

AUTO ENCODER BASED ON TEMPORAL CODING IN A

SPIKING NEURAL NETWORK

Kaluhath Dhanushka Niroshan De Abrew

179313A

 M.Sc. in Computer Science

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

April 2020

AUTO ENCODER BASED ON TEMPORAL CODING IN A

SPIKING NEURAL NETWORK

Kaluhath Dhanushka Niroshan De Abrew

179313A

 Thesis/Dissertation submitted in partial fulfillment of the requirements for the Degree of

Master of Science in Computer Science and Engineering

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka

April 2020

i

DECLARATION

I declare that this is my own work and this thesis does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another person

except where the acknowledgement is made in the text. Also, I hereby grant to

University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in

whole or in part in print, electronic or other medium. I retain the right to use this content

in whole or part in future works.

...................................

K.D.N. De Abrew Date

I certify that the declaration above by the candidate is true to the best of my knowledge

and that this project report is acceptable for evaluation for the CS6997 MSc Research

Project.

Dr. Charith Chitraranjan Date

29/05/2020

ii

ABSTRACT

Auto Encoders using Artificial Neural Networks have achieved a high level of regeneration

accuracy whereas Auto Encoders using Spiking Neural Networks are still in their early stage and

only a few SNN Auto Encoders have been introduced but with lesser accuracies compared to

ANN Auto Encoders. Using SNNs for Auto Encoders is desired as SNNs are one step closer to

understand the communication and processing in biological neural networks. Sparse discrete

events known as Spikes make SNNs energy efficient especially when implemented using Neuro-

morphic hardware and Temporal coding scheme with the mapping of ‘input value to time of the

first generated spike’ makes it even more efficient in terms of power consumption and time to

generate an output where power consumption and time to encode/decode are the key metrics.

However, the direct application of gradient descent methods is not possible for SNN as the

activation functions are non-differentiable. Training an Auto Encoder requires a way to adjusting

the network parameters so that the reconstruction loss is minimized. Due to the lack of such

training models for SNNs especially with multiple hidden layers, it is a challenging task to

implement an Auto Encoder using SNN. In this research, models enable such learning, were

analyzed with the aim of selecting a promising model. Based on the selected model for adjust the

synaptic weights of the network, an SNN Auto Encoder model is developed which allows the

user to configure the network structure and number of neurons in each layer to achieve the

desired compression ratio. Considering the demonstrated reconstruction accuracy and

convergence rate of the SNN Auto Encoder, it can be concluded that the introduced model is one

of the first models which enables to use multilayer Auto Encoder using Spiking Neural

Networks.

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my supervisor, Dr. Charith Chitraranjan, for his

guidance and invaluable assistance by providing me useful knowledge materials, advice,

and supervision throughout this research work. His expertise and encouraging guidance

enabled me to complete my work successfully.

I am indebted to my parents for their love and untired support throughout my life.

TABLE OF CONTENT

DECLARATION .. i

ACKNOWLEDGEMENTS ... ii

ABSTRACT ... iii

TABLE OF CONTENT .. iv

LIST OF FIGURES ... vii

LIST OF TABLES .. viii

LIST OF ABBREVIATIONS ... ix

CHAPTER 1 INTRODUCTION .. 1

1.1 Auto Encoder ... 2

1.2 Learning in Auto Encoder .. 3

1.3 Auto Encoders using Spiking neural networks .. 3

1.4 Neuron Model for SNN ... 4

1.4.1 Leaky Integrate and Fire .. 4

1.4.2 Integrate and Fire (IF) (Non - leaky) ... 6

1.4.3 Spike Response Model (SRM) ... 7

1.5 Neural coding ... 8

1.5.1 Rate Coding ... 8

1.5.2 Temporal Coding ... 8

1.6 Motivation .. 9

1.7 Objective .. 10

2 CAHPTER 2 LITERATURE REVIEW .. 11

2.1 Spike Time Dependent Plasticity (STDP) for learning .. 12

2.1.1 Spike Time Dependent Plasticity (STDP) ... 12

2.1.2 Learning in SNN using STDP .. 13

2.2 Learning in SNN using temporal coding ... 14

2.2.1 Spike Prop .. 15

2.2.2 ReSuMe (Remote Supervised Method) ... 17

2.2.3 BP-STDP ... 19

2.2.4 Using back propagation for learning in SNN using temporal coding 21

2.3 Comparison of SNN Models .. 25

3 CAHPTER 3 METHODOLOGY AND IMPLEMENTATION ... 27

3.1 Using a SNN Model for Auto Encoder .. 28

3.2 Overview .. 29

3.3 Convert input/output values to spike times .. 33

3.4 Structure of the network .. 34

3.5 Error function for Auto Encoder .. 34

3.6 Python Implementation .. 35

4 CAHPTER 4 EXPERIMENTAL ANALYSIS & MODEL EVALUATION 39

4.1 Input Dataset .. 40

4.2 Performance Comparison with ANN AutoEncoder developed using Keras 41

4.3 Performance of Auto Encoder vs network structure .. 48

4.3.1 Performance vs Number of Hidden layers ... 49

4.3.2 Performance vs compression ratio ... 51

4.4 Hyper parameter analysis ... 53

4.4.1 Mini Batch Size ... 54

4.4.2 Learning Rate ... 55

4.4.3 Frobenius norm threshold .. 56

4.5 Hidden Layer Spike Time Analysis ... 56

4.6 Hardware information .. 59

5 CAHPTER 5 CONCLUSION... 60

5.1 Contribution ... 61

5.2 Limitations ... 61

5.3 Future work .. 62

REFERENCES .. 64

APPENDIX .. 67

LIST OF FIGURES

Figure 1.1 : Auto Encoder .. 2

Figure 1.2 : LIF Neuron modeled as a RC circuit .. 5

Figure 1.3 : A: Potential increase in LIF and IF models with time for a constant input current, B:

