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Abstract 

 

Security is an essential aspect for software development as many critical and vital 

functions, systems and services are now controlled by software. Operating systems to 

middleware to applications, integrated systems to embedded systems to firmware, and 

networks of all sizes and complexities are now controlled and managed by software. 

Thus, assurance of security in such software and thereby the protection of sensitive 

data is essential.  

 

Due to the complexity, scalability and maintainability factors, the software industry is 

moving rapidly towards component-based systems development where various 

artefacts are integrated to achieve a variety of functionality. This integration occurs in 

different phases in the life cycle of a system and usually at a rapid pace. Therefore, it 

is doubtful if the correct level of emphasis is placed in the development process to 

assure the security of composing a system with such diverse components, even if they 

have a high level of security individually.  

 

While there are many tools to test the potential for exploitation of vulnerabilities in 

software systems, these tools are most often optimized to test certain application 

scenarios, development phases, and specific software categories or methodologies. 

Therefore, with the increasing use of composed development of software systems and 

also the expansion in the tools and techniques available for software vulnerability 

exploitation, it is vital to evaluate the effectiveness of existing vulnerability assessment 

scheme on composed software development. This research is focused on determining 

the direction for improved effectiveness of software vulnerability tools in the 

composed system development paradigm.  
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1. Introduction 

 

Security is an essential aspect since from the first appearance of human society. 

Therefore, security concepts like confidentiality, integrity, and authenticity, as well as 

means of achieving them through encryption, decryption and, secure communication 

have become buzz words. The greater accessibility of computers to people and the 

widespread use of software applications for nearly every aspect of our daily lives have 

significantly increased the necessity of computer security. Even with such demand and 

the focus on security from the inception of computer systems development, the level 

of maturity we have achieved in software security is alarmingly low and is exemplified 

by the continuing exposes on security breaches and losses due to the exploitation of 

software vulnerabilities. Even though the software is mainly responsible for security 

vulnerabilities in modern systems, it only became a hot topic as a significant research 

area only in the late ‘90s [1]. 

 

Most of the vulnerability assessments are focused on detecting vulnerabilities in the 

deployed environment. Therefore, those assessments become overall system 

vulnerabilities rather than of the software of the particular system, which might be too 

late to detect and fix. Therefore, identification of the vulnerability of software is 

essential when it is in the early stages of the development. 

 

1.1 Software Security  

 

The software has become a necessity in day to day life and visible in every aspect of 

our work areas such as operating systems to middleware, embedded systems, 

firmware, and networking; almost everything runs on software directly or with the 

assistance of it to a certain extent. As we belong to a world which is dominated by 

information; software controls most mission-critical, life-threatening systems. 

Software protects most sensitive information, and moreover, the securing of the 

software itself is also done by software. 
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The software can be vulnerable due to several reasons such as complexity of the code 

and structure, deficiencies in development methodologies as well as developer 

capabilities and non-compliance to standards.With time, software becomes more 

complex and difficult to comprehend by humans without looking in depth, and that 

leads to a need for special tool support for debugging and obtaining the details required 

to fix problems with software. Even though in the past software had been created from 

scratch in one piece, nowadays most software contains many pre-built components or 

are composed of several parts of integrated modules. Therefore, developers who 

developed the software may not even have the necessary knowledge about the 

individual security of the used components and the impact of integrating code in terms 

of both static and dynamic aspects. When the source is available, it is an amenity to 

assess the security, but it is often hazardous as the components or software is only 

available in binary format. 

 

Also, the software could become vulnerable due to the methodology through which it 

has been developed or built. Most software methodologies do not put much emphasis 

into security, and most often security will not be checked on early phases of the 

software development life cycle (SDLC). Some software is tested for security only 

after its production is completed. Another reason for software to become vulnerable is 

the usage of unethical development procedures and non-standardized tools. Even 

though standard certified tools have been used, it may not have been used in the 

recommended way resulting in insecure software. Lack of adherence to best practices 

and weaknesses in essential knowledge in the development, especially in terms of 

security is also a significant factor to software to become vulnerable. 

 

1.2 Security of the Component-Based Systems 

 

Either with in-house modules or with third-party libraries, present-day software is 

developed with interconnected components as composed systems. There are many 

components in the market from open source to proprietary which is glued together with 

different technologies and under various architecture patterns. 
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Due to the heterogeneous nature of the components, the vividness of the deployment 

environment and diverse interaction patterns, security of such a composed system may 

be defined by the weakest component of the system [2]. In order to ensure the security 

of a composed system, it is vital to realise the security characterisation of the individual 

component as well as their interactions and eventually the security of the software as 

a whole. 

  

1.3 Methods of Software Vulnerability Assessment 

 

During the software development lifecycle, maintaining software security plays a 

significant role in almost every system. Therefore, the various methods of security 

assurance exist to support different lifecycle phases. 

 

In the initial requirements gathering and design phase, manual review of the process 

and threat modelling can be used to declare the security objectives of systems. 

Afterwards, static code analysis assists the developers to identify code-level security 

vulnerabilities parallel to the functionality development. Penetration testing, fault 

injection and several other black box testing schemes provide the assurance of the 

security of the systems in the testing phase. Vulnerability scanners and binary analysis 

tools may be used to ensure security in the overall system in the deployment and 

execution stage. 

 

1.4 Motivation for the Research 

 

As a common practice, we find that different tools have been used to test the security 

of individual components and specific systems in different stages of software 

development. Therefore, measuring the security level of such a composed system has 

become a challenging task. Due to the increasing trend and unavoidable nature of 

composed systems usage in the industry and exponential growth of the cybercrimes, 

has resulted in evaluating the security of a composed system as an essential and critical 

activity. Although a wide range of tools is available to test different aspects of software 

security, suitability, and effectiveness, the assistance of those tools in the area of the 
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component-based system is not well studied. Hence, analysing such tools against the 

composed system is beneficial for today’s software industry.      

 

1.5 Research Problem 

 

Heterogeneous nature of component-based systems and modern Agile development 

methodologies used to engineer such composed systems has resulted in making the 

measuring of the level of security of such a system to be complicated. Also, evaluating 

the effectiveness of vulnerability assessment tools on such component-based systems 

too has become tedious.  Hence, this research will address the effectiveness of 

vulnerability assessment tools on component-based software systems. 

 

1.6 Benefits of the Research 

 

This study will evaluate different vulnerability assessment tools against component-

based systems and provide an analysis of the effectiveness of selected tools which will 

be a baseline for tool selection and also a methodology for selecting security 

assessment tools for component-based software development. Further, it will provide 

guidelines on deficiencies in existing studies in this area and suggest future research 

directions for this area. 
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2. Literature Review  

 

2.1 Composed Systems 

 

Software component and component-based development became a buzz in the 

software industry and academia in the late ’90s. Several terms and definitions exist to 

refer to the same concept. Such terms like components, COTS (Commercial off the 

Shelf), FOSS (Free and Open Source Software) refer to some software that can be 

developed and might be used independently and more importantly through the 

interaction it can make larger or complicated software. Also, software systems that are 

built with such components are often refered to as composed systems or component-

based software systems. The methodology and the practices with this refer to 

Component-Based Software Engineering (CBSE) or Component Based Software 

Development (CBSD). The following section shall describe aforesaid composed 

systems and the security aspects of such systems respectively. 

 

Hopkins Component Primer [3] places emphasis on well-defined interfaces which 

separate them from their implementation as essential to the success of components to 

be loosely coupled. The author further claims that component-based development 

represents a milestone in the maturation of software engineering.  Additionally, the 

reusability and maintainability are the critical engineering principles which motivated 

the CBSE. 

 

2.1.1 Component  

 

As mentioned above, there are many definitions for a component which express the 

same characteristics in different viewpoints. In Szyperski’s [4] definition “A software 

component is a unit of composition with contractually specified interfaces and explicit 

context dependencies only. A software component can be deployed independently and 

is subject to composition by third parties”. Also, D’Souza and Wills [5] define a 

component as “A coherent package of software artefacts that can be independently 

developed and delivered as a unit and that can be composed, unchanged, with other 
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components to build something larger”. Combining both definitions Hopkins [3] 

provides an overview definition as “A software component is a physical packaging of 

executable software with a well-defined and published interface”. Therefore, the 

component can be identified as a basic unit that can be built and maintained 

independently to compose massive software which interacts with each other through 

an interface. 

