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ABSTRACT 

 

Auto Encoders using Artificial Neural Networks have achieved a high level of regeneration 

accuracy whereas Auto Encoders using Spiking Neural Networks are still in their early stage and 

only a few SNN Auto Encoders have been introduced but with lesser accuracies compared to 

ANN Auto Encoders. Using SNNs for Auto Encoders is desired as SNNs are one step closer to 

understand the communication and processing in biological neural networks. Sparse discrete 

events known as Spikes make SNNs energy efficient especially when implemented using Neuro-

morphic hardware and Temporal coding scheme with the mapping of ‘input value to time of the 

first generated spike’ makes it even more efficient in terms of power consumption and time to 

generate an output where power consumption and time to encode/decode are the key metrics.   

However, the direct application of gradient descent methods is not possible for SNN as the 

activation functions are non-differentiable. Training an Auto Encoder requires a way to adjusting 

the network parameters so that the reconstruction loss is minimized. Due to the lack of such 

training models for SNNs especially with multiple hidden layers, it is a challenging task to 

implement an Auto Encoder using SNN. In this research, models enable such learning, were 

analyzed with the aim of selecting a promising model. Based on the selected model for adjust the 

synaptic weights of the network, an SNN Auto Encoder model is developed which allows the 

user to configure the network structure and number of neurons in each layer to achieve the 

desired compression ratio. Considering the demonstrated reconstruction accuracy and 

convergence rate of the SNN Auto Encoder, it can be concluded that the introduced model is one 

of the first models which enables to use multilayer Auto Encoder using Spiking Neural 

Networks.   
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1.1 Auto Encoder 

 

Auto Encoder is implemented using a neural network to find out a compressed 

representation for a data set through unsupervised learning. Auto Encoder neural 

network consists of both Encoder and Decoder so that training of the network to Encode 

and Decode (i.e. Reconstruction) is done simultaneously. Input is clamped to the Output 

and bottlenecks are enforced at hidden layers as shown in Figure 1.1 so that all the 

information cannot be propagated from the input layer to the output layer in a linear 

manner and hidden layers provide a compressed representation for input and noise in the 

inputs is removed. 

 

Figure 1.1 : Auto Encoder 

 

Auto Encoders are used in various applications and major applications are provided 

below. 



 
 

 Dimensionality reduction 

 Feature Extraction 

 Anomaly detection  

 Noise reduction 

 

 

1.2 Learning in Auto Encoder 

 

Learning in auto Encoder falls under unsupervised learning as labels are not applicable 

in this context and the compressed representation which is learned/revealed is 

completely system decided. However, ultimately the output from the decoder should be 

the same as the input to the encoder. Since, both the encoder and the decoder are trained 

simultaneously using a single neural network, the desired output is known for an input. 

Hence during the training, once an input is fed, parameters in the network need to be 

adjusted so that actual output is similar to the desired output (For Auto Encoders, the 

Desired output is same as the input as the aim is to reconstruct the input at the final layer 

of the neural network). Therefore, unlike other unsupervised learning tasks, the error 

between the desired output and actual output needs to be calculated and parameters need 

to be adjusted accordingly to minimize the difference between desired and actual output. 

 

 

1.3 Auto Encoders using Spiking neural networks 

 

Conventional neural networks are based on neurons with mathematically defined 

activation functions and continuous static (constant) input/output values of a neuron 

within a computational clock cycle. Therefore Conventional neural networks are 

fundamentally different from the mechanism which is used for signal passing in the 



 
 

Mammalian Brain. SNN mimics the mechanism used in the brain for signal passing 

where signals are passed as spikes and output from a neuron is generated due to 

membrane potential difference reaching a threshold due to an input current spike. 

Information is coded in spike rates and precise timing of spikes. Hence SNNs are 

considered a closer step for understanding how the biological neural networks operate. 

 

Also, SNNs are considered as low power consuming neural networks when implemented 

on neuro-morphic hardware due to their sparse nature of spike occurring instead of static 

continuous signals and maybe faster and lower computational cost than ANNs 

depending on the underlying mathematical model used for implementation.  

However, due to the difficulty in deriving differential equations for the activation 

functions, models for training SNN using backpropagation are still not well established 

specially for deep networks. There are several models that enable training SNN without 

using backpropagation such as STDP, etc. Compared to ANNs, SNNs lag in terms of 

accuracy.  

1.4 Neuron Model for SNN 

 

1.4.1 Leaky Integrate and Fire 

 

In this model, the input current to a neuron is integrated and membrane potential in 

increased as a result.  Once the membrane potential is reached a threshold, output spike 

is generated and the membrane potential is reset to a resting value and will not be fired 

until a predefined refectory period. The neuron is modeled as a capacitor in parallel with 

a resistor as shown in Figure 1.2.  



 
 

 

Figure 1.2 : LIF Neuron modeled as a RC circuit 

 

Below linear differential equation can be derived by applying equations in electrical 

domain to the aforementioned RC circuit. 

)()( tRItU
dt

du
m 

 (1) 

U(t) is the potential at time t and τm is known as the time constant and equal to RC.  

This equation can be extended further to derive equations to explain the dynamics of the 

neuron when a constant input current (I0) is given as shown in Eq. (2) and an input spike 

current is given (Dirac Delta function) as shown in Eq. (3) where q is the total charge 

from the input spike current. 
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1.4.2 Integrate and Fire (IF) (Non - leaky) 

 

In contrast to Leaky Integrate and Fire model, only a capacitor is present in the 

equivalent circuit for Integrate and fire model. Hence, potential is derived by integrating 

the current over time since last output spike ( t̂ ) as shown in equation 4. 
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ˆ
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1
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Figure 1.3 :  A: Potential increase in LIF and IF models with time for a constant input 

current, B: Firing rates against input current for LIF and IF models 

 

Figure 1.3 shows how membrane potential is changed when input current is given in LIF 

and IF neuron model and how firing frequency changes with the magnitude of the 

constant input current. 

 

 



 
 

1.4.3 Spike Response Model (SRM) 

 

In contrast to Leaky Integrate and Fire model, in SRM, membrane potential depends on 

the effects of input spikes since the last generated output spike. In this model, 3 Kernel 

functions are used to model how the membrane potential changes respectively when an 

input current is given, when a presynaptic neuron is fired and Hyper-polarization after 

the output spike is generated. Hyper-polarization is shown in figure 1.4. In addition, the 

increase in firing threshold after and output spike is generated is further discussed. 

 

Figure 1.4 : Kernel functions of SRM corresponding to each phase of membrane 

potential change when an output spike is generated 

 

Eq. (5) represents the membrane potential as a function of combining all three Kernels 

as follows. η represents the Hyper-polarization kernel and the last term of the equation 

represents the kernel for the behavior when an input current is given. The second term 

defines the effect on membrane potential when input spikes are received from 

presynaptic neurons where wij represents synaptic weight between output neuron ‘i’ and 

an input neuron ‘j’. ε represents the kernel for membrane potential change due to an 

input spike occurred at time tj
(f). 

dsstIsttKttttWtttU ext

i

j f

f

jiijijii )(.),ˆ(),ˆ()ˆ()(
0

)(   


   (5) 



 
 

1.5 Neural coding 

 

1.5.1 Rate Coding 

 

In this model, it is assumed that information is encoded in the firing rate of spikes. It has 

been observed that Rate Coding is used in Motor systems in early experiments. Spike 

rate is scalar value averaged over a time period. Hence, small change spike count due to 

noise does not impact the output drastically and therefore Rate Coding is considered to 

be a noise-tolerant model [1].  

There are 3 variations of Rate coding based on the way of averaging as follows. [2] 

 Spike count rate averaged over a small time period (temporal average). Here, the 

time period will be enough to capture spikes generated only for one input.  

 Rate as a Spike Density Averaged over several runs. This type of coding 

mechanism is highly unlikely to be used in biological neural networks as the 

networks should be trained for each input sequence without waiting for 

repetitions. 

 Rate as a Population Activity (Average over several neurons). In this mode, it is 

assumed that a set of identical neurons are present in a network and Rate is 

derived for the neurons in the population and the model is backed by parts of the 

mammalian visual cortex where segments of the cortex are responsive to 

different types of inputs. 

 

1.5.2 Temporal Coding 

 

In Temporal coding, the main assumption is Information is coded in Precise timing of 

the spike instead of the rate of spikes generated for an input. Compared to rate base 



 
 

coding, noise may have major adverse effects on the accuracy of an output from a neural 

network which uses temporal coding as a minor change in the time of spike will change 

the output drastically. Hence, robustness in temporal coding is low compared to rate-

based coding. Some experimental researches suggest that temporal coding may be used 

in the brain as the recognition of objects is done within few milliseconds which can be 

done by processing the first spike only and it is unlikely that based coding is used as 

processing the rate after receiving several spikes is time consuming [2].  

 

1.6 Motivation 

 

Though ANNs are inspired by biological networks, they deviate from biological 

networks in terms of the mechanism used for passing signals through the network. Even 

though Auto Encoders have been developed using Conventional Neural Networks, only 

a few researches have been carried out in the domain of Auto Encoders using Spiking 

Neural Networks. Especially there have been no researches that use Auto Encoder with 

multiple hidden layers as per the knowledge of the author.  

Also, SNN is considered as the 3rd generation Neural Networks as they are one step 

closer to understand the mechanism of neural processing of the brain. Also, it is 

considered that temporal coding may be the dominant coding scheme used in the brain 

due to very low latency for certain tasks. 

Using Spiking Neural Networks for an Auto Encoder instead of Conventional Neural 

networks provides inherent advantages of SNNs such as low energy consumption 

(especially for portable devices), faster outputs which are desirable for applications of 

Auto Encoders such as Compression (Dimensionality reduction) and Noise reduction 

which might make them useful for real time applications once the network is trained.  

Temporal Coding scheme will further improve the speed and the energy efficiency of 

network as it is not required to wait for all the spikes generated for an input during 



 
 

computational clock cycle / maximum period to be waited (as per the range used in 

temporal coding scheme) and only a handful of spikes is needed to be processed and 

output can be provided. 

Hence, developing a model for an Auto Encoder using the temporal coding scheme with 

SNN is an appealing area for research. 

 

1.7 Objective 

 

The main reason for lack of development of models for Auto Encoder using SNN is that 

usually Auto Encoders are trained using back propagation and back propagation cannot 

be directly applied for Spiking Neural Networks. 

Researches that explores methods of supervised learning for SNN using back 

propagation and other learning mechanisms are discussed in the literature review 

section. 

The main objective is to come up with a model to use Spiking Neural Network with 

temporal coding to develop an Auto Encoder with multiple layers. 

 

 

 

 

 

 

 

 



 
 

 

2 CAHPTER 2 

 

 

LITERATURE REVIEW 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

Even though LIF model is widely used for modeling neurons in SNN as it closely 

approximates the actual behavior of biological neuron, it is difficult to use them for 

computations (especially for supervised learning) as the equation which defines the 

neuron dynamics is nonlinear.   

 

Most of the models which are based on spikes use an equivalent version of ANN where 

weight learning is done by converting spike rates / temporal coding to continuous static 

value and feeding it to the equivalent ANN or vice versa (i.e. Train equivalent ANN and 

use those weights for SNN). [3] 

 

2.1 Spike Time Dependent Plasticity (STDP) for learning  

 

2.1.1 Spike Time Dependent Plasticity (STDP) 

 

STDP is believed to be the actual learning mechanism that is used in biological neural 

networks. In STDP, the Weight of a connection between two neurons is adjusted based 

on the time gap between spikes from pre-synaptic and post-synaptic neurons. If the 

postsynaptic neuron is fired briefly after the pre-synaptic neuron is fired, the connection 

weight is increased (Long Term Potentiation (LTP)) and if the postsynaptic neuron is 

fired briefly before the presynaptic neuron is fired, the connection weight is decreased 

(Long Term Depression (LTD)). Figure 2.1. Amount of weight change depends on the 

time gap between spikes from pre-synaptic and post-synaptic neurons. (5) 



 
 

   (5) 

  

 

Figure 2.1: Synaptic weight change against time gap between pre/post synaptic neuron 

spikes 

 

 

2.1.2 Learning in SNN using STDP  

 

STDP has been used for unsupervised learning and has achieved high accuracy rates 

compared to other SNN models. And STDP learning rule has been used with other 

network models such as CNN, with the aim of increasing the accuracy while getting a 

step closer to biologically plausible neural networks. In [3], deep neural networks using 

Spiking neurons have been implemented where the input layer of the network consists of 

temporal coding (which coverts input image to a spike train) and remaining layers 

correspond to Convolutional and Pooling layers. In convolutional layers, input spikes 

are integrated and once the threshold is reached, output spikes are generated and 
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learning is done using STDP. This model has achieved an accuracy of 98.4% for MNIST 

dataset. 