Firing rates against input current for LIF and IF models ... 6

Figure 1.4 : Kernel functions of SRM corresponding to each phase of membrane potential

change when an output spike is generated ... 7

Figure 2.1: Synaptic weight change against time gap between pre/post synaptic neuron spikes 13

Figure 2.2: Single connection between two neurons consist of different delays and weights 16

Figure 2.3: Weight adjustment with Spike trains. Si(t) – Input, So(t) – Actual Output, Sd(t) –

Desired Output ... 18

Figure 2.4: Membrane potential and summation of input synaptic current of a neuron changes as

per the input spike times .. 24

Figure 3.1 : Task wise flow of Auto Encoder model ... 32

Figure 3.2: Calculating derivative of output spike time w.r.t. synaptic weight 36

Figure 4.1: Training error curve Vs. Number of layers ... 50

Figure 4.2 : Training Error curve vs. Compression ratio 1 .. 52

Figure 4.3 : Training Error curve vs. Compression ratio 2 .. 53

Figure 4.4 : Training Error curve with Mini Batch size... 54

Figure 4.5 : Training Error curve with Learning Rate ... 55

Figure 4.6 : Training Error curve with Frobenius norm threshold ... 56

Figure 4.7: Reconstructions for sample 10 images: ... 57

Figure 4.8 : Heat map of Hidden layer spike time for different input images 58

LIST OF TABLES

Table 2.1: Comparison of SNN Models... 26

Table 3.1 : Hyper Parameters of the Auto Encoder Model .. 30

Table 3.2 Input value to spike time conversion ... 33

Table 4.1: [144 x 24 x 144] Reconstruction comparison ... 42

Table 4.2 : [144 x 48 x 24 x 48 x144] Reconstruction comparison 43

Table 4.3: [144 x 48 x 24 x 24 x 48 x144] Reconstruction comparison 44

Table 4.4 : [144 x 48 x 24 x 16 x 24 x 48 x144] Reconstruction comparison 46

Table 4.5 : Reconstruction Error comparison of SNN AutoEncoder vs. Standard

AutoEncoder (Optimizer - 'AdaDelata')... 47

Table 4.6 : Reconstruction Error comparison of SNN AutoEncoder vs. Standard

AutoEncoder (Optimizer -'SGD') ... 48

Table 4.7 : Reconstruction Error with number of layers.. 49

Table 4.8 : Network Structure vs. Training Error .. 50

Table 4.9 : Compression ratio vs Training error .. 51

Table 4.10 Training error after 100 epochs for different mini batch sizes 54

Table 4.11 : Avg. Spike generation time for hidden layer neurons 57

Table 4.12 : Hardware information .. 59

LIST OF ABBREVIATIONS

SNN Spiking Neural Network

ANN Artificial Neural Network

STDP Spike Time Dependent Plasticity

IF Integrate and Fire

LIF Leaky Integrate and Fire

SRM Spike Response Model

PSP Postsynaptic Potential

SGD Stochastic Gradient Decent

MSE Mean Squared Error

PSNR Peak Signal to Noise Ratio

1

1. CHAPTER 1

INTRODUCTION

1.1 Auto Encoder

Auto Encoder is implemented using a neural network to find out a compressed

representation for a data set through unsupervised learning. Auto Encoder neural

network consists of both Encoder and Decoder so that training of the network to Encode

and Decode (i.e. Reconstruction) is done simultaneously. Input is clamped to the Output

and bottlenecks are enforced at hidden layers as shown in Figure 1.1 so that all the

information cannot be propagated from the input layer to the output layer in a linear

manner and hidden layers provide a compressed representation for input and noise in the

inputs is removed.

Figure 1.1 : Auto Encoder

Auto Encoders are used in various applications and major applications are provided

below.

 Dimensionality reduction

 Feature Extraction

 Anomaly detection

 Noise reduction

1.2 Learning in Auto Encoder

Learning in auto Encoder falls under unsupervised learning as labels are not applicable

in this context and the compressed representation which is learned/revealed is

completely system decided. However, ultimately the output from the decoder should be

the same as the input to the encoder. Since, both the encoder and the decoder are trained

simultaneously using a single neural network, the desired output is known for an input.

Hence during the training, once an input is fed, parameters in the network need to be

adjusted so that actual output is similar to the desired output (For Auto Encoders, the

Desired output is same as the input as the aim is to reconstruct the input at the final layer

of the neural network). Therefore, unlike other unsupervised learning tasks, the error

between the desired output and actual output needs to be calculated and parameters need

to be adjusted accordingly to minimize the difference between desired and actual output.