 

Meijler and Nierstrasz [6] describe components are the next level of object-oriented 

development (OOP). Components address some limitation of OOP and extend their 

reusability with frameworks. Further, the authors claim the fast time to market 

reliability, maintainability, adaptability, heterogeneity, and division of labour are the 

motives for the existence of the components and its rapid popularity. 

 

2.1.2 Component Interface 

 

In a composed system, integration among the components is the crucial factor for 

success. Moreover, the key to integration is an interface that separates and hides the 

complexity of implementation. Therefore, a framework for identifying the features of 

interfaces is fundamental to understand the composed systems. Han [7] provides a 

framework for characterising software interfaces. Figure 2.1 shows the framework 

which considers the several aspects of the interface.  

 

 

 

Figure 2.1: Structure of component interface [7] 
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In the bottom is the signature of the component which consists of properties, 

operations, and events. Then, the constraints let the interface to more restrictive and 

well-defined. Altogether signature and constraints feature about the capabilities of the 

component, and the configuration represents usage scenarios which identify the roles 

and the usage contexts to the specific component and the scenario. Therefore, there 

will be different configurations concerning the usage scenarios, which allows the 

component to been customised and reuse. Also, the non-functional attributes help to 

assess non-functional qualities of the components. 

 

2.1.3 Component Composition 

 

Although there are many components developed and made available to use, composing 

those heterogynous components into an effective system is not a trivial task. Although 

COTS or components reduce the expenses of development and maintenance, more 

often becomes a nightmare to integrate. A significant reason for this is that software is 

developed as a standalone application and always run with the aligned assumption with 

its environment [8]. Table 2.1 lists several advantages and disadvantages of cots by 

Boehm and Abts [9]. Further, it describes how the vendor behaviour, overwhelmed 

expectations, interoperability, and product evolution can cumbersome in the 

development process.  
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Table 2.1: Advantages and disadvantages of COTS components [9] 

 

Advantages Disadvantageous 

Immediately available; earlier payback  
Licensing, intellectual property 

procurement delays 

Avoids expensive development Up-front license fees 

Avoids expensive maintenance Recurring maintenance fees 

Predictable, confirmable license fees  

and performance 

Reliability often unknown or 

inadequate; scale difficult to change  

Rich functionality  
Too-rich functionality compromises 

usability, Performance. 

Broadly used, mature technologies  Constraints on functionality, efficiency 

Frequent upgrades often anticipate the 

organisation’s needs 

No control over upgrades and 

maintenance 

Dedicated support organization Dependence on vendor 

Hardware/software independence 
Integration not always trivial; 

incompatibilities among vendors 

Tracks technology trends 
Synchronising multiple-vendor 

upgrades 

 

 

SEI technical concepts of CBSE describe the interaction in terms of compositional 

forms and binding time perspectives [10]. In a CBSE framework and components are 

the two main entities. Based on the components and frameworks in terms of 

interactions, there are six possible combinations in Compositional Forms. There are 

three main categories as follows. 

 

 Component –Component 

 Framework-Component 

 Framework-Framework 
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Also, the above three major categories can extend to another three more special cases 

[10]. Table 2.2 illustrates the compositional forms with existing component models. 

 

Table 2.2: Compositional forms of component models [10] 

 

Compositional 

Form 

EJB COM+ Java 

Beans 

Water 

Beans 

OMG/Orbos 

Component    

Deployment      

Framework     

Deployment 

future 

(container 

contract) 

 
 

(JVM 

plug-in) 

 
  

(portable 

object 

adapter) 

Simple       

Composition 

  
  

 

Heterogeneous  

Composition   

(IIOP) 

   
  

(IIOP) 

Framework    

Extension 

 future 

(policy 

objects) 

  
 

Component  

(Sub)Assembly 

     

 

 

As the above table explains not only what is composed is significant, it is vital to know 

how it composed as well. The component is said as composed when a resource of one 

component is accessible for another. For resource binding, many methodologies are 

available that can be spread through the development time to runtime. According to 

the time of the resource is binding, components are categorised as early binding and 

late binding. However, late binding has always been preferred since it reduced the 

restrictions on development time. 
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2.1.4 Component Composition Patterns 

 

When it comes to the composition of components, patterns have been introduced to 

make things easier for software designers and developers. Thus, to cope with hidden 

dependencies, complex interactions, and ambiguous design; Eskelin [11] describes 

few patterns to get the composition done seamlessly. 

 

 ABSTRACT INTERACTIONS 

By defining each other’s implementation on themselves, allows the components to 

communicate and interact without depending on the environment but, through an 

abstract interface. Java components add listeners in abstract interactions pattern. 

 COMPONENT BUS 

Component Bus removes the interdependencies of two components. All the 

components connected to information BUS which will manage the communication 

and the routing among the components Enterprise Service Bus and similar 

implementations fall into this category. 

 COMPONENT GLUE 

The Functionality of an adaptor between the two different components or as a 

mediator for components is handed over to script in this scenario. Only another 

component will be used to replace the script when it cannot meet the full 

requirements. For example, JINI uses this kind of script code to download and 

deploy a service.  

 THIRD-PARTY BINDING  

In third-party binding, any interaction between two components is removed from 

a third-party component. Therefore, if any change that we have required in terms 

of interaction in a third-party component without affecting the two components 

involved in the interaction.  
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 CONSUMER-PRODUCER 

For the consumers, components will get one interface formatted similarly from the 

producer component which connects several various provider components. JNDI 

provider is such interface that exposes set of different services to its consumers. 

“Inversion of Control” has been a typical pattern to assemble components nowadays 

in the community which also known as dependency injection.  Dependency Injection 

allows lightweight containers to be assembled as a set of different components into a 

cohesive application [12]. Many books and research literature has been written on 

specific implementation on this pattern [13] [14] [15]. 

 

2.2 Issues and Problems of Composed Systems  

 

2.2.1 Maximizing the Reusability 

 

Reusability of software components and time to market are the main intentions that 

drive the composed system to the main software stream. However, on the other hand, 

it has also become a challenging task due to several reasons. There are many methods, 

technologies, models and framework available in CBSE [16]. Therefore, choosing the 

correct model or the technology and to what extent the components should be used to 

maximise the reuse, are questions that go hand in hand. 

 

2.2.2 Quality of the Components  

 

CBSE is a phenomenon due to the advantages it produces, but at the same time, it can 

be a catastrophe if it has been composed by using less reliable and low-quality 

ingredients. Given a component, it might have known and unknown issues, but the 

system that composed from it can present unexpected side effects and unknown 

consequences. Hence, assuring the quality of such components or system plays a vital 

role. The industry often uses integration testing, regression testing and load and 

performance testing against the composed systems. Many models and frameworks 

exist in the academic researches and practices for component-based systems [17]. 
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Also, testing such a system is chaotic due to several factors. One of the major reason 

is the unavailability of code and often executed in black box testing. 

 

Moreover, such black box testing could not provide the required confidence or 

guarantee. Low adequacy of the testing is also another factor, and often it is due to the 

disability of interoperability testing with traditional methods [16]. Another factor 

which results in poor quality is the lack of debugging ability in the code. 

 

2.2.3 Standards and Certifications  

 

There should be good standards and certification for components both favouring the 

supplier and the customer. There are many standards for software, and few exist for 

software components and reuse. IEEE 610.12, IEEE 730, IEEE 830, and BS 7925-2 

are some available standards for software component and reuse. However, those 

standards do not cover every aspect of CBSE. Thus, there should be more future work 

on this.  

 

Unavailability of proper certification methodology is another issue which becomes the 

blocker for quality assurance. As mentioned in above that assurance of quality is a 

hectic task in component-based systems, therefore, developing components to standard 

and providing such a certification from the third-party is essential to improve the 

quality and reduce the cost of testing in CBSE. Certification authority for validating 

and certify components provides the necessary infrastructure to continue the 

proprietary nature of the COTS business model. Further, if any certification exists, that 

will reveal the level of security, and it increases the confidence of the customer.  

 

2.2.4 Component Search and Repository 

 

Another issue that CBSE face was finding the correct components when required. 

