
JVM COMPILER BACKEND FOR BALLERINA

INTERMEDIATE REPRESENTATION

Thangarajah Kishanthan

179329D

Degree of Master of Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2019

JVM COMPILER BACKEND FOR BALLERINA

INTERMEDIATE REPRESENTATION

Thangarajah Kishanthan

179329D

Thesis submitted in partial fulfillment of the requirements for the degree Master of

Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

May 2019

 i

DECLARATION

I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another person

except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and

distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I

retain the right to use this content in whole or part in future works (such as articles or

books).

Signature: Date:

(T. Kishanthan)

The above candidate has carried out research for the Masters thesis under my supervision.

Signature: Date:

(Dr. Indika Perera)

 ii

ABSTRACT

Ballerina is an open source, strongly typed language for writing microservices and network

applications with main focus on solving enterprise integration requirements. The ballerina

compiler converts the ballerina source to set of ballerina byte code which is then executed by the

ballerina virtual machine (BVM). The BVM does not perform well for most of the CPU bound

operations due to its current design. This project focus on compiling ballerina source to JVM byte

code and will be executed by the JVM directly, which will solve the performance bottleneck at

BVM. This project also proposes a new compiler architecture, in which, the ballerina source code

is transformed to an intermediate representation which is a low level representation of the

ballerina program and it is used for generating the target JVM byte code. The performance of

JVM based compiler backend implementation against the current BVM was compared for certain

algorithms and programs. From the evaluation of the test results, it is found that the JVM target

outperforms the ballerina runtime by factor of 100 in certain scenarios. With this promising

results, the proposed new compiler architecture based on ballerina intermediate representation

and the JVM compiler backend can potentially be used as the replacement for current ballerina

compiler and runtime.

 iii

ACKNOWLEDGEMENT

I would like to express my profound gratitude to my supervisor Dr. Indika Perera, for his

invaluable support throughout by advising and guiding me through the correct directions.

His expertise and continuous guidance are one of the key reasons for the success of this

research.

I should also thank Dr. Sanjiva Weerawarana (Founder and Chairman of WSO2) and Mr.

Sameera Jayasoma (Senior Director at WSO2), who encouraged me to complete this

research project. I am mostly thankful for my wife, my parents for their immense support

and patience at all the time. At last but not least, I'm thankful to all my colleagues at

WSO2, who helped me a lot in various ways throughout this research.