1.3 Auto Encoders using Spiking neural networks

Conventional neural networks are based on neurons with mathematically defined

activation functions and continuous static (constant) input/output values of a neuron

within a computational clock cycle. Therefore Conventional neural networks are

fundamentally different from the mechanism which is used for signal passing in the

Mammalian Brain. SNN mimics the mechanism used in the brain for signal passing

where signals are passed as spikes and output from a neuron is generated due to

membrane potential difference reaching a threshold due to an input current spike.

Information is coded in spike rates and precise timing of spikes. Hence SNNs are

considered a closer step for understanding how the biological neural networks operate.

Also, SNNs are considered as low power consuming neural networks when implemented

on neuro-morphic hardware due to their sparse nature of spike occurring instead of static

continuous signals and maybe faster and lower computational cost than ANNs

depending on the underlying mathematical model used for implementation.

However, due to the difficulty in deriving differential equations for the activation

functions, models for training SNN using backpropagation are still not well established

specially for deep networks. There are several models that enable training SNN without

using backpropagation such as STDP, etc. Compared to ANNs, SNNs lag in terms of

accuracy.

1.4 Neuron Model for SNN

1.4.1 Leaky Integrate and Fire

In this model, the input current to a neuron is integrated and membrane potential in

increased as a result. Once the membrane potential is reached a threshold, output spike

is generated and the membrane potential is reset to a resting value and will not be fired

until a predefined refectory period. The neuron is modeled as a capacitor in parallel with

a resistor as shown in Figure 1.2.

Figure 1.2 : LIF Neuron modeled as a RC circuit

Below linear differential equation can be derived by applying equations in electrical

domain to the aforementioned RC circuit.

)()(tRItU
dt

du
m 

 (1)

U(t) is the potential at time t and τm is known as the time constant and equal to RC.

This equation can be extended further to derive equations to explain the dynamics of the

neuron when a constant input current (I0) is given as shown in Eq. (2) and an input spike

current is given (Dirac Delta function) as shown in Eq. (3) where q is the total charge

from the input spike current.

























m

t
RItU


exp1)(0

 (2)













mm

tR
qtU


exp)((3)

1.4.2 Integrate and Fire (IF) (Non - leaky)

In contrast to Leaky Integrate and Fire model, only a capacitor is present in the

equivalent circuit for Integrate and fire model. Hence, potential is derived by integrating

the current over time since last output spike (t̂) as shown in equation 4.



t

t

tI
C

tu
ˆ

)(
1

)(dt (4)

Figure 1.3 : A: Potential increase in LIF and IF models with time for a constant input

current, B: Firing rates against input current for LIF and IF models

Figure 1.3 shows how membrane potential is changed when input current is given in LIF

and IF neuron model and how firing frequency changes with the magnitude of the

constant input current.

1.4.3 Spike Response Model (SRM)

In contrast to Leaky Integrate and Fire model, in SRM, membrane potential depends on

the effects of input spikes since the last generated output spike. In this model, 3 Kernel

functions are used to model how the membrane potential changes respectively when an

input current is given, when a presynaptic neuron is fired and Hyper-polarization after

the output spike is generated. Hyper-polarization is shown in figure 1.4. In addition, the

increase in firing threshold after and output spike is generated is further discussed.

Figure 1.4 : Kernel functions of SRM corresponding to each phase of membrane

potential change when an output spike is generated

Eq. (5) represents the membrane potential as a function of combining all three Kernels

as follows. η represents the Hyper-polarization kernel and the last term of the equation

represents the kernel for the behavior when an input current is given. The second term

defines the effect on membrane potential when input spikes are received from

presynaptic neurons where wij represents synaptic weight between output neuron ‘i’ and

an input neuron ‘j’. ε represents the kernel for membrane potential change due to an

input spike occurred at time tj
(f).

dsstIsttKttttWtttU ext

i

j f

f

jiijijii)(.),ˆ(),ˆ()ˆ()(
0

)(  


 (5)

1.5 Neural coding

1.5.1 Rate Coding

In this model, it is assumed that information is encoded in the firing rate of spikes. It has

been observed that Rate Coding is used in Motor systems in early experiments. Spike

rate is scalar value averaged over a time period. Hence, small change spike count due to

noise does not impact the output drastically and therefore Rate Coding is considered to

be a noise-tolerant model [1].

There are 3 variations of Rate coding based on the way of averaging as follows. [2]

 Spike count rate averaged over a small time period (temporal average). Here, the

time period will be enough to capture spikes generated only for one input.

 Rate as a Spike Density Averaged over several runs. This type of coding

mechanism is highly unlikely to be used in biological neural networks as the

networks should be trained for each input sequence without waiting for

repetitions.

 Rate as a Population Activity (Average over several neurons). In this mode, it is

assumed that a set of identical neurons are present in a network and Rate is

derived for the neurons in the population and the model is backed by parts of the

mammalian visual cortex where segments of the cortex are responsive to

different types of inputs.

1.5.2 Temporal Coding

In Temporal coding, the main assumption is Information is coded in Precise timing of

the spike instead of the rate of spikes generated for an input. Compared to rate base

coding, noise may have major adverse effects on the accuracy of an output from a neural

network which uses temporal coding as a minor change in the time of spike will change

the output drastically. Hence, robustness in temporal coding is low compared to rate-

based coding. Some experimental researches suggest that temporal coding may be used

in the brain as the recognition of objects is done within few milliseconds which can be

done by processing the first spike only and it is unlikely that based coding is used as

processing the rate after receiving several spikes is time consuming [2].