Finding out a good, trustable repository is a hard task and even discovering good 

components sometimes become a nightmare due to lack of non-availability of 

standards for the repositories. Further, for in-house development, a good repository to 
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store and maintain the components is essential. Alnusair, A. and Tian Zhao [18] 

provide and ontology-based Component search to describe, retrieve and explore 

components using source code knowledge. Source Code Representation Ontology 

(SCRO) captures the relationship among the source code artefacts based on concepts 

like encapsulation, inheritance, method-overloading, and method-overriding as well as 

method signature information. In ComRE, the implementation is deployed as a plugin 

to eclipse which bootstrap all the information of the workbench.  

 

Further, there are several repositories for open source projects like git [19], 

SourceForge   [20] which are based on the availability of source code.  

Sonaytype Nexus [21] and Artifactory [22] provide a component repository, and it is 

more focused on organisation perspective component storage. Their central 

implementation also focuses on FOSS components, and it is in a more technical 

perspective than business oriented. Thus, internet search providers are the available 

option that someone can use at the moment for search necessary software components. 

 

2.2.5 Other Issues 

 

Khan et al. [2] explain another set of issues that inherent in component-based systems. 

Functional differences are one of the significant problems in component-based 

development, where newly developed components and existing components hardly 

ever fitted together, and more often, a component that is going to develop new should 

be adjusted according to the existing components to match with existing 

functionalities. 

 

When communication between each other’s in the component’s language, the way it 

has been written matters intensely and often if producer component is written in a 

different language than the consuming component, consuming component need to add 

more adaptable code to handle the language problems and communication problems. 

Components were built targeting the different environments such as the operating 

system, specific CPU architecture, networking protocols and other software 

components. Therefore, if any requirement is raised to implement in a different 

environment, often lead to problems and need to change the original component 



14 

 

configurations. Also, components were built focusing on several factors in its 

operating environments such as a number of concurrent users, the capacity of the 

available resources, and the amount of data it handles. Thus, any change of such 

parameter may result in unexpected behaviour of the component. Countries and 

regions have different data format for date, time, currency, number format, etcetera. 

Therefore, the software component which is written targeting a set of data format will 

not always be usable with other regions. 

 

2.3 Security of Composed Systems 

 

Software components need to adjust to the relevant environment and requirements. 

Even though there is a need for external protection to the components, composers most 

of the time fail to implement that due to the binary black box nature of the component. 

Hence, Khan et al. [23] express that security of a component should be treated 

differently than the application security because of the distributed nature of the 

components in the heterogeneous environment. Further, they categorize the security 

properties of a component in two broader categories as  

 

1. Nonfunctional security properties (NFS)  

2. Properties as security functions (SF).  

 

NFS is codified and embedded inside the component whereas, SF can be implemented 

externally as separate functions. Identifying both NFS and SF of a component is very 

valuable especially before selecting a component to integrate into the system. 

However, adding a strong external SF is effortless if the NFS is weak. For example, 

adding strong encryption function is useless if inbuilt properties of components had 

security flaws. Thus, the internal computing properties will define the ultimate level 

of the security of a component. 
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2.3.1 Scenario Based Component Security 

 

Security of a component cannot be decided by a component alone since it is profoundly 

affected by the user context. There are two types of security mechanisms as 

implemented by underlying infrastructures such as protocols, connectors and much 

lower level system applications such as Operating Systems and hardware mechanisms, 

and the other is security implied by components with their internal security features.  

Hence, security of a component substantially is influenced by component deployment 

infrastructure and the use case scenario of the component. In other words, security of 

a component in a system is dependent on the scenario it has been driven. Thus, Khan 

and Han [24] characterise the security of a component into the following formula.  

 

a_Security_funcion(S, O, K, D)  

 

where S is the identity of a component in a hypothetical scenario, O is an arbitrary 

operation set which executed by component S, K is the security attribute set used by 

the member S to operate O. D is the data or information set belonging to the 

component. 

 

In terms of practical approach for this, a scenario is presented by message 

communication protocols and architectural descriptions and from, required and 

ensured security properties of the individual operations, specific threats and the 

associated security policies and functionality has been identified. 

 

2.3.2 Characterization of Component Security 

 

A formal model has been introduced to identify and quantify the comprehensive list of 

security properties embedded with the services that a component provides [25]. In the 

scheme, security class contains a collection of a set of security objectives related to the 

class, set of security functions and entity and action used by the security functions. 

There are two entities as subject and object, and those entities and actions are taken as 

a predicate to express overall security of a function. 
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Each function is associated with a rating based on the strengths and weakness of the 

function in the particular context of the application. The accumulated rating of all 

functions of a particular security objective treated as ultimate strength of that objective 

and similarly accumulated values of security objectives would treat as the ultimate 

strength of that particular security class. Figure 2.2 displays the simple signature of the 

security class. 

 

 

 

Figure 2.2: The Structure of the characterisation scheme [25] 

 

When a component is developed, the above scheme may apply by the developer and 

should be attached that to the component interface to runtime access for the contracting 

client component. This will help to evaluate the security of a component and take 

necessary action to mitigate any security risks. 

 

There are many systems which are composed of using components available on the 

internet. The main drawback is the absence of guarantee or certification of trustability 

of such components, i.e., unavailability of security characteristics will lead to ignore 

the component completely or to risk the security of the overall system.  

 

Khan et al. [26] provide a methodology to publish trust-related security properties of 

a component in a machine-readable way, which provide certification for the 

component. First, the security characterisation of atomic components has been found, 

and then the security characteristics at the component level have been certified. 

Afterwards, check the compatibility of those security properties between components 

in the contract level and then determine the overall security of the final system 

considering the system level contracts. Figure 2.3 shows the process of the software 

development life cycle. 
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Figure 2.3: A Security characterisation process framework [26] 

 

Component level security is static unless the component is modified. However, 

compositional and system level security is dynamic since the properties will vary 

depending on the individual composition. 

 

Security properties are categorised as ensured, and required security properties and 

security knowledge base has been used to store the security characteristics. 

Compositional security contacts (CsC) is decided by adherence of required and 

ensured security characteristic matching and system level security contract (ScC) is 

determined by CsCs.  

 

2.4 Measuring the Security of Component-Based Systems 

 

Khan and Han [27] introduce an assessment scheme to calculate a numeric score for a 

component’s security for a given software application or system which represent the 

relative strength of security properties of the given component.  Figure 2.4 describes 

the structure of the scheme.  In the given scheme, system security requirement gathered 

for the considered system or application, and the candidate component will rate 

depending on the security properties it contains. Those properties can be component-

specific security services, security classes, security objectives and security functions. 
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Finally, using the evaluation templates scheme will calculate the final score for the 

system.  

 

 

 

Figure 2.4: An Assessment scheme [27] 

 

The scheme is evolved using the ISO/IEC 15408 the Common Criteria for Information 

Technology Security Evaluation (CC) and the Multi-Element Component Comparison 

and Analysis (MECCA) model. The scheme will address the limitations of CC. CC is 

common for general applications and does not address specific security requirements 

of evaluators. Also, this will provide a preliminary assessment before the system is 

integrated. CC evaluation needs huge effort and incurs a significant cost which many 

companies could not afford. 
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Figure 2.5: An evaluation template for the banking system [27] 

 

As illustrated in figure 2.5, the evaluation method uses a percentage of weighting to 

the security objectives. A percentage weight is assigned to each security objective 

throughout a given class. Similarly, each class is also given a percentage weight 

comparative to the importance of other security classes. At the class level, the 

percentage of the weights of all classes would sum up to 100. Accumulated percentage 

weighting of the security objectives in a given class would always be 100. The 

percentage weighting is defined by the software engineer depending on the importance 

of the individual security objectives. 

 

Busch et al. [28] extend the Palladio component model (PCM) to support security 

assessment using annotations and extended PCM used to calculate the security of 

CBSE (component security and mutual security interference) and getting different 

from other systems they have considered the attacker, the attacker’s skills, and attacker 

scenarios, starting and aiming point of the system. Then, those are modelled to an 

analytical model using Semi-Markov process which will result in Mean time to 

security failure (MTTF). Figure 2.7 shows the proposed scheme. 
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Figure 2.6: Security assessment approach [28] 

 

Comparing the values of MTTSFs will allow software developers to assess the degree 

of security. Such methodology will help developers to consider the security 

considerations when they take architectural trade-off decisions which ultimately help 

to select, design and build proper systems with higher calibre.  

