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ABSTRACT

Diabetic ulcers are a major life-threatening complication among diabetic patients. The existing
ulcer diagnosing practices depend on the visual examination of consultants. However, the
precise manual diagnosing process is challenging since vision may vary upon the consultant,
tedious and time-consuming. In the diagnosing process, the challenging task is to identify the
infected areas and the severity of the ulcers.

Accordingly, automatic locating and segmenting of ulcer boundaries and severity stage
classification is of significant prominence. Yet a comprehensive computer-aided Wagner scale
based severity stage classification system for diabetic foot ulcers is not available in the
literature. Even though there are few automated solutions for segmenting and locating of ulcer
boundaries available in the literature, they consist of various limitations.

This research proposes solutions to automate two manual processes namely segmenting and
locating ulcer boundaries and severity stage classification of diabetic ulcers. Here, a dataset of
diabetic ulcers which consists of 2400 images was used for both tasks. Under the segmentation
task, the process of instance-based diabetic ulcer segmentation was automated through the
Mask-RCNN model. This solution could achieve 0.8605 of average precision value at 0.5
thresholds of Intersection over Union (loU) and 0.5023 mAP value at 0.5 to 0.95 by the step
size of 0.05 Intersection over union (loU) threshold with ResNet-101 backbone for the DFU
segmentation task.

In the meantime, an architecture to classify the severity stages of diabetic foot ulcers was
implemented using DenseNet-201 pre-trained CNN architecture. In this approach, the
classification head of the DenseNet-201 was removed and used the feature extraction head to
extract the feature vectors. Then the feature reduction was done by applying a Global Average
Pooling technique and used Singular Value Decomposition (SVD) as a further feature
reduction technique. Additionally, SVD helps to optimize the memory consumption and
processing time while preserving the accuracy of the proposed classification architecture. This
proposed architecture could achieve an accuracy of over 96%.
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