
1

A STUDY ON EFFECTIVENESS OF SOFTWARE

VULNERABILITY ASSESSMENT FOR COMPONENT-

BASED SOFTWARE DEVELOPMENT

K.L. Dasun

138205B

Degree of Master of Science/Master of Engineering

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

December 2016

i

A STUDY ON EFFECTIVENESS OF SOFTWARE

VULNERABILITY ASSESSMENT FOR COMPONENT-

BASED SOFTWARE DEVELOPMENT

K.L. Dasun

138205B

Thesis/Dissertation submitted in partial fulfilment of the requirements for the degree

Master of Science/Master of Engineering in Computer Science and Engineering

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

December 2016

ii

Declaration

I declare that this is my own work and this dissertation does not incorporate without

acknowledgment any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgment is made in the text.

Furthermore, I hereby grant to University of Moratuwa the non-exclusive right to

reproduce and distribute my dissertation, in whole or in part in print, electronic or other

medium. I retain the right to use this content in whole or part in future works (such as

articles or books).

………………………………………… …….………………………….

 K.L.Dasun Date

The above candidate has carried out research for the Masters Dissertation under my

supervision.

………………………………………… ………………………………..

 Dr. Chandana Gamage Date

 (Research Supervisor)

iii

Abstract

Security is an essential aspect for software development as many critical and vital

functions, systems and services are now controlled by software. Operating systems to

middleware to applications, integrated systems to embedded systems to firmware, and

networks of all sizes and complexities are now controlled and managed by software.

Thus, assurance of security in such software and thereby the protection of sensitive

data is essential.

Due to the complexity, scalability and maintainability factors, the software industry is

moving rapidly towards component-based systems development where various

artefacts are integrated to achieve a variety of functionality. This integration occurs in

different phases in the life cycle of a system and usually at a rapid pace. Therefore, it

is doubtful if the correct level of emphasis is placed in the development process to

assure the security of composing a system with such diverse components, even if they

have a high level of security individually.

While there are many tools to test the potential for exploitation of vulnerabilities in

software systems, these tools are most often optimized to test certain application

scenarios, development phases, and specific software categories or methodologies.

Therefore, with the increasing use of composed development of software systems and

also the expansion in the tools and techniques available for software vulnerability

exploitation, it is vital to evaluate the effectiveness of existing vulnerability assessment

scheme on composed software development. This research is focused on determining

the direction for improved effectiveness of software vulnerability tools in the

composed system development paradigm.

iv

Acknowledgements

I would like to express my special appreciation and thanks to my supervisor Dr

Chandana Gamage, you have been a tremendous mentor to me. I would like to thank

you for guiding me through your experience to make this research more worthwhile.

I would also like to take this opportunity to thank Dr Malaka Walpola, Dr Shehan

Perera for guiding us in Research Seminar lecture sessions and for the extended

support and kindness granted to us. At last but not least, I would thank all the academic

staff members for helping, guiding, encouraging us and disseminating knowledge

throughout the program.

v

Table of Contents

Declaration .. ii

Abstract .. iii

Acknowledgements ... iv

Table of Contents ..v

List of Figures ... viii

List of Tables .. ix

List of Abbreviations ..x

1. Introduction ..1

1.1 Software Security ..1

1.2 Security of the Component-Based Systems ..2

1.3 Methods of Software Vulnerability Assessment...3

1.4 Motivation for the Research ..3

1.5 Research Problem..4

1.6 Benefits of the Research ..4

2. Literature Review..5

2.1 Composed Systems ...5

2.1.1 Component ...5

2.1.2 Component Interface ..6

2.1.3 Component Composition ..7

2.1.4 Component Composition Patterns ... 10

2.2 Issues and Problems of Composed Systems ... 11

2.2.1 Maximizing the Reusability .. 11

2.2.2 Quality of the Components ... 11

vi

2.2.3 Standards and Certifications ... 12

2.2.4 Component Search and Repository ... 12

2.2.5 Other Issues .. 13

2.3 Security of Composed Systems ... 14

2.3.1 Scenario Based Component Security .. 15

2.3.2 Characterization of Component Security ... 15

2.4 Measuring the Security of Component-Based Systems 17

2.5 Software Security Testing Methodologies ... 20

2.5.1 Security in the Requirement Gathering & Design Phase 21

2.5.2 Static Analysis & Code Reviews .. 21

2.5.3 Fault Injections ... 21

2.5.4 Dynamic Testing .. 22

2.5.5 Binary Analysis .. 22

2.5.6 Penetration Testing ... 23

2.5.7 Vulnerability Scanning ... 23

3. Methodology ... 24

3.1 Introduction ... 24

3.2 Existing Experiment Efforts .. 24

3.3 Goals and Motives of the Experiment .. 25

3.4 Experiment Design .. 26

3.5.1 Test Data Selection ... 26

3.5.2 Test Tool Selection ... 28

3.6 Experiment Setup .. 29

3.6.1 Quantitative Analysis of Tools.. 29

3.6.2 Qualitative Analysis of Tools for CBSD ... 31

3.6.3 Support for Agile Development .. 32

vii

3.7 Measurement Methods .. 33

4. Results & Evaluation .. 35

4.1 Experiment I ... 35

4.1.1 Assessment of SAST .. 37

4.1.2 Assessment of DAST.. 40

4.1.3 Overall Assessment .. 43

4.2 Experiment II .. 48

4.3 Experiment III ... 49

4.4 Limitations & Improvements to the Experiment .. 52

5. Conclusion .. 54

5.1 Findings .. 54

5.2 Conclusion .. 55

5.3 Future Improvements .. 56

References .. 58

viii

List of Figures

Figure Index Name Page

Figure 2.1 Structure of component interface 6

Figure 2.2 The Structure of the characterization scheme 16

Figure 2.3 A Security characterization process framework 17

Figure 2.4 An Assessment scheme 18

Figure 2.5 An evaluation template for the banking system 19

Figure 2.6 Security assessment approach 20

Figure 3.1 OWASP benchmark basic structure 27

Figure 4.1 Interpreting the results 35

Figure 4.2 FindSecBugs vulnerability assessment statistics 38

Figure 4.3 FindSecBugs effectiveness 39

Figure 4.4 OWASP ZAP vulnerability assessment 41

Figure 4.5 OWASP ZAP vulnerability assessment effectiveness 40

Figure 4.6 True Positive count of the product 43

Figure 4.7 False Positive count of the products 44

Figure 4.8 False Negative count of the products 45

Figure 4.9 Product wise True Negative count 45

Figure 4.10 Overall score gained by products 46

Figure 4.11 Overall effectiveness of products 47

Figure 4.12 Number of issues in incremental versions 50

Figure 4.13 Overall progression in incremental versions 51

ix

List of Tables

Table Index Name Page

Table 2.1 Advantages and disadvantages of COTS components 8

Table 2.2 Compositional forms of component models 9

Table 3.1 Number of vulnerabilities in each category 30

Table 3.2 Products and versions used in experiment I 30

Table 3.3 Details of vulnerable components in development 31

Table 3.4 Incremental product versions in the Excrement II 32

Table 4.1 FindSecBugs vulnerability assessment statistics 37

Table 4.2 OWASP ZAP vulnerability assessment statistics 40

Table 4.3 Overall vulnerability assessment statistics 43

Table 4.4 Experiment II results 48

Table 4.5 Vulnerability assessment in incremental versions 49

Table 4.6 Feature analysis of the security tools 52

x

List of Abbreviations

Abbreviation Description

SDLC Software Development Life cycle

COTS Commercial Off The Shelf

FOSS Free and Open Source Software

CBSE Component Based Software Engineering

CBSD Component Base Software Development

SAST Static Application Security Testing

DAST Dynamic Application Security Testing

IAST Interactive application Security Testing

TP True Positive

TN True Negative

FP False Positive

FN False Negative

TPR True Positive Rate

FPR False Positive Rate

CVE Common Vulnerabilities and Exposures

CWE Common Weakness Enumeration

1

1. Introduction

Security is an essential aspect since from the first appearance of human society.

Therefore, security concepts like confidentiality, integrity, and authenticity, as well as

means of achieving them through encryption, decryption and, secure communication

have become buzz words. The greater accessibility of computers to people and the

widespread use of software applications for nearly every aspect of our daily lives have

significantly increased the necessity of computer security. Even with such demand and

the focus on security from the inception of computer systems development, the level

of maturity we have achieved in software security is alarmingly low and is exemplified

by the continuing exposes on security breaches and losses due to the exploitation of

software vulnerabilities. Even though the software is mainly responsible for security

vulnerabilities in modern systems, it only became a hot topic as a significant research

area only in the late ‘90s [1].

Most of the vulnerability assessments are focused on detecting vulnerabilities in the

deployed environment. Therefore, those assessments become overall system

vulnerabilities rather than of the software of the particular system, which might be too

late to detect and fix. Therefore, identification of the vulnerability of software is

essential when it is in the early stages of the development.

1.1 Software Security

The software has become a necessity in day to day life and visible in every aspect of

our work areas such as operating systems to middleware, embedded systems,

firmware, and networking; almost everything runs on software directly or with the

assistance of it to a certain extent. As we belong to a world which is dominated by

information; software controls most mission-critical, life-threatening systems.

Software protects most sensitive information, and moreover, the securing of the

software itself is also done by software.

2

The software can be vulnerable due to several reasons such as complexity of the code

and structure, deficiencies in development methodologies as well as developer

capabilities and non-compliance to standards.With time, software becomes more

complex and difficult to comprehend by humans without looking in depth, and that

leads to a need for special tool support for debugging and obtaining the details required

to fix problems with software. Even though in the past software had been created from

scratch in one piece, nowadays most software contains many pre-built components or

are composed of several parts of integrated modules. Therefore, developers who

developed the software may not even have the necessary knowledge about the

individual security of the used components and the impact of integrating code in terms

of both static and dynamic aspects. When the source is available, it is an amenity to

assess the security, but it is often hazardous as the components or software is only

available in binary format.