Nazir et al. [29] present an Analytic Network Process (ANP) based approach to 

evaluate components security which is based on ISO/IEC 27002 standards. Provided 

the weights and values from expert’s opinions, given components will be compared 

using ANP to select the most secure component to be used. 

 

2.5 Software Security Testing Methodologies  

 

In the security Testing of software can be categorised mainly into three areas as a white 

box, grey box, and black box testing. White box testing is where the source code is 

available to analyse and test. Grey box testing is where both source code and 

executable artefacts are available and could be performed on in-house developed 

components as well as open source components. Black box testing is only the 
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executable, or the binary artefacts are available where propriety components and third-

party libraries.  

 

2.5.1 Security in the Requirement Gathering & Design Phase 

 

For security assurance, we can perform threat modelling early in the development 

cycle to mitigate the security risks of software. Swiderski and Snyder [30] describe the 

importance of threat modelling as a specification in the requirement gathering phase 

for complex software systems. Furthermore, performing manual inspections and 

reviews to fixing the gaps in the process of software development is another significant 

task in the early stages of software development. 

 

In the requirement gathering phase, most pragmatic practice is to follow security 

standards related to requirement gathering. ISO/IEC 15408 consists of three sections 

as general, components and assurance which ensures the security best practices [31] 

[32] [33]. 

 

2.5.2 Static Analysis & Code Reviews 

 

Static code analysis is the primary strategy in white box security testing. Chess & 

McGraw [1] emphasise the significance of static analysing in the early phase of the 

software development and the impact of automated tools stressing where the quality 

of the rule set that the tools enforced plays critical role. Since the reviewing code for 

security is a slow and tedious task, static analysis tools are often used to review the 

code automatically. Sonarqube, a composed tool with Findbugs has been used for this 

purpose even though these tools have advantages and disadvantages to their 

individuality [34]. 

 

2.5.3 Fault Injections 

 

Faults injection is a methodology for testing security of a system by simulating the 

faults on its execution environment. This is to stress the system where the fault is 
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injected into the system; it may behave strangely than it is in the normal state. There 

are two main branches in the fault injection as source code and binary. Source code 

injection is the tester that will determine the faults based on the information he can 

gather in the source code and instrumented the code with fault and observer the 

behaviour of the system. 

 

On the other hand, binary injection is identifying the interaction methods of the system 

on its execution environment through system calls and remote procedure calls and 

access the surrounding environment resources of the program to simulate the attacker 

scenarios. Security of the system can be determined by the success ratio of such fault 

injections. 

 

2.5.4 Dynamic Testing 

 

Dynamic testing performed by the tester while the program is being executed. The 

dynamic test will monitor system memory functional behaviour, response time and 

performance features. Dynamic analysis enables to expose the vulnerabilities of 

software associated with user interactions, the configuration of the environment and 

its behaviours since the tests are carried against actual runtime or a simulated 

environment. 

 

2.5.5 Binary Analysis 

 

Binary analysis is checking the code in the machine code or binary levels. Often 

intermediate language such as Java Byte code analysis is analysed for procedures, 

instructions, registers, and memory addressing. Further, this can be categorised as 

static binary analysis where static analysis happens before the program run, and 

dynamic analysis is performed at a run time. 
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2.5.6 Penetration Testing 

 

A penetration test is a strategy used to test the security of software by attacking the 

system with intruder’s mindset. Furthermore, it can be performed manually or 

automated according to the security requirements of the considered system. 

 

2.5.7 Vulnerability Scanning 

 

Vulnerability Scanning is using one computer or program to detect and exploit the 

security weakness and flaws of other software and systems. Most of the vulnerability 

scanners work with vulnerability database which reports, publishes and categorises the 

security with specialists’ opinion. Vividness in the software systems leads to having a 

different set of tools which specialised in specific areas such as network and 

application environments. However, because of the vividness of the systems that have 

been scanned by these vulnerability scanners, often the reports which generated by 

those scanners contains a lot of false positives. 
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3. Methodology 

 

3.1 Introduction 

 

There are many methodologies and tools in academia as well as in industry to evaluate 

software security. The task of security testing is divided mainly into two branches as 

manual and automated. Also, it can be categorised as white box testing and black box 

testing and less often as grey box testing. Due to severe competition in the market 

place as well as due to marketing strategies used by companies, currently software 

development is being done at a rapid pace using proprietary or open source 

components which are then composed to a complex system. Security of such a system 

will be determined by the individual security of the components, their interactions and 

integration mechanisms as well as the deployment or the execution environment 

security. 

 

Even though there is a wide range of tools available to test software security,  they are 

specialised to assess a specific method or area or particular type of vulnerabilities. 

Furthermore, those components are integrated into the system in different phases of 

the software development lifecycle where the phases are time-boxed to small iterative 

periods. Hence, it is critical to evaluate the applicability and effectiveness of the 

security tools in the context of it as a composed system with a diverse range of 

components and engineered with modern development methodologies. Thus, this 

study will evaluate the effectiveness of vulnerability assessment tools for component-

based software systems. 

 

3.2 Existing Experiment Efforts 

 

There have been studies conducted more in a theoretical perspective which have 

considered security at the application level rather than at the development level. 

However, security analysis of composed systems focusing on the full SDLC and the 

software engineering perspective does not appear in published research at a level even 
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remotely comparable to the vast amount of research work targeting deployment stage 

and dynamic testing and also focusing prominently on web application features. 

 

Antunes and Vieira [35] have experimented benchmarking the web services security 

detection against the available tools. They proposed a mechanism to rate the security 

tool with precision and recall measurement based on the true positives and the false 

positives reported by the tool. However, it is specific only to web services security.  

  

WaveSep benchmark developed by Shay Chen [36] is another highly capable 

benchmark for testing of security tools. It is an open source project written in Java with 

support for a variety of test cases and publishes the score for a suite of tools on a 

website with respect to their performance. Juliet Test Suite is another Java-based 

benchmark tool with many test cases from the National Institute of Standards and 

Technology (NIST) [37]. However, these test suites primarily focus on DAST of web 

applications. 

 

3.3 Goals and Motives of the Experiment 

 

The study has evaluated the effectiveness of the tools on component-based systems 

considering the availability and applicability in different stages of software 

development. Also, the security tools are evaluated on the applicability and 

effectiveness for new development methodologies such as Agile where rapid and 

frequent release cycles been adopted in order to reduce the time to market. In the initial 

literature survey, it was found that not many methodologies or tools exist to cover the 

full lifecycle phases in software development which assures the security of 

component-based development. Hence, this study is focused on the tools along with 

the applicability of the life cycle phases consisting mainly of development, testing, and 

deployment. Furthermore, the study can be used as a baseline or methodology to 

evaluate the effectiveness of security tools. 
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3.4 Experiment Design 

 

The experiment design aimed to evaluate the effectiveness of three main properties. 

 

I. Effectiveness of the tools with respect to detecting the vulnerabilities and 

the accuracy of the reported vulnerability 

II. Effectiveness of the tools in the development phases of the SDLC, 

development processes, and supportive tools 

III. Supportiveness to the Agile development methodologies where rapid and 

frequent release cycles have been adopted 

 

3.5.1 Test Data Selection  

 

Having a comprehensive set of test cases is an essential factor in evaluating security 

tools. Creating such a set of test cases from scratch is a time-consuming task and need 

many person-hours to implement appropriately. Furthermore, this research is focused 

on the existing state of the art in security evaluation. Hence, it was decided to choose 

an existing benchmark tool as a set of test data. 

 

When selecting the benchmark, the properties such as quality of the test data, the 

frequency of updates and activeness in development, measurement technique, ease of 

extendibility, ease of usage, supportiveness for different life cycle phases and 

component-based development have been considered as primary characteristics. 

 

From the available benchmarks, Juliet Test Suite had not been updated recently and it 

is primarily focused on the Java web applications and Java applications targeting 

SAST methodology. Also, WaveSep is another good benchmark that focused more on 

the DAST methodology and favoured web applications. Therefore, it’s extensibility to 

other applications was not considered as the primary design goal of this research is to 

check the web application security. 

 

OWASP Benchmark has been chosen due to the several key properties of the tool. 

Firstly, it is an active project in the community although it is still in the incubator level 
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project in OWASP. Although, currently it only has support for the web applications 

for DAST and SAST, the core design of the tool has been done in a way where it can 

be extendable to other types of applications as well as to support different stages of the 

software development process. Furthermore, it has comprehensive documentation and 

is considered as a utility tool that generates results in a more organized structure. 

