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Abstract

Proactive Cloud auto-scalers forecast future conditions and initiate scaling response
in advance leading to better service quality and cost savings. Their effectiveness
depends on the forecast accuracy and penalty due to miss prediction. However, such
solutions assume fixed prices for virtualized Cloud resources to be provisioned.
Hence, they are unable to benefit from dynamically-priced resources such as
Amazon Spot Instances which are introduced by Cloud providers to deal with
fluctuating workloads cost effectively. Moreover, users have the risk of losing
resources when the dynamically-adjusted market price of resources exceeds the user-
defined maximum bid price. Therefore, proactive auto-scalers should also forecast
market price of dynamically-priced resources to minimize the cost further while
retraining service quality. However, predicting the market price (to set the maximum
bid price) is quite complicated given highly varying workload and resource demands.
We present a proactive auto-scalar for dynamically-priced virtual machines by
combing the workload and resource prediction capabilities of an existing auto-scalar
named InteliScaler, and a novel technique for forecasting Spot price. We retrieve
Spot price history from Amazon and use it to forecast the future prices using
Recurrent Neural Networks. Next, we selected the maximum price for a given
decision window as the bid value to make Spot request. To demonstrate the utility of
the proposed solution, we tested the performance of the enhanced auto-scaler using a
synthetic workload generated using the Rain toolkit and the RUBIS auction site
prototype. Proposed auto-scaler with dynamically-priced virtual machines reduced
the total cost by ~75% compared the same auto-scalar with fixed priced instances.

Moreover, no noticeable change in service quality was observed.
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