1.6 Motivation

Though ANNs are inspired by biological networks, they deviate from biological

networks in terms of the mechanism used for passing signals through the network. Even

though Auto Encoders have been developed using Conventional Neural Networks, only

a few researches have been carried out in the domain of Auto Encoders using Spiking

Neural Networks. Especially there have been no researches that use Auto Encoder with

multiple hidden layers as per the knowledge of the author.

Also, SNN is considered as the 3rd generation Neural Networks as they are one step

closer to understand the mechanism of neural processing of the brain. Also, it is

considered that temporal coding may be the dominant coding scheme used in the brain

due to very low latency for certain tasks.

Using Spiking Neural Networks for an Auto Encoder instead of Conventional Neural

networks provides inherent advantages of SNNs such as low energy consumption

(especially for portable devices), faster outputs which are desirable for applications of

Auto Encoders such as Compression (Dimensionality reduction) and Noise reduction

which might make them useful for real time applications once the network is trained.

Temporal Coding scheme will further improve the speed and the energy efficiency of

network as it is not required to wait for all the spikes generated for an input during

computational clock cycle / maximum period to be waited (as per the range used in

temporal coding scheme) and only a handful of spikes is needed to be processed and

output can be provided.

Hence, developing a model for an Auto Encoder using the temporal coding scheme with

SNN is an appealing area for research.

1.7 Objective

The main reason for lack of development of models for Auto Encoder using SNN is that

usually Auto Encoders are trained using back propagation and back propagation cannot

be directly applied for Spiking Neural Networks.

Researches that explores methods of supervised learning for SNN using back

propagation and other learning mechanisms are discussed in the literature review

section.

The main objective is to come up with a model to use Spiking Neural Network with

temporal coding to develop an Auto Encoder with multiple layers.

2 CAHPTER 2

LITERATURE REVIEW

Even though LIF model is widely used for modeling neurons in SNN as it closely

approximates the actual behavior of biological neuron, it is difficult to use them for

computations (especially for supervised learning) as the equation which defines the

neuron dynamics is nonlinear.

Most of the models which are based on spikes use an equivalent version of ANN where

weight learning is done by converting spike rates / temporal coding to continuous static

value and feeding it to the equivalent ANN or vice versa (i.e. Train equivalent ANN and

use those weights for SNN). [3]

2.1 Spike Time Dependent Plasticity (STDP) for learning

2.1.1 Spike Time Dependent Plasticity (STDP)

STDP is believed to be the actual learning mechanism that is used in biological neural

networks. In STDP, the Weight of a connection between two neurons is adjusted based

on the time gap between spikes from pre-synaptic and post-synaptic neurons. If the

postsynaptic neuron is fired briefly after the pre-synaptic neuron is fired, the connection

weight is increased (Long Term Potentiation (LTP)) and if the postsynaptic neuron is

fired briefly before the presynaptic neuron is fired, the connection weight is decreased

(Long Term Depression (LTD)). Figure 2.1. Amount of weight change depends on the

time gap between spikes from pre-synaptic and post-synaptic neurons. (5)

 (5)

Figure 2.1: Synaptic weight change against time gap between pre/post synaptic neuron

spikes

2.1.2 Learning in SNN using STDP

STDP has been used for unsupervised learning and has achieved high accuracy rates

compared to other SNN models. And STDP learning rule has been used with other

network models such as CNN, with the aim of increasing the accuracy while getting a

step closer to biologically plausible neural networks. In [3], deep neural networks using

Spiking neurons have been implemented where the input layer of the network consists of

temporal coding (which coverts input image to a spike train) and remaining layers

correspond to Convolutional and Pooling layers. In convolutional layers, input spikes

are integrated and once the threshold is reached, output spikes are generated and




















 








 



otherwise
t

A

tif
t

A

w

2

2

1

1

exp

0exp





learning is done using STDP. This model has achieved an accuracy of 98.4% for MNIST

dataset.

Some of the models (especially, in classification) use competition strategy (‘winner

takes all’) with STDP to prevent other neurons from firing except for the winning

neuron [4], [5].

Due to the nature of learning rule of STDP, basic STDP model is not suitable for

learning by comparing actual output and desired output at final layer of the network as

in STDP, weights are not adjusted based on the error between expected output and

actual output, but based on the exact fire times of pre and postsynaptic neurons. Hence,

learning is STDP is considered as a local training mechanism. Hence, the basic form of

STDP cannot be used to train an SNN Auto Encoder [6].

However, a model has been developed for Auto Encoder using STDP learning known as

mirrored STDP (mSTDP) [5]. In the Mirrored STDP model, only two layers are there.

One layer does the encoding and the other layer does the decoding. But in the brain,

recognizing visual patterns is done using neural networks which consist of multiple

layers. Hence, this model deviates from the neural network that is used in the brain.

Also, few supervised learning models have presented which uses STDP and some of

them are discussed below [7], [8].

2.2 Learning in SNN using temporal coding

Learning in Conventional Neural Networks (ANN) is based on back propagation since

differential equations which are used can be fairly easily derived for a set of activation

functions including Sigmoid, tanh, ReLU, etc whereas it is very difficult to use back

propagation for learning in SNNs as deriving differential equations is not

straightforward due to the nature of the underlying mechanism used for passing

information in SNN. i.e. instead of continuous values, both inputs and outputs are

events (spikes) which are occurring within a certain time period determined by the

dynamics of the firing model of neurons.