Also, the software could become vulnerable due to the methodology through which it

has been developed or built. Most software methodologies do not put much emphasis

into security, and most often security will not be checked on early phases of the

software development life cycle (SDLC). Some software is tested for security only

after its production is completed. Another reason for software to become vulnerable is

the usage of unethical development procedures and non-standardized tools. Even

though standard certified tools have been used, it may not have been used in the

recommended way resulting in insecure software. Lack of adherence to best practices

and weaknesses in essential knowledge in the development, especially in terms of

security is also a significant factor to software to become vulnerable.

1.2 Security of the Component-Based Systems

Either with in-house modules or with third-party libraries, present-day software is

developed with interconnected components as composed systems. There are many

components in the market from open source to proprietary which is glued together with

different technologies and under various architecture patterns.

3

Due to the heterogeneous nature of the components, the vividness of the deployment

environment and diverse interaction patterns, security of such a composed system may

be defined by the weakest component of the system [2]. In order to ensure the security

of a composed system, it is vital to realise the security characterisation of the individual

component as well as their interactions and eventually the security of the software as

a whole.

1.3 Methods of Software Vulnerability Assessment

During the software development lifecycle, maintaining software security plays a

significant role in almost every system. Therefore, the various methods of security

assurance exist to support different lifecycle phases.

In the initial requirements gathering and design phase, manual review of the process

and threat modelling can be used to declare the security objectives of systems.

Afterwards, static code analysis assists the developers to identify code-level security

vulnerabilities parallel to the functionality development. Penetration testing, fault

injection and several other black box testing schemes provide the assurance of the

security of the systems in the testing phase. Vulnerability scanners and binary analysis

tools may be used to ensure security in the overall system in the deployment and

execution stage.

1.4 Motivation for the Research

As a common practice, we find that different tools have been used to test the security

of individual components and specific systems in different stages of software

development. Therefore, measuring the security level of such a composed system has

become a challenging task. Due to the increasing trend and unavoidable nature of

composed systems usage in the industry and exponential growth of the cybercrimes,

has resulted in evaluating the security of a composed system as an essential and critical

activity. Although a wide range of tools is available to test different aspects of software

security, suitability, and effectiveness, the assistance of those tools in the area of the

4

component-based system is not well studied. Hence, analysing such tools against the

composed system is beneficial for today’s software industry.

1.5 Research Problem

Heterogeneous nature of component-based systems and modern Agile development

methodologies used to engineer such composed systems has resulted in making the

measuring of the level of security of such a system to be complicated. Also, evaluating

the effectiveness of vulnerability assessment tools on such component-based systems

too has become tedious. Hence, this research will address the effectiveness of

vulnerability assessment tools on component-based software systems.

1.6 Benefits of the Research

This study will evaluate different vulnerability assessment tools against component-

based systems and provide an analysis of the effectiveness of selected tools which will

be a baseline for tool selection and also a methodology for selecting security

assessment tools for component-based software development. Further, it will provide

guidelines on deficiencies in existing studies in this area and suggest future research

directions for this area.

5

2. Literature Review

2.1 Composed Systems

Software component and component-based development became a buzz in the

software industry and academia in the late ’90s. Several terms and definitions exist to

refer to the same concept. Such terms like components, COTS (Commercial off the

Shelf), FOSS (Free and Open Source Software) refer to some software that can be

developed and might be used independently and more importantly through the

interaction it can make larger or complicated software. Also, software systems that are

built with such components are often refered to as composed systems or component-

based software systems. The methodology and the practices with this refer to

Component-Based Software Engineering (CBSE) or Component Based Software

Development (CBSD). The following section shall describe aforesaid composed

systems and the security aspects of such systems respectively.

Hopkins Component Primer [3] places emphasis on well-defined interfaces which

separate them from their implementation as essential to the success of components to

be loosely coupled. The author further claims that component-based development

represents a milestone in the maturation of software engineering. Additionally, the

reusability and maintainability are the critical engineering principles which motivated

the CBSE.

2.1.1 Component

As mentioned above, there are many definitions for a component which express the

same characteristics in different viewpoints. In Szyperski’s [4] definition “A software

component is a unit of composition with contractually specified interfaces and explicit

context dependencies only. A software component can be deployed independently and

is subject to composition by third parties”. Also, D’Souza and Wills [5] define a

component as “A coherent package of software artefacts that can be independently

developed and delivered as a unit and that can be composed, unchanged, with other

6

components to build something larger”. Combining both definitions Hopkins [3]

provides an overview definition as “A software component is a physical packaging of

executable software with a well-defined and published interface”. Therefore, the

component can be identified as a basic unit that can be built and maintained

independently to compose massive software which interacts with each other through

an interface.

Meijler and Nierstrasz [6] describe components are the next level of object-oriented

development (OOP). Components address some limitation of OOP and extend their

reusability with frameworks. Further, the authors claim the fast time to market

reliability, maintainability, adaptability, heterogeneity, and division of labour are the

motives for the existence of the components and its rapid popularity.

2.1.2 Component Interface

In a composed system, integration among the components is the crucial factor for

success. Moreover, the key to integration is an interface that separates and hides the

complexity of implementation. Therefore, a framework for identifying the features of

interfaces is fundamental to understand the composed systems. Han [7] provides a

framework for characterising software interfaces. Figure 2.1 shows the framework

which considers the several aspects of the interface.

Figure 2.1: Structure of component interface [7]

7

In the bottom is the signature of the component which consists of properties,

operations, and events. Then, the constraints let the interface to more restrictive and

well-defined. Altogether signature and constraints feature about the capabilities of the

component, and the configuration represents usage scenarios which identify the roles

and the usage contexts to the specific component and the scenario. Therefore, there

will be different configurations concerning the usage scenarios, which allows the

component to been customised and reuse. Also, the non-functional attributes help to

assess non-functional qualities of the components.

2.1.3 Component Composition

Although there are many components developed and made available to use, composing

those heterogynous components into an effective system is not a trivial task. Although

COTS or components reduce the expenses of development and maintenance, more

often becomes a nightmare to integrate. A significant reason for this is that software is

developed as a standalone application and always run with the aligned assumption with

its environment [8]. Table 2.1 lists several advantages and disadvantages of cots by

Boehm and Abts [9]. Further, it describes how the vendor behaviour, overwhelmed

expectations, interoperability, and product evolution can cumbersome in the

development process.

8

Table 2.1: Advantages and disadvantages of COTS components [9]

Advantages Disadvantageous

Immediately available; earlier payback
Licensing, intellectual property

procurement delays

Avoids expensive development Up-front license fees

Avoids expensive maintenance Recurring maintenance fees

Predictable, confirmable license fees

and performance

Reliability often unknown or

inadequate; scale difficult to change

Rich functionality
Too-rich functionality compromises

usability, Performance.

Broadly used, mature technologies Constraints on functionality, efficiency

Frequent upgrades often anticipate the

organisation’s needs

No control over upgrades and

maintenance

Dedicated support organization Dependence on vendor

Hardware/software independence
Integration not always trivial;

incompatibilities among vendors

Tracks technology trends
Synchronising multiple-vendor

upgrades

SEI technical concepts of CBSE describe the interaction in terms of compositional

forms and binding time perspectives [10]. In a CBSE framework and components are

the two main entities. Based on the components and frameworks in terms of

interactions, there are six possible combinations in Compositional Forms. There are

three main categories as follows.

 Component –Component

 Framework-Component

 Framework-Framework

9

Also, the above three major categories can extend to another three more special cases

[10]. Table 2.2 illustrates the compositional forms with existing component models.

Table 2.2: Compositional forms of component models [10]

Compositional

Form

EJB COM+ Java

Beans

Water

Beans

OMG/Orbos

Component

Deployment     

Framework

Deployment

future

(container

contract)



(JVM

plug-in)



(portable

object

adapter)

Simple

Composition

 

Heterogeneous

Composition 

(IIOP)



(IIOP)

Framework

Extension

 future

(policy

objects)



Component

(Sub)Assembly

As the above table explains not only what is composed is significant, it is vital to know

how it composed as well. The component is said as composed when a resource of one

component is accessible for another. For resource binding, many methodologies are

available that can be spread through the development time to runtime. According to

the time of the resource is binding, components are categorised as early binding and

late binding. However, late binding has always been preferred since it reduced the

restrictions on development time.

10

2.1.4 Component Composition Patterns

When it comes to the composition of components, patterns have been introduced to

make things easier for software designers and developers. Thus, to cope with hidden

dependencies, complex interactions, and ambiguous design; Eskelin [11] describes

few patterns to get the composition done seamlessly.

 ABSTRACT INTERACTIONS

By defining each other’s implementation on themselves, allows the components to

communicate and interact without depending on the environment but, through an

abstract interface. Java components add listeners in abstract interactions pattern.

 COMPONENT BUS

Component Bus removes the interdependencies of two components. All the

components connected to information BUS which will manage the communication

and the routing among the components Enterprise Service Bus and similar

implementations fall into this category.

 COMPONENT GLUE

The Functionality of an adaptor between the two different components or as a

mediator for components is handed over to script in this scenario. Only another

component will be used to replace the script when it cannot meet the full

requirements. For example, JINI uses this kind of script code to download and

deploy a service.

 THIRD-PARTY BINDING

In third-party binding, any interaction between two components is removed from

a third-party component. Therefore, if any change that we have required in terms

of interaction in a third-party component without affecting the two components

involved in the interaction.

11

 CONSUMER-PRODUCER

For the consumers, components will get one interface formatted similarly from the

producer component which connects several various provider components. JNDI

provider is such interface that exposes set of different services to its consumers.

“Inversion of Control” has been a typical pattern to assemble components nowadays

in the community which also known as dependency injection. Dependency Injection

allows lightweight containers to be assembled as a set of different components into a

cohesive application [12]. Many books and research literature has been written on

specific implementation on this pattern [13] [14] [15].