 

OWASP Benchmark 

 

The OWASP Benchmark version 1.2, which is the currently available release, is used 

for this study [38]. A total number of 2740 test cases are included in the eleven CWE 

security vulnerability categories and web application as test cases, which include 

merged vulnerability strategies for SAST and DAST. 

The execution resources for tests have been provided as it demands since the resources-

wise performance is not considered in the experiment. Figure 3.1 shows the underlying 

mechanism of the OWASP benchmark. 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.1: OWASP benchmark basic structure 
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Customized Test Cases 

 

With the initial study, it was identified that the main limitations of the existing 

frameworks are the lack of support for different types of applications and the lack of 

adequate consideration for the software development process and the architectures as 

well as the methodologies. The main focus of the study is component-based software 

systems with latest methodologies like Agile. Thus, to have a measurement of security 

tools supportiveness in this aspect, a specific set of test cases been tested in the research 

using state-of-the-art component-based development tools and technologies. 

 

The experiment has been done simulating the real development environment, 

simulating the vulnerable tools and technologies which are listed in the Common 

Vulnerability Exposure (CVE) details list [39]. 

 

3.5.2 Test Tool Selection 

 

Tools have been selected to support the main phases of software development. 

However, there are not many automated tools that support for requirement gathering 

and design stages. Even though there are some models suggested in the academic 

context, it is difficult to implement it in the practical scenarios due to lack of 

infrastructure support. 

 

However, tools have been supported in terms of Static Analysis Security Tools (SAST) 

and Dynamic Analysis Security Tools (DAST). The following tools have been selected 

for the study. 

 

SAST  

 FindBugs 

 FindSecurityBugs with Findbugs 

 SonarQube 

 PMD 

 DependencyChek   
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DAST 

 OWASP ZAP 

 Arachni 

 

This study is focused mainly on open source tools due to two reasons. Firstly, all the 

commercial tools require a license to be used for this kind of a purpose and also there 

are legal issues related to publishing the results for some of the products. Secondly, 

the preliminary qualitative studies show that the difference of vulnerability scanning 

between commercial and open source counterparties to be insignificant and for this 

study the focus is on the effectiveness of vulnerability assessment for the composed 

system rather than comparing commercial and open source alternatives.  

 

3.6 Experiment Setup 

 

The experiment has been designed considering three main areas. Firstly, tools have 

been tested on the effectiveness in a quantitative approach. Secondly, the effectiveness 

of the tools in the initial prototyping level of the development with different 

components has been checked more qualitatively. Thirdly, a qualitative measure is 

used to check the product support for the development methodologies in its 

architecture and basic release delivery procedures. 

 

3.6.1 Quantitative Analysis of Tools  

 

Experiment I 

OWASP benchmark has been used in a number of test cases and evaluated with the 

number of vulnerabilities found in the assessment based on the false positives, true 

positives, etc. 

 

Experimental Environment 

OS              - Windows 10 Enterprise 

Processor   - Intel Core i7-5600U CPU @ 2.6GHz 2.59GHz 

Memory     - 16 GB 
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Data Set 

OWASP Benchmark 1.2 has been used as the test benchmark and its 2740 test cases 

categorised below are used to test the tools. 

 

Table 3.1: Number of vulnerabilities in each category 

 

Category CWE # Total 

Command Injection 78 251 

Cross-Site Scripting 79 455 

Insecure Cookie 614 67 

LDAP Injection 90 59 

Path Traversal 22 268 

SQL Injection 89 504 

Trust Boundary Violation 501 126 

Weak Encryption Algorithm 327 246 

Weak Hash Algorithm 328 236 

Weak Random Number 330 493 

XPath Injection 643 35 

Totals 
 

2740 

 

 

The following tools with the particular version have been used as the tools in this 

experiment.  

 

Table 3.2: Products and versions used in experiment I 

 

Tool Version 

FBwFindSecBugs 1.4.6 

FindBugs 3.0.1 

PMD 5.2.3 

SonarQube Java Plugin 3.14 

OWASP ZAP  vD-2016-09-05 
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3.6.2 Qualitative Analysis of Tools for CBSD 

 

Experiment II 

Experiment II uses the customised test cases or the application to check the 

effectiveness of the vulnerability scanner is in terms of CBSD systems. 

 

Experimental Environment 

OS              - Windows 10 Enterprise 

Processor   - Intel Core i7-5600U CPU @ 2.6GHz 2.59GHz 

Memory     -16 GB 

 

Data Set 

The following vulnerable development tools and technologies have been used as data 

and as the main test bench. 

 

Table 3.3: Details of vulnerable components in development 

 

Tool Version No of test cases CVE # 

GWT  2.5.1 RC 1 CVE-2013-4204 

Jenkins 1.400.x before 

Some specific versions 
8 

CVE-2013-2034 

CVE-2013-2033  

Hibernate 5.2.3 1 CVE-2014-3558 

Maven 3.14  CVE-2013-0253 

Oracle Java 7 1.7 SE 7u111 7 Many CVE numbers  

Spring MVC before 3.2.4 5 Many CVE numbers 

Eclipse IDE before 3.6.2 2 Many CVE numbers 
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3.6.3 Support for Agile Development 

 

Experiment III 

Frequent releases of the tools, update policy and mechanism of the rule database have 

been evaluated to study the support of Rapid Application Development and Agile 

development methodologies.  

 

OWASP benchmark has been used with many numbers of test cases and evaluated 

with the  number of vulnerabilities found in terms of false positives, true positives with 

a set of versions for FindSecBugs and OWASP-ZAP’s two contiguous releases. 

Furthermore, the features of relevant tools are evaluated in order to infer the 

supportiveness for the component-based development and new methodologies. 

 

Experimental Environment 

OS              - Windows 10 Enterprise 

Processor   - Intel Core i7-5600U CPU @ 2.6GHz 2.59GHz 

Memory     -16 GB 

 

Data Set 

 

Table 3.4: Incremental product versions in the Excrement II 

 

Tool Version 

FBwFindSecBugs 1.4.4 

FBwFindSecBugs 1.4.5 

FBwFindSecBugs 1.4.6 

OWASP ZAP  vD-2015-08-24 

OWASP ZAP  vD-2016-09-05 
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3.7 Measurement Methods 

 

In Experiment I, quantitative data have been collected for all the test cases and the 

results were categorised as follows; 

 

 Tool correctly identifies a real vulnerability (True Positive - TP) 

 Tool fails to identify a real vulnerability (False Negative - FN) 

 Tool correctly ignores a false alarm (True Negative - TN) 

 Tool fails to ignore a false alarm (False Positive - FP)  

 

From the above values, the following could be calculated: 

 

 Sensitivity or True Positive Rate (TPR) = TP/(TP+FN) 

 Fallout or False Positive Rate (FPR) = FP/ (FP+TN) 

 Specificity or True Negative Rate = 1− FPR = TN/(TN +FP) 

 

 Youden’s index = Sensitivity+Specificity−1  

 

 

If a graph is plotted as TPR against TNR, then the top right corner of the graph will 

have the tools that have high sensitivity and high specificity. However, this will not 

allow a good understanding of the accuracy of the tools since it does not consider the 

flaws, i.e., False Positives. For example, assume a tool will treat vulnerabilities as only 

True Positives and True Negatives. Then such a tool will calculate TPR and TNR as 1 

because of the value of the denominator and the numerator in the formula becomes 1. 

Even if the number of false positives and false negatives will be a low value, then the 

denominator is very much closer to 1 and the final value will be again closer to 1 

leading it to be incorrectly considered as a better tool. Because of that, it is difficult to 

figure out a tool which will conclusively identify the flaws and true vulnerabilities with 

high accuracy. 

 

We need an informed decision rather than a random prediction. Therefore, the 

identification of false positives and false negatives should be considered equally in the 

final score in terms of accuracy. If TPR is plotted against FPR (1-specificity), where 
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the false positive rate represents the percentage rate of the tools which report false 

positives, then that will provide an accurate score for the tool. 

