

CEP-ML: META-LANGUAGE TO SUPPORT

INTEROPERABILITY BETWEEN HETEROGENEOUS

COMPLEX EVENT PROCESSING SYSTEMS

W.D. Amila Iroshani Paranawithana

(158231T)

Degree of Master of Science

Department of Computer Science & Engineering

University of Moratuwa

Sri Lanka

May 2019

CEP-ML: META-LANGUAGE TO SUPPORT

INTEROPERABILITY BETWEEN HETEROGENEOUS

COMPLEX EVENT PROCESSING SYSTEMS

W.D. Amila Iroshani Paranawithana

(158231T)

Thesis submitted in partial fulfilment of the requirements for the degree Master of

Science in Computer Science and Engineering

Department of Computer Science & Engineering

University of Moratuwa

Sri Lanka

May 2019

i

DECLARATION

I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to the University of Moratuwa the non-exclusive right to

reproduce and distribute my thesis, in whole or in part in print, electronic or another

medium. I retain the right to use this content in whole or part in future works (such as

articles or books).

... ..

W.D. Amila Iroshani Paranawithana Date

The above candidate has carried out research for the Master of Science thesis under

my supervision.

.. ...

Dr. Surangika Ranathunga Date

ii

ABSTRACT

Distributed complex event processing systems give many benefits over centralized systems
mainly in terms of scalability and extendibility. There are many types of CEP engines with
different characteristics and query languages specialized to each domain. When it comes to
deploying these distributed CEP systems in an industrial context, supporting interoperability
between these heterogeneous event processing systems has become a major problem.

Not having a generally accepted definition language is a prime problem when integrating
different CEP engines to achieve one goal in a distributed environment. There have been
introduced new systems and languages to be operated efficiently in a distributed environment
but, they have not addressed the problem of not having a generally accepted language when
communicating between different CEP engines. There has been little quantitative analysis
done on developing a meta-language and a language conversion parser. The absence of a
language parser to convert between any available meta-language and other existing CEP
languages is another noticeable shortage when migrating between different CEP systems.

This research presents a generally accepted definition meta-language for complex event
processing to support interoperability between CEP systems along with a language parser to
convert between this meta-language and existing languages. It acts as an intermediate
language format in language conversion. The meta-language supports the main common
language functions to reach the industrial level. CEP ML language parser supports three
popular languages SiddhiQL, EPL and Stream that have dominated the field for years.
Further, we have developed a web-based try-out tool which users can easily use to convert
between these languages.

iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Dr. Surangika

Ranathunga of the Computer Science Department at the University of Moratuwa for

her continuous support for completing my research and thesis. Her motivation,

patience and continues support always helped to follow the right path and resolve

problems I faced during this journey.

I would like to thank all the staff from the Department of Computer Science and

Engineering, University of Moratuwa, for their kindness they expressed on all

occasions.

Finally, I must convey my sincere gratitude to my parents, husband and friends for

their unfading support and continual motivation throughout this journey of my

masters. This achievement would not have been realizable without all of them. Thank

you.

iv

TABLE OF CONTENTS
DECLARATION .. I

ABSTRACT .. II

ACKNOWLEDGEMENTS ... III

LIST OF FIGURES .. VI

LIST OF TABLES .. VII

LIST OF ABBREVIATIONS ... VIII

1. INTRODUCTION .. 1

1.1. OVERVIEW .. 1

1.2. PROBLEM AND MOTIVATION ... 2

1.3. OBJECTIVES .. 4

1.4. CONTRIBUTIONS .. 5

1.5. ORGANIZATION OF THE THESIS ... 5

2. LITERATURE SURVEY .. 7

2.1. OVERVIEW .. 7

2.2. COMPLEX EVENT PROCESSING ENGINES ... 7

2.3. CHALLENGES IN INTEROPERABILITY BETWEEN HETEROGENEOUS CEP

ENGINES .. 8

2.4. CEP QUERY LANGUAGE CATEGORIZATION .. 9

2.4.1. Expressibility of different query types by CEP query languages 10

2.4.2. EPL in ESPER .. 12

2.4.3. SiddhiQL in Siddhi .. 12

2.4.4. CQL in STREAM .. 13

2.4.5. Comparison on Functions of EPL, SiddhiQL and CQL 13

2.5. RULEML ... 15

2.5.1. Reaction RuleML for CEP ... 15

2.5.2. RuleML limitations .. 16

2.6. XML FOR QUERY LANGUAGE DESIGNS .. 17

3. METHODOLOGY ... 18

v

3.1. OVERVIEW .. 18

3.2. CEP-ML – META-LANGUAGE FOR CEP QUERY LANGUAGES 18

3.2.1. Structure of the language ... 18

3.2.2. CEP-ML operators ... 20

3.2.3. CEP-ML syntax compared with other languages syntax 24

3.2.4. CEP-ML as a mediator language ... 26

3.3. LANGUAGE PARSER ... 27

3.3.1. Parse languages using CEP-ML language parser 27

3.3.2. Query Parser and Query Printer ... 28

3.3.3. Language parser implementation ... 30

3.3.4. Query Model .. 31

3.4. WEBUI .. 32

4. EVALUATION .. 34

4.1. OVERVIEW .. 34

4.2. EVALUATING CHARACTERISTICS OF CEP-ML SYSTEM 34

4.2.1. Readability and understandability .. 34

4.2.2. Extensibility ... 35

4.2.3. Platform independent language parser and tools 35

4.2.4. Expressibility of CEP-ML .. 35

5 CONCLUSION AND FUTURE WORK ... 38

REFERENCES ... 39

APPENDIX A: DOM TREE VIEW OF THE CEP XML LANGUAGE 42

APPENDIX B: CEP XML LANGUAGE OPERATIONS TAGS 43

APPENDIX C: CEP ML IMPLEMENTATION MODELS CLASS DIAGRAM 46

APPENDIX D: LANGUAGE PARSER API METHODS .. 47

APPENDIX E: CEP ML TRY-OUT TOOL .. 48

vi

LIST OF FIGURES

Figure 1.0 Distributed Complex Event Processing 2

Figure 2.1 Data stream query languages operation pattern 9

Figure 2.2 Taxonomy of RuleML rule 15

Figure 2.3 CEP RuleML sample 16

Figure 3.1 Structure of CEP ML 19

Figure 3.2 Projection with conditions 21

Figure 3.3 Window filters 21

Figure 3.4 Grouping with conditions 22

Figure 3.5 Conjunction 23

Figure 3.6 Aggregation functions 24

Figure 3.7 Outline of language parser 28

Figure 3.8 Model Driven architecture of language parser 31

Figure 3.9 JAXB Query model 31

Figure 3.10 CEP ML Try-out web UI 32

Figure 3.11 CEP-ML complete system component Diagram 33

vii

LIST OF TABLES

Table 2.1 Symbolic meanings 10

Table 2.2 Different query types 11

Table 2.3 Expressibility of each query by language 10

Table 2.4 Comparison of functions of query languages 15

Table 3.1 Comparison between language query syntax 26

Table 4.1 Expressibility of CEP - ML language 36

viii

LIST OF ABBREVIATIONS

Abbreviation Description

API Application Programming Interface

BPM Business Process Management

CEP Complex Event Processing

CPU Central Processing Unit

CQL Continuous Query Language

EPL Event Processing Language

JAXB Java Architecture for XML Binding

REST Representational State Transfer

SQL Structured Query Language

SiddhiQL Siddhi Query Language

UI User Interface

WAR Web application Archive

XML eXtensible Markup Language

1

1. INTRODUCTION

1.1. Overview

Timely processing and analysing streams of data to detect situations and the ability to

respond quickly is very advantageous in competitive business environments. Some

examples are, monitoring continuous streams of transaction data to detect fraud

patterns in financial applications, analysing sequences of measurements generated

from sensor networks to give quick responses for physical changes in environment

pollution levels, and even to detect natural disasters, analysing vast amount of data

generated from social media to interpret people’s opinions and in many more

domains such as healthcare, telecommunication and sports. Traditionally this was

done with conventional database systems where data is stored and indexed and

queried later [1].