2.2 Issues and Problems of Composed Systems

2.2.1 Maximizing the Reusability

Reusability of software components and time to market are the main intentions that

drive the composed system to the main software stream. However, on the other hand,

it has also become a challenging task due to several reasons. There are many methods,

technologies, models and framework available in CBSE [16]. Therefore, choosing the

correct model or the technology and to what extent the components should be used to

maximise the reuse, are questions that go hand in hand.

2.2.2 Quality of the Components

CBSE is a phenomenon due to the advantages it produces, but at the same time, it can

be a catastrophe if it has been composed by using less reliable and low-quality

ingredients. Given a component, it might have known and unknown issues, but the

system that composed from it can present unexpected side effects and unknown

consequences. Hence, assuring the quality of such components or system plays a vital

role. The industry often uses integration testing, regression testing and load and

performance testing against the composed systems. Many models and frameworks

exist in the academic researches and practices for component-based systems [17].

12

Also, testing such a system is chaotic due to several factors. One of the major reason

is the unavailability of code and often executed in black box testing.

Moreover, such black box testing could not provide the required confidence or

guarantee. Low adequacy of the testing is also another factor, and often it is due to the

disability of interoperability testing with traditional methods [16]. Another factor

which results in poor quality is the lack of debugging ability in the code.

2.2.3 Standards and Certifications

There should be good standards and certification for components both favouring the

supplier and the customer. There are many standards for software, and few exist for

software components and reuse. IEEE 610.12, IEEE 730, IEEE 830, and BS 7925-2

are some available standards for software component and reuse. However, those

standards do not cover every aspect of CBSE. Thus, there should be more future work

on this.

Unavailability of proper certification methodology is another issue which becomes the

blocker for quality assurance. As mentioned in above that assurance of quality is a

hectic task in component-based systems, therefore, developing components to standard

and providing such a certification from the third-party is essential to improve the

quality and reduce the cost of testing in CBSE. Certification authority for validating

and certify components provides the necessary infrastructure to continue the

proprietary nature of the COTS business model. Further, if any certification exists, that

will reveal the level of security, and it increases the confidence of the customer.

2.2.4 Component Search and Repository

Another issue that CBSE face was finding the correct components when required.

Finding out a good, trustable repository is a hard task and even discovering good

components sometimes become a nightmare due to lack of non-availability of

standards for the repositories. Further, for in-house development, a good repository to

13

store and maintain the components is essential. Alnusair, A. and Tian Zhao [18]

provide and ontology-based Component search to describe, retrieve and explore

components using source code knowledge. Source Code Representation Ontology

(SCRO) captures the relationship among the source code artefacts based on concepts

like encapsulation, inheritance, method-overloading, and method-overriding as well as

method signature information. In ComRE, the implementation is deployed as a plugin

to eclipse which bootstrap all the information of the workbench.

Further, there are several repositories for open source projects like git [19],

SourceForge [20] which are based on the availability of source code.

Sonaytype Nexus [21] and Artifactory [22] provide a component repository, and it is

more focused on organisation perspective component storage. Their central

implementation also focuses on FOSS components, and it is in a more technical

perspective than business oriented. Thus, internet search providers are the available

option that someone can use at the moment for search necessary software components.

2.2.5 Other Issues

Khan et al. [2] explain another set of issues that inherent in component-based systems.

Functional differences are one of the significant problems in component-based

development, where newly developed components and existing components hardly

ever fitted together, and more often, a component that is going to develop new should

be adjusted according to the existing components to match with existing

functionalities.

When communication between each other’s in the component’s language, the way it

has been written matters intensely and often if producer component is written in a

different language than the consuming component, consuming component need to add

more adaptable code to handle the language problems and communication problems.

Components were built targeting the different environments such as the operating

system, specific CPU architecture, networking protocols and other software

components. Therefore, if any requirement is raised to implement in a different

environment, often lead to problems and need to change the original component

14

configurations. Also, components were built focusing on several factors in its

operating environments such as a number of concurrent users, the capacity of the

available resources, and the amount of data it handles. Thus, any change of such

parameter may result in unexpected behaviour of the component. Countries and

regions have different data format for date, time, currency, number format, etcetera.

Therefore, the software component which is written targeting a set of data format will

not always be usable with other regions.

2.3 Security of Composed Systems

Software components need to adjust to the relevant environment and requirements.

Even though there is a need for external protection to the components, composers most

of the time fail to implement that due to the binary black box nature of the component.

Hence, Khan et al. [23] express that security of a component should be treated

differently than the application security because of the distributed nature of the

components in the heterogeneous environment. Further, they categorize the security

properties of a component in two broader categories as

1. Nonfunctional security properties (NFS)

2. Properties as security functions (SF).

NFS is codified and embedded inside the component whereas, SF can be implemented

externally as separate functions. Identifying both NFS and SF of a component is very

valuable especially before selecting a component to integrate into the system.

However, adding a strong external SF is effortless if the NFS is weak. For example,

adding strong encryption function is useless if inbuilt properties of components had

security flaws. Thus, the internal computing properties will define the ultimate level

of the security of a component.

15

2.3.1 Scenario Based Component Security

Security of a component cannot be decided by a component alone since it is profoundly

affected by the user context. There are two types of security mechanisms as

implemented by underlying infrastructures such as protocols, connectors and much

lower level system applications such as Operating Systems and hardware mechanisms,

and the other is security implied by components with their internal security features.

Hence, security of a component substantially is influenced by component deployment

infrastructure and the use case scenario of the component. In other words, security of

a component in a system is dependent on the scenario it has been driven. Thus, Khan

and Han [24] characterise the security of a component into the following formula.

a_Security_funcion(S, O, K, D)

where S is the identity of a component in a hypothetical scenario, O is an arbitrary

operation set which executed by component S, K is the security attribute set used by

the member S to operate O. D is the data or information set belonging to the

component.

In terms of practical approach for this, a scenario is presented by message

communication protocols and architectural descriptions and from, required and

ensured security properties of the individual operations, specific threats and the

associated security policies and functionality has been identified.

2.3.2 Characterization of Component Security

A formal model has been introduced to identify and quantify the comprehensive list of

security properties embedded with the services that a component provides [25]. In the

scheme, security class contains a collection of a set of security objectives related to the

class, set of security functions and entity and action used by the security functions.

There are two entities as subject and object, and those entities and actions are taken as

a predicate to express overall security of a function.

16

Each function is associated with a rating based on the strengths and weakness of the

function in the particular context of the application. The accumulated rating of all

functions of a particular security objective treated as ultimate strength of that objective

and similarly accumulated values of security objectives would treat as the ultimate

strength of that particular security class. Figure 2.2 displays the simple signature of the

security class.

Figure 2.2: The Structure of the characterisation scheme [25]

When a component is developed, the above scheme may apply by the developer and

should be attached that to the component interface to runtime access for the contracting

client component. This will help to evaluate the security of a component and take

necessary action to mitigate any security risks.

There are many systems which are composed of using components available on the

internet. The main drawback is the absence of guarantee or certification of trustability

of such components, i.e., unavailability of security characteristics will lead to ignore

the component completely or to risk the security of the overall system.

Khan et al. [26] provide a methodology to publish trust-related security properties of

a component in a machine-readable way, which provide certification for the

component. First, the security characterisation of atomic components has been found,

and then the security characteristics at the component level have been certified.

Afterwards, check the compatibility of those security properties between components

in the contract level and then determine the overall security of the final system

considering the system level contracts. Figure 2.3 shows the process of the software

development life cycle.

17

Figure 2.3: A Security characterisation process framework [26]

Component level security is static unless the component is modified. However,

compositional and system level security is dynamic since the properties will vary

depending on the individual composition.

Security properties are categorised as ensured, and required security properties and

security knowledge base has been used to store the security characteristics.

Compositional security contacts (CsC) is decided by adherence of required and

ensured security characteristic matching and system level security contract (ScC) is

determined by CsCs.

2.4 Measuring the Security of Component-Based Systems

Khan and Han [27] introduce an assessment scheme to calculate a numeric score for a

component’s security for a given software application or system which represent the

relative strength of security properties of the given component. Figure 2.4 describes

the structure of the scheme. In the given scheme, system security requirement gathered

for the considered system or application, and the candidate component will rate

depending on the security properties it contains. Those properties can be component-

specific security services, security classes, security objectives and security functions.

18

Finally, using the evaluation templates scheme will calculate the final score for the

system.

Figure 2.4: An Assessment scheme [27]

The scheme is evolved using the ISO/IEC 15408 the Common Criteria for Information

Technology Security Evaluation (CC) and the Multi-Element Component Comparison

and Analysis (MECCA) model. The scheme will address the limitations of CC. CC is

common for general applications and does not address specific security requirements

of evaluators. Also, this will provide a preliminary assessment before the system is

integrated. CC evaluation needs huge effort and incurs a significant cost which many

companies could not afford.

19

Figure 2.5: An evaluation template for the banking system [27]

As illustrated in figure 2.5, the evaluation method uses a percentage of weighting to

the security objectives. A percentage weight is assigned to each security objective

throughout a given class. Similarly, each class is also given a percentage weight

comparative to the importance of other security classes. At the class level, the

percentage of the weights of all classes would sum up to 100. Accumulated percentage

weighting of the security objectives in a given class would always be 100. The

percentage weighting is defined by the software engineer depending on the importance

of the individual security objectives.

Busch et al. [28] extend the Palladio component model (PCM) to support security

assessment using annotations and extended PCM used to calculate the security of

CBSE (component security and mutual security interference) and getting different

from other systems they have considered the attacker, the attacker’s skills, and attacker

scenarios, starting and aiming point of the system. Then, those are modelled to an

analytical model using Semi-Markov process which will result in Mean time to

security failure (MTTF). Figure 2.7 shows the proposed scheme.

20

Figure 2.6: Security assessment approach [28]

Comparing the values of MTTSFs will allow software developers to assess the degree

of security. Such methodology will help developers to consider the security

considerations when they take architectural trade-off decisions which ultimately help

to select, design and build proper systems with higher calibre.