 

Benchmark score is calculated by using Youden's index [40] which is calculated by 

deducting 1 from the sum of a test’s sensitivity and specificity expressed not as a 

percentage but as a part of a whole number: (sensitivity + specificity) – 1. For a test 

with poor diagnostic accuracy, Youden's index equals 0 and in a perfect test, Youden's 

index equals 1. Benchmark Score is the length of the line from the point down to the 

diagonal “guessing” line 

 

Finally, the score for a specific tool has been derived as follows: 

 

Score =TPR-FPR 

 

For experiment II, there are specific vulnerabilities with respect to the category of the 

development environment, runtime environment and build environment and 

development tools. From the study, it was decided whether the assessment tool 

correctly found out the vulnerability in the perspective of utility tools, development 

tools, and runtime configurations.  

 

From experiment III, time-frequency of the tool’s releases and update frequency of the 

rule database have been compared. 
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4. Results & Evaluation 

This section will present the quantitative and qualitative results of the research study. 

The results are based on the data gathered and evaluated for the effectiveness of the 

tools corresponding to selected benchmarks.  

 

4.1 Experiment I 

 

In this experiment, prominent open source SAST and DAST tools were chosen to 

execute against OWASP Benchmark which contains 2740 test cases covering 

vulnerabilities of eleven categories. From the benchmark reports, we can infer the 

accuracy of the vulnerability assessment by the values mentioned in section 3.7 

measuring methods. 

 

 

 

Figure 4.1: Interpreting the results [35] 
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In order to interpret the data from the experiment correctly, the above graph provides 

the guideline. The accuracy and effectiveness of the tools can be measured correctly 

based on the identified vulnerability ratios. 

 

As shown in Figure 4.1, if the True Positives and False Positives are 0, it means that 

the tool reports nothing as vulnerable. On the other hand, if True Positives and False 

Positives are 100%, then it assumes that the tool is reporting everything as vulnerable. 

Thus, both these extreme ends can be treated as inefficient. And the line drawn 

between (0, 0) and (100, 100) can be treated as the random line showing the area where 

tool behaviour is random. Any performance point under this curve means the tool has 

reported more incorrect outcomes with less information and therefore, it was less 

effective than expected. If the score is above the curve and toward the top left corner, 

then the tool is in the ideal performance area. Also, the coverage and accuracy are also 

in the maximum ranges. 
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4.1.1 Assessment of SAST 

 

In order to evaluate the effectiveness, the following information was gathered for all 

the tools. Table 4.1 consist of the information about FindSecBugs with FindBugs. 

 

Table 4.1: FindSecBugs vulnerability assessment statistics 

 

Category CWE 

# 

TP FN TN FP Total TPR FPR Score 

Command 

Injection 

78 126 0 14 111 251 100.00% 88.80% 11.20% 

Cross-Site 

Scripting 

79 246 0 78 131 455 100.00% 62.68% 37.32% 

Insecure Cookie 614 36 0 31 0 67 100.00% 0.00% 100.00% 

LDAP Injection 90 27 0 5 27 59 100.00% 84.38% 15.63% 

Path Traversal 22 128 5 18 117 268 96.24% 86.67% 9.57% 

SQL Injection 89 272 0 22 210 504 100.00% 90.52% 9.48% 

Trust Boundary 

Violation 

501 83 0 8 35 126 100.00% 81.40% 18.60% 

Weak 

Encryption 

Algorithm 

327 130 0 63 53 246 100.00% 45.69% 54.31% 

Weak Hash 

Algorithm 

328 89 40 107 0 236 68.99% 0.00% 68.99% 

Weak Random 

Number 

330 218 0 275 0 493 100.00% 0.00% 100.00% 

XPath Injection 643 15 0 1 19 35 100.00% 95.00% 5.00% 

Totals 
 

1370 45 622 703 2740 
   

Overall Results 
      

96.84% 57.74% 39.10% 
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Figure 4.2: FindSecBugs vulnerability assessment statistics 

 

FindSecbugs, a sub-plugin of FndBugs reported higher True Positive values for Cross-

Site Scripting, SQL injection, and weak rank number. As shown in figure 4.2, for True 

Negative scenarios, the Weak Random Number vulnerability is reported correctly as 

not as vulnerabilities. 

 

However, False positive is also higher in Cross-Site Scripting, SQL injection, Path 

Traversal and Command Injection. Identification of false negatives is also insufficient. 

Except for the Weak Random Number and Insecure cookies, FindSecBug performance 

is low and shows random behaviour. 
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 Figure 4.3: FindSecBugs effectiveness 

 

In using the FindSecBugs with FindBugs individual assessment, it was efficient in 

identifying vulnerabilities of insecure cookies and a weak random number. Even 

though it achieved a 100% coverage, and accuracy in those vulnerabilities, 

effectiveness in XPath injection, SQL injection and PathTraversal are lower than 10%. 

On average, FindSecBugs scored 39%, which is remarkably low against the expected 

value due to the inaccuracy of most of the reported vulnerability. However, among the 

selected SAST tools, FindSecBug scored the highest marks. 

 

Due to the absence of specific security rules in the Findbug, its performance is 

negligible and the overall average is -0.07, which is below even than the expected 

value. While this tool contains rules to find other bugs, the reported security 

vulnerabilities from that are even more inaccurate and detection efficiency is also in 

lower levels.   

 

PMD is falling into the same category as FindBugs where there are no security rules 

to detect security flaws. Even though it obtained an overall score of 0%, it is better in 

the accuracy since it has not reported any false positives as well as not any True 

positives in case of Negative scenario. Therefore PMD analysis can be stated as 

ineffective. 

Even though it is expected for SonarQube to outperform all of the other SASTs; its 

performance was less than the performance achieved by FindSecBug where 
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FindSecBug score reported as 33.34% on average. SonarQube has performed well 

against insecure cookies and weak random numbers in the same manner as 

FindSecBugs. However, it outperformed FindSecBugs in detecting weak encryption 

algorithms. 

 

4.1.2 Assessment of DAST 

 

OWASP Zed attack proxy is the most popular and actively maintained web project in 

the community. For this tool, the OWASP Benchmark project has been used to 

implement the test cases as a web application project where the OWASP ZAP analysed 

the provided vulnerable websites and created the results set related to those sites. Table 

4.2 shows the categorised details of the vulnerability assessment of OWASP ZAP. 

 

Table 4.2: OWASP ZAP vulnerability assessment statistics 

 

Category CWE 

# 

TP FN TN FP Total TPR FPR Score 

Command Injection 78 41 85 125 0 251 32.54% 0.00% 32.54% 

Cross-Site Scripting 79 71 175 209 0 455 28.86% 0.00% 28.86% 

Insecure Cookie 614 36 0 31 0 67 100.00% 0.00% 100.00% 

LDAP Injection 90 0 27 32 0 59 0.00% 0.00% 0.00% 

Path Traversal 22 0 133 135 0 268 0.00% 0.00% 0.00% 

SQL Injection 89 158 114 229 3 504 58.09% 1.29% 56.80% 

Trust Boundary 

Violation 

501 0 83 43 0 126 0.00% 0.00% 0.00% 

Weak Encryption 

Algorithm 

327 0 130 116 0 246 0.00% 0.00% 0.00% 

Weak Hash Algorithm 328 0 129 107 0 236 0.00% 0.00% 0.00% 

Weak Random 

Number 

330 0 218 275 0 493 0.00% 0.00% 0.00% 

XPath Injection 643 0 15 20 0 35 0.00% 0.00% 0.00% 

Totals 
 

306 1109 1322 3 2740 
   

Overall Results 
      

19.95% 0.12% 19.84% 
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Figure 4.4: OWASP ZAP vulnerability assessment  

 

Figure 4.4 shows the vulnerabilities assessment response of OWASP ZAP, which is 

based on the DAST methodology. According to the number of True Negatives, it 

reported most of the not vulnerable scenarios correctly. For example, weak random 

number, SQL Injection, and Cross-Site Scripting are reported with the highest values. 

Also in the same categories, it reported higher values relative to the other categories, 

but compared to the other tools, a number of issues reported are quantitatively lesser. 

A significant characteristic of the OWASP ZAP is that it does not report many False 

Positives. Only 3 False Positives have been reported in the SQL Injection category. 
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Figure 4.5: OWASP ZAP vulnerability assessment effectiveness 

 

Figure 4.5 shows the effectiveness OWASP Zap precisely. All the values in the 

categories are scattered above the random line and are located left-sided, which means 

that its rate of False Positives is low and True Positive Rate is average. That is due to 

the higher number of True Negatives and True Positives and absence of False 

Negatives. Hence, the accuracy of this tool is very high. However, the number of True 

Positives reduce the coverage to the tool in low ranges. 