Complex Event Processing (CEP) is a widely used technology to analyse event data

streams to detect patterns in near real-time based on user-defined complex queries

[2]. Using complex event processing systems, we can detect complex events

matching the high-level queries defined by users and respond in near real time. These

predefined CEP rules are written in a specifically designed query language similar to

SQL.

This was originally done with centralized CEP systems where all the event streams

were processed by a single system. But with the rapid increase of event sources

centralized CEP systems gave many disadvantages such as single point of failure,

communication overhead that degrades the performance, increasing the response

time, and causing undesirable processing cost.

To address these issues with centralized CEP systems, the requirement of distributed

CEP systems emerged. Distributed CEP systems give many advantages in terms of

scalability, extensibility and reliability. It provides required computational power to

analyse event streams generated in varying rates with its auto scaling capability and

ensure the reliability and avoids single point of failure. But in current distributed CEP

systems there are issues in functionality, expressiveness, reusability of present

2

knowledge, user-friendly interfaces, flexibility and interoperability. Figure 1.0 shows

the overall idea of how data from different sources are sensed and streamed into a

distributed CEP system to process parallelly in a distributed manner to give

meaningful results to the users in near real time.

Figure 1.0 Distributed Complex Event Processing

1.2. Problem and Motivation

In distributed CEP systems, different types of CEP products are used due to many

reasons. Each CEP system is specialized in different domains such as business

process management (BPM), financial services, cyber-physical systems, IoT, health,

aerospace industry, transportation and each task may have different complexities

requiring different processing capabilities and functionalities provided by different

CEP engines. There are many types of CEP engines that we can mainly divide into

two categories as aggregation-oriented CEP, which are focused on executing on-line

algorithms and detection-oriented CEP, which are focused on detecting event patterns

[1]. When communicating with cross platforms another issue needs to be

3

contemplated is the licensing issue. It is not possible for one company to

accommodate licenses for several CEP products. Also, due to restrictions that come

with different company policies, it has become difficult to easily interconnect with

each of these systems.

In the business scenarios intercommunication between these different CEP systems is

an imperative requirement. For an example, to improve the sales in a business by

sending promotions at the right time and right place to the most relevant customers, a

business will require to consolidate and share the analysed data generated by different

CEP engines installed at different domains such as customer sales tracking systems,

customer location/activity tracking systems and environmental data analysis systems.

Some of these tracking systems might be operated by third parties, who may have to

abide by their licensing issues, or who may already have their preferred CEP engine.

With regard to integration of these heterogeneous CEP technologies, there are many

problems. One of the fundamental problems is that the unavailability of a generally

accepted query processing language for CEP [3] like SQL for database queries.

Different CEP languages have different language formats and support different types

of functionalities.

According to the best of our knowledge, there is only one common rule language

introduced for CEP languages so far, which is RuleML [4]. But, RuleML is not up to

the standard of industrial usage as it does not support some of the fundamental

language functions that are common in existing query languages. Also, it does not

have a language parser to convert RuleML queries to other existing popular CEP

languages which is utterly important in distributed CEP systems. There are also some

frameworks available such as DHEP [1] to coordinate between heterogeneous CEP

engines but has not focused on resolving the language translation issue.

New CEP systems have been introduced with new query languages to detect event

patterns in a parallelized or distributed manner. Poul, Migliavacca and Pietzuch [5] in

their research introduce a new CEP system with a SQL like high level query language

which facilitates rewriting of expressions into optimized, equivalent queries based on

the resource consumption of event automata and executing those queries in the

4

distributed system. Cayuga [6, 7] CEP system also introduces a new query language

with six operators and an automated system for event pattern detection in a

distributed system. DistCED system [8] also proposes a new CEP language and a

automata distribution system which can address the problem of incorrect detection

due to network latency.

Even though the aforementioned solutions improve the performance and correctness

of distributed event processing, they have not captured the issue of executing queries

in different types of CEP engines which is the prime concern in this research. Hence,

these systems do not have a general language or a language parser to coordinate with

heterogeneous CEP systems that are already deployed or need to be deployed due to

various reasons as mentioned above. CEP ML and its language parser focus on

addressing that issue.

Another issue of not having a general CEP query language is when migrating from

one CEP engine to another, having to rewrite all existing queries to convert to new

CEP engine query type. Due to the unavailability of a language parser, this query

conversion has to be done manually or custom language parsers have to be

implemented, which is expensive and time consuming.

1.3. Objectives

Objectives of this research are twofold.

1. Introducing a generally accepted meta-language for CEP queries.

Under this existing CEP query languages will be analysed and categorized in order to

identify the common functionalities and propose a common language syntax for

facilitating those functionalities.

This language will be used as an intermediate language in CEP query conversion.

When communicating between different systems in a distributed environment and

when migrating to a new CEP system, CEP ML can be used as an intermediate

language format to convert queries from one language format to another.

5

2. Implementing a language parser that can convert from one language to

another through the meta-language. In this research, the following most

common CEP languages will be taken into consideration.

a. SiddhiQL of Siddhi CEP

b. EPL of ESPER

c. CQL of STREAM

1.4. Contributions

This project makes the following contributions:

• Generally accepted meta-language CEP ML for CEP queries.

• Language parser to convert a given existing language to CEP ML and vice

versa. This supports 3 existing languages.

• Web based language conversion try-out tool

1.5. Organization of the Thesis

The rest of the thesis is organized as follows. Chapter two reviews related work in

elaborating challenges in interoperability between heterogeneous CEP engines

focussing more on lack of common meta-language. It further reviews on CEP query

language categorization in order to identify the basic common rules and capabilities

of existing languages. Finally, it discusses about existing solutions available and their

lacks and limitations.

The third chapter is concerned with the methodology used for this study. It explains

the approach used in designing the new meta-language and the language parser.

Chapter four evaluates the work presented in the thesis. It discusses on how the

presenting solution addresses the prime objective of this research and its unique

features.

6

Finally, in chapter five the conclusion gives a brief summary and critique of the

findings and it also mentions the areas identified for further research and

improvements for this research.

7

2. LITERATURE SURVEY

2.1. Overview

This chapter focuses on the challenges faced when interoperating between

heterogeneous CEP engines, the significance of having a general query language and

studies on existing CEP query languages. Under that, this chapter presents a

categorization of query languages based on their characteristics and further on the

extensibility of different query types of these languages. As this research is scoped on

developing the language parser for three major CEP languages SiddhiQL, EPL and

CQL a basic introduction on these languages and a comparison between their

language function capabilities will be discussed here. It also discusses existing

solutions such as DHEP system and RuleML language and their deficiencies in

addressing this problem.

2.2. Complex Event Processing engines

Today there is so much data that get generated in every second from various sources

such as sensors, web activities, transactions, social networks etc and from different

applications such as e-Science use-cases, business applications, financial trading

applications, operational analytics applications and business activity monitoring

applications. To make use of these data in an effective and utilitarian manner data

processing has become a vital necessity. Complex Event Processing main and rapidly

emerging technology solution that is widely used for real-time data processing. A

Complex Event Processor identify relevant relationships and patterns from different

streams of events and confine it into a composite event in order to send to other

relevant components [9].