 iv

TABLE OF CONTENTS

DECLARATION i

ABSTRACT ii

ACKNOWLEDGEMENT iii

TABLE OF CONTENTS iv

LIST OF FIGURES vii

LIST OF TABLES viii

LIST OF ABBREVIATIONS ix

1. INTRODUCTION 1

1.1 Ballerina 1

1.2 Ballerina Compiler 3

1.3 Problem 4

1.4 Objectives 5

2. LITERATURE REVIEW 6

2.1 Ballerina Compiler 6

2.1.1 Frontend Phase 8

2.1.2 Optimizer Phase 10

2.1.3 Backend Phase 10

2.2 Intermediate Representation 11

2.3 Ballerina Intermediate Representation 14

2.3.1 BIR Instructions 18

2.4 JVM Class File 20

2.5 JVM Runtime Execution Model 21

2.6 JVM Instruction Set 24

3. METHODOLOGY 26

3.1 JVM Compiler Backend For Ballerina 26

3.2 AST to BIR Generation 27

3.3 BIR to JVM Target Generation 28

4. IMPLEMENTATION 29

4.1 Modeling Ballerina Types & Values 29

 v

4.1.1 Simple Basic Types 29

4.1.2 Structured & Behavioral Types 30

4.2 Modeling Ballerina Project 31

4.2.1 Modeling package 32

4.2.2 Modeling the class with the description 33

4.2.3 Generation of method(s) description and signatures 34

4.2.4 Generation of method body 35

4.2.5 Processing of method return value 36

4.2.6 Processing of method arguments 37

4.2.7 Processing of method basic blocks 38

4.2.8 Processing of basic block instructions 40

4.2.9 Constant Load Instruction 41

4.2.10 Move Instruction 42

4.2.11 Binary Operation Instructions 43

4.2.12 Add Instruction 43

4.2.13 Subtract Instruction 45

4.2.14 Multiply & Divide Instructions 46

4.2.15 Equal Instruction 46

4.2.16 Condition Based Instructions 47

4.2.17 AND Instruction 49

4.2.18 OR Instruction 50

4.2.19 Array Load Instruction 51

4.2.20 Array Store Instruction 51

4.2.21 Loops 52

4.2.22 Length Instruction 53

4.2.23 Processing of basic block termination instructions 54

4.2.24 Generation of class file content into binary a file (.class) 57

4.3 Updating Ballerina Build Command 57

5. RESULTS AND EVALUATION 59

5.1 Fibonacci Series 60

5.2 Merge Sort 61

5.3 Quick Sort 62

5.4 Matrix Multiplication 63

 vi

5.5 String Regular Expression Match 64

5.6 Evaluation of the results 65

6. CONCLUSION 68

6.1 Limitations 68

6.2 Future Work 69

6.2.1 Reference types support 69

6.2.2 Debugging support 69

6.2.3 Error and stack trace modeling 69

6.2.4 Concurrency modeling 70

6.2.5 Update BIR model with all language constructs 70

7. REFERENCES 71

 vii

LIST OF FIGURES

Figure 1.1 Textual view of a ballerina program 2

Figure 1.2 Graphical view of a ballerina program 2

Figure 2.1 Ballerina Compiler Architecture 7

Figure 2.2 Ballerina Compiler Frontend 8

Figure 2.3 Ballerina Compiler Backend 11

Figure 2.4 Example BIR in CFG 16

Figure 2.5 Java Class Structure 21

Figure 2.6 JVM Stack Frame 22

Figure 3.1 Proposed JVM Compiler Backend For Ballerina 26

Figure 4.1 Directory Structure of ballerina/http Module 32

Figure 4.2 Java Package Structure of ballerina/http Module 32

Figure 4.3 Java Method Signature Mapping 35

Figure 4.4 Java Method Signature Example 35

Figure 4.5 Example BIR 36

Figure 4.6 BIR Variable To JVM Index Mapping 37

Figure 4.7 Java Bytecode Generated 40

Figure 5.1 Fibonacci Test 60

Figure 5.2 Mergesort Test 61

Figure 5.3 Quicksort Test 62

Figure 5.4 Matrix multiplication Test 63

Figure 5.5 String Regular Expression Match Test 64

Figure 5.6 JProfiller based Profiled view of BVM 66

 viii

LIST OF TABLES

Table 2.1 Example LLVM CFG 14

Table 2.2 Example BIR 15

Table 2.3 BIR Constructs 16

Table 2.4 BIR Instructions 18

Table 4.1 Ballerina Basic Value Type Mapping 29

Table 4.2 Ballerina Structured & Behavioral Type Matching 30

Table 4.3 Example Ballerina Source To Java Class Mapping 33

Table 4.4 Basic Block Generation 38

Table 4.5 Constant Load Instruction Generation 41

Table 4.6 Constant Load Instruction Mapping 42

Table 4.7 Move Instruction Mapping 43

Table 4.8 Types of Move Instruction Mappings 43

Table 4.9 Add Instruction Generation 44

Table 4.10 Add Instruction Mapping 44

Table 4.11 String Concatenation Mapping 45

Table 4.12 Subtract Instruction Mapping 45

Table 4.13 Multiply & Divide Load Instruction Mapping 46

Table 4.14 Equal Instruction Generation 46

Table 4.15 Equal Instruction Mapping 47

Table 4.16 Condition Based Instruction Mapping 47

Table 4.17 Binary AND Instruction Generation 49

Table 4.18 Binary AND Instruction Mapping 50

Table 4.19 Binary OR Instruction Mapping 50

Table 4.20 Array Load Instruction Mapping 51

Table 4.21 Array Store Instruction Mapping 51

Table 4.22 Mapping of Loops 52

Table 4.23 Length Instruction Generation 53

Table 4.24 Length Instruction Mapping 54

Table 4.25 Basicblock Termination Types 54

Table 4.26 Call Instruction Generation 55

Table 4.27 Call Instruction Mapping 57

Table 5.1 Test System Configuration 59

 ix

LIST OF ABBREVIATIONS

Abbreviation Description

BVM Ballerina Virtual Machine

AST Abstract Syntax Tree

IR Intermediate Representation

BIR Ballerina Intermediate Representation

JVM Java Virtual Machine

LLVM Low Level Virtual Machine

CFG Control Flow Graph