 

Arachni is selected due to its popularity in the community, and the selected version 

executed in the specified environment with the OWASP Benchmark 1.2 for 6 hours 

which is the best possible scenario. However, it could not complete the complete 

analysis. It has a resource problem with the Request concurrency and crashes the 

system. Due to the incompleteness of the analysis, the Arachni is not compared with 

the other systems.  

 

 

 

 

 

 

0%

20%

40%

60%

80%

100%

120%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Tr
u

e 
P

o
si

ti
ve

 R
at

e

False Positive Rate



43 

 

4.1.3 Overall Assessment 

 

Table 4.3 Overall vulnerability assessment statistics 

 

Tool TP FN TN FP TPR FPR Score 

FBwFindSecBugs v1.4.6 1370 45 622 703 96.84% 57.74% 39.10% 

FindBugs v3.0.1 150 1265 1194 131 5.12% 5.19% -0.07% 

PMD v5.2.3 0 1415 1325 0 0.00% 0.00% 0.00% 

SonarQube Java Plugin 
v3.14 

607 808 1184 141 50.36% 17.02% 33.34% 

OWASP ZAP  
vD-2016-09-05 

306 1109 1322 3 19.95% 0.12% 19.84% 

 

 

 

 

Figure 4.6: True Positive count of the products 

 

Figure 4.6 represents the Comparison of the True Positives reported by the selected 

tools. From the True Positive value, we can identify how much issues can be identified 

by the tool. FindBugsSec is the premier tool in the set from this aspect where it reported 

1370 issues. This performance of FindBugsSec is more than twice as better as the 

second-best SonarQube.  PMD was the lowest performing tool where it reported a 
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value of 0, which means that no true vulnerability was found. This was due to it not 

having any related security rules implemented.  

 

 

 

Figure 4.7: False Positive count of the products 

 

Figure 4.7 represents the False Positive count of the product where it reported as 

vulnerabilities for non-vulnerabilities. Again, the FindSecBugs plugin performed as 

the highest scorer despite expecting a lesser value for this category. While SonarQube 

and FindBug reported moderate values for the test, PMD scored the lowest value due 

to lack of security rules. OWASP ZAP is the most accurate, only reporting 3 False 

Positives. 
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Figure 4.8 False Negative count of the products 

 

Figure 4.8 represents the number of occurrences where the tool was unable to report 

an issue for a vulnerable where it should have done so.  In the test, PMD was the 

highest scorer where it reported none of the issues as vulnerable due to the absence of 

security rules and Findbugs was the second due to the same reason. However, despite 

the existence of focused security rules, OWASP-ZAP reported a large number of false 

negatives which reduced its coverage significantly. In this category as well, 

FindSecBug reported the lowest score as 45 which contributed to increase its coverage. 

 

 

Figure 4. 9: Product-wise True Negative count 
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Figure 4.9 shows the scenarios where it has not reported vulnerability for non-

vulnerability issues correctly. In this category, PMD reported the highest value again 

which is due to the absence of the security rules. OWASP Zap is the real leader in this 

category which helped it to increase its accuracy. FindBugs and SonarQube reported 

a fair number of issues as True Negatives. FindSecuBug reported the lowest number 

of True Negatives which lead to lower its final score in the accuracy measure.  

 

 

  

 

Figure 4.10: Overall score gained by the tools 
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Overall score has been calculated by reducing the True Negative Rate from True 

Positive Rate in order to take the correct measurement. FindBug has the lowest score 

as a minus value due to the number of False Positives reported. PMD has a far better 

value numerically due to the fact that it does not report any false positive, but it does 

not contain any security rules. OWASP-ZAP has the next lowest due to lack of 

detection or the coverage. SonarQube has the second-best score due to increase in 

coverage than the rest of the tools. FindSecbug is the highest scorer merely because it 

has the highest coverage despite the loss of its accuracy. 

 

 

 

Figure 4.11: Overall effectiveness of products 

 

Figure 4.11 shows the overall effectiveness of the tools. If a tool is plotted near the 

random line, then it is described as a tool that characterises a random behaviour and 

therefore deemed to be ineffective. As clearly shown by the test results, PMD and 

FindBug fall into this category due to lack of security rules. Rest of the tools are 

represented in the graph above the random line meaning they have some level of 

effectiveness. Even though FindSecBug reported the highest True Positive rate, it is 

plotted in the middle of the graph due to the highest number of false positives it has. 

SonarQube has been plotted more towards the left of the graph but with moderate 
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coverage. Although OWASP Zap is located as a leftmost item in the graph behind 

SonarQube, it is also not in the optimal range due to lack of coverage. According to 

the graph, there is no tool plotted on the top-left of the graph where the ideal tool 

should be located. 

 

4.2 Experiment II 

 

This test was specifically designed to check some aspects of the component-based 

software development where it will check the vulnerability identification early in the 

SDLC especially with vulnerable development utility tools.  

 

Table 4.4: Experiment II results 

 

Tool 
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GWT  - - - - 
 

- 

Jenkins - - - - - 
 

Hibernate - - - - 
 

- 

Maven - - - - - - 

Oracle 
Java 7 - - - - - - 

Spring 
MVC - - - - 

 
- 

Eclipse 
IDE - - - - - - 
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In the experiment, it shows that none of the tools has been able to address the 

vulnerabilities except the DependencyCheck. It is due to those specific tools being 

designed to test the direct code and the execution paths of that code in the runtime. 

Therefore, those tools are incapable of identifying dependent third-party components 

when the source code is not available and the vulnerable code is not used in the 

application execution. DependencyCheck is designed to analyse the security of the 

third-party dependencies. Therefore, it was able to figure out those vulnerabilities. 

However, it was unable to figure out the vulnerabilities in the development of 

infrastructure tools.   

 

4.3 Experiment III 

 

Impact of release frequency of the security product needs to be analysed against 

modern development practices to study the effectiveness. Hence, incremental releases 

of the following main tools have been analysed to deduce the fact that the updated tool 

version often contains improvements in vulnerability detection. Table 4.5 shows the 

statistics of OWASP Benchmark. 

 

Table 4.5: Vulnerability assessment in incremental versions 

 

Tool version Release 
Date 

TP FN TN FP TPR FPR Score 

FBwFindSecBugs 
v1.4.0 

31-Mar-15 716 699 899 426 47.64% 35.99% 11.65% 

FBwFindSecBugs 
v1.4.3 

17-Sep-15 1026 389 791 534 77.60% 45.21% 32.39% 

FBwFindSecBugs 
v1.4.4 

20-Nov-15 1044 371 788 537 78.77% 44.64% 34.13% 

FBwFindSecBugs 
v1.4.5 

5-Jan-16 1355 60 622 703 95.20% 57.74% 37.46% 

FBwFindSecBugs 
v1.4.6 

3-Jun-16 1370 45 622 703 96.84% 57.74% 39.10% 

OWASP ZAP vD-
2015-08-24 

24-Aug-15 245 1170 1324 1 18.03% 0.04% 17.99% 

OWASP ZAP vD-
2016-09-05 

5-Sep-16 306 1109 1322 3 19.95% 0.12% 19.84% 
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Figure 4.12: Number of issues in incremental versions 

 

 

In the experiment, FindSecBug is used as a SAST tool and OWASP ZAP tool has been 

used as a DAST tool. Compared to release version 1.4.0 of FindSecBug, version 1.4.3 

has significant improvement in the number of the detected issues. However, the 

average gap between the two releases is two months, and a rough average of detected 

false positive is 15. The False Positives are also reducing significantly in the 

incremental versions. However, even though OWASP ZAP has frequent updates, 

improvements are slightly less. Comparing the results between 2015 and 2016 

releases, the number of True Positives increased only by 60, and False Positive count 

has increased only seldom. Since OWASP Zap uses DAST, it has been able to score a 

high accuracy. 
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Figure 4.13 overall progression in incremental versions 

 

 

Figure 4.13 shows the overall progression of the OWASP ZAP and FindSecBug 

plugin. In the graph, it shows that FindSecBug has significant improvements in its 

overall score in its incremental releases. However, despite annually released versions 

of OWASP-ZAP, it has only about 1.84% improvement in overall score. 