8

2.3. Challenges in interoperability between heterogeneous CEP engines

Even though the distributed CEP systems grant many advantages, in the real

industrial environments interoperability between these distributed event processing

systems is a complex problem that has not been solved into an acceptable level.

Language translation is an unavoidable fact in interoperability and direct transition

between one syntax to another is fairly complex because those are not originally

designed to that. Also, this language transition introduces a large overhead since all

the nodes need to be aware of all possible counterparts [10].

Apart from query language translation, there are many more challenges when

considering interoperability between heterogeneous systems. One is the security

issues since correlation rules may contain confidential business process information

which domain owners are reluctant to share. Different CEP engines may be running

in different networks and in order to work collaboratively between these systems

events and rules have to be exchangeable, so the communication is one challenge.

The DHEP (Distributed Heterogeneous Event Processing) system [1] introduces a

framework that can embed centralized CEP engines to create a distributed processing

system which manages communication between the nodes and distribution of rules.

As per the best of our knowledge, DHEP framework is the only solution so far which

address the challenge of interoperation between heterogeneous CEP engines to some

extent even though it has some issues. They have introduced a meta-language that

allows to design and manage events, rules and context information within the

distributed system. The rule management component of the DHEP offers interfaces

to move rules to other nodes and deploy them in local processing engines and provide

rule translators to support each CEP engine type. DHEP provide a whole framework

with set of functionalities such as Event Bus which distribute the data,

Decoder/Encoder component, Routing component which route the incoming events

according to a routing table and Wrapper which is responsible for the integration of

the different engines and all these require a considerable processing power which

may not be available in some practical environments. However, this meta-language

supports limited correlation operators such as basic SEQ, ALL, OR, and NOT. Also,

9

some rules may not be placed on some nodes, because its restrictions do not match

the nodes attributes and the resource usage of these rules are high.

2.4. CEP query language categorization

To create a meta-language for CEP query languages a comprehensive study on the

existing languages is essential. A survey by Lai-Ham [10] has identified types of

complex events and analysed the expressibility of these complex events with existing,

selected CEP query languages by considering real life sample scenarios. CEP

languages can be mainly categorized into three as below.

a. Data stream query languages

Data stream query languages is to query streams of data/events which mainly use a

relational query language like SQL. In this method, a set of data in a stream at a time

instance is converted into a relation and queries are executed and results are

converted back to a stream as shown in Figure 2.1. The main three types of operators

of data stream query languages are relation-to-stream operators, stream-to-relation

operators and relation-to-relation operators.

Figure 2.1 Data stream query languages operation pattern [11]

Also retrieving select events can be done by applying a window such as tuple

windows to retrieve only the last n events, and time windows to retrieve only the

events that entered the stream in the last n time units. Esper, STREAM, Siddhi are

sample CEP engines use this type of CEP languages. Coral8 [cor], Avaya Event

Processor [ava], BEA (Oracle) Complex Event Processing [bea], and StreamBase

[strb] are commercial CEP engines of this kind [11].

10

a. Composition-operator-based languages

Composition-operator-based languages can be defined as the composition of complex

event queries using small, simpler event queries. The supporting operators of these

languages which determine expressivity of these languages are conjunction,

disjunction, sequences, negation, counting, and applicability of constraints. AMiT

(IBM Active Middleware Technology) is a sample for this type [11].

b. Production rule languages

Production languages are used to express production rules that are then deployed in a

production rule engine. Those rule languages do not operate on streams, but on data

structures called working memories: mutable sets of objects capable of carrying data,

called facts. Production rules consist of a condition which checks the existing

working memory and action which change the working memory by adding,

removing, or altering facts. Drools which is also known as JBoss rules is a sample

for this type [11].

2.4.1. Expressibility of different query types by CEP query languages

Table 2.2 lists different types of queries that are supported by query languages. Table

2.3 shows the expressibility of each query type by languages with the symbols

defined in Table 2.1 [11].

Table 2.1 Symbolic meanings

Symbol Meaning

+ Fully expressible using desired features

⊕ Partially expressible using desired features (desired features insufficiently present)

⊖ Fully/partially expressible using other features (desired features not present, or requires
not generally applicable “tricks” such as additional streams or low-level coding to
work, or insufficient documentation)

– Not expressible

11

Table 2.2 Different query types [11]

Q1 Disjunction

Q2 Negation, time windows

Q3 Conjunction, data extraction

Q4 Using external data sources

Q5 Tuple windows, aggregation by group

Q6 Counting

Q7 Aggregation

Q8 Event instance selection

Q9 Sequences

Q10 Event instance consumption

Table 2.3 Expressibility of each query by language [11]

Language Group Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

STREAM DS + ⊖ + ⊖ + + + ⊖ ⊖ ⊖

Borealis DS + – + ⊖ + + + – ⊖ –

AMiT CO + ⊖ + – – + – + + +

ruleCore CO + ⊕ + – – ⊕ – ⊖ ⊕ ⊕

SASE+ CO + ⊖ + – + + + – + ⊖

Esper DS, CO + + + + + + + + + ⊖

Cayuga DS, CO + – + – + + + – – ⊖

12

Drools PR + ⊖ + ⊖ ⊖ + + + + +

XChange
EQ

Other + + + ⊕ ⊖ + + – ⊕ –

SiddhiQL DS + + + ⊕ + + + ⊕ ⊕ ⊕

Considering the results of the language categorization and the popularity of the CEP

engines used in the industry this project considers three languages SiddhiQL of

Siddhi, EPL of ESPER and STREAM languages to analyse further and the parser is

implemented for these languages. Since these three languages belong to data stream

query language category, they have a SQL like a query pattern and has similar

expressibility.

2.4.2. EPL in ESPER

Esper is an open source CEP engine for event streams processing, analysis and event

correlation. Its query language, Event Processing Language (EPL) is a well-

established rich language which can express filtering, aggregation, joins and sliding

windows of multiple event series. It also includes pattern semantics to express

complex temporal causality among events (followed-by relationship) [12].

EPL is a SQL a like language which has the usual features of a data stream language

and has also inspired by composition- operator-based languages. It offers SELECT,

FROM, WHERE, GROUP BY, HAVING and ORDER BY clauses [13].

2.4.3. SiddhiQL in Siddhi

WSO2 Complex Event Processor is a open source Complex Event Processing server

which can handle up to throughput of nearly 100K+ events per second on single-

server commodity hardware.

13

SiddhiQL [14] is a SQL like a language. Main language constructs of siddhiQL are

event stream definitions, event table definitions, partitions and queries. SiddhiQL

supports many functions such as FILTER, WINDOW, GROUP BY, SEQUENCES,

JOIN, HAVING, output rate limiting... etc.

2.4.4. CQL in STREAM

STREAM (STanford stREam datA Manager) was a result of a research project done

at Stanford University. STREAM CEP engine has its own Event Query Language

called Continuous Query Language (CQL) which the syntax is very similar to SQL.

STREAM language has strongly influenced EPL in ESPER and CCL in Coral8 [15].

The main operations supported by CQL are WHERE, GROUP_BY and HAVING.

Also, it supports time windows and tuple windows for converting streams-to-

relations. CQL provide Istream(insert streams), Rstream(relation streams) and

Dstream(delete streams) as relation-to-stream operators [17, 18].