Some of the models (especially, in classification) use competition strategy (‘winner 

takes all’) with STDP to prevent other neurons from firing except for the winning 

neuron [4], [5]. 

Due to the nature of learning rule of STDP, basic STDP model is not suitable for 

learning by comparing actual output and desired output at final layer of the network as 

in STDP, weights are not adjusted based on the error between expected output and 

actual output, but based on the exact fire times of pre and postsynaptic neurons. Hence, 

learning is STDP is considered as a local training mechanism. Hence, the basic form of 

STDP cannot be used to train an SNN Auto Encoder [6]. 

However, a model has been developed for Auto Encoder using STDP learning known as 

mirrored STDP (mSTDP) [5]. In the Mirrored STDP model, only two layers are there. 

One layer does the encoding and the other layer does the decoding. But in the brain, 

recognizing visual patterns is done using neural networks which consist of multiple 

layers. Hence, this model deviates from the neural network that is used in the brain.    

Also, few supervised learning models have presented which uses STDP and some of 

them are discussed below [7], [8]. 

 

2.2 Learning in SNN using temporal coding 

 

Learning in Conventional Neural Networks (ANN) is based on back propagation since 

differential equations which are used can be fairly easily derived for a set of activation 

functions including Sigmoid, tanh, ReLU, etc whereas it is very difficult to use back 

propagation for learning in SNNs as deriving differential equations is not 

straightforward due to the nature of the underlying mechanism used for passing 



 
 

information in SNN.  i.e. instead of continuous values, both inputs and outputs are 

events (spikes) which are occurring within a certain time period determined by the 

dynamics of the firing model of neurons. 

Some of the researches have been carried out using substitute models for biological 

neuron and derivatives have been obtained and hence enables to use of back propagation 

for training[9],[10]. 

Several researches have been done and few models have been developed to enable 

learning in SNN such as SpikeProp, ReSuMe, BP-STDP, and some well-recognized 

models are further discussed in below sections. 

 

2.2.1 Spike Prop  

 

SpikeProp model [8] one of the earliest but successful models that enable supervised 

learning in SNN. In this model, the Spike Response Model is used to model the output 

spike generation when input spikes are given to a neuron. The kernel used in the Spike 

Response model is given by equation (6) 
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Fully connected feed forward networks are used and a connection between a pre-

synaptic neuron and postsynaptic neuron is considered to be consist of several sub 

connections (synaptic terminals) each with different weights and predefined delays as 

shown in figure 2.2. PSP dynamics of a neuron due to an input from a presynaptic 

neuron is given by equation (7) where wk is the weight of a sub connection, ti is the input 

spike time and dk is the delay associated with sub connection k. Also, it is assumed that a 



 
 

neuron can fire only once for an input. This is imposed in the model by using a relatively 

large postsynaptic time constant compared to the max value used in the temporal coding 

used in the model.  

 

 

Figure 2.2: Single connection between two neurons consist of different delays and 

weights 

 

Another important assumption made in this model is that the relationship between the 

input to postsynaptic neuron and output spike time is linear for a small range around the 

firing threshold. Due to this assumption, small learning rates must be used when using 

this model. Using this assumption together with an equation for PSP in the Spike 

Response model, equations for Error derivate with respect to weights of each sub 

connection and input spike time from a hidden layer neuron are derived. These two 

equations enable back propagation for learning in SpikeProp Model. 

 

Spike Prop has achieved accuracies of 96.1% for IRIS data set and 97.0% for Wisconsin 

breast cancer dataset. However, the assumption of a single connection between two 

neurons consisting of multiple sub connections with predefined delays contradicts with 



 
 

the actual structure of how biological neurons are connected and spikes are propagated 

between them. 

 

 

2.2.2 ReSuMe (Remote Supervised Method) 

 

In ‘ReSuMe’ model [11] enables supervised learning and it is based on Widrow-Hoff 

rule (also known as delta rule). Widrow-Hoff rule originates from the idea of gradient 

descent especially for linear neural networks with the idea of updating the connection 

weights based on the difference between the desired output and actual output as shown 

in equation (8).  

)()( oidiodi yxyxyyxw     (8) 

In ‘ReSuMe’ model, the Widrow-Hoff rule has been applied by modeling input and 

output from functions of Spike trains (spikes are modeled using Dirac delta function, 

hence spike train is denoted by a sequence of delta functions). Hence, Equation 8 can be 

seen as a combination of STDP processes, where the first term indicates how weight is 

adjusted according to the correlation between input (Pre-Synaptic) spike train and 

desired output Spike train. The second term expresses the anti-STDP process where 

weight is adjusted according to the correlation between input (Pre-Synaptic) spike train 

and actual output Spike train. The first STDP process derived analytically and has no 

physical connection between input and desired output spikes, hence term ‘Remote’ is 

added to the model name. 

Using equations for correlation of Spike trains and assuming similar coefficients and 

constants for two STDP processes (property of symmetry), learning rule is derived as 

shown in equation (9). Hence, in ReSuMe model, supervised learning is achieved 



 
 

without deriving the equation for back propagation. Weight adjustment as per the 

precise time of spikes for an example scenario is shown in Figure 2.3. 
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Figure 2.3: Weight adjustment with Spike trains. Si(t) – Input, So(t) – Actual Output, 

Sd(t) – Desired Output 

 

However, this model is applicable only for single layer neural networks and the basic 

model is not directly extendable for the multi-layer network. This model can be 

extended for multi-layer networks. Though the model is simple compared to other 

gradient decent models, the model has not achieved a high level of accuracies. 



 
 

 

2.2.3 BP-STDP 

 

In this model, researchers have approximated the Integrate and Fire (IF) model to ReLU 

(Rectified Linear) activation function.  And then they have shown that function for 

weight change composed of a STDP process and an anti-STDP process by applying the 

derivative function of RELU for IF model in SNN [7].  

In ReSuMe also (in the previous topic), they have shown that the function for weight 

change consists of a STDP process and an anti-STDP process for linear neural networks, 

but the methods of deriving this function for weight change is different. Hence, the 

importance of BP-STDP model is that it has been shown gradient decent (subjected to 

the aforementioned assumptions) is related to STDP where STDP is a biologically 

plausible learning mechanism. 

Approximation of the Integrate and Fire (IF) model to activation function is shown as 

follows. 

Activation Function f(y) for ReLU is given by (10) where, xh are the inputs and wh are 

the associated weights. 
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Potential increase due to a set of input spikes (denoted by Dirac delta functions) to an 

Integrate and Fire neuron during a short time period (t, t-α] is given by (11). For a given 

input to the network (during a period T), assume the subject neuron’s Potential increase 

reaches the threshold (θ) R times. i.e. Neuron fires R times. Here the number of Output 

spikes is proportional to UTot given in (12) where r(t)=1 indicates where an output spike 

is generated. If the potential increase does not reach the threshold, no output will be 

generated. This is very similar to ReLU activation function given in (10) where output 

value for positive values maps to number of spikes (R) in the Integrate and Fire model. 
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By Applying gradient decent for the networks of linear neurons, the Widrow-Hoff rule is 

derived. Hence, weight change function can be derived to be consist of STDP and Anti-

STDP processes as mentioned in the previous model ‘ReSuMe’. 

Then the BP-STDP model deviates from ReSuMe model in the way of weight update 

using STDP learning rules. Short time periods are selected such that at most 1 actual 

output spike / desired output spike is present. For target neurons (i.e. Neurons from 

which the output spikes are desired), STDP learning rule is applied to increase the 

weight whereas anti-STDP rule is applied to non-target neurons to reduce the weight 

between connections as given in Eq. (13) and Eq. (14) where input last term in Eq. (13) 

represents the input spikes during time period (t - ε, t) and the learning rate is µ. 
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To come up with a weight update rule for synapses in hidden layers, initially, the chain 

rule is applied to the network of ReLU neurons and then in the resulting equation for 

weight update is modified for the SNN (Integrate and Fire model) by replacing constant 

static values from integrals of presynaptic spikes with time. Then, the resulting equation 

is further simplified, by selecting short time periods where at most a single desired / 

actual postsynaptic spike is expected/generated. At, this stage local rule to update 

weights between neurons in hidden layers (j and h) is derived as shown in Eq. (15). 
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Model has achieved high accuracy for MNIST handwritten dataset classification 

(97.2%). 

Though the model has shown the relationship to Property of Biological plausibility using 

STDP processes, there have been few unrealistic assumptions made. Initially, an 

assumption to map IF neurons in SNN to ReLU in ANN and assumption is based on the 

number of spikes generated for an input (much similar to Rate Coding). Then, the 

Equation for weight change between hidden layer neurons in ANN using ReLU neuron 

model (based on derivatives) is overridden by applying integrals with time and a simple 

equation is obtained. This equation is unlikely to be obtained directly using formulas for 

Spiking Neurons. Hence the provided equations are questionable. 

 

2.2.4 Using back propagation for learning in SNN using temporal coding 

 

In [12] Hesham Mostafa, has come up with a model for SNN using temporal coding and 

derived differential equations enabling back propagation for learning. However, this 

approach deviates from the property of biological plausibility as information required 

for weight adjustment is not locally available.  

In this mode, below assumptions are made. 

1. Non - leaky integrate and Fire neuron model with exponentially decreasing input 

current when an input spike is fed to a neuron. 

2. A neuron is allowed to fire only once. (this is in line with the assumption made in 

Model ‘Spike Prop’, early spikes are more important) 



 
 

 

The model has achieved accuracies of 97.55% (2 layer) and 97.14% (3 layer) for the 

classification of MNIST handwritten dataset. Initially, the input image is converted to 

black and white from greyscale. Therefore only pixel values 0 and 255 are used for the 

computation which results in a clear separation in pixel values as well as in z domain. 

This enhances the accuracy of the classification task.  

Since the model is based on, Non – Leaky Integrate and Fire model with exponentially 

decreasing input current, Membrane potential dynamics can be simply expressed by Eq. 

(16) where θ(x) is the Heaviside step function and tir denotes the spike time of rth input 

spike from presynaptic neuron i.  
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Assuming at most one spike is fed by input neurons to the output neuron (Assumption 2) 

and Membrane potential increase due to input spikes can be derived by integrating the 

Eq. (16) w.r.t. time and given by Eq. (17). 
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By setting Membrane potential just before generating an output spike to 1 and denoting 

the set of input neurons (causal set) which fire before the output neuron by C, Output 

spike time can be derived as shown in Eq.  (18). Further, the time constant (τsyn) is set to 

1 to further simplify the equation. 
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Equation is transformed to z-domain by transforming et to ‘z’ and Eq. (19) is derived. 
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Hence as per Eq. (19) it can be seen that to fire a neuron, the summation of synaptic 

weights should be greater than zero. And, another important property of this model, is 

that input spikes to a neuron from neurons other than the ones in the causal set are 

insignificant. (After the output neuron is fired, it is not fired for the input spikes received 

from any input neuron). However, during learning, change in input spike time of a 

particular presynaptic neuron may result in a drastic change in a causal set of a 

postsynaptic neuron as shown in Figure 2.4 where the change in input spike time of 3rd 

neuron has resulted in the removal of neuron 4 from the causal set.  

Also, during learning, it has been observed that summation of weights around value 1, 

may result in drastic changes in output as per Eq. (19), a small change in numerator can 

change the output value drastically when the numerator value is closer to 0. 



