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ABSTRACT 

Ballerina is an open source, strongly typed language for writing microservices and network 

applications with main focus on solving enterprise integration requirements. The ballerina 

compiler converts the ballerina source to set of ballerina byte code which is then executed by the 

ballerina virtual machine (BVM). The BVM does not perform well for most of the CPU bound 

operations due to its current design. This project focus on compiling ballerina source to JVM byte 

code and will be executed by the JVM directly, which will solve the performance bottleneck at 

BVM. This project also proposes a new compiler architecture, in which, the ballerina source code 

is transformed to an intermediate representation which is a low level representation of the 

ballerina program and it is used for generating the target JVM byte code. The performance of 

JVM based compiler backend implementation against the current BVM was compared for certain 

algorithms and programs. From the evaluation of the test results, it is found that the JVM target 

outperforms the ballerina runtime by factor of 100 in certain scenarios. With this promising 

results, the proposed new compiler architecture based on ballerina intermediate representation 

and the JVM compiler backend can potentially be used as the replacement for current ballerina 

compiler and runtime. 
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