2.4.5. Comparison on Functions of EPL, SiddhiQL and CQL

Following Table 2.4 compare the main functions provided by 3 query languages

which are considered in this paper EPL, SiddhiQL and CQL. (This list does not

include all the functions of each language and considers only main functions)

Since EPL, SiddhiQL and CQL all belongs to Data Stream Language type, they have

similar operators with similar syntax. Filtering from each stream is only supported in

EPL and SiddhiQL wherein CQL this is done in ‘where’ condition. Inserting the

results to another stream is supported only in EPL and SiddhiQL. In stream joining,

EPL supports advanced joins such as LEFT, RIGHT, OUTTER joins. Aggregate

functions supported by all 3 languages are almost similar in functions and syntax.

Window filtering is similar in EPL and SiddhiQL but CQL does not support

advanced window functions.

14

Table 2.4 Comparison of functions of query languages

Query Function EPL SiddhiQL CQL

Projection SELECT SELECT SELECT

Filter FROM <> [<filter
condition>]

FROM <>[<filter
condition>]

Window .win:time([time
peiod])

#window.<window>
(<parameters>)

[Range <period>] /
[Now]

Output event
categories

 Current/ expired/all
events

Aggregate function(variable)
sum, avg, median,
stddev , avedev,
count

function(variable)
sum, avg, max, min,
count, stddev

function(variable)
Average, max,
min

Group By group by group by group by

Having having having having

Output Rate Limiting output [all | first | last
| snapshot]

output ({<output-
type>} every (<time
interval>|<event
interval> events) |
snapshot every
<time interval>)

output

Joins , (comma)(supports
Outer, left, right
joins)

join , (comma)

Remove duplicates SELECT distinct Distinct

Search condition WHERE <condition> ON WHERE
<condition>

Limit row count limit <row count>

Inserting events into
table

Insert into / insert <>
into <>

Insert into

Sub queries supported

Deleting events from
event table

 delete <table
name> on

Update events in event
table

 Update <table
name> on

15

2.5. RuleML

To interchange web rules in XML format, RuleML [4] (Rule Markup Language) has

been designed where it supports various rule languages. It allows for the exchange of

rules between many heterogeneous systems. For example, distributed software

components on the Web, heterogeneous client-server systems found within large

corporations and complex event processing systems.

2.5.1. Reaction RuleML for CEP

In RuleML there are rules that execute over real time flowing data and expecting

response in near real time, which are called reaction rules. Reaction rules is mainly

based on ontologies of complex events. It consists of a semantic interchange format

and standardized rule markup language. There is an extension of Reaction RuleML

for Complex Event Processing (CEP) which detect complex events and reaction in

near real time. This language includes different types of terms, formulas and

performatives. Figure 2.2 shows the taxonomy of RuleML.

Figure 2.2 Taxonomy of RuleML rule

16

CEP RuleML supports xml tags <on> <Receive> which defines on which event

receive to be activated, <do> - the query to execute on incoming data, <if> - to check

some conditions are supported. Figure 2.3 is a sample reaction Reaction RuleML

query.

<Rule style="active">
 <on><Receive> receival of event from ‘A’ </Receive></on>
 <do><Send> query ‘B’ for regular products in a new sub-
conversation </Send></do>
 <on><Receive> receive results from sub conversation with B
</Receive></on>
 <if> check some conditions </if>
 <do><Send> send results received from ‘B’ back to ‘A’
</Send></do>
</Rule>

Figure 2.3 CEP RuleML sample

2.5.2. RuleML limitations

RuleML was originally created to support web rules in general and later came to

support CEP rules with introducing reaction-RuleML. Hence, it is not designed to

fully support the fundamental CEP query language features and it is still have not

improved up to the standard of industrial usage even in their latest reaction RuleML

specification 1.02 [16]. However, when considering using RuleML to define CEP

rules, it has some disadvantages. One is XML is a heavy language with a large size of

metadata and also its’ syntax is too verbose. Since RuleML has not currently

implemented parsers to convert CEP RuleML to other industrial using CEP

languages users need to create parsers to their required language. Currently, CEP

RuleML does not support most common query functions such as windows, aggregate

functions, sequences, grouping etc. It is a bit hard to extend it to support these

functions with the limitations in the hierarchical model in XML.

17

2.6. XML for query language designs

When considering the existing CEP query languages in the industry, there seem to be

many types of formats used. For example, relational query language like SQL, object

based, and XML based.

XML is one of the popular formats used for constructing languages. Novak and

Marek [19] in their research describes how convenient to use XML to create a new

domain specific language. This paper [20] describes what are the advantages of using

XML as language format in constructing a language

● Easy to understand and manipulate - well-structured with a fixed schema.

● Extensible - good for evolving languages

● Widely supported - tools are already available for reading/parsing xml

● Human Readable - even non-technical people can understand

Also, there are many tools already available to parse XML tree structure and to

visualize. Java offers many techniques that can be used to serialize java objects to

XML or vice-versa. One of them is XMLEncoder and XMLDecoder which are

classes in the java-beans package [21]. Another way is JAXB (Java Architecture for

XML Binding) which provides a mechanism to marshal (write) java objects into

XML and unmarshal (read) XML into an object [22].

18

3. Methodology

3.1. Overview

In this research, we introduce a new CEP query language CEP-ML and a language

parser which comes with a web-based try-out tool. This chapter describes the

methodology employed in developing CEP-ML which acts as a general CEP query

language and the methodology of developing the language parser which converts

from existing CEP languages to CEP-ML and vice versa. Finally, the try-out tool web

UI which provides a simple user interface to construct CEP-ML queries and convert a

given CEP-ML query to a preferred language and vice versa.

3.2. CEP-ML – Meta-language for CEP query languages

CEP-ML is a meta-language which acts as a general query language when

interoperating between heterogeneous CEP engines. It can be used as an intermediate

language to communicate with different CEP engines by converting from one

language(a) to meta-language (CEP-ML) and then to another language(b).

CEP-ML is an XML based language with a defined schema. The language supports

main CEP query operators which are frequently and commonly used in the industry.

Refer Appendix A for a full explanation of the language syntax, schema and

semantics.

3.2.1. Structure of the language

CEP ML possess an XML structure with xml tag names equal to operator keywords.

Its XML structure provides several advantages. Since this language will be used as an

intermediate language XML format is easier to convert to java object model and

backwards in parser data flow. Also, if users want to generate CEP-ML queries they

can use the web try out tool or implement their own programs easily using existing

standard XML generation methods.

19

CEP-ML language has a tree structure inherited by XML characteristics. Element

keywords are a combination of CEP ML specific set of keywords and common other

language keywords. Every query starts with root tag <query>. Projections are

declared within <select>, where you have to define what attributes, or attributes with

aggregate functions applied need to be selected from the stream. Then need to define

the streams that the query is running on within <from> tag. Here any number of

streams can be given as conjunction. Each <stream> data can be filtered with <filter>

and also by defining window function within <window>. Data filtering conditions are

defined using <where>. Other grouping on condition is defined with <group-by> and

<having> elements. Finally, the optional <insertInto> defines the stream that

resulting events need to be inserted. Following figure 3.1 shows a sample query

which describes the main structure of language.