Some of the researches have been carried out using substitute models for biological

neuron and derivatives have been obtained and hence enables to use of back propagation

for training[9],[10].

Several researches have been done and few models have been developed to enable

learning in SNN such as SpikeProp, ReSuMe, BP-STDP, and some well-recognized

models are further discussed in below sections.

2.2.1 Spike Prop

SpikeProp model [8] one of the earliest but successful models that enable supervised

learning in SNN. In this model, the Spike Response Model is used to model the output

spike generation when input spikes are given to a neuron. The kernel used in the Spike

Response model is given by equation (6)













tt

t 1exp)((6)

 
k

kik dttwtx)(.)( (7)

Fully connected feed forward networks are used and a connection between a pre-

synaptic neuron and postsynaptic neuron is considered to be consist of several sub

connections (synaptic terminals) each with different weights and predefined delays as

shown in figure 2.2. PSP dynamics of a neuron due to an input from a presynaptic

neuron is given by equation (7) where wk is the weight of a sub connection, ti is the input

spike time and dk is the delay associated with sub connection k. Also, it is assumed that a

neuron can fire only once for an input. This is imposed in the model by using a relatively

large postsynaptic time constant compared to the max value used in the temporal coding

used in the model.

Figure 2.2: Single connection between two neurons consist of different delays and

weights

Another important assumption made in this model is that the relationship between the

input to postsynaptic neuron and output spike time is linear for a small range around the

firing threshold. Due to this assumption, small learning rates must be used when using

this model. Using this assumption together with an equation for PSP in the Spike

Response model, equations for Error derivate with respect to weights of each sub

connection and input spike time from a hidden layer neuron are derived. These two

equations enable back propagation for learning in SpikeProp Model.

Spike Prop has achieved accuracies of 96.1% for IRIS data set and 97.0% for Wisconsin

breast cancer dataset. However, the assumption of a single connection between two

neurons consisting of multiple sub connections with predefined delays contradicts with

the actual structure of how biological neurons are connected and spikes are propagated

between them.

2.2.2 ReSuMe (Remote Supervised Method)

In ‘ReSuMe’ model [11] enables supervised learning and it is based on Widrow-Hoff

rule (also known as delta rule). Widrow-Hoff rule originates from the idea of gradient

descent especially for linear neural networks with the idea of updating the connection

weights based on the difference between the desired output and actual output as shown

in equation (8).

)()(oidiodi yxyxyyxw   (8)

In ‘ReSuMe’ model, the Widrow-Hoff rule has been applied by modeling input and

output from functions of Spike trains (spikes are modeled using Dirac delta function,

hence spike train is denoted by a sequence of delta functions). Hence, Equation 8 can be

seen as a combination of STDP processes, where the first term indicates how weight is

adjusted according to the correlation between input (Pre-Synaptic) spike train and

desired output Spike train. The second term expresses the anti-STDP process where

weight is adjusted according to the correlation between input (Pre-Synaptic) spike train

and actual output Spike train. The first STDP process derived analytically and has no

physical connection between input and desired output spikes, hence term ‘Remote’ is

added to the model name.

Using equations for correlation of Spike trains and assuming similar coefficients and

constants for two STDP processes (property of symmetry), learning rule is derived as

shown in equation (9). Hence, in ReSuMe model, supervised learning is achieved

without deriving the equation for back propagation. Weight adjustment as per the

precise time of spikes for an example scenario is shown in Figure 2.3.





  



dsstSsa
dt

tdw
idi

oi)()(a (t)]S - (t)[S
)(

0
dod (9)

Where,














otherwiseeA

sifeA
sa

id

di

s

id

s

di
di

)(

)(

0
)(





Figure 2.3: Weight adjustment with Spike trains. Si(t) – Input, So(t) – Actual Output,

Sd(t) – Desired Output

However, this model is applicable only for single layer neural networks and the basic

model is not directly extendable for the multi-layer network. This model can be

extended for multi-layer networks. Though the model is simple compared to other

gradient decent models, the model has not achieved a high level of accuracies.

2.2.3 BP-STDP

In this model, researchers have approximated the Integrate and Fire (IF) model to ReLU

(Rectified Linear) activation function. And then they have shown that function for

weight change composed of a STDP process and an anti-STDP process by applying the

derivative function of RELU for IF model in SNN [7].

In ReSuMe also (in the previous topic), they have shown that the function for weight

change consists of a STDP process and an anti-STDP process for linear neural networks,

but the methods of deriving this function for weight change is different. Hence, the

importance of BP-STDP model is that it has been shown gradient decent (subjected to

the aforementioned assumptions) is related to STDP where STDP is a biologically

plausible learning mechanism.

Approximation of the Integrate and Fire (IF) model to activation function is shown as

follows.

Activation Function f(y) for ReLU is given by (10) where, xh are the inputs and wh are

the associated weights.


h

hx y , y) 0, max(= f(y) hw (10)

Potential increase due to a set of input spikes (denoted by Dirac delta functions) to an

Integrate and Fire neuron during a short time period (t, t-α] is given by (11). For a given

input to the network (during a period T), assume the subject neuron’s Potential increase

reaches the threshold (θ) R times. i.e. Neuron fires R times. Here the number of Output

spikes is proportional to UTot given in (12) where r(t)=1 indicates where an output spike

is generated. If the potential increase does not reach the threshold, no output will be

generated. This is very similar to ReLU activation function given in (10) where output

value for positive values maps to number of spikes (R) in the Integrate and Fire model.