 
 

 

Figure 2.4: Membrane potential and summation of input synaptic current of a neuron 

changes as per the input spike times 

 

 

The linear relationship between output spike time with input spikes and synaptic weights 

enables deriving simple differential equations for output spike time with respect to 

synaptic weight and input spike time of input neuron ‘p’ as shown in Eq. (20) and Eq. 

(21) which enables learning using back propagation in a multilayer network. 
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2.3 Comparison of SNN Models 

 

Comparison of Candidate Models discussed in the above section in terms of accuracy 

and the suitability in using them to implement an Auto Encoder with ability learn using 

back propagation or similar mechanisms are provided in Table 2.1. Different models 

have been tested on different data sets, hence evaluating those by comparing the 

accuracy figures may not be ideal. 

 

 

 

 

 

  



 
 

 

Model / Research 

Paper 

Classification 

Accuracy 

 

Supports 

learning 

using error 

back 

propagation 

Comments 

Train Equivalent 

ANNs [3] 

 

MNIST – 98% - 

99.42% 

YES  

SpikeProp [13] IRIS - 96.1% 

Wisconsin breast 

cancer dataset – 

97% 

 

YES  

ReSuMe [11]  YES Only one layer is 

trained, but model can 

be extended for 

multiple layer network 

 

BP-STDP [7] IRIS – 96% 

MNIST - 97.2 % (3 

layer)  

YES  

Convolutional 

Spiking Neural 

Network with STDP 

learning [14] 

MNIST - 98.4 % NO  

Simplified SNN with 

SRM and STDP 

learning algorithm 

[4] 

 

- NO Only two layers have 

been used. 

Mirrored STDP [15] - NO Only two layers have 

been used. 

Mostafa (2017) 

Supervised learning 

based on Temporal 

coding in SNN [12] 

 

MNIST – 

 97.14% (3 layer) 

97.55%  (2 layer) 

YES  

 

Table 2.1: Comparison of SNN Models 
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3.1 Using a SNN Model for Auto Encoder 

 

As discussed in the previous chapter, Auto Encoders using SNNs with high accuracy of 

reconstruction have not been proposed and developed. Out of the several supervised 

learning models for SNN based on temporal coding discussed in the previous chapter, 

some of the models can be used to develop an Auto Encoder.  

The selected model should be able to train the SNN by adjusting the weights for each 

input (or for a set of inputs in each mini-batch) so that the reconstruction loss is 

minimized. Suitability of models to adjusted weights in this manner is first considered. 

Thereafter, the accuracy of the model and the simplicity in implementation and 

computation efficiency are considered as the parameter to evaluate models. 

BP-STDP [10] and Model introduced by Mostafa [11] are the best candidates for the 

model for Auto Encoder as back propagation is supported by both models. Accuracy in 

both these models is high and approximately the same. And the complexity in 

implementing the Auto Encoder using any of these two models will be the same. 

However, as mentioned in the literature review, equations derived for weight change are 

questionable in BP-STDP model. In Mostafa’s model, a neuron is fired only once for an 

input and encoding input value to the time of the first spike can be done directly. But in 

BP-STDP, encoding the input may need to be done as per Rate Coding (spike train 

should be generated at similar time intervals for an input and frequency of the spikes is 

based on the input value) and computations and weight updates will involve for each of 

these spikes. Hence, computational complexity/power consumption of BP-STDP will be 

higher compared to Mostafa’s model. 

Compared to other models, this model has the advantage of very rapid output generation 

(for classification task) and very low power consumption if it is implemented on 

Neuromorphic hardware as few numbers of neurons will be fired before the 



 
 

classification is completed for a given input. The model introduced by Mostafa [12] is 

selected for the Auto Encoder.  

3.2 Overview  

 

The flow of the Auto Encoder is shown in Figure 3.1. Once the image data set is loaded, 

images will be resized as required. Any preprocessing steps can be applied here. 

Preprocessed image is converted to input spike times and corresponding z-domain 

values are derived as described in section3.2. Input spike times in z-domain are fed to 

the Auto Encoder for training. During the training, reconstruction error is calculated in 

z-domain and synaptic weights are adjusted accordingly as described in section 3.5.  

After the Auto Encoder is trained, when the training data set is fed to the Auto Encoder, 

similarly, input values are converted to spike times z-domain and output spike times in 

z-domain with reconstruction error are provided. Finally, output spike times in z-domain 

are converted back to pixel values and reconstructed images are displayed.  

Before starting the training, Auto Encoder’s network structure (i.e. Number of hidden 

layers and number of neurons in each layer) should be defined and fed to the Auto 

Encoder model. Based on the network structure, synaptic weights are initialized in a 

random manner.  

Auto Encoder Model was implemented such that the model supports mini batch wise 

training. Also, the number of times the model to traverse through all training data 

(number of epochs) during the trained can be configured. Several other hyper parameters 

are involved with the model and they are shown in the Table 3.1.  

 

 

 

 



 
 

 

Hyper 

parameter 

Usage 

Learning Rate Weight adjustment factor 

(Similar to conventional Neural Networks) 

L2 

Regularization 

Factor 

L2 Regularization factor to prevent controlling the spike 

generation time of the target neuron by one source neuron 

alone. This done normalizing weights by applying L2 

Regularization so that one input synaptic weight becoming too 

large compared to all other input synaptic weights of the target 

neuron.  

 

Frobenius norm Regularization of weight modification values. If weight 

modification value matrix between two layers exceeds a 

predefined threshold, matrix values are normalized so that 

drastic changes are not applied to the network. 

Small weight 

Adjustment 

factor 

If the summation of the synaptic weights of a target neuron is 

less than 1, the neuron will not fire for any input pattern. To 

eliminate such redundant neurons, all weights of a target 

neuron are adjusted according to this hyperparameter. 

Initial Sum of 

weights 

Initial synaptic weighs should be random. But the summation 

of input weights of all neurons should exceed 1. Hence, this 

parameter is used when generating the initial weight matrix.  

Max Spike time Maximum allowed time for the neuron to fire. Typically set to 

a large value compared to z-domain spike generation time for 

black pixel (the allowed lowest input value).  

Table 3.1 : Hyper Parameters of the Auto Encoder Model 

 



 
 

Once the SNN Auto Encoder is trained, it is possible to extract the synaptic weights of 

the whole network and create the Encoder and Decoder networks separately by applying 

the relevant synaptic weights accordingly.  

Outputs of the final layer neurons (i.e. spike generation times in z-domain) of the 

Encoder network provide the compressed representation for the provided input image. 

When the compressed representation (i.e. Spike generation times in z-domain) are fed to 

the Decoder network, spike generation times of final layer neurons provide 

corresponding values for the reconstruction. 

 



 
 

 

Figure 3.1 : Task wise flow of Auto Encoder model 

 

 



 
 

3.3 Convert input/output values to spike times 

 

As the first step, input values should be encoded to spike times in a manner that supports 

the regeneration of output values from spike times. As primarily the research is 

developed focusing on the image data, a suitable conversion is required.  

Some of the models (which were developed for classification task) coverts greyscale 

pixel value to Black (0-pixel value) and White (255-pixel value) and the input spikes are 

generated based on Black and white pixel value. This conversion may have caused in the 

high classification accuracy. However, such conversions are not possible for an Auto 

Encoder.  

For image data, where pixel values are in the range of 0 to 255, the spike time range 

should be defined. Hence, the corresponding spike time range is set to 3 to 0 (Higher the 

value, lower the time to generate the spike). In the Auto Encoder, all the calculations are 

done on the ‘z’ dimension where conversion from input spike time to corresponding ‘z’ 

domain value is derived by taking the exponential value of the input spike time. This 

conversion is illustrated in Table 3.1. 

 

Input Value (Pixel Value) Spike Time Z domain value 

 (e(Spike Time)) 

0 3 20.0855 

255 0 1 

Table 3.2 Input value to spike time conversion 

  

Similarly, the Auto Encoder’s output is converted back to the pixel value applying the 

aforementioned conversion method.    



 
 

 

3.4 Structure of the network 

 

Implementation of Auto Encoder model is based on a fully connected feed-forward 

network and it enables the user to configure the number of hidden layers and the number 

of neurons in each layer. User can add the bottleneck to the network by setting a small 

number of neurons in the hidden layers such that linear relationship cannot be 

established in the network during learning. 

 

3.5 Error function for Auto Encoder 

 

All candidate models for SNNs discussed in the literature review, were developed for 

classification tasks where the output layer consist of few neurons and error functions 

used in those models are inappropriate for an Auto Encoder. Error function for Auto 

Encoder is the summation of mean squared error for each output neuron given by Eq. 

(22). 
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The above error function will be differentiated with respect to synaptic weights and 

synaptic weights will be adjusted accordingly as shown in Eq. (23). Derivative functions 

that were mentioned in the literature survey will be used to construct the algorithm for 

learning using back propagation.  

k

kkkk
dW

dE
wwherewww  1   (23) 

 



 
 

A suitable adjustment factor is desirable to be used when comparing the expected and 

actual output spike times to eliminate or minimize the effect of propagation delay in the 

actual output spike time output. However, there is no direct forward method to calculate 

the propagation error during the training phase of the Auto Encoder.  i.e. Propagation 

delay is incorporated in training error. Hence, when computing the error to adjust 

synaptic weights using Eq. (22) and Eq. (23), the propagation delay is not considered.  

However, once the Auto Encoder is fully trained, propagation error can be determined 

by feeding an all-white image to the network. The minimum of the output spike 

generation time (in z-domain) from all output neurons can be considered as the 

propagation delay. 

 

3.6 Python Implementation 

 

Using the Mostafas model [1] for spiking neural networks, Auto Encoder was developed 

using python from scratch. Below python Libraries were used. 

 Numpy 

 Scipy 

 Random 

 Matplotlib 

 imageio 

 inspect 

Auto Encoder was developed function-wise where each function carries a specific task 

allocated. Initially, to decide whether a neuron generates an output spike when the input 

spike generation times from source neurons and the corresponding synaptic weights are 

given, function ‘GetCausalSetWithOuputSpikeTime’ is implemented based on 

mathematical Eq. (19). If the output neuron generates an output spike, the time of the 



 
 

spike generation and the causal set is returned by the function. The causal set is the set 

of input neurons which causes the output neurons to generate the output spike. 

To calculate spike generation times of all neurons in the network, function 

‘GetCausalSetWithOuputSpikeTime’ is called for each neuron in each layer in the 

sequence of order of layers of the network. (i.e. Start with first hidden layer, and then 

continue to next immediate layer). This is done by the function 

‘GetOutputVectorSpikeTimes’. Besides calculating the output spike generation times, 

derivative values of output spike generation time with respect to synaptic weight and 

input spike time using Eq. (20) and Eq. (21) for each neuron in the network is also 

calculated within this function to minimize the computation time as all the required 

parameters are available, instead of implementing a new function to traverse through the 

whole network once again to calculate derivatives. 

To calculate the synaptic weight adjustment values using Eq. (23), it is required to 

calculate the derivative values of final layer neurons’ output spike generation time with 

respect to each synaptic weight in the network. This is behavior is implemented in the 

function ‘CalculateFinalderivativesWRTWeights’.  

 

 

 

Figure 3.2: Calculating derivative of output spike time w.r.t. synaptic weight 



 
 

To adjust synaptic weights as per the reconstruction error, backpropagation is used by 

calculating the derivative of Output Spike time w.r.t. a selected synaptic weight variable. 

By applying the Multivariable chain rule (Eq. (24)) to the output spike generation time 

function given in Eq. (19), it is possible to derive equations for desired derivative 

functions of Output Spike time with respect to a given synaptic weight variable as 

illustrated using Eq.(25) and Eq.(26) for the sample scenario represented in Figure 3.2. 

y.dy/dtz/+x.dx/dtz/=dz/dt    (24) 

For the scenario represented in Figure 3.2, the output spike time of a neuron in layer “d” 

can be written as a multivariable function of spike times of neurons in immediate 

previous layer (i.e. Layer “c”) using equation (19). Hence, Eq. (25) is derived by 

applying Multivariable chain rule (Eq. (24)). Similarly, Eq. (26) is derived by applying 

the same concept to 1st neuron in layer “c”.  Likewise, applying the concept for each 

neuron in the layer, the final equation can be derived.  
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As described above, for a multilayer network, the final derivative equation consists, 

primarily, multiple number of derivatives values corresponding to output spike time 

w.r.t. input spike times (of neurons in succeeding layers) and one derivative value 

corresponding to output spike time w.r.t given synaptic weight. Therefore, for each 

neuron in the network, derivative corresponding to final layer neuron’s output spike time 

w.r.t. spike time of the subject neuron is calculated. This functionality is implemented in 

python function ‘CalculateFinalOutputDerivativeWRTInputSpikeTimes’. This function 

is called from the function ‘CalculateFinalderivativesWRTWeights’ to calculate final 

derivative values. 



