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ABSTRACT

Auto Encoders using Artificial Neural Networks have achieved a high level of regeneration
accuracy whereas Auto Encoders using Spiking Neural Networks are still in their early stage and
only a few SNN Auto Encoders have been introduced but with lesser accuracies compared to
ANN Auto Encoders. Using SNNs for Auto Encoders is desired as SNNs are one step closer to
understand the communication and processing in biological neural networks. Sparse discrete
events known as Spikes make SNNs energy efficient especially when implemented using Neuro-
morphic hardware and Temporal coding scheme with the mapping of ‘input value to time of the
first generated spike’ makes it even more efficient in terms of power consumption and time to

generate an output where power consumption and time to encode/decode are the key metrics.

However, the direct application of gradient descent methods is not possible for SNN as the
activation functions are non-differentiable. Training an Auto Encoder requires a way to adjusting
the network parameters so that the reconstruction loss is minimized. Due to the lack of such
training models for SNNs especially with multiple hidden layers, it is a challenging task to
implement an Auto Encoder using SNN. In this research, models enable such learning, were
analyzed with the aim of selecting a promising model. Based on the selected model for adjust the
synaptic weights of the network, an SNN Auto Encoder model is developed which allows the
user to configure the network structure and number of neurons in each layer to achieve the
desired compression ratio. Considering the demonstrated reconstruction accuracy and
convergence rate of the SNN Auto Encoder, it can be concluded that the introduced model is one
of the first models which enables to use multilayer Auto Encoder using Spiking Neural

Networks.
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