Nazir et al. [29] present an Analytic Network Process (ANP) based approach to

evaluate components security which is based on ISO/IEC 27002 standards. Provided

the weights and values from expert’s opinions, given components will be compared

using ANP to select the most secure component to be used.

2.5 Software Security Testing Methodologies

In the security Testing of software can be categorised mainly into three areas as a white

box, grey box, and black box testing. White box testing is where the source code is

available to analyse and test. Grey box testing is where both source code and

executable artefacts are available and could be performed on in-house developed

components as well as open source components. Black box testing is only the

21

executable, or the binary artefacts are available where propriety components and third-

party libraries.

2.5.1 Security in the Requirement Gathering & Design Phase

For security assurance, we can perform threat modelling early in the development

cycle to mitigate the security risks of software. Swiderski and Snyder [30] describe the

importance of threat modelling as a specification in the requirement gathering phase

for complex software systems. Furthermore, performing manual inspections and

reviews to fixing the gaps in the process of software development is another significant

task in the early stages of software development.

In the requirement gathering phase, most pragmatic practice is to follow security

standards related to requirement gathering. ISO/IEC 15408 consists of three sections

as general, components and assurance which ensures the security best practices [31]

[32] [33].

2.5.2 Static Analysis & Code Reviews

Static code analysis is the primary strategy in white box security testing. Chess &

McGraw [1] emphasise the significance of static analysing in the early phase of the

software development and the impact of automated tools stressing where the quality

of the rule set that the tools enforced plays critical role. Since the reviewing code for

security is a slow and tedious task, static analysis tools are often used to review the

code automatically. Sonarqube, a composed tool with Findbugs has been used for this

purpose even though these tools have advantages and disadvantages to their

individuality [34].

2.5.3 Fault Injections

Faults injection is a methodology for testing security of a system by simulating the

faults on its execution environment. This is to stress the system where the fault is

22

injected into the system; it may behave strangely than it is in the normal state. There

are two main branches in the fault injection as source code and binary. Source code

injection is the tester that will determine the faults based on the information he can

gather in the source code and instrumented the code with fault and observer the

behaviour of the system.

On the other hand, binary injection is identifying the interaction methods of the system

on its execution environment through system calls and remote procedure calls and

access the surrounding environment resources of the program to simulate the attacker

scenarios. Security of the system can be determined by the success ratio of such fault

injections.

2.5.4 Dynamic Testing

Dynamic testing performed by the tester while the program is being executed. The

dynamic test will monitor system memory functional behaviour, response time and

performance features. Dynamic analysis enables to expose the vulnerabilities of

software associated with user interactions, the configuration of the environment and

its behaviours since the tests are carried against actual runtime or a simulated

environment.

2.5.5 Binary Analysis

Binary analysis is checking the code in the machine code or binary levels. Often

intermediate language such as Java Byte code analysis is analysed for procedures,

instructions, registers, and memory addressing. Further, this can be categorised as

static binary analysis where static analysis happens before the program run, and

dynamic analysis is performed at a run time.

23

2.5.6 Penetration Testing

A penetration test is a strategy used to test the security of software by attacking the

system with intruder’s mindset. Furthermore, it can be performed manually or

automated according to the security requirements of the considered system.

2.5.7 Vulnerability Scanning

Vulnerability Scanning is using one computer or program to detect and exploit the

security weakness and flaws of other software and systems. Most of the vulnerability

scanners work with vulnerability database which reports, publishes and categorises the

security with specialists’ opinion. Vividness in the software systems leads to having a

different set of tools which specialised in specific areas such as network and

application environments. However, because of the vividness of the systems that have

been scanned by these vulnerability scanners, often the reports which generated by

those scanners contains a lot of false positives.

24

3. Methodology

3.1 Introduction

There are many methodologies and tools in academia as well as in industry to evaluate

software security. The task of security testing is divided mainly into two branches as

manual and automated. Also, it can be categorised as white box testing and black box

testing and less often as grey box testing. Due to severe competition in the market

place as well as due to marketing strategies used by companies, currently software

development is being done at a rapid pace using proprietary or open source

components which are then composed to a complex system. Security of such a system

will be determined by the individual security of the components, their interactions and

integration mechanisms as well as the deployment or the execution environment

security.

Even though there is a wide range of tools available to test software security, they are

specialised to assess a specific method or area or particular type of vulnerabilities.

Furthermore, those components are integrated into the system in different phases of

the software development lifecycle where the phases are time-boxed to small iterative

periods. Hence, it is critical to evaluate the applicability and effectiveness of the

security tools in the context of it as a composed system with a diverse range of

components and engineered with modern development methodologies. Thus, this

study will evaluate the effectiveness of vulnerability assessment tools for component-

based software systems.

3.2 Existing Experiment Efforts

There have been studies conducted more in a theoretical perspective which have

considered security at the application level rather than at the development level.

However, security analysis of composed systems focusing on the full SDLC and the

software engineering perspective does not appear in published research at a level even

25

remotely comparable to the vast amount of research work targeting deployment stage

and dynamic testing and also focusing prominently on web application features.

Antunes and Vieira [35] have experimented benchmarking the web services security

detection against the available tools. They proposed a mechanism to rate the security

tool with precision and recall measurement based on the true positives and the false

positives reported by the tool. However, it is specific only to web services security.

WaveSep benchmark developed by Shay Chen [36] is another highly capable

benchmark for testing of security tools. It is an open source project written in Java with

support for a variety of test cases and publishes the score for a suite of tools on a

website with respect to their performance. Juliet Test Suite is another Java-based

benchmark tool with many test cases from the National Institute of Standards and

Technology (NIST) [37]. However, these test suites primarily focus on DAST of web

applications.

3.3 Goals and Motives of the Experiment

The study has evaluated the effectiveness of the tools on component-based systems

considering the availability and applicability in different stages of software

development. Also, the security tools are evaluated on the applicability and

effectiveness for new development methodologies such as Agile where rapid and

frequent release cycles been adopted in order to reduce the time to market. In the initial

literature survey, it was found that not many methodologies or tools exist to cover the

full lifecycle phases in software development which assures the security of

component-based development. Hence, this study is focused on the tools along with

the applicability of the life cycle phases consisting mainly of development, testing, and

deployment. Furthermore, the study can be used as a baseline or methodology to

evaluate the effectiveness of security tools.

26

3.4 Experiment Design

The experiment design aimed to evaluate the effectiveness of three main properties.

I. Effectiveness of the tools with respect to detecting the vulnerabilities and

the accuracy of the reported vulnerability

II. Effectiveness of the tools in the development phases of the SDLC,

development processes, and supportive tools

III. Supportiveness to the Agile development methodologies where rapid and

frequent release cycles have been adopted

3.5.1 Test Data Selection

Having a comprehensive set of test cases is an essential factor in evaluating security

tools. Creating such a set of test cases from scratch is a time-consuming task and need

many person-hours to implement appropriately. Furthermore, this research is focused

on the existing state of the art in security evaluation. Hence, it was decided to choose

an existing benchmark tool as a set of test data.

When selecting the benchmark, the properties such as quality of the test data, the

frequency of updates and activeness in development, measurement technique, ease of

extendibility, ease of usage, supportiveness for different life cycle phases and

component-based development have been considered as primary characteristics.

From the available benchmarks, Juliet Test Suite had not been updated recently and it

is primarily focused on the Java web applications and Java applications targeting

SAST methodology. Also, WaveSep is another good benchmark that focused more on

the DAST methodology and favoured web applications. Therefore, it’s extensibility to

other applications was not considered as the primary design goal of this research is to

check the web application security.

OWASP Benchmark has been chosen due to the several key properties of the tool.

Firstly, it is an active project in the community although it is still in the incubator level

27

project in OWASP. Although, currently it only has support for the web applications

for DAST and SAST, the core design of the tool has been done in a way where it can

be extendable to other types of applications as well as to support different stages of the

software development process. Furthermore, it has comprehensive documentation and

is considered as a utility tool that generates results in a more organized structure.

OWASP Benchmark

The OWASP Benchmark version 1.2, which is the currently available release, is used

for this study [38]. A total number of 2740 test cases are included in the eleven CWE

security vulnerability categories and web application as test cases, which include

merged vulnerability strategies for SAST and DAST.

The execution resources for tests have been provided as it demands since the resources-

wise performance is not considered in the experiment. Figure 3.1 shows the underlying

mechanism of the OWASP benchmark.

Figure 3.1: OWASP benchmark basic structure

SAST

Source
Code

Running
App

Test Suite

DAST

Tool
Reports

with
Actual
Results

Tool
Reports

with
Actual
Results

Tool
Reports

with
Actual
Results

Tool
Reports

with
Actual
Results

Tool
Reports

with
Actual
Results

28

Customized Test Cases

With the initial study, it was identified that the main limitations of the existing

frameworks are the lack of support for different types of applications and the lack of

adequate consideration for the software development process and the architectures as

well as the methodologies. The main focus of the study is component-based software

systems with latest methodologies like Agile. Thus, to have a measurement of security

tools supportiveness in this aspect, a specific set of test cases been tested in the research

using state-of-the-art component-based development tools and technologies.

The experiment has been done simulating the real development environment,

simulating the vulnerable tools and technologies which are listed in the Common

Vulnerability Exposure (CVE) details list [39].

3.5.2 Test Tool Selection

Tools have been selected to support the main phases of software development.

However, there are not many automated tools that support for requirement gathering

and design stages. Even though there are some models suggested in the academic

context, it is difficult to implement it in the practical scenarios due to lack of

infrastructure support.

However, tools have been supported in terms of Static Analysis Security Tools (SAST)

and Dynamic Analysis Security Tools (DAST). The following tools have been selected

for the study.