 
 

Once the final derivative values are derived, to calculate the weight adjustment values 

for each synaptic weight, function ‘GetWeightAdjustmentArrayMap’ is used. Also as 

described in the Mostafs’s model, the Frobenius norm threshold is used to avoid large 

weight adjustments. When the summation of synaptic weights of a target neuron is 

closer to 1, weight adjustment values can be very large which causes spikes in training 

error where such non-smooth learning is discouraged. Hence weight adjustment values 

are normalized using the Frobenius norm threshold. Also, if the summation of the 

synaptic weights of a target neuron is less than 1, then a penalty value is adjusted to the 

error function in the Mostafa’s model. This feature is used in the SNN Auto Encoder 

model implementation also.  

Also, the function ‘RegularizeWeight’ was implemented to enforce the L2 regularization 

of synaptic weight array of a target neuron to avoid the scenario where one source 

neuron purely determining the output spike generation time of a target neuron. 

Additionally, functions were implemented to generate the initial synaptic weight matrix 

when the network structure is given, convert image to spike time matrix (and vice 

versa).  

Example code snippet of training the network is provided below. Initially, all 

configuration values of the model are set. Then the network structure is defined and the 

initial synaptic weight matrix is generated (or if the network is already trained to a 

certain extent, weight matrix snapshot can be loaded from disk). Then the input dataset 

is loaded (in this context, MNIST handwritten digit data set) and the selected image set 

is downsized. Then, iteratively trained the Auto Encoder. (Without explicitly calling 

train data function, by setting a desired epoch value to the configuration 

‘NUMBER_OF_ITERATIONS_OVER_TRAINNIG_DATA’, user can allow the 

network to train over and over on the same data set).  
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4.1 Input Dataset 

 

MNIST handwritten digit data set is used to evaluate the performance of the SNN Auto 

Encoder. MNIST handwritten digit data set consists a total of 70,000 elements where 

60,000 of them belong to the training data set and rest 10,000 elements are unlabeled. 

The label of the data set is irrelevant in this context as Auto Encoders do not fall under 

supervised training tasks. 

Each image represents a digit and the size of the image is 28x28. As the data flow graph 

technique is not used for the computations in the SNN Auto Encoder, the complexity, 

time consumption (the number of clock cycles) for the computations and memory 

consumption during the computations increases exponentially when the number of input 

neurons increases.  

For example, when the original image (28x28) is fed to the Auto Encoder with 1 Hidden 

layer consisting of 196 neurons, dimensions of arrays that are used for computations in 

SNN Auto Encoder will be 784x196. Hence the number of parameters to be trained will 

be multiples of 784x196 (i.e. 153,664). However, if the original image downsized to 

12x12 image, and Auto Encoder is used with 1 hidden layer with the same compression 

factor (i.e. 4), the number of neurons in the hidden layer will be 36. Corresponding array 

dimension will be 144x36 and number of parameters to be trained will be relatively very 

low (i.e. 5184 – nearly 30 times lesser) 

Hence, instead of using the original image which is 28x28 (i.e. 784 neurons in the input 

and the output layers), each input image is downsized to a 12x12 image which is 

adequate to represent the image. So the number of input/output neurons of the Auto 

Encoder is set to 144. 

  



 
 

4.2 Performance Comparison with ANN AutoEncoder developed using Keras 

 

To demonstrate that the SNN Auto Encoder reconstructs the image comparatively to a 

conventional Auto Encoder which has the same network structure, experiments were 

carried out by setting similar values to common parameters as follows. 

 Mini batch size = 5  

 Number of epochs  = 100 

 Dataset size = First 100 images in MNIST handwritten digit data set (downsized 

to 12x12) 

A comparison between reconstructions by 3 layer SNN Auto Encoder and an equivalent 

conventional Auto Encoder using Keras for a network structure 144x24x144 is shown in 

Table 4.1. A similar comparisons are provided as follows. 5 layer Auto Encoder with 

network structure 144x48x24x48x144 shown in Table 4.2, 6 layer Auto Encoder with 

network structure 144x48x24x24x48x144 shown Table 4.3 in and 7 layer Auto Encoder 

with network structure 144x48x24x16x24x48x144 shown in Table 4.4.  

However, it should be noted that the comparative reconstructions by conventional Auto 

Encoder (using Keras) are achieved using the optimizer ‘adadelta’. Reconstruction error 

of conventional Auto Encoder with ‘SGD’ optimizer is significantly higher. The ‘SGD’ 

optimizer with a batch size (> 1) is equivalent to the training mechanism used in SNN 

Auto Encoder whereas ‘adadelta’ is an improved optimization mechanism used by Keras 

where the convergence rate is high (Accuracy can be less than the accuracy of ‘SGD’) 

[16], [17]. Conventional Auto Encoder with ‘SGD’ optimizer requires 10,000 epochs to 

generate an output with a decent reconstruction error. Therefore it can be concluded that 

the SNN Auto Encoder outperforms equivalent conventional Auto Encoder in this case 

by the convergence rate. 

 



 
 

SNN Auto Encoder Keras-‘adadelta’-100 epochs Keras-‘SGD’-10,000 epochs 

   

Table 4.1: [144 x 24 x 144] Reconstruction comparison 



 
 

SNN Auto Encoder reconstruction Conventional Auto Encoder using 

KERAs reconstruction 

  

Table 4.2 : [144 x 48 x 24 x 48 x144] Reconstruction comparison 



 
 

SNN Auto Encoder reconstruction Conventional Auto Encoder using 

KERAs reconstruction 

  

Table 4.3: [144 x 48 x 24 x 24 x 48 x144] Reconstruction comparison 



 
 

 

SNN Auto Encoder reconstruction Conventional Auto Encoder using 

KERAs reconstruction 

  



 
 

Table 4.4 : [144 x 48 x 24 x 16 x 24 x 48 x144] Reconstruction comparison 

Even though it is not possible to directly compare the error between SNN Auto Encoder 

and equivalent conventional Auto Encoder as the outputs of SNN Auto Encoder are in z-

domain of output spike times, once the SNN Auto Encoder’s output is converted to pixel 

values, reconstruction errors can be compared. Comparisons of reconstruction errors in 

pixel values between SNN Auto Encoder and equivalent conventional Auto Encoder are 

shown in Table 4.5 and Table 4.6. For the reconstruction error comparison, 2 metrics 

were used. 

 Mean Squared Error (MSE) in pixel values (where pixel value range is 0-255) 

 Peak Signal-To-Noise Ratio (PSNR) – Higher PSNR values means lesser the 

reconstruction error. 

 

i.e. 𝑃𝑆𝑁𝑅 𝑣𝑎𝑙𝑢𝑒 = 20. 𝑙𝑜𝑔[
255

√MSE
] 

 

Provided MSE value is the average MSE across all images used for the testing. 

Minimum, maximum and average PSNR values provided (Minimum PSNR value is for 

the most distorted image). From the MSE and PSNR values of the reconstructions, it can 

be concluded that SNN Auto Encoder outperforms equivalent standard Auto Encoder.  

 

 

 

 

 

 

 



 
 

Network 

structure 

SNN AutoEncoder Standard AutoEncoder 

(‘AdaDelta’) 

Mean 

Squared 

Error 

PSNR Mean 

Squared 

Error 

PSNR 

Min Max Avg. Min Max Avg. 

3 layers 

144 x 24 x 144 

(100 epochs) 

353.92 

 

19.94 

 

26.96 

 

23.03 

 

2560.46 

 

11.36 

 

17.05 

 

14.21 

 

5 layers 

144 x 48 x 24 x 

48x 144 

(150 epochs) 

1097.15 

 

13.90 

 

24.76 

 

18.49 

 

2350.32 

 

12.20 

 

18.08 

 

14.63 

 

6 layers 

144 x 48 x 24 x 

24x 48x 144 

(350 epochs) 

1086.88 

 

15.12 

 

22.44 

 

18.21 

 

1246.21 

 

14.21 

 

24.90 

 

17.84 

 

7 layers 

144 x 48 x 24 x 16 

x 24x 48x 144 

(350 epochs) 

1170.20 

 

14.61 

 

22.21 

 

17.99 

 

1494.07 

 

13.11 

 

24.66 

 

17.05 

 

Table 4.5 : Reconstruction Error comparison of SNN AutoEncoder vs. Standard 

AutoEncoder (Optimizer - 'AdaDelata') 

 

 

 

 

 

 

 



 
 

Network 

structure 

SNN AutoEncoder Standard AutoEncoder 

(‘sgd’) 

Mean 

Squared 

Error 

PSNR Mean 

Squared 

Error 

PSNR 

Min Max Avg Min Max Avg 

3 layers 

144 x 24 x 144 

(100 epochs) 

353.92 

 

19.94 

 

26.96 

 

23.03 

 

12051.05 

 

6.70 

 

7.89 

 

7.33 

 

5 layers 

144 x 48 x 24 x 48x 144 

(150 epochs) 

1097.15 

 

13.90 

 

24.76 

 

18.49 

 

11617.34 

 

6.80 

 

7.99 

 

7.49 

 

6 layers 

144 x 48 x 24 x 24x 48x 

144 

(350 epochs) 

1086.88 

 

15.12 

 

22.44 

 

18.21 

 

11563.91 

 

6.85 

 

8.07 

 

7.54 

 

7 layers 

144 x 48 x 24 x 16 x 24x 

48x 144 

(350 epochs) 

1170.20 

 

14.61 

 

22.21 

 

17.99 

 

11655.50 

 

6.80 

 

8.05 

 

7.48 

 

Table 4.6 : Reconstruction Error comparison of SNN AutoEncoder vs. Standard 

AutoEncoder (Optimizer -'SGD') 

 

4.3 Performance of Auto Encoder vs network structure 

During the experiments carried out, training error is in z-domain value for spike 

generation time. As the minimum spike generation time and maximum spike generation 

times are respectively set to 1 (i.e. exp(0)) and 20.0855 (i.e. exp(3)), percentage error 

can be calculated as follows. 

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 𝑎𝑠 𝑎 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑠𝑝𝑖𝑘𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

(𝑒3−𝑒0)
 %   (26) 

  



 
 

4.3.1 Performance vs Number of Hidden layers 

To analyze the impact of number of layers of the network on performance in terms of 

the reconstruction error and the number of epochs to train the network such that the 

training reconstruction error reaches an acceptable level, experiments were carried out 

using Auto Encoders with different number of layers. As shown in the Figure 4.1 and 

Table 4.8, number of iterations to train the network increases drastically with the 

number of layers of the Auto Encoder. This behavior is in line with training of 

conventional artificial neural networks with any training mechanism based on 

backpropagation (i.e. gradient decent, stochastic gradient decent and Mini Batch) due to 

the increased number of parameters to be learned and other inherent issues in 

backpropagation such as vanishing gradient problem. 

Network structure SNN AutoEncoder 

Mean Squared Error PSNR 

Min Max Avg 

3 layers 

144 x 24 x 144 

(100 epochs) 

353.92 

 

19.94 

 

26.96 

 

23.03 

 

5 layers 

144 x 48 x 24 x 48x 

144 

(150 epochs) 

1097.15 

 

13.90 

 

24.76 

 

18.49 

 

6 layers 

144 x 48 x 24 x 24x 

48x 144 

(350 epochs) 

1086.88 

 

15.12 

 

22.44 

 

18.21 

 

7 layers 

144 x 48 x 24 x 16 x 

24x 48x 144 

(350 epochs) 

1170.20 

 

14.61 

 

22.21 

 

17.99 

 

Table 4.7 : Reconstruction Error with number of layers 

 

Also from Table 4.7, it can be seen that reconstruction error increases from MSE and 

PSNR values when the number of layers is increased. SNN Auto Encoders with higher 

number could be trying to learn general representations (higher order features) and 



 
 

hence the reconstruction error could be higher. However to analyze this behavior, 

extensive tests will have to be carried to out. 