)')'(()( 




t

t t

p

h

h

h
p
h

dtttwtU


 (11)





}1)({

Tot)(U
trt

f

f

tU (12)

By Applying gradient decent for the networks of linear neurons, the Widrow-Hoff rule is

derived. Hence, weight change function can be derived to be consist of STDP and Anti-

STDP processes as mentioned in the previous model ‘ReSuMe’.

Then the BP-STDP model deviates from ReSuMe model in the way of weight update

using STDP learning rules. Short time periods are selected such that at most 1 actual

output spike / desired output spike is present. For target neurons (i.e. Neurons from

which the output spikes are desired), STDP learning rule is applied to increase the

weight whereas anti-STDP rule is applied to non-target neurons to reduce the weight

between connections as given in Eq. (13) and Eq. (14) where input last term in Eq. (13)

represents the input spikes during time period (t - ε, t) and the learning rate is µ.





t

tt

hiih tsttw



'

)'()(.)((13)















otherwise

rtzwhere

rtzwhere

t ii

ii

i

0

1,0)(,1

1,1)(,1

)( (14)

To come up with a weight update rule for synapses in hidden layers, initially, the chain

rule is applied to the network of ReLU neurons and then in the resulting equation for

weight update is modified for the SNN (Integrate and Fire model) by replacing constant

static values from integrals of presynaptic spikes with time. Then, the resulting equation

is further simplified, by selecting short time periods where at most a single desired /

actual postsynaptic spike is expected/generated. At, this stage local rule to update

weights between neurons in hidden layers (j and h) is derived as shown in Eq. (15).









  


otherwise

ttinswheretstwt
tw

i

t

tt

hjihi
hj

0

],[1,)'().()(.
)(

' 


 (15)

Model has achieved high accuracy for MNIST handwritten dataset classification

(97.2%).

Though the model has shown the relationship to Property of Biological plausibility using

STDP processes, there have been few unrealistic assumptions made. Initially, an

assumption to map IF neurons in SNN to ReLU in ANN and assumption is based on the

number of spikes generated for an input (much similar to Rate Coding). Then, the

Equation for weight change between hidden layer neurons in ANN using ReLU neuron

model (based on derivatives) is overridden by applying integrals with time and a simple

equation is obtained. This equation is unlikely to be obtained directly using formulas for

Spiking Neurons. Hence the provided equations are questionable.

2.2.4 Using back propagation for learning in SNN using temporal coding

In [12] Hesham Mostafa, has come up with a model for SNN using temporal coding and

derived differential equations enabling back propagation for learning. However, this

approach deviates from the property of biological plausibility as information required

for weight adjustment is not locally available.

In this mode, below assumptions are made.

1. Non - leaky integrate and Fire neuron model with exponentially decreasing input

current when an input spike is fed to a neuron.

2. A neuron is allowed to fire only once. (this is in line with the assumption made in

Model ‘Spike Prop’, early spikes are more important)

The model has achieved accuracies of 97.55% (2 layer) and 97.14% (3 layer) for the

classification of MNIST handwritten dataset. Initially, the input image is converted to

black and white from greyscale. Therefore only pixel values 0 and 255 are used for the

computation which results in a clear separation in pixel values as well as in z domain.

This enhances the accuracy of the classification task.

Since the model is based on, Non – Leaky Integrate and Fire model with exponentially

decreasing input current, Membrane potential dynamics can be simply expressed by Eq.

(16) where θ(x) is the Heaviside step function and tir denotes the spike time of rth input

spike from presynaptic neuron i.







r

tt

ir

i

ij

j syn

ir

ettW
dt

tdV 

)(

).(
)(

 (16)

Assuming at most one spike is fed by input neurons to the output neuron (Assumption 2)

and Membrane potential increase due to input spikes can be derived by integrating the

Eq. (16) w.r.t. time and given by Eq. (17).



















 syn

itt

ij

i

ij eWtttV


)(

1).()((17)

By setting Membrane potential just before generating an output spike to 1 and denoting

the set of input neurons (causal set) which fire before the output neuron by C, Output

spike time can be derived as shown in Eq. (18). Further, the time constant (τsyn) is set to

1 to further simplify the equation.












Ci

i

Ci

t

i
t

W

eW

e

i

out

1

)((18)

Equation is transformed to z-domain by transforming et to ‘z’ and Eq. (19) is derived.












Ci

i

Ci

ii

out
W

zW

z
1

 (19)

Hence as per Eq. (19) it can be seen that to fire a neuron, the summation of synaptic

weights should be greater than zero. And, another important property of this model, is

that input spikes to a neuron from neurons other than the ones in the causal set are

insignificant. (After the output neuron is fired, it is not fired for the input spikes received

from any input neuron). However, during learning, change in input spike time of a

particular presynaptic neuron may result in a drastic change in a causal set of a

postsynaptic neuron as shown in Figure 2.4 where the change in input spike time of 3rd

neuron has resulted in the removal of neuron 4 from the causal set.

Also, during learning, it has been observed that summation of weights around value 1,

may result in drastic changes in output as per Eq. (19), a small change in numerator can

change the output value drastically when the numerator value is closer to 0.