<query>
<select>
 <attributes>
 <attribute as="a1">att1</attribute>
 </attributes>
 <functions>
 <function func="function" as="funcAs">functionApplyParam</function>
 ...
 </functions>
</select>
<from>
 <streams>
 <stream as="as">
 <name>stream name</name>
 <window func="function_name">
 <parameters>
 <parameter>window parameter</parameter>
 ...
 </parameters>
 </window>
 <filter>stream_filter_condition</filter>
 </stream>
 ...
 </streams>
</from>
<where>..condition..</where>
<group-by>grp_by_param</group-by>
<having>grp_condition</having>
<insertInto>..insert-stream..</insertInto>
</query>

Figure 3.1 Structure of CEP-ML

20

Keywords such as query, stream. are specific to CEP ML. Others such as select,

from, group-by, having, where ...etc are common keywords used in most of the

existing languages and exist in CEP ML also with same keywords. Window function

is represented in different ways in different languages and in CEP ML it is

represented with ‘window’ keywords as in SiddiQL and EPL. Filter and InsertInto

functions are present in SiddhiQL and CEP ML also support these functions under

the same keywords.

3.2.2. CEP-ML operators

Currently, CEP-ML language supports query functions such as projections with

SELECT and aggregate functions, define data analysing streams with FROM and

joined streams with JOIN, data filtering of an individual stream with WINDOW and

FILTER and joined streams with WHERE, grouping results on conditions with

GROUP-BY and HAVING, inserting results into another stream with INSERT-

INTO. Following samples shows how main operators are presented in CEP-ML.

Projection of attributes with condition - <select> with <filter>

Projection is for extracting only part of the information contained in the event. With

<filter> we can filter out the number of selections based on a condition given. Filter

conditions can be defined for each stream. This filter function acts similar to

SiddhiQL filters. All the filtering conditions for that stream need to be defined within

single <filter> element.

Following query in figure 3.2 describes how to select rooms and their location where

room number is greater than 100 from the given stream ‘tempetarureStream’.

21

<query>
 <from>
 <streams>
 <stream>
 <name>tempetarureStream</name>
 <filter>roomNo>100</filter>
 </stream>
 </streams>
 </from>
 <select>
 <attributes>
 <attribute as="rm">roomNo</attribute>
 <attribute>location</attribute>
 </attributes>
 </select>
</query>

Figure 3.2 Projection with conditions

Filter events within a Windows - <window>

Window allows capturing a subset of events based on criteria from input event stream

for calculation. Many languages have inbuilt window functions. For an example,

SiddhiQL and EPL have time, length, cron, sort, frequent, unique etc and CQL has

range and now window functions. In CEP-ML window is represented as <window>

tag, in-built functions are can be declared as attribute ‘func’. Other parameters are

defined under <parameter> tag. Following query in figure 3.3 describes how to select

all the events in ‘temperatureStream’ within last 5 min.

<query>
<select all="true"/>
<from>
 <streams>
 <stream>
 <name>tempetarureStream</name>
 <window func="time">
 <parameters>
 <parameter>5 min</parameter>
 </parameters>
 </window>
 </stream>
 </streams>
</from>
</query>

Figure 3.3 Window Filters

22

Group-By - <group-by> and Having - <having>

Group by allows us to group the aggregation based on the given group by attributes.

Having allows us to filter events after aggregation and after processing at the selector.

In CEP ML these are represented by <group-by> and <having> tags. If there are

more than one group by variables those needs to be defined comma separated.

Following query in figure 3.4 describes how to find the max temperature per room

where the temperature is more than 40 degrees.

<query>

 <select>
 <attributes>
 <attribute>roomNo</attribute>
 </attributes>
 <functions>
 <function as="maxTemp" operator="max">temperature</function>
 </functions>
 </select>

 <from>
 <streams>
 <stream>
 <name>tempetarureStream</name>
 </stream>
 </streams>
 </from>

 <group-by>roomNo</group-by>
 <having>temperature > 40</having>

</query>

Figure 3.4 Grouping with conditions

Joining more streams with Conjunction - <from>

Conjunction allows merging two event streams based on a condition.

Following query in figure 3.5 describes how to find location and temperature from

joined streams traffic_stream and temperature_stream with filtering records of each

23

stream separately under <filter> and considering combined conditions also under

<where>.

<query>

 <select>
 <attributes>
 <attribute as="loc">location</attribute>
 <attribute as="temp">temperature</attribute>
 </attributes>
 </select>

 <from>

 <streams>
 <stream as="trs">
 <name>traffic_stream</name>
 <window func="time">
 <parameters>
 <parameter>5 min</parameter>
 </parameters>
 </window>
 <filter>ts.level > 5</filter>
 </stream>

 <stream as="tps">
 <name>temperature_stream</name>
 <window func="time">
 <parameters>
 <parameter>10 min</parameter>
 </parameters>
 </window>
 <filter>tps.temp > 30</filter>
 </stream>
 </streams>

 </from>

 <where>trs.eventId = tps.eventId</where>
</query>

Figure 3.5 Conjunction

24

Aggregate Functions on projection attributes- <functions>

Aggregate functions can be used within projections. Different CEP languages
support different inbuilt aggregate functions such as, sum, average, max, min,
range...etc. In CEP-ML these functions can be declared as ‘operator’ attribute.

Following query describes how to select the maximum temperature per room and
machineID for the last 5 min.

<query>
<from>
 <streams>
 <stream>
 <name>tempetarureStream</name>
 <window func="time">
 <parameters>
 <parameter>5 min</parameter>
 </parameters>
 </window>
 </stream>
 </streams>
</from>
<select>
 <attributes>
 <attribute>roomNo</attribute>
 </attributes>
 <functions>
 <function as="maxTemp" operator="max">temperature</function>
 </functions>
</select>
<group-by>roomNo, machineID</group-by>
</query>

Figure 3.6 Aggregation functions

3.2.3. CEP-ML syntax compared with other languages syntax

CEP-ML is designed considering one of the main factors which is making it more

readable, simple and familiar to the existing CEP query language users by keeping

language syntax keywords, ordering, grouping similar to existing languages. XML

tag names of CEP-ML are mostly similar to the query keywords of other languages.

Even though the ordering of the main elements under root <query> element is not

affected and forced while parsing CEP-ML to other languages, it is recommended to

maintain the natural order similar to other languages to increase the readability.

25

Table 3.1 shows a comparison of how a sample CEP-ML query is represented in

EPL, SiddhiQL and CQL languages.

Table 3.1 Comparison between language query syntax

Language Syntax

CEP-ML <query>
 <select>
 <attributes>
 <attribute as="attr1as">attribute1</attribute>
 </attributes>
 <functions>
 <function func="funnc" as="attr2as">attribute2</function>
 </functions>
 </select>
 <from>
 <streams>
 <stream as="st1">
 <name>stream1</name>
 <window func="windowFunc">
 <parameters>
 <parameter>parameter1</parameter>
 </parameters>
 </window>
 </stream>
 <stream as="st2">
 <name>stream2</name>
 </stream>
 </streams>
 </from>
 <where>where_condition</where>
 <group-by>group_by_variables</group-by>
 <having>having_condition</having>
</query>

EPL select attribute1 as attr1as, func(attribute2) as attr2as
from stream1.win:windowFunc(parameter1) as st1, stream2 as st2
where where_condition
group by group_by_variables
having having_condition

SiddhiQL from stream1#window.windowFunc(parameter1) as st1 join stream2 as st2
on where_condition
select attribute1 as attr1as, func(attribute2) as attr2as
group by group_by_variables
having having_condition

CQL select attribute1 as attr1as, func(attribute2) as attr2as
from stream1[windowFunc parameter1] as st1 , stream2 as st2
where where_condition
group by group_by_variables
having having_condition

26

As shown in Table 3.1 and Table 2.4, Some query functions and their syntax are
exactly similar in all 3 languages and CEP ML also has maintained a similar syntax
in xml tags. Those functions are projection with query words 'select' and 'as',
aggregate functions with query words 'avg, max, min.. etc' , grouping on a given
condition with query words 'group by' and 'having' etc.