 

Figure 4.1: Training error curve Vs. Number of layers 

 

 

Network Structure Number of epochs to 

Achieve acceptable 

training error 

Training error at the 

end of the training 

phase 

144x24x144 100 0.697021465 

144x48x24x48x144 200 1.197019799 

144x48x24x24x48x144 350 1.150954263 

144x48x24x16x24x48x144 350 1.431811091 

 

Table 4.8 : Network Structure vs. Training Error 
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4.3.2 Performance vs compression ratio 

 

To analyze the impact of Compression ratio on performance of the SNN Auto Encoder 

in terms of the number of epochs to train the network such that the training 

reconstruction error reaches an acceptable level, experiments were carried out by setting 

the number of neurons in the hidden layer to achieve the desired compression ratio as 

shown in Table 4.9. Auto Encoder with 1 hidden layer is used for the test. (200 images 

were used for the test) 

From Table 4.9 and Figure 4.2 / Figure 4.3, it can be seen that when the compression 

ratio increases, the training reconstruction error increases. This is in line with the general 

fact that in lossy compressions, the reconstruction error increases with the compression 

ratio.  

Compression 

ratio 

Number of Neurons 

in Hidden Layer 

Training error after 50 epochs 

Mini Batch size = 5 Mini Batch size = 

10 

9:1 16 1.200582669 

(6.29%) 

1.566901714 

(8.21%) 

6:1 24 0.982066042 

(5.15%) 

1.174818221 

(6.15%) 

4.5:1 32 0.879138981 

(4.60%) 

1.139022948 

(5.97%) 

3.6:1 40 1.05927208 

(5.55%) 

1.078116341 

(5.65%) 

3:1 48 0.883807026 

(4.63%) 

1.575804122 

(8.26%) 

Table 4.9 : Compression ratio vs Training error 



 
 

 

 

Figure 4.2 : Training Error curve vs. Compression ratio 1 
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Figure 4.3 : Training Error curve vs. Compression ratio 2 

 

4.4 Hyper parameter analysis 

 

The training performance of Auto Encoder with respect to each hyperparameter is 

discussed below. All experiments were carried out with the below configurations. 

 3 Layer SNN Auto Encoder (1 hidden layer) 

 SNN Auto Encoder with network structure – 144x24x144 (Compression ratio 

6:1) 

 200 images were used for the training. 
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4.4.1 Mini Batch Size 

 

To analyze the impact of Mini Batch Size on the training performance of the SNN Auto 

Encoder, individual tests were carried out with different Mini Batch Sizes. Training 

error at each epoch number is shown for Mini Batch sizes 2, 5, and 8 in Figure 4.4. It is 

observed that training error minimizes quickly for lower Mini Batch sizes (For lower 

Mini Batch sizes, learning is achieved quickly). However, in all cases, after 100 epochs 

training error is recovered to acceptable values as shown in Table 4.10. 

 

Figure 4.4 : Training Error curve with Mini Batch size 

Mini Batch size Training Error after 100 epochs 

2 0.609811117 (3.20%) 

5 0.648047928 (3.40%) 

10 0.777276331 (4.07%) 

Table 4.10 Training error after 100 epochs for different mini batch sizes 
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4.4.2 Learning Rate 

 

To analyze the impact of Mini Batch Size on the training performance of the SNN Auto 

Encoder, individual tests were carried out with different learning rates. Training error at 

epoch number is shown in Figure 4.5 for learning rates from 0.0005 to 0.1. It is observed 

that the training error smoothly diminished for learning rates in range 0.0005 to 0.001. 

For higher learning rates, peaks in the training error can be observed. Such peaks in the 

training error can be caused by large adjustments of synaptic weights so that the drastic 

changes in input spike times and causal sets associated with neurons in the layers in the 

latter part of the network. 

 

Figure 4.5 : Training Error curve with Learning Rate 
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4.4.3 Frobenius norm threshold 

 

To analyze the impact of Frobenius norm threshold on the training performance of the 

SNN Auto Encoder, individual tests were carried out with different Frobenius norm 

threshold values as shown in Figure 4.6 . To avoid applying large adjustment values to 

synaptic weights, Frobenius normalization is applied as discussed in section 3.6. (When 

summation of synaptic weights of a target neuron is closer to 1, weight adjustment 

values will large). From Figure 4.6, it is observed that when small adjustments to 

synaptic weights are allowed, the Auto Encoder network’s weights are changed 

drastically which leads to unsuccessful learning. 

 

Figure 4.6 : Training Error curve with Frobenius norm threshold 

 

4.5 Hidden Layer Spike Time Analysis 

 

Figure 4.8 shows a heat map of the hidden layer spike generation times of an SNN Auto 

Encoder with 1 hidden layer consisting of 24 neurons for 10 input images shown in 
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Figure 4.7. The SNN Auto Encoder was trained for 100 input images. By analyzing the 

heat map, it can be identified that for this set of input images, some of the neurons in 

hidden layers do not represent descriptive information or they represent redundant 

information. (E.g. Neuron index 14 has generated spikes for inputs early for all input 

images).  This supposition can be confirmed by analyzing the average spike generation 

time for each neuron in the hidden layer across all 100 training input images is shown in 

Table 4.11 (Average spike generation time for Neuron index 14 is at a minimum level 

and this neuron generates an early spike for input images, hence the neuron can be 

considered as redundant). 

Also, it can be identified that hidden layer spike generation times (compressed 

representation) have a higher correlation for similar input images from the heat map 

shown in Figure 4.8. 

 

Neuron  
Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

Avg. 
Spike 
 Time 9.3 7.3 18 12 20 12 7.4 12 11 12 7.9 9.9 13 1.8 18 7.8 21 12 15 18 16 21 12 7.7 

 

 

Table 4.11 : Avg. Spike generation time for hidden layer neurons 

 

 

Figure 4.7: Reconstructions for sample 10 images: 



 
 

 
Input 

 Image 
 Index 

0 1 2 3 4 5 6 7 8 9 

 
Neuron 
Index  

          

1  3.041 7.382 8.117 10.86 8.079 2.642 8.562 1.319 17.18 20.26 

2  1.802 1.865 21.62 16.56 6.691 20.25 10.29 5.029 10.67 8.564 

3  8.472 15.51 18.59 19.94 22.67 3.491 21.19 10.95 21.4 20.37 

4  20.38 4.84 2.674 20.64 2.324 4.976 21.79 6.907 22.18 1.973 

5  20.28 21.05 17.49 20.34 22 21.85 20.45 21.12 21.18 21.62 

6  2.536 3.689 19.69 2.791 9.33 14.63 17.35 6.841 20.3 21.2 

7  11.08 2.213 20.4 6.612 3.066 1.867 13.17 1.391 18.27 3.778 

8  14.12 1.866 22.5 13.79 24.17 2.162 14.47 5.082 20.93 21.71 

9  5.202 17.99 2.447 11.31 20.48 21.46 15.04 6.503 20.22 4.242 

10  14.35 16.92 14.42 21.07 5.169 3.534 1.635 21.08 2.608 20.72 

11  20.54 14.23 3.457 1.654 2.517 4.216 21.33 5.786 21.22 3.962 

12  15.61 4.528 16.2 1.754 13.74 6.776 19.17 10.41 15.29 4.606 

13  15.68 2.386 19.74 20.11 7.829 14.07 21.72 13.69 21.03 11.08 

14  1.713 1.721 2.954 1.647 1.716 1.811 1.384 1.32 2.445 1.653 

15  14.68 9.506 15.87 18.55 21.53 20.85 19.52 20.6 20.66 20.43 

16  10.65 16.32 17.37 9.561 2.408 2.695 1.317 9.772 2.199 1.503 

17  22.38 2.541 3.32 20.67 23.62 22.4 26.04 21.55 24.86 21.78 

18  2.046 6.051 20.49 6.069 23.22 5.307 20.7 15.27 21.41 3.977 

19  16.88 22.22 13.02 20.61 2.926 22.45 2.146 18.02 3.285 22.4 

20  3.52 17.17 11.08 9.83 23.37 21.21 21.77 5.478 21.56 4.938 

21  4.474 20.75 2.777 16.01 23.45 16.57 22.29 2.758 22.93 20.68 

22  10.34 10.67 15.93 23.08 24.85 26.89 21.47 21.66 21.08 18.6 

23  11.99 10.24 3.558 14.15 20.79 20.79 8.579 7.004 20.38 10.51 

24  1.924 6.689 20.93 1.509 23.37 10.97 1.794 1.54 5.333 16.46 

 

 

Figure 4.8 : Heat map of Hidden layer spike time for different input images 

 



 
 

4.6 Hardware information 

Tests were executed on Redhat Linux 7.2 operating system. Hardware specifications are 

shown in Table 4.12. Python 3.6 version is used. 

Property Value 

Architecture: x86_64 

CPU op-mode(s): 32-bit, 64-bit 

Byte Order: Little Endian 

CPU(s): 4 

On-line CPU(s) list: 0-3 

Thread(s) per core: 1 

Core(s) per socket: 2 

Socket(s): 2 

NUMA node(s): 1 

CPU family: 6 

CPU MHz: 3465.680 

BogoMIPS: 6931.36 

Virtualization type: full 

L1d cache: 32K 

L1i cache: 32K 

L2 cache: 4096K 

NUMA node0 CPU(s): 0-3 

Table 4.12 : Hardware information 
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5.1 Contribution 

 

As discussed in the literature survey, there are only a handful of Auto Encoder models 

developed using Spiking Neural Networks. None of them supports Auto Encoders with 

multiple layers as per the knowledge of the author. In this research, a model has been 

introduced for Auto Encoder and implemented which supports multiple hidden layers 

and the model is based on spiking neural networks using the temporal coding scheme. 

Experimental evidence shows that the performance (in terms of reconstruction error) of 

the new SNN Auto Encoder is in par with the performance of conventional Auto 

Encoder with a similar network structure and in fact in certain experiments, SNN Auto 

Encoder shows superior performance compared to the equivalent conventional Auto 

Encoder in terms of convergence rate.  

Also, it suggests that the power consumption could be low when implemented on neuro-

morphic hardware as the SNN model uses Temporal Coding Scheme and one neuron is 

allowed fire only once. 

5.2 Limitations 

 

The required number of passes through the data set (epochs) to train the network 

increases with the number of layers of the network. Even though the model enables the 

user to configure an Auto Encoder with any number of layers, a high number of training 

epochs will make the user reluctant to go for deep Auto Encoders. This behavior is 

similar to the training in conventional neural networks that use backpropagation to 

adjust network parameters where issues such as vanishing gradient come into play [18]. 

Also, as per the current implementation, the time required for computations increases 

exponentially with the dimension of input images which urges the user to resize the 

input image to an acceptable level before feeding to the Auto Encoder. 

 



 
 

5.3 Future work 

 

Calculations in the python implementation of the SNN Auto Encoder model are 

basically based on multi-dimensional ‘numpy’ arrays. Support of ‘numpy’ library for 

mathematical operations on multi-dimensional arrays and linear algebra functions such 

as Frobenius norm has leveraged the implementation of the SNN Auto Encoder network. 

However, computation time increases exponentially with the size of the ‘numpy’ multi-

dimensional arrays. This is the primary reason to downsize the input image before 

feeding to the SNN Auto Encoder during the experiments. Also, when the number of 

layers in the Auto Encoder is increased, training time increases exponentially as the 

number of multi-dimensional arrays involved in computations increases. As a result, 

even though the model is capable of creating Deep SNN Auto Encoders (as the 

implementation enables the user to provide the number of layers as a parameter when 

declaring the Auto Encoder instance), a significant time period is required to train such 

Deep SNN Auto Encoders compared to the training time of Conventional Deep Auto 

Encoders implemented using libraries such as Keras. 