SAST

 FindBugs

 FindSecurityBugs with Findbugs

 SonarQube

 PMD

 DependencyChek

29

DAST

 OWASP ZAP

 Arachni

This study is focused mainly on open source tools due to two reasons. Firstly, all the

commercial tools require a license to be used for this kind of a purpose and also there

are legal issues related to publishing the results for some of the products. Secondly,

the preliminary qualitative studies show that the difference of vulnerability scanning

between commercial and open source counterparties to be insignificant and for this

study the focus is on the effectiveness of vulnerability assessment for the composed

system rather than comparing commercial and open source alternatives.

3.6 Experiment Setup

The experiment has been designed considering three main areas. Firstly, tools have

been tested on the effectiveness in a quantitative approach. Secondly, the effectiveness

of the tools in the initial prototyping level of the development with different

components has been checked more qualitatively. Thirdly, a qualitative measure is

used to check the product support for the development methodologies in its

architecture and basic release delivery procedures.

3.6.1 Quantitative Analysis of Tools

Experiment I

OWASP benchmark has been used in a number of test cases and evaluated with the

number of vulnerabilities found in the assessment based on the false positives, true

positives, etc.

Experimental Environment

OS - Windows 10 Enterprise

Processor - Intel Core i7-5600U CPU @ 2.6GHz 2.59GHz

Memory - 16 GB

30

Data Set

OWASP Benchmark 1.2 has been used as the test benchmark and its 2740 test cases

categorised below are used to test the tools.

Table 3.1: Number of vulnerabilities in each category

Category CWE # Total

Command Injection 78 251

Cross-Site Scripting 79 455

Insecure Cookie 614 67

LDAP Injection 90 59

Path Traversal 22 268

SQL Injection 89 504

Trust Boundary Violation 501 126

Weak Encryption Algorithm 327 246

Weak Hash Algorithm 328 236

Weak Random Number 330 493

XPath Injection 643 35

Totals

2740

The following tools with the particular version have been used as the tools in this

experiment.

Table 3.2: Products and versions used in experiment I

Tool Version

FBwFindSecBugs 1.4.6

FindBugs 3.0.1

PMD 5.2.3

SonarQube Java Plugin 3.14

OWASP ZAP vD-2016-09-05

31

3.6.2 Qualitative Analysis of Tools for CBSD

Experiment II

Experiment II uses the customised test cases or the application to check the

effectiveness of the vulnerability scanner is in terms of CBSD systems.

Experimental Environment

OS - Windows 10 Enterprise

Processor - Intel Core i7-5600U CPU @ 2.6GHz 2.59GHz

Memory -16 GB

Data Set

The following vulnerable development tools and technologies have been used as data

and as the main test bench.

Table 3.3: Details of vulnerable components in development

Tool Version No of test cases CVE #

GWT 2.5.1 RC 1 CVE-2013-4204

Jenkins 1.400.x before

Some specific versions
8

CVE-2013-2034

CVE-2013-2033

Hibernate 5.2.3 1 CVE-2014-3558

Maven 3.14 CVE-2013-0253

Oracle Java 7 1.7 SE 7u111 7 Many CVE numbers

Spring MVC before 3.2.4 5 Many CVE numbers

Eclipse IDE before 3.6.2 2 Many CVE numbers

32

3.6.3 Support for Agile Development

Experiment III

Frequent releases of the tools, update policy and mechanism of the rule database have

been evaluated to study the support of Rapid Application Development and Agile

development methodologies.

OWASP benchmark has been used with many numbers of test cases and evaluated

with the number of vulnerabilities found in terms of false positives, true positives with

a set of versions for FindSecBugs and OWASP-ZAP’s two contiguous releases.

Furthermore, the features of relevant tools are evaluated in order to infer the

supportiveness for the component-based development and new methodologies.

Experimental Environment

OS - Windows 10 Enterprise

Processor - Intel Core i7-5600U CPU @ 2.6GHz 2.59GHz

Memory -16 GB

Data Set

Table 3.4: Incremental product versions in the Excrement II

Tool Version

FBwFindSecBugs 1.4.4

FBwFindSecBugs 1.4.5

FBwFindSecBugs 1.4.6

OWASP ZAP vD-2015-08-24

OWASP ZAP vD-2016-09-05

33

3.7 Measurement Methods

In Experiment I, quantitative data have been collected for all the test cases and the

results were categorised as follows;

 Tool correctly identifies a real vulnerability (True Positive - TP)

 Tool fails to identify a real vulnerability (False Negative - FN)

 Tool correctly ignores a false alarm (True Negative - TN)

 Tool fails to ignore a false alarm (False Positive - FP)

From the above values, the following could be calculated:

 Sensitivity or True Positive Rate (TPR) = TP/(TP+FN)

 Fallout or False Positive Rate (FPR) = FP/ (FP+TN)

 Specificity or True Negative Rate = 1− FPR = TN/(TN +FP)

 Youden’s index = Sensitivity+Specificity−1

If a graph is plotted as TPR against TNR, then the top right corner of the graph will

have the tools that have high sensitivity and high specificity. However, this will not

allow a good understanding of the accuracy of the tools since it does not consider the

flaws, i.e., False Positives. For example, assume a tool will treat vulnerabilities as only

True Positives and True Negatives. Then such a tool will calculate TPR and TNR as 1

because of the value of the denominator and the numerator in the formula becomes 1.

Even if the number of false positives and false negatives will be a low value, then the

denominator is very much closer to 1 and the final value will be again closer to 1

leading it to be incorrectly considered as a better tool. Because of that, it is difficult to

figure out a tool which will conclusively identify the flaws and true vulnerabilities with

high accuracy.

We need an informed decision rather than a random prediction. Therefore, the

identification of false positives and false negatives should be considered equally in the

final score in terms of accuracy. If TPR is plotted against FPR (1-specificity), where

34

the false positive rate represents the percentage rate of the tools which report false

positives, then that will provide an accurate score for the tool.

Benchmark score is calculated by using Youden's index [40] which is calculated by

deducting 1 from the sum of a test’s sensitivity and specificity expressed not as a

percentage but as a part of a whole number: (sensitivity + specificity) – 1. For a test

with poor diagnostic accuracy, Youden's index equals 0 and in a perfect test, Youden's

index equals 1. Benchmark Score is the length of the line from the point down to the

diagonal “guessing” line

Finally, the score for a specific tool has been derived as follows:

Score =TPR-FPR

For experiment II, there are specific vulnerabilities with respect to the category of the

development environment, runtime environment and build environment and

development tools. From the study, it was decided whether the assessment tool

correctly found out the vulnerability in the perspective of utility tools, development

tools, and runtime configurations.

From experiment III, time-frequency of the tool’s releases and update frequency of the

rule database have been compared.

35

4. Results & Evaluation

This section will present the quantitative and qualitative results of the research study.

The results are based on the data gathered and evaluated for the effectiveness of the

tools corresponding to selected benchmarks.

4.1 Experiment I

In this experiment, prominent open source SAST and DAST tools were chosen to

execute against OWASP Benchmark which contains 2740 test cases covering

vulnerabilities of eleven categories. From the benchmark reports, we can infer the

accuracy of the vulnerability assessment by the values mentioned in section 3.7

measuring methods.

Figure 4.1: Interpreting the results [35]

36

In order to interpret the data from the experiment correctly, the above graph provides

the guideline. The accuracy and effectiveness of the tools can be measured correctly

based on the identified vulnerability ratios.

As shown in Figure 4.1, if the True Positives and False Positives are 0, it means that

the tool reports nothing as vulnerable. On the other hand, if True Positives and False

Positives are 100%, then it assumes that the tool is reporting everything as vulnerable.

Thus, both these extreme ends can be treated as inefficient. And the line drawn

between (0, 0) and (100, 100) can be treated as the random line showing the area where

tool behaviour is random. Any performance point under this curve means the tool has

reported more incorrect outcomes with less information and therefore, it was less

effective than expected. If the score is above the curve and toward the top left corner,

then the tool is in the ideal performance area. Also, the coverage and accuracy are also

in the maximum ranges.

37

4.1.1 Assessment of SAST

In order to evaluate the effectiveness, the following information was gathered for all

the tools. Table 4.1 consist of the information about FindSecBugs with FindBugs.

Table 4.1: FindSecBugs vulnerability assessment statistics

Category CWE

TP FN TN FP Total TPR FPR Score

Command

Injection

78 126 0 14 111 251 100.00% 88.80% 11.20%

Cross-Site

Scripting

79 246 0 78 131 455 100.00% 62.68% 37.32%

Insecure Cookie 614 36 0 31 0 67 100.00% 0.00% 100.00%

LDAP Injection 90 27 0 5 27 59 100.00% 84.38% 15.63%

Path Traversal 22 128 5 18 117 268 96.24% 86.67% 9.57%

SQL Injection 89 272 0 22 210 504 100.00% 90.52% 9.48%

Trust Boundary

Violation

501 83 0 8 35 126 100.00% 81.40% 18.60%

Weak

Encryption

Algorithm

327 130 0 63 53 246 100.00% 45.69% 54.31%

Weak Hash

Algorithm

328 89 40 107 0 236 68.99% 0.00% 68.99%

Weak Random

Number

330 218 0 275 0 493 100.00% 0.00% 100.00%

XPath Injection 643 15 0 1 19 35 100.00% 95.00% 5.00%

Totals

1370 45 622 703 2740

Overall Results

96.84% 57.74% 39.10%

38

Figure 4.2: FindSecBugs vulnerability assessment statistics

FindSecbugs, a sub-plugin of FndBugs reported higher True Positive values for Cross-

Site Scripting, SQL injection, and weak rank number. As shown in figure 4.2, for True

Negative scenarios, the Weak Random Number vulnerability is reported correctly as

not as vulnerabilities.

However, False positive is also higher in Cross-Site Scripting, SQL injection, Path

Traversal and Command Injection. Identification of false negatives is also insufficient.

Except for the Weak Random Number and Insecure cookies, FindSecBug performance

is low and shows random behaviour.