There are set of functions that are supported in all 3 languages but with different

syntax and different depths. Conjunction is represented in EPL and CQL with a

comma where in SiddhiQL it is defined with the keyword 'join'. CEP ML does not

use any special keyword for joining streams and any number of streams need to be

joined can be defined under <streams> tag. Even though EPL language supports

advanced joins such as LEFT and RIGHT joins, those are not supported in current

CEP ML implementation. Filtering with window is supported in all 3 languages but

EPL and SiddhiQL have similar syntax and window functions where CQL differs in

syntax and supports only limited and different window functions. CEP ML use

<window> tag and has the ability to define any window function belongs to any of

the languages.

Since EPL and SiddhiQL are DS type query languages, those support inserting

results into another stream with 'insert into'. CEP ML also have introduced this with

tag <insert into>. Filtering from individual streams is also only supported in EPL and

SiddhiQL by using '[]' after stream definition and in CEP ML this feature is

supported within <filter> tag within each stream.

3.2.4. CEP-ML as a mediator language

CEP ML is a meta-language that can be used as an intermediate language when

converting between different languages. Rules that need to be shared across

heterogeneous CEP can be written in any existing language, and CEP ML language

parser can be used to convert that rule to CEP ML and then to other CEP engine rule

language type so that user does not have to know the target language syntax.

27

CEP ML also can be used as a mediator language while migrating over different CEP

engines. Currently, not having a language parser makes it difficult to migrate to new

CEP engines from existing. Manual query conversion is a hectic process and need

extra resources and time. CEP ML language parser makes this process easier since

users can directly convert between languages. In this occasion CEP ML act as an

intermediate language format.

3.3. Language parser

This section illustrates the methodology employed in developing the CEP language

parser. Its main responsibility is to translate existing CEP languages to CEP XML

language and vice versa. Currently, it supports three existing languages EPL,

SiddhiQL and CQL. Parser is packaged as a java API which can be used in CEP

engines integration systems implemented in java. It also exposes its API

functionalities as a REST API with the try-out tool comes with it which will be

discussed in coming sections.

In this research project scope, the languages that parser supports belongs to Data

stream query (DS) and Composition-operator-based (CO) language types as

explained in chapter 2. Siddhi and EPL belong to DS language type have SQL type

query language and support common features including time window functions. CQL

of Stream is classified as both DS and CO and also have a query structure similar to

SQL.

3.3.1. Parse languages using CEP-ML language parser

Query parser can mainly intake CEP-ML queries and other language queries.

Depending on the query type, users can select the converter. Each converter provides

utilities to convert to CEP-ML or to another query type. Then comes the model

creator to create the intermediate query model by parsing the input. Here CEP-XMLs

are converted using standard JAXB and other queries are converted using query

parser which will be discussed later. Once the model is created query printer is used

28

to construct queries and JAXB to generate CEP-ML. Figure 3.7 describes the outline

of the parser implementation.

Figure 3.7 Outline of language parser

3.3.2. Query Parser and Query Printer

Query parser is responsible for parsing the query into the intermediate model object.

Since query syntax and keywords will differ based on the type of the query

(SiddhiQL, EPL or CQL) query string will be analysed and parsed to extract

information. The following Algorithm 1 explain how a given query is converted to

the intermediate query model. Here, a given query string is split by keywords and

values are extracted and construct the model object.

29

Function Query<A>ToModel (q)

Input: Query string q of query type A
Output: Query Model o

Create Empty Model o

// setting ‘from-stream’
s ← keyword for from-stream of query A
valueBlock ← get string block between given s and next keyword
from q
 // next keyword is one of pre-defined keywords set belongs to
that query type A
Value ← extract actual value from valueBlock
obj.fromStream ← Value

//setting ‘select’
s ← keyword for select of query type A
valueBlock ← get string block between given S and next keyword
 // next keyword is one of keywords belongs to that query type A
attribute _list ← extract attributes from valueBlock
Value ← extract actual value from valueBlock
Create new Select object s
s.attributes ← attribute_list
obj.select ← s

//set window
….

Return obj

Algorithm 1 - Given Query to intermediate model object conversion algorithm

Query printer is responsible of converting a query model object to a requesting query

string of type SiddhiQL, EPL or CQL. Following Algorithm 2 in pseudo code explain

the algorithm used in query printer. Here based on the type of the query language

need to be generated the syntax printing order is defined. Then query for the required

language is constructed by using data in query model object constructed while

parsing CEP ML.

30

Function Print<A>Query(obj)

Input: Query object obj
Output: Query q of type A

Create empty query string q
//generate ‘from-stream’ part
q ← append from-stream keyword of query type A
v ← get from-string value from obj
q ← append v to q

// read values of sub objects and append to query
// create ‘select’ values part
q ← append select keyword of query type A
atts ← obj.getSelectObject.getAttributes
q ← append attributes

// create window part
...

 Algorithm 2 - Convert query model to existing query

3.3.3. Language parser implementation

Language parser is designed following model-driven architecture. It uses an

intermediate data model to carry data while converting from CEP ML to other

languages and vice versa. Figure 3.8 describes the main architecture of language

parser with its components and data flows in compile time and run time with regards

to translating XML to textual notation and vice versa.

Language parser is implemented in java language and JAXB is used for marshalling

and unmarshalling Java objects to XML and vice versa which is the standard solution

in java. Complete java doc for parser API is included in Appendix C.

31

Figure 3.8 Model Driven architecture of language parser

3.3.4. Query Model

Query Model act as an intermediate data structures while converting XML to queries

and vice versa. These are java objects annotated with JAXB annotations which maps

xml structure to java objects. The root model is ‘Query’ shown in Figure 3.9 below.

Find the full model class diagram in Appendix C.

@XmlRootElement(name = "query")
@XmlAccessorType(XmlAccessType.FIELD)
public class Query {
 @XmlElement(name = "select")
 private Select select;
 @XmlElement(name = "insertInto")
 private String insertInto;
 @XmlElement(name = "group-by")
 private String groupBy;
 @XmlElement(name = "having", type = String.class)
 private String having;
 @XmlElement(name = "from")
 private From from;
 @XmlElement(name = "where")
 private String where;
…
}

Figure 3.9 JAXB Query model

XML Query

XML
schem

XML
Unmarshall

er

Query
Printer

Mo
del

Metam
odel

Describes

XML
Schema
Compiler

Parser Utilities

Generates Generates Compile
Time
Run
Time

32

3.4. WebUI

CEP-ML is presented along with a web based try out tool. The main purpose of this

tool is to try out the language parser API methods with a visual interface. This is

capable of constructing CEP-ML queries and converting them to other preferred

languages and vice versa.

This tool is a simple platform independent web application packaged as a WAR

which can be deployed in any web application server. Front end user interface is

implemented using ExtJS6 and backend rest API is implemented using SpringBoot

and JAVA.

It also exposes a REST API which can be invoked from remote platforms as well.

This enables users to use the parser as a web-service instead of java library.

Following figure 3.10 is a sample view of the UI. More sample use cases are

illustrated in Appendix E.

Figure 3.10 CEP ML Try-out web UI

33

This tool implementation follows MVC architecture. View component is

implemented using Ext-JS where controller and service layers are implemented using

spring-boot-web. View component allows users to insert any query and select the

preferred language type they need to convert that query to. These conversion requests

are sent to the controller in JSON format as REST requests. Controller converts these

requests to java objects and pass to the service layer to generate the converted query

and pass the response back to the view component. Service layer does the language

conversion by calling the parser java library.