These bottlenecks can be avoided by incorporating libraries such as ‘Theano’ and 

‘TenserFlow’ to optimize the multi-dimensional array calculations using data flow / 

tenser programming techniques [19]. Current python implementation will need 

significant changes to incorporate such data flow programming techniques enhanced 

with GPU support. 

Also, to resolve aforementioned scalability issues, it is possible to use services provided 

by AWS ( such as EC2 / Amazon Machine Image) and Google Cloud AI (with tenser 

flow) where GPUs, and TPUs / ASIC (Application Specific Integrated Circuits) can be 

used which will speed up the computations when training the AutoEncoder for large 

data sets. 

 



 
 

When using the AutoEncoder model for different image datasets, several preprocessing 

steps will be required such resizing, removing noise (or add noise for De-noising 

AutoEncoders) and morphing. Also, when applying the AutoEncoder model for data sets 

other than image data, suitable coding mechanism is needed.  

In addition, other optimizers such as NAG, ‘adagrad’, ‘adadelta’/‘RMSProp’ etc. can be 

implemented for the Auto Encoder model to support fast training at the cost of the 

reconstruction error. 
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APPENDIX  

 

Python implementations for functions mentioned in section 3.6 are provided below. 

#!/usr/bin/env python 
 

#imports 
import sys 
import inspect 
import imageio 
import os 
 

import numpy as np 
from numpy import linalg as LA 
from random import shuffle 
import matplotlib 
from matplotlib import pyplot as plt 
import scipy  
import scipy.misc 
from PIL import Image 
 

EXP_MAX_SPIKE_TIME = np.exp(3) 
 

FUNCTION_LOG_LEVELS=    { 
  "GetCausalSetWithOuputSpikeTime": 0, 
  "GenerateWeightMatrix": 0, 
  "GetOutputVectorSpikeTimes": 0, 
  "CalculateFinalOutputDerivativeWRTInputSpikeTimes": 0, 
  "CalculateFinalderivativesWRTWeights":0, 
  "GetWeightAdjustmentArrayMap":0, 
  "regularizeWeight":0 
}  

Figure A: 1 Imports and Definitions 

def DEBUGPRINT(LogLevel, callerFunctionName, *args, **kwargs): 
    allowewdLogLevel = 2 
    allowewdLogLevel = FUNCTION_LOG_LEVELS.get(callerFunctionName, 2) 
    if allowewdLogLevel >= LogLevel: 
        print( "__",callerFunctionName,"__"+" \t".join(map(str,args))+"", **kwargs) 

 

Figure A: 2 Log print function 



 
 

def GenerateWeightMatrix(neuronCountArray): 
    numberOfLayers = len(neuronCountArray) 
    weghitMatrixList =  [None] * (numberOfLayers - 1) 
     

    for layerIndex in range(1,numberOfLayers):      #first layer is input layer, so no weights associated 
        currentLayerNeuronCount = neuronCountArray[layerIndex] 
        previousLayerNeuronCount = neuronCountArray[layerIndex - 1] 
         

        initialWeightPerNeuron = INITIAL_SUM_OF_WEIGHTS_PER_NEURON / previousLayerNeuronCount 
        currentLayerWeightMatrix = np.full((previousLayerNeuronCount,currentLayerNeuronCount), initialWeightPerNeuron) 
        for prevNeuronIndex in range(0,previousLayerNeuronCount): 
            for currNeuronIndex in range(0,currentLayerNeuronCount): 
                perturbationFactor = ((np.random.rand(1)[0]) / 10) 
                currentLayerWeightMatrix[prevNeuronIndex][currNeuronIndex] = (currentLayerWeightMatrix[prevNeuronIn-

dex][currNeuronIndex])*perturbationFactor 
         

        weghitMatrixList[layerIndex - 1] = currentLayerWeightMatrix  
    return weghitMatrixList  
 

Figure A: 3 Function to generate initial weight matrix 



 
 

def GetCausalSetWithOuputSpikeTime(inputSpikeTimeArr,weightVector): 
    causalIndexSet = np.empty(shape=(0, 0))  
    estimatedOutputSpTime = MAX_SPIKE_TIME 
    totalWeight = 0.0 
     

    inputTimeColIndex = 1 
    inputWeightColIndex = 2 
    ArrayIndexColIndex = 0 
     

    if len(inputSpikeTimeArr) != len(weightVector): 
        raise Exception('Mismathced array lengths in GetCausalSet function!')    
     

    numberOfInputNeurons = len(inputSpikeTimeArr) 
    neuronIndexSet = np.arange(numberOfInputNeurons) 
    neuronIndexSet = np.reshape(neuronIndexSet, (numberOfInputNeurons, 1)) 
    mergedArray = np.concatenate((neuronIndexSet,inputSpikeTimeArr,weightVector),axis=1) 
    sortedinputSpikeTimeArr = 

mergedArray[np.lexsort((mergedArray[:,ArrayIndexColIndex],mergedArray[:,inputWeightColIndex],mergedArray[:,inputTimeColIn

dex]))] 
         

    for nueronIndex in range(0, numberOfInputNeurons):       
        if nueronIndex == (numberOfInputNeurons - 1): 
            nextInputSpikeTime = MAX_SPIKE_TIME 
        else: 
            nextInputSpikeTime = sortedinputSpikeTimeArr[(nueronIndex+1),inputTimeColIndex] 
         

         

        totalWeight = sortedinputSpikeTimeArr[:(nueronIndex+1),inputWeightColIndex].sum()    
        if totalWeight > 1: 
            inputSpikeTimeBywieght = 0 
            for neuronInnerIndex in range(0, (nueronIndex+1)): 
                inputSpikeTimeBywieght += 

sortedinputSpikeTimeArr[neuronInnerIndex,inputTimeColIndex]*sortedinputSpikeTimeArr[neuronInnerIndex,inputWeightColIndex] 
                         

            estimatedOutputSpTime = inputSpikeTimeBywieght / (totalWeight - 1) 
            if estimatedOutputSpTime < nextInputSpikeTime: 
                causalIndexSet = sortedinputSpikeTimeArr[0:(nueronIndex+1),ArrayIndexColIndex]   
                return causalIndexSet,estimatedOutputSpTime,totalWeight  
     

    estimatedOutputSpTime = MAX_SPIKE_TIME 
    totalWeight = 0.0 
    return causalIndexSet,estimatedOutputSpTime,totalWeight  
 

Figure A: 4 Function to get output spike time with causal set 



 
 

def GetOutputVectorSpikeTimes(inputTimesArray, neuronCountArray,weightMatrixList): 
 

    numberOfProcessingLayers = len(weightMatrixList) 
    neuronCountInOutputLayer = neuronCountArray[len(neuronCountArray) - 1] 
    outputSpikeTimeArray = np.full((1, neuronCountInOutputLayer), MAX_SPIKE_TIME) 
     

    #Variables to store data required for differentiation calculations 
    ds_causelSetForNN = [] 
    ds_outputSpikeTimeForNN = [None]*(numberOfProcessingLayers) 
    ds_DERWRTspikeTime = [None]*(numberOfProcessingLayers) 
    ds_DERWRTspikeTime = [None]*(numberOfProcessingLayers) 
     

     

    currentLayerOutputSpikeTimeArray = np.asarray(inputTimesArray) 
      

    for layerIndex in range (1,(numberOfProcessingLayers+1)):   #Lets ignore input layer. Start from 1st hidden layer 
     

        numberOfNeuronsInPrevLayer = neuronCountArray[layerIndex - 1] 
        numberOfNeuronsInCurrentLayer = neuronCountArray[layerIndex] 
         

        DEBUGPRINT(2, 'GetOutputVectorSpikeTimes','In GetOutputVectorSpikeTimes function, Processing the layer : ', 

layerIndex,', numberOfNeuronsInPrevLayer : ',numberOfNeuronsInPrevLayer 
                ,'numberOfNeuronsInCurrentLayer',numberOfNeuronsInCurrentLayer) 
         

        ds_DERWRTspikeTime[layerIndex - 1] = np.full((numberOfNeuronsInPrevLayer, numberOfNeuronsInCurrentLayer), 0.0) 
        ds_DERWRTspikeTime[layerIndex - 1] = np.full((numberOfNeuronsInPrevLayer, numberOfNeuronsInCurrentLayer), 0.0) 
        ds_outputSpikeTimeForNN[layerIndex - 1] = np.full((1, numberOfNeuronsInCurrentLayer), MAX_SPIKE_TIME) 
 

     

 

        CurLyrInputTimeArr = currentLayerOutputSpikeTimeArray 
        currentLayerOutputSpikeTimeArray = np.full((1, neuronCountArray[layerIndex]), MAX_SPIKE_TIME) 
         

        for neuronIndex in range (0,numberOfNeuronsInCurrentLayer): 
            weightMatrixForCurrentLayer = weightMatrixList[layerIndex - 1] 
            curNeuronWeightArr = (weightMatrixForCurrentLayer[:,neuronIndex]).reshape(numberOfNeuronsInPrevLayer,1) 
            CurLyrInputTimeArr = CurLyrInputTimeArr.reshape(numberOfNeuronsInPrevLayer,1) 
            CauselSetWithOutputSpikeTime = GetCausalSetWithOuputSpikeTime(CurLyrInputTimeArr,curNeuronWeightArr) 
            currNeuronSpikeTime = CauselSetWithOutputSpikeTime[1] 
            currentLayerOutputSpikeTimeArray[0][neuronIndex] = currNeuronSpikeTime 
            causalSetForNeuron = (CauselSetWithOutputSpikeTime[0]).astype(int) 
            totalWeightOfInputNuerons = CauselSetWithOutputSpikeTime[2] 
             

            #Store derivative values 
            #Derivate WRT weights and input spike time 
            if (currNeuronSpikeTime < MAX_SPIKE_TIME and len(causalSetForNeuron) != 0 and totalWeightOfInputNuerons > 1): 
                denomonatorVal = totalWeightOfInputNuerons - 1  #TODO - Use Tensors 
                 

                for subjectNueronIndex in causalSetForNeuron:          
                    spikeTimeDiff = (CurLyrInputTimeArr[subjectNueronIndex][0] - currNeuronSpikeTime) 
                     

                    (ds_DERWRTspikeTime[layerIndex - 1])[subjectNueronIndex][neuronIndex] =  ( spikeTimeDiff 

/denomonatorVal) 
                    (ds_DERWRTspikeTime[layerIndex - 1])[subjectNueronIndex][neuronIndex] = 

(curNeuronWeightArr[subjectNueronIndex][[0]] / denomonatorVal) 
                 

             

            #Lets calculate and return derivatives for future weight adjustment 
         

        ds_outputSpikeTimeForNN[layerIndex - 1] = currentLayerOutputSpikeTimeArray 
         

        if layerIndex == numberOfProcessingLayers: 
            outputSpikeTimeArray = currentLayerOutputSpikeTimeArray 
     

    DEBUGPRINT(1, 'GetOutputVectorSpikeTimes',' \n__outputSpikeTimeArray__: \n', outputSpikeTimeArray) 
    return outputSpikeTimeArray,ds_outputSpikeTimeForNN,ds_DERWRTspikeTime,ds_DERWRTspikeTime 



 
 

Figure A: 5 Function to calculate output spike times 

 

def CalculateFinalOutputDerivativeWRTInputSpikeTimes(derivativesWRTspikeTime): 

     

    noOfLayers = len(derivativesWRTspikeTime) + 1 

     

    outputSpikeTimeDerivativeWRTAllinputSpikeTimeMap = {} 

    lastLayerIndex = (noOfLayers - 1) - 1 

    numberOfNueronsInLastLayer =  ((derivativesWRTspikeTime[lastLayerIndex]).shape)[1]  

    for layerIndex in range (lastLayerIndex, -1, -1): 

        if layerIndex == lastLayerIndex: 

            outputSpikeTimeDerivativeWRTAllinputSpikeTimeMap[layerIndex] = derivativesWRTspikeTime[lastLayerIndex] 

        else: 

            nextLayerfinalDERArray = outputSpikeTimeDerivativeWRTAllinputSpikeTimeMap[layerIndex + 1] 

            CurrLyrLocalDERArray = derivativesWRTspikeTime[layerIndex] 

