 5.10: Maximum supported pattern matching duration for

 worse-case workload 51

Fig. 5.11: Maximum supported pattern matching duration for

 average-case workload 52

Fig. 5.12: Average throughput of each pattern state node 53

Fig. 5.13: Average CPU utilization of each pattern state node 53

Fig. 5.14: Maximum large window length of the join nodes 55

Fig. 5.15: Average bandwidth of the join nodes 55

Fig. 5.16: Maximum length of each join window 56

Fig. 5.17: Average join node bandwidth while holding

 the largest possible length window 56

Fig. 5.18: Average latency of the sliding time and length windows 57

Fig. 5.19: Average latency of simple pattern 58

Fig. 5.20: Average latency of small and large window

 and two large window joins 58

viii

LIST OF TABLES

Table 2.1: Symbols used to analyze CEP characteristics 8

Table 2.2: Baseline characteristics of single node CEP engine 9

Table 2.3: Comparison on distributed architectures for scaling CEP nodes 15

Table 2.4: Characterization summary of distributed CEP operations

 over multiple CEP nodes 21

Table 3.1: Summary of distributed stateful CEP operations over multiple

 CEP nodes for streams that cannot be partitioned by a key 31

Table 5.1: Accuracy and performance analysis of window queries 59

Table 5.2: Accuracy and performance analysis of join queries 60

ix

LIST OF ABBREVIATIONS

ATM Automated teller Machine

CEP Complex Event Processor

CPU Central processing unit

DBMS Database Management System

ESB Enterprise Service Bus

GC Garbage Collection

IoT Internet of Things

JMS Java Messaging Service

NFA Non-deterministic Finite Automata

RDD Resilient Distributed Dataset

TCP Transmission Control Protocol

TPS Transactions Per Second

XA eXtended Architecture