Discussion

We were able to develop a new CEP query language, CEP-ML to support

interoperability of CEP engines. This language supports common query operators and

it is readable and extendable. Also, to convert other existing languages queries to

CEP-ML and vice versa we have come up with a language parser which is presented

as a JAVA API. It also comes with a web based try out tool with a user interface

where users can easily try constructing CEP-ML queries from other language queries

and vice versa. Try-out tool also exposes a REST API for language conversion

functions. Figure 3.11 shows the component diagram of the complete system.

Complete project source code is available in repository [22].

Figure 3.11 CEP-ML complete system component Diagram

34

4. EVALUATION

4.1. Overview

In this study, we perform the analysis of CEP-ML language and language parser’s

characteristics and expressibility. The system is designed and implemented focusing

on readability, understandability, extensibility and platform independability. In this

section, we discuss how these characteristics are achieved in each of the modules of

the system.

4.2. Evaluating characteristics of CEP-ML system

4.2.1. Readability and understandability

High readability and understandability are essential characteristics of a meta-

language. That will impel the more users to use this the language. Even though

language parser can handle the intermediate language structure while converting

between query languages, having a clear, readable language increase the visibility

and helps to rectify issues that might face during the integration of these systems.

Following are the characteristics of CEP-ML that satisfy above.

1. XML based language

XML has a well-known structure that is easily readable by human as well as

other programs. There are many other tools or other programs already

available to parse and view XML. Also, XML can define a schema which can

be used as language definition where users have the full visibility of all the

features and correct syntax of the language.

2. Having common keywords similar to existing language keywords.

By maintaining language keywords similar to other language keywords, users

can easily predict the meaning of the language syntax.

35

4.2.2. Extensibility

Language extensibility or the ability to add or modify the content models with a

minimal impact is important for it to evolve fast. Within the scope of this research,

we have only covered the main functionalities of CEP queries and there are more

functions to be added. In future as more CEP engines come, more language types

with different functionalities will come. Since CEP-ML is a general meta-language, it

should have the capability to adapt for these changes easily. CEP-ML has a XML

based structure which is easily modifiable by adding, deleting or changing the order

of XML elements tree branches. Hence it has a good extensibility.

CEP-ML language parser is implemented following a model based architecture which

makes it easy to add, remove or modify existing model variables and change

relationships between sub-models as the XML structure is changed.

4.2.3. Platform independent language parser and tools

CEP-ML language parser is packaged as a java library which is platform

independent. It only requires a JVM to be installed to run and can be imported as a jar

dependency to any java based program.

Try out tool is a spring based web application where users can deploy in any popular

application containers. It also gives the ability for users to use language parser’s API

methods via REST interface. This also ensures that the system is platform

independent.

4.2.4. Expressibility of CEP-ML

Following Table 4.1 shows a comparison between the functions supported by CEP

ML over RuleML and other 3 languages we consider in this research SiddhiQL, EPL

and CQL (Refer table 1 for symbolic meanings).

36

Table 4.1 Expressibility of CEP - ML language

 EPL SiddhiQL CQL RuleML CEP-ML

Projection + + + - +

Filter by windows + + ⊖ - +

Filtering

(filter/where)
+ + + + +

Aggregation by

group/ group by
+ + + - +

Counting + + + - +

Aggregation

functions e.g.: min,

max

+ + + - +

Event instance

consumption/ insert

into

+ + + - +

Conjunction, Join + + + ⊕ ⊕

Sequences + ⊕ ⊖ - -

Disjunction + + + ⊕ -

Using external data

sources
+ ⊕ ⊖ - -

Rule Parts (if, else,

then, do)
- - - + -

37

As presented in Table 4.1 above, CEP ML supports most of the basic and common

functions such as projections, filtering, windows, aggregation by group, aggregate

functions, counts and inserting to other streams. It partially supports stream joins as it

does not support for left/right joins. Currently, it doesn't support operators such as

sequences, disjunctions, patterns, subqueries and using external data sources.

When comparing with Rule ML, CEP ML also follows a similar structure to

represent the language which is XML. CEP ML xml tags are more aligned with

keywords of existing languages because it is facile for the users to define new queries

in their applications to be converted to other languages later with the use of CEP ML

language parser.

Discussion

CEP ML is a readable and understandable CEP meta-language because of the

characteristics inherited from XML and since it is composed of keywords which are

similar to other existing languages. CEP ML language and its language parser are

easily extendable due to the XML and model-based architecture used in the

implementation. Language parser is easy to integrate as it is platform independent

and it also provides a rest full API along with a try-out tool. CEP ML supports most

common CEP query operators and there are more functions to be added in the future.

38

5 CONCLUSION AND FUTURE WORK

With the increasing size of data, CEP systems need to be distributed. In distributed

complex event processing systems heterogeneity of the CEP engines that use their

own query languages has become a major problem to the interoperability between

them. To overcome this problem, a common meta-language and a method to parse

those queries to the existing languages is an utter requirement. There are existing

solutions that have tried to access this problem, but they are not up to the level that

can be used in the industrial level.

In this research, the existing languages were analysed and categorised to find out the

expressibility of different query types by each language. Based on that a new XML

like meta-language is defined which supports the main query functionalities of CEP

languages. Also, a language parser for three selected languages SiddhiQL, EPL and

STREAM to convert in between this meta-language and selected languages is

presented which can be extended in future to support other languages as well. The

web based try out tool we present is helpful for users to construct new queries and try

out the converting between CEP-ML to other languages and vice versa.

As future work, this language needs to be improved to make it more sophisticated in

following areas.

● Support more CEP query functions such as Patterns, disjunctions etc. Even

though some functions are specific to some query languages and not very

common in all languages, as a meta-language, CEP ML language should be

extendible to support these functions as well.

● Improve the parser to support more CEP languages.

Currently, it supports only three popular CEP languages EPL, SiddhiQL and

CQL and needs to improve to support more languages.

● The parser is presented as a java API library. Hence, can be integrated only

with platforms which supports java. In future, this need to improve to support

other language platforms as well such as C/C++

● Improve the language parsing logic in the parser to improve the performance

39

REFERENCES

[1] Björn Schilling, Boris Koldehofe, Udo Pletat and Kurt Rothermel, “Distributed

Heterogeneous Event Processing Enhancing Scalability and Interoperability of CEP

in an Industrial Context.” Proceedings of the 4th ACM International Conference on

Distributed Event-Based Systems (DEBS). Cambridge, United Kingdom,2010

[2] M. Eckert and F. Bry, "Complex Event Processing (CEP)," in Institut f ̈ur

Informatik, Ludwig-Maximilians-Universit ̈at M ̈unchen. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.656.2988&rep=rep1&type

=pdf. Accessed: Mar. 26, 2016.

[3] Schultz Møller, Nicholus Poul, Matteo Migliavacca & Pietzuch Peter. (2009).

Distributed complex event processing with query rewriting. Proceedings of the Third

ACM International Conference on Distributed Event-Based Systems DEBS 09, 1.

http://doi.org/10.1145/1619258.1619264

[4] H. Boley, A. Paschke, and O. Shafiq, "RuleML 1.0," The Overarching

Specification of Web Rules.

[5] Poul Schultz-Møller, Nicholas & Migliavacca, Matteo & R. Pietzuch, Peter.

(2009). Distributed Complex Event Processing with Query Rewriting. Available :

https://lsds.doc.ic.ac.uk/sites/default/files/debs09-next_ced_0.pdf. Accessed: Jan. 16,

2019.

[6] A. Demers, J. Gehrke, M. Hong, B. Panda, et al. Towards Expressive

Publish/Subscribe Systems. In EDBT, 2006.