126

246

36
27

128

272

83

130

89

218

15

0 0 0 0 5 0 0 0

40

0 0
14

78

31

5
18 22

8

63

107

275

1

111

131

0

27

117

210

35

53

0 0

19

0

50

100

150

200

250

300

N
o

 o
f

Te
st

ca
se

s

TP

FN

TN

FP

39

 Figure 4.3: FindSecBugs effectiveness

In using the FindSecBugs with FindBugs individual assessment, it was efficient in

identifying vulnerabilities of insecure cookies and a weak random number. Even

though it achieved a 100% coverage, and accuracy in those vulnerabilities,

effectiveness in XPath injection, SQL injection and PathTraversal are lower than 10%.

On average, FindSecBugs scored 39%, which is remarkably low against the expected

value due to the inaccuracy of most of the reported vulnerability. However, among the

selected SAST tools, FindSecBug scored the highest marks.

Due to the absence of specific security rules in the Findbug, its performance is

negligible and the overall average is -0.07, which is below even than the expected

value. While this tool contains rules to find other bugs, the reported security

vulnerabilities from that are even more inaccurate and detection efficiency is also in

lower levels.

PMD is falling into the same category as FindBugs where there are no security rules

to detect security flaws. Even though it obtained an overall score of 0%, it is better in

the accuracy since it has not reported any false positives as well as not any True

positives in case of Negative scenario. Therefore PMD analysis can be stated as

ineffective.

Even though it is expected for SonarQube to outperform all of the other SASTs; its

performance was less than the performance achieved by FindSecBug where

0%

20%

40%

60%

80%

100%

120%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Tr
u

e
P

o
si

ti
ve

 R
at

e

False Positive Rage

40

FindSecBug score reported as 33.34% on average. SonarQube has performed well

against insecure cookies and weak random numbers in the same manner as

FindSecBugs. However, it outperformed FindSecBugs in detecting weak encryption

algorithms.

4.1.2 Assessment of DAST

OWASP Zed attack proxy is the most popular and actively maintained web project in

the community. For this tool, the OWASP Benchmark project has been used to

implement the test cases as a web application project where the OWASP ZAP analysed

the provided vulnerable websites and created the results set related to those sites. Table

4.2 shows the categorised details of the vulnerability assessment of OWASP ZAP.

Table 4.2: OWASP ZAP vulnerability assessment statistics

Category CWE

TP FN TN FP Total TPR FPR Score

Command Injection 78 41 85 125 0 251 32.54% 0.00% 32.54%

Cross-Site Scripting 79 71 175 209 0 455 28.86% 0.00% 28.86%

Insecure Cookie 614 36 0 31 0 67 100.00% 0.00% 100.00%

LDAP Injection 90 0 27 32 0 59 0.00% 0.00% 0.00%

Path Traversal 22 0 133 135 0 268 0.00% 0.00% 0.00%

SQL Injection 89 158 114 229 3 504 58.09% 1.29% 56.80%

Trust Boundary

Violation

501 0 83 43 0 126 0.00% 0.00% 0.00%

Weak Encryption

Algorithm

327 0 130 116 0 246 0.00% 0.00% 0.00%

Weak Hash Algorithm 328 0 129 107 0 236 0.00% 0.00% 0.00%

Weak Random

Number

330 0 218 275 0 493 0.00% 0.00% 0.00%

XPath Injection 643 0 15 20 0 35 0.00% 0.00% 0.00%

Totals

306 1109 1322 3 2740

Overall Results

19.95% 0.12% 19.84%

41

Figure 4.4: OWASP ZAP vulnerability assessment

Figure 4.4 shows the vulnerabilities assessment response of OWASP ZAP, which is

based on the DAST methodology. According to the number of True Negatives, it

reported most of the not vulnerable scenarios correctly. For example, weak random

number, SQL Injection, and Cross-Site Scripting are reported with the highest values.

Also in the same categories, it reported higher values relative to the other categories,

but compared to the other tools, a number of issues reported are quantitatively lesser.

A significant characteristic of the OWASP ZAP is that it does not report many False

Positives. Only 3 False Positives have been reported in the SQL Injection category.

4
1

71

3
6

0 0

1
5

8

0 0 0 0 0

8
5

1
7

5

0

2
7

1
3

3

1
1

4

8
3

1
3

0

12
9

2
1

8

1
5

1
2

5

2
0

9

31 3
2

1
3

5

2
2

9

43

1
1

6

1
0

7

2
7

5

2
0

0 0 0 0 0 3 0 0 0 0 0

0

50

100

150

200

250

300

N
o

 o
f

Te
st

ca
se

s

TP

FN

TN

FP

42

Figure 4.5: OWASP ZAP vulnerability assessment effectiveness

Figure 4.5 shows the effectiveness OWASP Zap precisely. All the values in the

categories are scattered above the random line and are located left-sided, which means

that its rate of False Positives is low and True Positive Rate is average. That is due to

the higher number of True Negatives and True Positives and absence of False

Negatives. Hence, the accuracy of this tool is very high. However, the number of True

Positives reduce the coverage to the tool in low ranges.

Arachni is selected due to its popularity in the community, and the selected version

executed in the specified environment with the OWASP Benchmark 1.2 for 6 hours

which is the best possible scenario. However, it could not complete the complete

analysis. It has a resource problem with the Request concurrency and crashes the

system. Due to the incompleteness of the analysis, the Arachni is not compared with

the other systems.

0%

20%

40%

60%

80%

100%

120%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Tr
u

e
P

o
si

ti
ve

 R
at

e

False Positive Rate

43

4.1.3 Overall Assessment

Table 4.3 Overall vulnerability assessment statistics

Tool TP FN TN FP TPR FPR Score

FBwFindSecBugs v1.4.6 1370 45 622 703 96.84% 57.74% 39.10%

FindBugs v3.0.1 150 1265 1194 131 5.12% 5.19% -0.07%

PMD v5.2.3 0 1415 1325 0 0.00% 0.00% 0.00%

SonarQube Java Plugin
v3.14

607 808 1184 141 50.36% 17.02% 33.34%

OWASP ZAP
vD-2016-09-05

306 1109 1322 3 19.95% 0.12% 19.84%

Figure 4.6: True Positive count of the products

Figure 4.6 represents the Comparison of the True Positives reported by the selected

tools. From the True Positive value, we can identify how much issues can be identified

by the tool. FindBugsSec is the premier tool in the set from this aspect where it reported

1370 issues. This performance of FindBugsSec is more than twice as better as the

second-best SonarQube. PMD was the lowest performing tool where it reported a

0

200

400

600

800

1000

1200

1400

1600

TP

N
o

 o
f

Te
st

ca
se

s

FBwFindSecBugs
v1.4.6

FindBugs v3.0.1

PMD v5.2.3

SonarQube Java
Plugin v3.14

OWASP ZAP vD-
2016-09-05

44

value of 0, which means that no true vulnerability was found. This was due to it not

having any related security rules implemented.

Figure 4.7: False Positive count of the products

Figure 4.7 represents the False Positive count of the product where it reported as

vulnerabilities for non-vulnerabilities. Again, the FindSecBugs plugin performed as

the highest scorer despite expecting a lesser value for this category. While SonarQube

and FindBug reported moderate values for the test, PMD scored the lowest value due

to lack of security rules. OWASP ZAP is the most accurate, only reporting 3 False

Positives.

0

100

200

300

400

500

600

700

800

FP

N
o

 o
f

Te
st

ca
se

s

FBwFindSecBugs
v1.4.6

FindBugs v3.0.1

PMD v5.2.3

SonarQube Java
Plugin v3.14

OWASP ZAP vD-
2016-09-05

45

Figure 4.8 False Negative count of the products

Figure 4.8 represents the number of occurrences where the tool was unable to report

an issue for a vulnerable where it should have done so. In the test, PMD was the

highest scorer where it reported none of the issues as vulnerable due to the absence of

security rules and Findbugs was the second due to the same reason. However, despite

the existence of focused security rules, OWASP-ZAP reported a large number of false

negatives which reduced its coverage significantly. In this category as well,

FindSecBug reported the lowest score as 45 which contributed to increase its coverage.

Figure 4. 9: Product-wise True Negative count

0

200

400

600

800

1000

1200

1400

1600

FN

N
o

 o
f

Te
st

ca
se

s

FBwFindSecBugs
v1.4.6

FindBugs v3.0.1

PMD v5.2.3

SonarQube Java
Plugin v3.14

OWASP ZAP vD-2016-
09-05

0

200

400

600

800

1000

1200

1400

TN

N
o

 o
f

Te
st

ca
se

s

FBwFindSecBugs
v1.4.6

FindBugs v3.0.1

PMD v5.2.3

SonarQube Java
Plugin v3.14

OWASP ZAP vD-2016-
09-05

46

Figure 4.9 shows the scenarios where it has not reported vulnerability for non-

vulnerability issues correctly. In this category, PMD reported the highest value again

which is due to the absence of the security rules. OWASP Zap is the real leader in this

category which helped it to increase its accuracy. FindBugs and SonarQube reported

a fair number of issues as True Negatives. FindSecuBug reported the lowest number

of True Negatives which lead to lower its final score in the accuracy measure.

Figure 4.10: Overall score gained by the tools

47

Overall score has been calculated by reducing the True Negative Rate from True

Positive Rate in order to take the correct measurement. FindBug has the lowest score

as a minus value due to the number of False Positives reported. PMD has a far better

value numerically due to the fact that it does not report any false positive, but it does

not contain any security rules. OWASP-ZAP has the next lowest due to lack of

detection or the coverage. SonarQube has the second-best score due to increase in

coverage than the rest of the tools. FindSecbug is the highest scorer merely because it

has the highest coverage despite the loss of its accuracy.

Figure 4.11: Overall effectiveness of products

Figure 4.11 shows the overall effectiveness of the tools. If a tool is plotted near the

random line, then it is described as a tool that characterises a random behaviour and

therefore deemed to be ineffective. As clearly shown by the test results, PMD and

FindBug fall into this category due to lack of security rules. Rest of the tools are

represented in the graph above the random line meaning they have some level of

effectiveness. Even though FindSecBug reported the highest True Positive rate, it is

plotted in the middle of the graph due to the highest number of false positives it has.