Figure 2.4: Membrane potential and summation of input synaptic current of a neuron

changes as per the input spike times

The linear relationship between output spike time with input spikes and synaptic weights

enables deriving simple differential equations for output spike time with respect to

synaptic weight and input spike time of input neuron ‘p’ as shown in Eq. (20) and Eq.

(21) which enables learning using back propagation in a multilayer network.














 


otherwise

Cpif
w

zz

dw

dz

Ci

i

outp

p

out

0

1 (20)










 


otherwise

Cpif
w

w

dz

dz

Ci

i

p

p

out

0

1 (21)

2.3 Comparison of SNN Models

Comparison of Candidate Models discussed in the above section in terms of accuracy

and the suitability in using them to implement an Auto Encoder with ability learn using

back propagation or similar mechanisms are provided in Table 2.1. Different models

have been tested on different data sets, hence evaluating those by comparing the

accuracy figures may not be ideal.

Model / Research

Paper

Classification

Accuracy

Supports

learning

using error

back

propagation

Comments

Train Equivalent

ANNs [3]

MNIST – 98% -

99.42%

YES

SpikeProp [13] IRIS - 96.1%

Wisconsin breast

cancer dataset –

97%

YES

ReSuMe [11] YES Only one layer is

trained, but model can

be extended for

multiple layer network

BP-STDP [7] IRIS – 96%

MNIST - 97.2 % (3

layer)

YES

Convolutional

Spiking Neural

Network with STDP

learning [14]

MNIST - 98.4 % NO

Simplified SNN with

SRM and STDP

learning algorithm

[4]

- NO Only two layers have

been used.

Mirrored STDP [15] - NO Only two layers have

been used.

Mostafa (2017)

Supervised learning

based on Temporal

coding in SNN [12]

MNIST –

 97.14% (3 layer)

97.55% (2 layer)

YES

Table 2.1: Comparison of SNN Models

3 CAHPTER 3

METHODOLOGY AND IMPLEMENTATION

3.1 Using a SNN Model for Auto Encoder

As discussed in the previous chapter, Auto Encoders using SNNs with high accuracy of

reconstruction have not been proposed and developed. Out of the several supervised

learning models for SNN based on temporal coding discussed in the previous chapter,

some of the models can be used to develop an Auto Encoder.

The selected model should be able to train the SNN by adjusting the weights for each

input (or for a set of inputs in each mini-batch) so that the reconstruction loss is

minimized. Suitability of models to adjusted weights in this manner is first considered.

Thereafter, the accuracy of the model and the simplicity in implementation and

computation efficiency are considered as the parameter to evaluate models.

BP-STDP [10] and Model introduced by Mostafa [11] are the best candidates for the

model for Auto Encoder as back propagation is supported by both models. Accuracy in

both these models is high and approximately the same. And the complexity in

implementing the Auto Encoder using any of these two models will be the same.

However, as mentioned in the literature review, equations derived for weight change are

questionable in BP-STDP model. In Mostafa’s model, a neuron is fired only once for an

input and encoding input value to the time of the first spike can be done directly. But in

BP-STDP, encoding the input may need to be done as per Rate Coding (spike train

should be generated at similar time intervals for an input and frequency of the spikes is

based on the input value) and computations and weight updates will involve for each of

these spikes. Hence, computational complexity/power consumption of BP-STDP will be

higher compared to Mostafa’s model.

Compared to other models, this model has the advantage of very rapid output generation

(for classification task) and very low power consumption if it is implemented on

Neuromorphic hardware as few numbers of neurons will be fired before the

classification is completed for a given input. The model introduced by Mostafa [12] is

selected for the Auto Encoder.

3.2 Overview

The flow of the Auto Encoder is shown in Figure 3.1. Once the image data set is loaded,

images will be resized as required. Any preprocessing steps can be applied here.

Preprocessed image is converted to input spike times and corresponding z-domain

values are derived as described in section3.2. Input spike times in z-domain are fed to

the Auto Encoder for training. During the training, reconstruction error is calculated in

z-domain and synaptic weights are adjusted accordingly as described in section 3.5.

After the Auto Encoder is trained, when the training data set is fed to the Auto Encoder,

similarly, input values are converted to spike times z-domain and output spike times in

z-domain with reconstruction error are provided. Finally, output spike times in z-domain

are converted back to pixel values and reconstructed images are displayed.

Before starting the training, Auto Encoder’s network structure (i.e. Number of hidden

layers and number of neurons in each layer) should be defined and fed to the Auto

Encoder model. Based on the network structure, synaptic weights are initialized in a

random manner.

Auto Encoder Model was implemented such that the model supports mini batch wise

training. Also, the number of times the model to traverse through all training data

(number of epochs) during the trained can be configured. Several other hyper parameters

are involved with the model and they are shown in the Table 3.1.

Hyper

parameter

Usage

Learning Rate Weight adjustment factor

(Similar to conventional Neural Networks)

L2

Regularization

Factor

L2 Regularization factor to prevent controlling the spike

generation time of the target neuron by one source neuron

alone. This done normalizing weights by applying L2

Regularization so that one input synaptic weight becoming too

large compared to all other input synaptic weights of the target

neuron.

Frobenius norm Regularization of weight modification values. If weight

modification value matrix between two layers exceeds a

predefined threshold, matrix values are normalized so that

drastic changes are not applied to the network.