[7] A. Demers, J. Gehrke, M. Hong, B. Panda, et al. Cayuga: A Genaral Purpose

Event Monitoring System. In CIDR, pages 412–422, 2007.

[8] P. R. Pietzuch, B. Shand, and J. Bacon. A Framework for Event Composition in

Distributed Systems. InMiddleware, Rio de Janeiro, Brazil, jun 2003.

[9] S. Suhothayan, K.Gajasinghe, I.L. Narangoda, S. Chaturanga, S. Perera, V.

Nanayakkara (2011). "Siddhi: A second look at complex event processing

40

architectures." Proceedings of the 2011 ACM workshop on Gateway computing

environments.ACM, 2011. [Online]. Available:

https://dl.acm.org/citation.cfm?id=2110493

[10] Schilling, B, Pletat, U & Rothermel, K. (2009). Event Correlation in

Heterogeneous Environments Ereigniskorrelation in heterogenen Umgebungen. It -

Information Technology, 51(5), 270–275. http://doi.org/10.1524/itit.2009.0551

[11] Hai-Lam. Bui, "Survey and Comparison of Event Query Languages Using

Practical Examples," Ludwig Maximilian University of Munich (March 2009)

[Online]. Available: http://www.en.pms.ifi.lmu.de/publications/diplomarbeiten/Hai-

Lam.Bui/DA_Hai-Lam.Bui.pdf. Accessed: Mar. 26, 2016.

[12] EsperTech, “Products - Esper.” [Online]. Available:

http://www.espertech.com/products/esper.php. [Accessed: 24-Jan-2016].

[13] "ESPER," in EPL. [Online]. Available: http://www.espertech.com/esper/release-

5.2.0/esper-reference/html/epl_clauses.html. Accessed: Dec. 10, 2018.

[14] "WSO2 - Complex Event Processor," in SiddhiQL Guide 3.0, 2015. [Online].

Available:

https://docs.wso2.com/display/CEP400/SiddhiQL+Guide+3.0#SiddhiQLGuide3.0-

IntroductiontoSiddhiQueryLanguage. Accessed: Jan. 30, 2016.

[15] R. Motwani et al., "Query Processing, Resource Management, and

Approximation in a Data Stream Management System," Stanford InfoLab Publication

Server. [Online]. Available: http://ilpubs.stanford.edu:8090/549/1/2002-41.pdf.

Accessed: Feb. 12, 2016.

[16] Paschke, Adrian. (2014). Reaction RuleML 1.0 for Rules, Events and Actions in

Semantic Complex Event Processing. [Online]. Available:

https://www.researchgate.net/publication/263125416_Reaction_RuleML_10_for_Rul

es_Events_and_Actions_in_Semantic_Complex_Event_Processing. Accessed: Jan.

02, 2019.

41

[17] A. Arasu, S. Babu, and J. Widom, The CQL Con tinuous Query Language:

Semantic Foundations and Query Execution, Stanford University. [Online].

Available: http://ilpubs.stanford.edu:8090/758/1/2003-67.pdf. Stanford InfoLab

Publication Server. Accessed: Mar. 21, 2016.

[18] R. Kajic, "Evaluation of the Stream Query Language CQL," UPPSALA

University. [Online]. Available:

http://www.it.uu.se/research/group/udbl/Theses/RobertKajicBSc.pdf. Accessed: Mar.

26, 2016.

[19] Novak, Marek. (2010). Easy Implementation of Domain Specific Language

using XML, Dept. of Computers and Informatics, FEI TU of Košice, Slovak

Republic. [Online]. Available:

https://www.researchgate.net/publication/228458637_Easy_Implementation_of_Dom

ain_Specific_Language_using_XML

[20] Using XMLEncoder. [Online]. Available:

https://www.oracle.com/technetwork/java/persistence4-140124.html . Accessed:

Nov. 30, 2018.

[21] Java Architecture for XML Binding (JAXB). [Online]. Available:

https://www.oracle.com/technetwork/articles/javase/index-140168.html . Accessed:

Nov. 30, 2018.

[22] CEP ML - https://github.com/amilaparanawithana/CEPRuleLanguage

42

Appendix A: Dom tree view of the CEP XML language

43

Appendix B: CEP XML language operations tags

SELECT

syntax <select>
 <attributes>
 <attribute as="attr1o">atr1</attribute>
 <attribute as="attr2o">atr2</attribute>
 </attributes>
</select>

<select> Define a select

<attributes> Defines all the conditions

<attribute> Define one condition
Value - condition value

as Result assign variable name

AGGREGATE FUNCTIONS

syntax <functions>
 <function func="function" as="funcAs">functionApplyParam
</function>
 ...
</functions>

<functions> Define all selects applying functions

<function> Define one function
Value - function applying variable

func Function type eg: max, avg

as Result assign variable name

FILTER

syntax <filter>condition</filter>

44

<filter> Define a filter
Value - Filter condition

GROUP-BY

syntax <group-by>grp1</group-by>

<group-by> Define a group by
Value - Grouping columns comma seperated

HAVING

syntax <having>having1</having>

<having> Define a having function
Value - Having condition

WINDOW

syntax <window func="time">
 <parameters>
 <parameter>para1</parameter>
 <parameter>para2</parameter>
 </parameters>
</window>

<window> Define a window function

func Function type. Supported types are
- Time
- TimeBatch
- Length
- Cron

<parameters> Window parameters

<parameter> Define parameter
Value - parameter value

INSERT INTO

syntax <insertInto>insert-stream</insertInto>

45

<insertInto> Define result inserting stream
Value - stream name

FROM and STREAMS

syntax <from>
<streams>
 <stream as="as">
 <name>stream name</name>
 </stream>
</streams>
</from>

<streams> Defines all the input streams

<stream> Define one stream. <window> <filter> tags also come under this.

<name> Define stream name as value

as Resulting stream assign variable

46

Appendix C: CEP ML implementation Models class diagram

47

Appendix D: Language Parser API methods

Method Input Output Description

XMLToSiddhiQL

xml string SiddhiQL query

Maps XML string to a Query
object with jaxb and convert
to a SiddhiQL

XMLToSiddhiQL

xml file SiddhiQL query

Maps a XML file to a Query
object with jaxb and convert
to a SiddhiQL

SiddhiQLToXML

SiddhiQL
query
string

Siddhi query in
CEP ML

Convert SiddhiQL query to
CEP ML metalanguage

XMLToEPL xml string EPL query Maps a XML string to a
Query object with jaxb and
convert to a EPL

XMLToEPL xml file EPL query Maps a XML file to a Query
object with jaxb and convert
to a EPL

EPLToXML EPL query
string

Siddhi query in
CEP ML

Convert EPL query to CEP
ML metalanguage

XMLToCQL

xml string Stream query Maps a XML string to a
Query object with jaxb and
convert to a CQL

CQLToXML CQL query
string

CQL query in
CEP ML

Convert CQL query to CEP
ML metalanguage

48

Appendix E: CEP ML try-out tool

To convert CEP ML to other languages, put your CEP ML syntax in left side box and

select CEP ML → <preferred language> from the drop down. Resulting query will be

displayed in right side box.

Sample UI of converting CEP ML to EPL is shown below.

CEP ML to EPL in try-out tool

49

To convert from other languages to CEP ML, put your preferred language query

syntax in right side box and select <preferred language> → CEP ML from the drop

down. Resulting query will be displayed in left side box.

Sample UI of converting EPL to CEP ML is shown below.

EPL to CEP ML in try-out tool