 

In order to test the support for modern development methodologies and concepts, 

features of the same set of security tools have been analysed and Table 4.6 list the facts 

gathered. 
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Table 4.6:  Feature analysis of the security tools 

 

Feature 
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Release 

frequency 
6 months 

2-3 

months 
monthly 

1-3 

months 

2-3 

months 
weekly 

Security 

Rules/Database 

updates 

frequency 

NA NA NA NA weekly weekly 

Tool support 

for Agile 

Development 
      

 

According to the analysis of the set of features, almost all of the tools have support for 

the Agile development concept such as Continuous Integration and Continuous 

Delivery (CICD). However, except for OWASP ZAP, all the other tools have a release 

cycle of more than one month long. It is interesting to note that DepenencyChek has a 

mechanism to update the security repository bi-weekly. Therefore, some of the tools 

need to think about updating mechanism of their security policies or the repositories 

in a more regular manner.   

 

4.4 Limitations & Improvements to the Experiment 

 

Experiment II and III has been done from a qualitative perspective to check the 

supportiveness for the specific features and effectiveness of the product. However, as 

a future improvement to the tests carried out in this research, developing a set of more 

formal test cases would be beneficial to gather improved qualitative measurements.  
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Due to the lack of product support for gathering security vulnerabilities in the 

requirement phase, this research study did not cover that phase but focused more on 

the development and testing phases. It is another area that could have greater emphasis 

in future research studies with appropriate tool development. 

 

Since this research had a developer-oriented perspective, and also many system level 

binary analysis work has been done in the area beforehand, our tests did not place 

much emphasis on binary analysis. Even though it was not tested in the experiments, 

it would be better to recheck the use of binary analysis since empirical evidence has 

shown that the claims made by vendors are not met in reality. 

 

The experiments conducted in this research did not cover the deployment phase as it 

is more similar to post-production testing. However, nowadays this deployment 

happened more frequently, and therefore vulnerability assessment of binary-level is 

possible in every iteration. Hence, the tool support for security testing in such dynamic 

deployment environments is another area that this experiment and study can be 

improved. Furthermore, this vulnerability assessment did not monitor resource 

utilisation. Hence, as an improvement, such an experiment can be performed to get a 

measurement of resource usage and resource efficiency.   

 

Since the primary goal of the study was to evaluate the effectiveness of vulnerability 

assessment done by widely used tools, open source products have been used. However, 

to infer a better understanding about the performance of proprietary tools, the study 

can be extended to evaluate commercial tools as well. 

  

In the quantitative methodology, the accuracy of the measurement is entirely based on 

the benchmark used and the test cases included in it. Despite the hardness of writing 

proper automated tests cases to test security vulnerabilities, it is useful if it is possible 

to extend the test cases to cover more areas. As a future improvement in the 

experiment, a merged test benchmark can be created from the existing test tools where 

OWASP Benchmark provides a much-needed platform. 
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5. Conclusion 

 

5.1 Findings  

 

From the preliminary review of the literature and other reviewed articles and 

publications, it was found that providing tool support to cover the security aspects in 

the requirement gathering phase is difficult from a process automation perspective. 

Even though several good suggestions on this area could be found in the academic 

research literature, it was not possible to locate a real-world tool implementation to 

test the effectiveness in that area. However, in place of tools, there are best practices 

introduced by ISO/IEC 15408 to evaluate security requirements. 

 

In the development and test stages, SAST and DAST are the main methodologies used 

to analyse the security vulnerabilities of the composed systems. Even though many 

vendors in the industry claim highly of the efficiency of their relevant tools, by the 

experiments conducted in this research, it was found that this is not the real picture in 

terms of the security vulnerability assessment. According to the overall score for 

products graphed in figure 4.10, maximum score found for SAST is around 40%, and 

for DAST it is around 20%. 

 

As figure 4.2 and figure 4.3 shows for FindSecBugs effectiveness and figure 4.4 and 

figure 4.5 shows for OWASP Zap effectiveness, the existing evaluated products are 

most useful in finding out a particular category of specific vulnerabilities. However, 

those tools did not seem capable of covering all the categories with expected accuracy. 

 

In terms of component-based development, existing products are more effective and 

focused on certain types of applications such as web applications. Current product 

support for component-based development is in written code and the runtime 

application only. However, as results of experiment II in Table 4.4 demonstrates, the 

vulnerabilities in interactions and the tools used in the software development itself and 

third-party libraries have not been identified correctly by most of the current tools. 
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According to the feature analysis of security tools in table 4.6, most of the open source 

tools support Agile methodologies and frameworks and also provides interaction for 

continuous integration and delivery. However, the security vulnerability databases and 

methodologies used in those open source tools were not supportive enough to get quick 

feedback. 

 

5.2 Conclusion 

 

Since software has become one of the most critical parts of all the industries and also 

the increasing trend of cybercrimes targeting vulnerabilities in such software systems, 

securing of software is now an essential requirement. Even though, there exist facilities 

to assess the security of the software in post-production environments, the support for 

pre-production is minimal. On the other hand, today, most of the systems are being 

developed by composing a diverse range of components where holistic security is 

unknown or untested. Furthermore, the development methodologies have been 

changed over time where more iterative, Agile methodologies have been adopted. 

Therefore, this study focused on analysing the vulnerability assessment in composed 

systems and more specifically from a software development perspective as against a 

software usage perspective. 

 

In the experimental design, a quantitative approach is used to measure the 

effectiveness of the selected products. On the other hand, qualitative features of the 

products have been analysed against their support for the component-based 

development and Agile development methodologies. 

 

In the quantitative analysis, it was found that despite the vendor’s claims about the 

effectiveness of their products, it is far less than it expected. According to the overall 

score gained by the products shown in figure 4.10, the effectiveness of SAST is about 

40%, and DAST is around 20%. As depicted in figure 4.11 of overall effectiveness, 

DAST tools accuracy is high, but coverage is very minimal in most areas of the 

analysis. Even though SAST has more coverage in terms of the number of 

vulnerabilities, its accuracy is dubious due to the False Positives and True Negatives. 
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In the analysis of product features qualitatively, it is found that most of the products 

support for Agile methodologies, continuous integration, and continuous delivery. 

According to table 4.6, the open source products that have been evaluated are 

supported with frequent releases, but still, it needs to have shorter release cycles in 

order to be more effective. OWASP ZAP and DependencyCheck is the only tools from 

the considered tools that separated its security policy mechanism from the core 

product, which can be considered as a valid action from an architecture perspective. 

 

According to the findings, SAST focuses mostly on the development stage of the 

SDLC and DAST is focused on the testing stage. But it is required for these tools to 

improve accuracy and coverage in order to make sure they are effective in vulnerability 

testing of the software systems. Even though IAST is a currently promising area in the 

field, it is still a questionable methodology in usability in an Agile development 

environment due to the amount of time and resources it takes to complete the analysis. 

The existing tools that support requirement gathering and deployment stage in modern 

development need to be improved by reducing feedback time and increasing the 

quality of the feedback. Each type of product has its strengths and weaknesses. 

However in the perspective of today’s software development methodologies, having 

one tool which covers all the phases in SDLC with higher accuracy, and coverage is 

the ultimate expectation for the future in this arena. 

  

In conclusion, despite the fact of valuable service provided by today's products, there 

will be more work that needs to be done in this area to have an effective software 

vulnerability measurement in the modern component-based software development. 

 

5.3 Future Improvements 

 

Dynamic reconfigurability and deployability of tools would be a significant 

improvement considering the deployment stages. Therefore, support for virtual 

machines and containers is another stream that can be improved. 

 

Currently, most of the benchmarks are focused on web applications. Extending  

support for other application types such as application servers, and mobile systems is 



57 

 

also a trending area. Optimising test cases to run on the application containers is 

another area of improvements that can be done in the benchmark tools and test cases 

perspective. Center for Internet Security (CIS) benchmark provides a wide range of 

test cases for application servers, container-based environments and many new 

technologies [41]. However, those CIS benchmarks could be automated to increase 

popularity and usability. 

 

From a vulnerability assessment product perspective, those can be improved by 

detailed analysis of the assessment report against a benchmark. Also, those need to 

increase more coverage and accuracy and needs to be optimised by specific strategies 

and categories. However, having a merged or combined tool of those security rules 

and strategies is more beneficial to analyse the vulnerability of component-based 

software development. 
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