             

            numberOfNueronsInCurrentLayer = ((derivativesWRTspikeTime[layerIndex]).shape)[0]             

            derivativesMatrixForCurrentLayer = np.full((numberOfNueronsInCurrentLayer, numberOfNueronsInLastLayer), 0.0) 

            for currLayerNeuronIdx in range (0,numberOfNueronsInCurrentLayer): 

             

                currNeuronFinalDER = np.full((1,numberOfNueronsInLastLayer),0.0) 

                nextLyrNeuronCount = ((derivativesWRTspikeTime[layerIndex]).shape)[1] 

                for nextLayerNeuronIdx in range (0,nextLyrNeuronCount): 

                    currNeuronFinalDER += 

(CurrLyrLocalDERArray[currLayerNeuronIdx][nextLayerNeuronIdx]*nextLayerfinalDERArray[nextLayerNeuronIdx]) 

                     

                derivativesMatrixForCurrentLayer[currLayerNeuronIdx] = currNeuronFinalDER 

                 

            outputSpikeTimeDerivativeWRTAllinputSpikeTimeMap[layerIndex] = derivativesMatrixForCurrentLayer 

    return outputSpikeTimeDerivativeWRTAllinputSpikeTimeMap 

 

Figure A: 6 Function to calculate derivatives of output spike time w.r.t. input spike times 



 
 

def GetWeightAdjustmentArrayMap(outputArr, expectedOutputArr,FinalDERMap): 

     

    if len(expectedOutputArr) != (outputArr.shape)[1]: 

        raise Exception('In CalculateErrorDerivateWRTWeight. outputArr and expectedOutputArr lengths mismatch') 

     

    errorDerivateWRTToWeightMap = {} 

    numberOfNueronsInLastLayer = len(expectedOutputArr) 

     

    for key, value in FinalDERMap.items(): 

        lyrIdx = key 

        ouputDerivative3DArr = value 

         

        numberOfNueronsInCurrentLayer = (ouputDerivative3DArr.shape)[0] 

        numberOfNueronsInNextLayer = (ouputDerivative3DArr.shape)[1] 

        errorDerivateWRTToWeightMap[lyrIdx] = np.full((numberOfNueronsInCurrentLayer,numberOfNueronsInNextLayer), 0.0) 

         

        if (ouputDerivative3DArr.shape)[2] != numberOfNueronsInLastLayer: 

            raise Exception('In CalculateErrorDerivateWRTWeight. ouputDerivative3DArr length  does not match with 

numberOfNueronsInLastLayer') 

     

        for currLyrNeuronIdx in  range(0, numberOfNueronsInCurrentLayer): 

            for nextLyrNeuronIdx in  range(0, numberOfNueronsInNextLayer): 

                weightChangeVal = 0.0 

                for lasttLyrNeuronIdx in  range(0, numberOfNueronsInLastLayer): 

                    if outputArr[0][lasttLyrNeuronIdx] < EXP_MAX_SPIKE_TIME:  

                        weightChangeVal += (outputArr[0][lasttLyrNeuronIdx] - 

expectedOutputArr[lasttLyrNeuronIdx])*(FinalDERMap[lyrIdx][currLyrNeuronIdx][nextLyrNeuronIdx][lasttLyrNeuronIdx]) 

                    else: 

                        weightChangeVal += (EXP_MAX_SPIKE_TIME - 

expectedOutputArr[lasttLyrNeuronIdx])*(FinalDERMap[lyrIdx][currLyrNeuronIdx][nextLyrNeuronIdx][lasttLyrNeuronIdx]) 

                     

                 

                 

                totalWeightAdjustement = (-1*WEIGHT_ADJUSTMENT_FACTOR)*weightChangeVal 

                errorDerivateWRTToWeightMap[lyrIdx][currLyrNeuronIdx][nextLyrNeuronIdx] = totalWeightAdjustement 

         

    ##FrobeniusNorm to avoid large jumps in weights due to small denominator values 

    for lyrIdx, errorDerivateWRTToWeightMatrix in errorDerivateWRTToWeightMap.items(): 

        FrobeniusNormForCurrentMatrix =  LA.norm(errorDerivateWRTToWeightMatrix) 

        numberOfSourceNeurons = (errorDerivateWRTToWeightMatrix.shape)[0]    

        if (FrobeniusNormForCurrentMatrix / numberOfSourceNeurons) > FROBENIUS_NORM_THREASHOLD_PER_SOURCE_NEURON: 

            normalizationValue = FrobeniusNormForCurrentMatrix / 

(numberOfSourceNeurons*FROBENIUS_NORM_THREASHOLD_PER_SOURCE_NEURON) 

            errorDerivateWRTToWeightMap[lyrIdx] = (errorDerivateWRTToWeightMap[lyrIdx] / normalizationValue) 

     

    return errorDerivateWRTToWeightMap 

 

Figure A: 7 Function to calculate final weight adjustment values 



 
 

def CalculateFinalderivativesWRTWeights(finalDERWRTInputTimes, DERWRTweight): 

 

    if len(finalDERWRTInputTimes) !=    len(DERWRTweight): 

        raise Exception('Mismathced array lengths in CalculateFinalderivativesWRTWeights function!') 

     

    finalWeightDERMap = {} # each element will have a 3D array 

     

    numberOfLayers = len(finalDERWRTInputTimes) + 1 

    lastLayerIndex = (numberOfLayers - 1) - 1 

    numberOfNueronsInLastLayer = ((finalDERWRTInputTimes[lastLayerIndex]).shape)[1]  

     

     

    for lyrIdx in range (lastLayerIndex, -1, -1): 

         

        CurLayerNueronCount = ((DERWRTweight[lyrIdx]).shape)[0]  

        numberOfNueronsInNextLayer = ((DERWRTweight[lyrIdx]).shape)[1]   

        finalWeightDERMap[lyrIdx] = np.full((CurLayerNueronCount,numberOfNueronsInNextLayer,numberOfNueronsInLastLayer), 

0.0) 

             

        if lyrIdx == lastLayerIndex: 

             

            for currLyrNeuronIdx in range (0,CurLayerNueronCount):       

                for nextLyrNeuronIdx in range (0,numberOfNueronsInNextLayer): 

                    for lastLayerNeuronIndex in range (0,numberOfNueronsInLastLayer): 

                        if lastLayerNeuronIndex == nextLyrNeuronIdx: 

                            finalWeightDERMap[lyrIdx][currLyrNeuronIdx][nextLyrNeuronIdx][lastLayerNeuronIndex] = 

DERWRTweight[lyrIdx][currLyrNeuronIdx][nextLyrNeuronIdx] 

             

        else: 

              

            if (((finalDERWRTInputTimes[lyrIdx+1]).shape[0]) !=  ((DERWRTweight[lyrIdx]).shape[1])): 

                raise Exception('Mismathced matrix shapes in CalculateFinalderivativesWRTWeights function!') 

              

              

            for currLyrNeuronIdx in range (0,CurLayerNueronCount): 

                for nextLyrNeuronIdx in range (0,numberOfNueronsInNextLayer): 

                    finalWeightDERMap[lyrIdx][currLyrNeuronIdx][nextLyrNeuronIdx] = 

DERWRTweight[lyrIdx][currLyrNeuronIdx][nextLyrNeuronIdx] *finalDERWRTInputTimes[lyrIdx+1][nextLyrNeuronIdx] 

         

    return finalWeightDERMap 

 

Figure A: 8 Function to calculate final derivatives w.r.t. synaptic weights 



 
 

def regularizeWeight(weightMAtrixList,L2adjustementFactor, smallWeightAdjustFactor): 

     

    regularizationMap = {} 

     

    numberOfLayers = len(weightMAtrixList) 

     

    for lyrIdx in range (0,numberOfLayers): 

        regularizationMap[lyrIdx] = np.full((weightMAtrixList[lyrIdx].shape),0.0) 

        ArrayOfWeightSumForEachNueron = np.sum(weightMAtrixList[lyrIdx], axis=0) 

        if (weightMAtrixList[lyrIdx].shape)[1] != len(ArrayOfWeightSumForEachNueron): 

            raise Exception('In regularizeWeight. ArrayOfWeightSumForEachNueron does not match with weightMAtrixList 

shape') 

         

        numberOfNeurons = len(ArrayOfWeightSumForEachNueron)         

        for neuronIdx in range (0,numberOfNeurons): 

            if ArrayOfWeightSumForEachNueron[neuronIdx] < 1:        ##Sum Weights should be > 1, otherwise neuron will 

not fire 

                regularizationMap[lyrIdx][:,neuronIdx] = 

smallWeightAdjustFactor*abs(weightMAtrixList[lyrIdx][:,neuronIdx]) 

             

            regularizationMap[lyrIdx][:,neuronIdx] += -1*L2adjustementFactor*weightMAtrixList[lyrIdx][:,neuronIdx] 

 

    return regularizationMap 

 

Figure A: 9 Function to regularize weights 

def ConvertPixelValueToSpikeTime(inputData, revertConversion = False): 

 

    maxPixelValue = 255 

    minSpikeTime = 0.0 

    maxSpikeTime = 3.0 

     

    if revertConversion == False:   ##Convert Pixel Value To Spike Time 

        inputPixelValues = inputData 

        multilyingFactor = ((maxSpikeTime - minSpikeTime) / maxPixelValue)  

        inputSpikeTimes = [(maxSpikeTime - PixelVal * multilyingFactor) for PixelVal in inputPixelValues] 

         

        inputSpikeTimesInZDomain = np.exp(inputSpikeTimes) 

             

        return inputSpikeTimesInZDomain 

 

    else:   ##Convert SpikeTime to PixelValue 

        inputSpikeTimes = inputData 

        inputSpikeTimes = np.log(inputSpikeTimes) 

        multilyingFactor = (maxPixelValue / (maxSpikeTime - minSpikeTime)) 

        inputPixelValues = [(maxSpikeTime - spikeTime) * multilyingFactor for spikeTime in inputSpikeTimes] 

         

        print("shape : ", (inputPixelValues[0]).shape[0]) 

         

        for Index in range((inputPixelValues[0].shape[0])): 

            if (inputPixelValues[0])[Index] < 0.0: 

                print("Val : ", (inputPixelValues[0])[Index]) 

                (inputPixelValues[0])[Index] = 0.0 

         

 

        return inputPixelValues  

 

Figure A: 10 Mapping between pixel value and z-domain spike time 



 
 

def TrainAutoEncoder(Train_data,givenNetworkStruct,givenweightMAtrix): 
    NumberOfTrainingData = len(Train_data) 
    NumberOfRowsInTrainingData = Train_data[0].shape[0]          
    NumberOfColumnsInTrainingData = Train_data[0].shape[1] 
    totalNumberOfInputNuerons = NumberOfRowsInTrainingData*NumberOfColumnsInTrainingData 
    totalNumberOfOutputNuerons = totalNumberOfInputNuerons 
 
    NetworkStructure = givenNetworkStruct 
    weightMatrix = givenweightMAtrix 
    numbeOfLayers = len(weightMatrix) 
    shuffledInputDataIndexList = list(range(NumberOfTrainingData))   
    ##shuffle(shuffledInputDataIndexList) ##Lets do shuffling only once, All epochs use same shuffled data order 
    for epochIteator in range (0,NUMBER_OF_ITERATIONS_OVER_TRAINNIG_DATA): 
        miniBatchIndex = 0 
        weightAdjustmentValueMap = {} 
        curBatchNueronWiseErr = np.full((1,totalNumberOfOutputNuerons),0.0) 
        ouputNueronWiseErrorForwholeDataSet = np.full((1,totalNumberOfOutputNuerons),0.0) 
        for curDataIdx in range (0,NumberOfTrainingData):    
            miniBatchIndex = miniBatchIndex +   1 
            shufflednputDataIndex = shuffledInputDataIndexList[curDataIdx] 
            rearrangedInputData = (Train_data[shufflednputDataIndex]).reshape(1,(NumberOfRowsInTrainingData*NumberOfCol-
umnsInTrainingData)) 
            inputSpikeTimesArr = ConvertPixelValueToSpikeTime((rearrangedInputData.reshape(-1,)).tolist()) 
             