SonarQube has been plotted more towards the left of the graph but with moderate

48

coverage. Although OWASP Zap is located as a leftmost item in the graph behind

SonarQube, it is also not in the optimal range due to lack of coverage. According to

the graph, there is no tool plotted on the top-left of the graph where the ideal tool

should be located.

4.2 Experiment II

This test was specifically designed to check some aspects of the component-based

software development where it will check the vulnerability identification early in the

SDLC especially with vulnerable development utility tools.

Table 4.4: Experiment II results

Tool

F
in

d
B

u
g
s

F
in

d
S

ec
B

u
g

P
M

D

S
o
n

a
rQ

u
b

e

D
ep

en
d

en
cy

C
h

ec
k

O
W

A
S

P

Z
A

P

GWT - - - -

-

Jenkins - - - - -

Hibernate - - - -

-

Maven - - - - - -

Oracle
Java 7 - - - - - -

Spring
MVC - - - -

-

Eclipse
IDE - - - - - -

49

In the experiment, it shows that none of the tools has been able to address the

vulnerabilities except the DependencyCheck. It is due to those specific tools being

designed to test the direct code and the execution paths of that code in the runtime.

Therefore, those tools are incapable of identifying dependent third-party components

when the source code is not available and the vulnerable code is not used in the

application execution. DependencyCheck is designed to analyse the security of the

third-party dependencies. Therefore, it was able to figure out those vulnerabilities.

However, it was unable to figure out the vulnerabilities in the development of

infrastructure tools.

4.3 Experiment III

Impact of release frequency of the security product needs to be analysed against

modern development practices to study the effectiveness. Hence, incremental releases

of the following main tools have been analysed to deduce the fact that the updated tool

version often contains improvements in vulnerability detection. Table 4.5 shows the

statistics of OWASP Benchmark.

Table 4.5: Vulnerability assessment in incremental versions

Tool version Release
Date

TP FN TN FP TPR FPR Score

FBwFindSecBugs
v1.4.0

31-Mar-15 716 699 899 426 47.64% 35.99% 11.65%

FBwFindSecBugs
v1.4.3

17-Sep-15 1026 389 791 534 77.60% 45.21% 32.39%

FBwFindSecBugs
v1.4.4

20-Nov-15 1044 371 788 537 78.77% 44.64% 34.13%

FBwFindSecBugs
v1.4.5

5-Jan-16 1355 60 622 703 95.20% 57.74% 37.46%

FBwFindSecBugs
v1.4.6

3-Jun-16 1370 45 622 703 96.84% 57.74% 39.10%

OWASP ZAP vD-
2015-08-24

24-Aug-15 245 1170 1324 1 18.03% 0.04% 17.99%

OWASP ZAP vD-
2016-09-05

5-Sep-16 306 1109 1322 3 19.95% 0.12% 19.84%

50

Figure 4.12: Number of issues in incremental versions

In the experiment, FindSecBug is used as a SAST tool and OWASP ZAP tool has been

used as a DAST tool. Compared to release version 1.4.0 of FindSecBug, version 1.4.3

has significant improvement in the number of the detected issues. However, the

average gap between the two releases is two months, and a rough average of detected

false positive is 15. The False Positives are also reducing significantly in the

incremental versions. However, even though OWASP ZAP has frequent updates,

improvements are slightly less. Comparing the results between 2015 and 2016

releases, the number of True Positives increased only by 60, and False Positive count

has increased only seldom. Since OWASP Zap uses DAST, it has been able to score a

high accuracy.

0
200
400
600
800

1000
1200
1400
1600

TP

FN

TN

FP

51

Figure 4.13 overall progression in incremental versions

Figure 4.13 shows the overall progression of the OWASP ZAP and FindSecBug

plugin. In the graph, it shows that FindSecBug has significant improvements in its

overall score in its incremental releases. However, despite annually released versions

of OWASP-ZAP, it has only about 1.84% improvement in overall score.

In order to test the support for modern development methodologies and concepts,

features of the same set of security tools have been analysed and Table 4.6 list the facts

gathered.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

Sc
o

re

FBwFindSecBugs
v1.4.5

OWASP ZAP vD-2016-
09-05

52

Table 4.6: Feature analysis of the security tools

Feature

F
in

d
B

u
g
s

F
in

d
S

ec
B

u
g

P
M

D

S
o
n

a
rQ

u
b

e

D
ep

en
d

en
cy

C
h

ec
k

O
W

A
S

P

Z
A

P

Release

frequency
6 months

2-3

months
monthly

1-3

months

2-3

months
weekly

Security

Rules/Database

updates

frequency

NA NA NA NA weekly weekly

Tool support

for Agile

Development

According to the analysis of the set of features, almost all of the tools have support for

the Agile development concept such as Continuous Integration and Continuous

Delivery (CICD). However, except for OWASP ZAP, all the other tools have a release

cycle of more than one month long. It is interesting to note that DepenencyChek has a

mechanism to update the security repository bi-weekly. Therefore, some of the tools

need to think about updating mechanism of their security policies or the repositories

in a more regular manner.

4.4 Limitations & Improvements to the Experiment

Experiment II and III has been done from a qualitative perspective to check the

supportiveness for the specific features and effectiveness of the product. However, as

a future improvement to the tests carried out in this research, developing a set of more

formal test cases would be beneficial to gather improved qualitative measurements.

53

Due to the lack of product support for gathering security vulnerabilities in the

requirement phase, this research study did not cover that phase but focused more on

the development and testing phases. It is another area that could have greater emphasis

in future research studies with appropriate tool development.

Since this research had a developer-oriented perspective, and also many system level

binary analysis work has been done in the area beforehand, our tests did not place

much emphasis on binary analysis. Even though it was not tested in the experiments,

it would be better to recheck the use of binary analysis since empirical evidence has

shown that the claims made by vendors are not met in reality.

The experiments conducted in this research did not cover the deployment phase as it

is more similar to post-production testing. However, nowadays this deployment

happened more frequently, and therefore vulnerability assessment of binary-level is

possible in every iteration. Hence, the tool support for security testing in such dynamic

deployment environments is another area that this experiment and study can be

improved. Furthermore, this vulnerability assessment did not monitor resource

utilisation. Hence, as an improvement, such an experiment can be performed to get a

measurement of resource usage and resource efficiency.

Since the primary goal of the study was to evaluate the effectiveness of vulnerability

assessment done by widely used tools, open source products have been used. However,

to infer a better understanding about the performance of proprietary tools, the study

can be extended to evaluate commercial tools as well.

In the quantitative methodology, the accuracy of the measurement is entirely based on

the benchmark used and the test cases included in it. Despite the hardness of writing

proper automated tests cases to test security vulnerabilities, it is useful if it is possible

to extend the test cases to cover more areas. As a future improvement in the

experiment, a merged test benchmark can be created from the existing test tools where

OWASP Benchmark provides a much-needed platform.

54

5. Conclusion

5.1 Findings

From the preliminary review of the literature and other reviewed articles and

publications, it was found that providing tool support to cover the security aspects in

the requirement gathering phase is difficult from a process automation perspective.

Even though several good suggestions on this area could be found in the academic

research literature, it was not possible to locate a real-world tool implementation to

test the effectiveness in that area. However, in place of tools, there are best practices

introduced by ISO/IEC 15408 to evaluate security requirements.

In the development and test stages, SAST and DAST are the main methodologies used

to analyse the security vulnerabilities of the composed systems. Even though many

vendors in the industry claim highly of the efficiency of their relevant tools, by the

experiments conducted in this research, it was found that this is not the real picture in

terms of the security vulnerability assessment. According to the overall score for

products graphed in figure 4.10, maximum score found for SAST is around 40%, and

for DAST it is around 20%.

As figure 4.2 and figure 4.3 shows for FindSecBugs effectiveness and figure 4.4 and

figure 4.5 shows for OWASP Zap effectiveness, the existing evaluated products are

most useful in finding out a particular category of specific vulnerabilities. However,

those tools did not seem capable of covering all the categories with expected accuracy.

In terms of component-based development, existing products are more effective and

focused on certain types of applications such as web applications. Current product

support for component-based development is in written code and the runtime

application only. However, as results of experiment II in Table 4.4 demonstrates, the

vulnerabilities in interactions and the tools used in the software development itself and

third-party libraries have not been identified correctly by most of the current tools.

55

According to the feature analysis of security tools in table 4.6, most of the open source

tools support Agile methodologies and frameworks and also provides interaction for

continuous integration and delivery. However, the security vulnerability databases and

methodologies used in those open source tools were not supportive enough to get quick

feedback.

5.2 Conclusion

Since software has become one of the most critical parts of all the industries and also

the increasing trend of cybercrimes targeting vulnerabilities in such software systems,

securing of software is now an essential requirement. Even though, there exist facilities

to assess the security of the software in post-production environments, the support for

pre-production is minimal. On the other hand, today, most of the systems are being

developed by composing a diverse range of components where holistic security is

unknown or untested. Furthermore, the development methodologies have been

changed over time where more iterative, Agile methodologies have been adopted.

Therefore, this study focused on analysing the vulnerability assessment in composed

systems and more specifically from a software development perspective as against a

software usage perspective.

In the experimental design, a quantitative approach is used to measure the

effectiveness of the selected products. On the other hand, qualitative features of the

products have been analysed against their support for the component-based

development and Agile development methodologies.

In the quantitative analysis, it was found that despite the vendor’s claims about the

effectiveness of their products, it is far less than it expected. According to the overall

score gained by the products shown in figure 4.10, the effectiveness of SAST is about

40%, and DAST is around 20%. As depicted in figure 4.11 of overall effectiveness,

DAST tools accuracy is high, but coverage is very minimal in most areas of the

analysis. Even though SAST has more coverage in terms of the number of

vulnerabilities, its accuracy is dubious due to the False Positives and True Negatives.

56

In the analysis of product features qualitatively, it is found that most of the products

support for Agile methodologies, continuous integration, and continuous delivery.

According to table 4.6, the open source products that have been evaluated are

supported with frequent releases, but still, it needs to have shorter release cycles in

order to be more effective. OWASP ZAP and DependencyCheck is the only tools from

the considered tools that separated its security policy mechanism from the core

product, which can be considered as a valid action from an architecture perspective.

According to the findings, SAST focuses mostly on the development stage of the

SDLC and DAST is focused on the testing stage. But it is required for these tools to

improve accuracy and coverage in order to make sure they are effective in vulnerability

testing of the software systems. Even though IAST is a currently promising area in the

field, it is still a questionable methodology in usability in an Agile development

environment due to the amount of time and resources it takes to complete the analysis.

The existing tools that support requirement gathering and deployment stage in modern

development need to be improved by reducing feedback time and increasing the

quality of the feedback. Each type of product has its strengths and weaknesses.

However in the perspective of today’s software development methodologies, having

one tool which covers all the phases in SDLC with higher accuracy, and coverage is

the ultimate expectation for the future in this arena.

In conclusion, despite the fact of valuable service provided by today's products, there

will be more work that needs to be done in this area to have an effective software

vulnerability measurement in the modern component-based software development.

5.3 Future Improvements

Dynamic reconfigurability and deployability of tools would be a significant

improvement considering the deployment stages. Therefore, support for virtual

machines and containers is another stream that can be improved.

Currently, most of the benchmarks are focused on web applications. Extending

support for other application types such as application servers, and mobile systems is

57

also a trending area. Optimising test cases to run on the application containers is

another area of improvements that can be done in the benchmark tools and test cases

perspective. Center for Internet Security (CIS) benchmark provides a wide range of

test cases for application servers, container-based environments and many new

technologies [41]. However, those CIS benchmarks could be automated to increase

popularity and usability.

From a vulnerability assessment product perspective, those can be improved by

detailed analysis of the assessment report against a benchmark. Also, those need to

increase more coverage and accuracy and needs to be optimised by specific strategies

and categories. However, having a merged or combined tool of those security rules

and strategies is more beneficial to analyse the vulnerability of component-based

software development.

58

References

[1] Chess, Brian, and Gary McGraw. "Static analysis for security." IEEE security &

privacy 2, no. 6 (2004): 76-79.

[2] Khan, U. A., I. A. Al-Bidewi, and K. Gupta. "Challenges in Component-Based

Software Engineering as the Technology of the Modern Era." International

Journal of Internet Computing (IJIC) 1 (2011).

[3] Hopkins, Jon. "Component primer." Communications of the ACM 43, no. 10

(2000): 27-27.

[4] Szyperski, Clemens, Dominik Gruntz, and Stephan Murer. Component software:

beyond object-oriented programming. Pearson Education, 2002.

[5] D'souza, Desmond F., and Alan Cameron Wills. Objects, components, and

frameworks with UML: the catalysis approach. Vol. 1. Reading: Addison-

Wesley, 1998.

[6] Meijler, Theo Dirk, and Oscar Nierstrasz. "Beyond objects: components."

Cooperative information systems: current trends and directions (1997): 49-78.

[7] Han, Jun. "A comprehensive interface definition framework for software

components." In Proceedings 1998 Asia Pacific Software Engineering

Conference (Cat. No. 98EX240), pp. 110-117. IEEE, 1998.

[8] Egyed, Alexander, and Robert Balzer. "Unfriendly COTS integration-

instrumentation and interfaces for improved plugability." In Proceedings 16th

Annual International Conference on Automated Software Engineering (ASE

2001), pp. 223-231. IEEE, 2001.

[9] Boehm, Barry, and Chris Abts. "COTS Integration: Plug and pray?." Computer

32, no. 1 (1999): 135-138.

[10] Bachmann, Felix, Len Bass, Charles Buhman, Santiago Comella-Dorda, Fred

Long, John Robert, Robert Seacord, and Kurt Wallnau. Volume II: Technical

concepts of component-based software engineering. Technical Report

CMU/SEI-2000-TR-008, Carnegie Mellon Software Engineering Institute, 2000.

[11] P. Eskelin, “Component interaction patterns,” in 6th Annual Conf. on the Pattern

Languages of Programs (PLoP). Urbana, IL, USA, 1999.

59

[12] Fowler, Martin. "Inversion of control containers and the dependency injection

pattern." (2004).

[13] Yang, Hong Yul, Ewan Tempero, and Hayden Melton. "An empirical study into

use of dependency injection in java." In 19th Australian Conference on Software

Engineering (aswec 2008), pp. 239-247. IEEE, 2008.

[14] Vanbrabant, Robbie. Google Guice: agile lightweight dependency injection

framework. APress, 2008.

[15] Prasanna, Dhanji R. Dependency injection. Manning Publications Co., 2009.

[16] Krueger, Charles W. "Software reuse." ACM Computing Surveys (CSUR) 24,

no. 2 (1992): 131-183.

[17] Gao, Jerry, H-SJ Tsao, and Ye Wu. Testing and quality assurance for component-

based software. Artech House, 2003.

[18] Alnusair, Awny, and Tian Zhao. "Component search and reuse: An ontology-

based approach." In 2010 IEEE International Conference on Information Reuse

& Integration, pp. 258-261. IEEE, 2010.

[19] Chacon, Scott, and Ben Straub. Pro git. Apress, 2014.

[20] Weiss, Dawid. "Quantitative analysis of open source projects on SourceForge."

In Proceedings of the First International Conference on Open Source Systems,

Genova, pp. 140-147. 2005.

[21] Sonatype Inc, “Concepts and Benefits of Repo Management.” [Online].

Available: https://www.sonatype.com/concepts-benefits-repo-management.

[Accessed: 30-Jun-2018].

[22] JFrog Ltd ,“JFrog Enterprise+: An End-to-End Platform for Global DevOps”

[Online]. Available: https://jfrog.com/wp-content/uploads/2018/05/White-

Paper-Enterprise-Plus-An-End-To-End-Platform-For-Global-DevOps.pdf.

[Accessed: 30-Jun-2018].

[23] Khan, Khaled, Jun Han, and Yuliang Zheng. "Security properties of software

components." In International Workshop on Information Security, pp. 52-56.

Springer, Berlin, Heidelberg, 1999.

60

[24] Khan, K., Jun Han, and Yuliang Zheng. "A scenario-based security

characterisation of software components." In Proceedings of the 3rd Australasian

Workshop on Software and System Architectures, pp. 55-63. 2000.

[25] Khan, Khaled M., Jun Han, and Yuliang Zheng. "Characterising user data

protection of software components." In Proceedings 2000 Australian Software

Engineering Conference, pp. 3-11. IEEE, 2000.

[26] Khan, Khaled M., and Jun Han. "A process framework for characterising security

properties of component-based software systems." In 2004 Australian Software

Engineering Conference. Proceedings., pp. 358-367. IEEE, 2004.

[27] Khan, Khaled M., and Jun Han. "Assessing security properties of software

components: A software engineer's perspective." In Australian Software

Engineering Conference (ASWEC'06), pp. 10-pp. IEEE, 2006.

[28] Busch, Axel, Misha Strittmatter, and Anne Koziolek. "Assessing security to

compare architecture alternatives of component-based systems." In 2015 IEEE

International Conference on Software Quality, Reliability and Security, pp. 99-

108. IEEE, 2015.

[29] Nazir, Shah, Sara Shahzad, Muhammad Nazir, and Hanif ur Rehman.

"Evaluating security of software components using analytic network process." In

2013 11th International Conference on Frontiers of Information Technology, pp.

183-188. IEEE, 2013.

[30] Swiderski, Frank, and Window Snyder. Threat modelling. Microsoft Press,

2004.

[31] “ISO/IEC 15408-1:2009(en), Information technology — Security techniques —

Evaluation criteria for IT security — Part 1: Introduction and general model.”

[Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso-iec:15408:-1:ed-

3:v2:en. [Accessed: 30-Jun-2018].

[23] “ISO/IEC 15408-2:2008(en), Information technology — Security techniques —

Evaluation criteria for IT security — Part 2: Security functional components.”

[Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso-iec:15408:-2:ed-

3:v2:en. [Accessed: 30-Jun-2018].

[33] “ISO/IEC 15408-3:2008(en), Information technology — Security techniques —

Evaluation criteria for IT security — Part 3: Security assurance components.”

[Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso-iec:15408:-3:ed-

3:v2:en. [Accessed: 30-Jun-2018].

61

[34] Olivier Gaudin, “SonarSource Blog: What makes Checkstyle, PMD, Findbugs

and Macker complementary ?” [Online]. Available:

https://blog.sonarsource.com/what-makes-checkstyle-pmd-findbugs-and-

macker-complementary. [Accessed: 30-Jun-2018].

[35] N. Antunes and M. Vieira, “Benchmarking Vulnerability Detection Tools for

Web Services,” in 2010 IEEE International Conference on Web Services, 2010,

pp. 203–210.

[36] Chen, Shay. "The web application vulnerability scanners benchmark." Denim

Group (2014).

[37] National Institute of Standards and Technology (NIST),"Juliet Test Suite v1.2

for Java" [Online]. Available: https://samate.nist.gov/SARD/resources/

Juliet_Test_Suite_v1.2_for_Java_-_User_Guide.pdf [Accessed: 30-Jun-2018].

[38] “Benchmark - OWASP.” [Online]. Available:

https://www.owasp.org/index.php/Benchmark. [Accessed: 30-Jun-2018].

[39] CVE Details List. [Online]. Available:

https://www.cvedetails.com/vulnerability-list/ [Accessed: 30-Jun-2018].

[40] Youden, William J. "Index for rating diagnostic tests." Cancer3, no. 1 (1950):

32-35.

[41] Center for Internet Security, “CIS Benchmarks.” [Online]. Available:

https://www.cisecurity.org/cis-benchmarks/. [Accessed: 30-Jun-2018].