            K = GetOutputVectorSpikeTimes(inputSpikeTimesArr,NetworkStructure,weightMatrix)  
            outputSpikeTimeDerivativeWRTEachinputSpikeTimeMap = CalculateFinalOutputDerivativeWRTInputSpikeTimes(K[2]) 
            outputDerivateWRTToCurrWeightMap = CalculateFinalderivativesWRTWeights(outputSpikeTimeDerivativeWRTEachin-
putSpikeTimeMap, K[3]) 
            weightAdjustmentMap = GetWeightAdjustmentArrayMap(K[0], inputSpikeTimesArr,outputDerivateWRTToCurrWeight-
Map)     
            AdjustedOutputtimeArr = np.array(K[0],copy=True)  
            for indexOutSpikeTimeArr in range(0, AdjustedOutputtimeArr.shape[1]): 
                if AdjustedOutputtimeArr[0][indexOutSpikeTimeArr] > EXP_MAX_SPIKE_TIME: 
                    AdjustedOutputtimeArr[0][indexOutSpikeTimeArr] = EXP_MAX_SPIKE_TIME 
             
            weightAdjustmentValueMap[miniBatchIndex] = weightAdjustmentMap 
            curBatchNueronWiseErr = curBatchNueronWiseErr + abs(AdjustedOutputtimeArr - inputSpikeTimesArr) 
            ouputNueronWiseErrorForwholeDataSet = ouputNueronWiseErrorForwholeDataSet + abs(AdjustedOutputtimeArr - in-
putSpikeTimesArr) 
 
            if ((miniBatchIndex == MINI_BATCH_SIZE) or (curDataIdx == (NumberOfTrainingData - 1))): 
                weightRegularizationArr = regularizeWeight(weightMatrix, L2_REGULARIZATION_ADJUSTMENT_FACTOR, 
SMALL_WEIGHTS_REGULARIZATION_ADJUSTMENT_FACTOR) 
                curBatchWeighAdjustmets = {} 
                for layerIndex3 in range (0,numbeOfLayers): 
                    curBatchWeighAdjustmets[layerIndex3] = np.full(((weightRegularizationArr[layerIndex3]).shape),0.0) 
 
                for inputDataIndex, weightAdjustmentVal in weightAdjustmentValueMap.items(): 
                    if len(weightMatrix) != len(weightAdjustmentVal): 
                        raise Exception('Invalid lengths (number of layers) in weightMatrix and weightAdjustmentMap') 
                    for lyrIdx in range (0,numbeOfLayers): 
                        if len(weightMatrix[lyrIdx].shape) != len(weightAdjustmentVal[lyrIdx].shape) != (weightRegulari-
zationArr[lyrIdx].shape) != (curBatchWeighAdjustmets[lyrIdx].shape): 
                            raise Exception('Invalid lengths in weightMatrix and weightAdjustmentMap')  
                        curBatchWeighAdjustmets[lyrIdx] += weightAdjustmentVal[lyrIdx]  
                             
                for lyrIdx2 in range (0,numbeOfLayers): 
                    weightMatrix[lyrIdx2] = weightMatrix[lyrIdx2] + curBatchWeighAdjustmets[lyrIdx2] + weightRegulariza-
tionArr[lyrIdx2] 
                 
                detailWeightAdjustmentMap = weightAdjustmentValueMap 
                weightAdjustmentValueMap = {} 
                 
                curBatchNueronWiseErr = (curBatchNueronWiseErr / miniBatchIndex) 
                DEBUGPRINT(2,'TrainAutoEncoder','AverageError for current Mini Batch : ', curBatchNueronWiseErr) 
                totalErrorForCurrentMiniBatch =  np.sum(curBatchNueronWiseErr) / totalNumberOfOutputNuerons  
                DEBUGPRINT(0,'TrainAutoEncoder','OverAll Error for current Mini Batch : ', totalErrorForCurrentMiniBatch) 
                curBatchNueronWiseErr = np.full((1,totalNumberOfOutputNuerons),0.0) 
                miniBatchIndex = 0 
        detailWeightAdjustmentMapOld = {} 
        weightMAtrixListOld = {} 
        if(epochIteator != (NUMBER_OF_ITERATIONS_OVER_TRAINNIG_DATA - 1)): 
            detailWeightAdjustmentMapOld = detailWeightAdjustmentMap 
            weightMAtrixListOld = weightMatrix 
        ouputNueronWiseErrorForwholeDataSet = (ouputNueronWiseErrorForwholeDataSet / NumberOfTrainingData) 
        totalErrorForCurrentMiniBatch =  np.sum(ouputNueronWiseErrorForwholeDataSet) / totalNumberOfOutputNuerons    
    return weightMatrix, K, detailWeightAdjustmentMap,detailWeightAdjustmentMapOld,weightMAtrixListOld, weightRegulariza-
tionArr 
 



 
 

Figure A: 11 Auto Encoder training function 

def GenerateReconstruction(givenNetworkStruct,givenWeightMAtrixList,TestDataSet): 

  

    NetworkStructure = givenNetworkStruct 

    weightMAtrixList = givenWeightMAtrixList 

     

    NumberOfRowsInTestDataSet = TestDataSet[0].shape[0]          

    NumberOfColumnsInTestDataSet = TestDataSet[0].shape[1] 

    totalNumberOfInputNuerons = NumberOfColumnsInTestDataSet*NumberOfColumnsInTestDataSet 

    totalNumberOfOutputNuerons = totalNumberOfInputNuerons 

 

    NumberOfTestData = len(TestDataSet) 

    print('NumberOfTestData : ', NumberOfTestData) 

     

    for trainingDataInstanceIndex in range (0,NumberOfTestData): 

        rearrangedInputData = 

(TestDataSet[trainingDataInstanceIndex]).reshape(1,(NumberOfRowsInTestDataSet*NumberOfColumnsInTestDataSet)) 

        inputSpikeTimesArr = ConvertPixelValueToSpikeTime((rearrangedInputData.reshape(-1,)).tolist()) 

        K = GetOutputVectorSpikeTimes(inputSpikeTimesArr,NetworkStructure,weightMAtrixList)  

        genratedoutputspiketimeArr = K[0] 

        for indexOutSpikeTimeArr in range(0, genratedoutputspiketimeArr.shape[1]): 

            if genratedoutputspiketimeArr[0][indexOutSpikeTimeArr] > EXP_MAX_SPIKE_TIME: 

                genratedoutputspiketimeArr[0][indexOutSpikeTimeArr] = EXP_MAX_SPIKE_TIME 

        DEBUGPRINT(2,'TestOnArtifialData_2','TestDataSetInstanceIndex : ',trainingDataInstanceIndex,', Err : \n\n',(K[0] 

- inputSpikeTimesArr))  

        ouputNueronWiseError = abs(genratedoutputspiketimeArr - inputSpikeTimesArr) 

        AvgErrPerNeuron =  np.sum(ouputNueronWiseError) / totalNumberOfOutputNuerons     

        DEBUGPRINT(0,'TestOnArtifialData_2','Average Error for current TestDataSetInstanceIndex : ', AvgErrPerNeuron) 

         

    return K[0] 

 

 

Figure A: 12 Function for Generating Reconstruction 



 
 

#!/usr/bin/env python 
import SNNAutoEncoder 
 

SNNAutoEncoder.WEIGHT_ADJUSTMENT_FACTOR  = 0.005     
SNNAutoEncoder.L2_REGULARIZATION_ADJUSTMENT_FACTOR = 0.0  
SNNAutoEncoder.FROBENIUS_NORM_THREASHOLD_PER_SOURCE_NEURON = 0.02 
SNNAutoEncoder.INITIAL_SUM_OF_WEIGHTS_PER_NEURON =100.1 
SNNAutoEncoder.SMALL_WEIGHTS_REGULARIZATION_ADJUSTMENT_FACTOR = 2.1 
SNNAutoEncoder.MAX_SPIKE_TIME = 100000000.0 
SNNAutoEncoder.MAX_ITERATION_COUNT_FOR_A_INPUT = 1000 
 

SNNAutoEncoder.MINI_BATCH_SIZE = 5 
SNNAutoEncoder.NUMBER_OF_ITERATIONS_OVER_TRAINNIG_DATA = 1 
 

NetworkStructure = [(IMAGE_HIGHT*IMAGE_WIDTH),48,24,48,(IMAGE_HIGHT*IMAGE_WIDTH)] 
 

##Resized input image dimensions a 
IMAGE_HIGHT = 12 
IMAGE_WIDTH = 12 
TOTAL_NUMBER_OF_SAMPLES_TO_CONSIDER  = 1000 
NUMBER_OF_EPOCHS = 100 
STARTING_EPOCH = 0 
if (len(sys.argv) - 1) > 0: 
    STARTING_EPOCH = int(sys.argv[1]) 
 

###########     LOAD  INITIAL WIGHT MATIX FROM DISK   ########### 
if STARTING_EPOCH == 0:  
    initialWeightMatrix = SNNAutoEncoder.GenerateWeightMatrix(NetworkStructure) 
else: 
    lastSavedArrIndex = STARTING_EPOCH - 1 
    loadedInitWeightArr = np.load('SavedWeightSnapShot.npz', allow_pickle=True) 
    initialWeightMatrix = loadedInitWeightArr['arr_0'] 
     

     

SelectedSampleSet = np.zeros((TOTAL_NUMBER_OF_SAMPLES_TO_CONSIDER,IMAGE_HIGHT, IMAGE_WIDTH)) 
mnistDataIndex = 0 
 

##load mnist data set and initiate arrays 
Mnistdataset= np.load('mnist.npz') 
SelectedSampleSet = np.zeros((TOTAL_NUMBER_OF_SAMPLES_TO_CONSIDER,IMAGE_HIGHT, IMAGE_WIDTH)) 
for ministDataIndex in range (0,TOTAL_NUMBER_OF_SAMPLES_TO_CONSIDER): 
    resizedImage = 

np.array(Image.fromarray(Mnistdataset['x_train'][ministDataIndex]).resize((IMAGE_HIGHT,IMAGE_WIDTH),Image.BILINEAR)) 
 

    if (SelectedSampleSet[ministDataIndex].shape[0] != IMAGE_HIGHT) or (SelectedSampleSet[ministDataIndex].shape[1] != 

IMAGE_WIDTH): 
         sys.exit('Resized image size is incorrect') 
 

##Train the network 
for epochNumber in range (STARTING_EPOCH,(STARTING_EPOCH+NUMBER_OF_EPOCHS)):     
    if  epochNumber == STARTING_EPOCH: 
        print("First iteration - using initial weights") 
        M = SNNAutoEncoder.TrainAutoEncoder(SelectedSampleSet,SelectedSampleSet,NetworkStructure,initialWeightMatrix)   
    else: 
        print("subsequent iteration - using adjusted weights. Iteration NUMBER : ",epochNumber)      
        M = SNNAutoEncoder.TrainAutoEncoder(SelectedSampleSet,SelectedSampleSet,NetworkStructure,M[0])  
         

     

## Save synaptic weight snapshot - for future loading purposes -> retrain the network 
np.savez('SavedWeightSnapShot',M[0]) 
 



 
 

 

Figure A: 13 Sample code for training Auto Encoder 

 

from keras.layers import Input, Dense 

from keras.models import Model 

from keras import losses 

 

inputImageSize 

hiddenLayerNueronCount = 24   

 

inputData = Input(shape=(inputImageSize,)) 

hiddenLayer = Dense(hiddenLayerNueronCount, activation='relu')(input_img) 

outptutLayer = Dense(inputImageSize, activation='sigmoid')(hiddenLayer) 

autoEncoderInstance = Model(inputData, outptutLayer) 

autoEncoderInstance.compile(optimizer='sgd', loss=losses.mean_squared_error) 

 

autoEncoderInstance.fit(inputTrainDataSet, inputTrainDataSet, 

                epochs=100, 

                batch_size=5, 

                shuffle=True, 

                validation_data=(inputTestDataSet, inputTestDataSet)) 

 

reconstructedoutput = autoEncoderInstance.predict(unseenDataSet)  
 

Figure A: 14 Equivalent Conventional Auto Encoder 

 

 