Small weight

Adjustment

factor

If the summation of the synaptic weights of a target neuron is

less than 1, the neuron will not fire for any input pattern. To

eliminate such redundant neurons, all weights of a target

neuron are adjusted according to this hyperparameter.

Initial Sum of

weights

Initial synaptic weighs should be random. But the summation

of input weights of all neurons should exceed 1. Hence, this

parameter is used when generating the initial weight matrix.

Max Spike time Maximum allowed time for the neuron to fire. Typically set to

a large value compared to z-domain spike generation time for

black pixel (the allowed lowest input value).

Table 3.1 : Hyper Parameters of the Auto Encoder Model

Once the SNN Auto Encoder is trained, it is possible to extract the synaptic weights of

the whole network and create the Encoder and Decoder networks separately by applying

the relevant synaptic weights accordingly.

Outputs of the final layer neurons (i.e. spike generation times in z-domain) of the

Encoder network provide the compressed representation for the provided input image.

When the compressed representation (i.e. Spike generation times in z-domain) are fed to

the Decoder network, spike generation times of final layer neurons provide

corresponding values for the reconstruction.

Figure 3.1 : Task wise flow of Auto Encoder model

3.3 Convert input/output values to spike times

As the first step, input values should be encoded to spike times in a manner that supports

the regeneration of output values from spike times. As primarily the research is

developed focusing on the image data, a suitable conversion is required.

Some of the models (which were developed for classification task) coverts greyscale

pixel value to Black (0-pixel value) and White (255-pixel value) and the input spikes are

generated based on Black and white pixel value. This conversion may have caused in the

high classification accuracy. However, such conversions are not possible for an Auto

Encoder.

For image data, where pixel values are in the range of 0 to 255, the spike time range

should be defined. Hence, the corresponding spike time range is set to 3 to 0 (Higher the

value, lower the time to generate the spike). In the Auto Encoder, all the calculations are

done on the ‘z’ dimension where conversion from input spike time to corresponding ‘z’

domain value is derived by taking the exponential value of the input spike time. This

conversion is illustrated in Table 3.1.

Input Value (Pixel Value) Spike Time Z domain value

 (e(Spike Time))

0 3 20.0855

255 0 1

Table 3.2 Input value to spike time conversion

Similarly, the Auto Encoder’s output is converted back to the pixel value applying the

aforementioned conversion method.

3.4 Structure of the network

Implementation of Auto Encoder model is based on a fully connected feed-forward

network and it enables the user to configure the number of hidden layers and the number

of neurons in each layer. User can add the bottleneck to the network by setting a small

number of neurons in the hidden layers such that linear relationship cannot be

established in the network during learning.

3.5 Error function for Auto Encoder

All candidate models for SNNs discussed in the literature review, were developed for

classification tasks where the output layer consist of few neurons and error functions

used in those models are inappropriate for an Auto Encoder. Error function for Auto

Encoder is the summation of mean squared error for each output neuron given by Eq.

(22).

 
i

ectediactuali ddE 2

exp,,)(
2

1
 (22)

The above error function will be differentiated with respect to synaptic weights and

synaptic weights will be adjusted accordingly as shown in Eq. (23). Derivative functions

that were mentioned in the literature survey will be used to construct the algorithm for

learning using back propagation.

k

kkkk
dW

dE
wwherewww  1 (23)

A suitable adjustment factor is desirable to be used when comparing the expected and

actual output spike times to eliminate or minimize the effect of propagation delay in the

actual output spike time output. However, there is no direct forward method to calculate

the propagation error during the training phase of the Auto Encoder. i.e. Propagation

delay is incorporated in training error. Hence, when computing the error to adjust

synaptic weights using Eq. (22) and Eq. (23), the propagation delay is not considered.

However, once the Auto Encoder is fully trained, propagation error can be determined

by feeding an all-white image to the network. The minimum of the output spike

generation time (in z-domain) from all output neurons can be considered as the

propagation delay.

3.6 Python Implementation

Using the Mostafas model [1] for spiking neural networks, Auto Encoder was developed

using python from scratch. Below python Libraries were used.

 Numpy

 Scipy

 Random

 Matplotlib

 imageio

 inspect

Auto Encoder was developed function-wise where each function carries a specific task

allocated. Initially, to decide whether a neuron generates an output spike when the input

spike generation times from source neurons and the corresponding synaptic weights are

given, function ‘GetCausalSetWithOuputSpikeTime’ is implemented based on

mathematical Eq. (19). If the output neuron generates an output spike, the time of the

spike generation and the causal set is returned by the function. The causal set is the set

of input neurons which causes the output neurons to generate the output spike.

To calculate spike generation times of all neurons in the network, function

‘GetCausalSetWithOuputSpikeTime’ is called for each neuron in each layer in the

sequence of order of layers of the network. (i.e. Start with first hidden layer, and then

continue to next immediate layer). This is done by the function

‘GetOutputVectorSpikeTimes’. Besides calculating the output spike generation times,

derivative values of output spike generation time with respect to synaptic weight and

input spike time using Eq. (20) and Eq. (21) for each neuron in the network is also

calculated within this function to minimize the computation time as all the required

parameters are available, instead of implementing a new function to traverse through the

whole network once again to calculate derivatives.

To calculate the synaptic weight adjustment values using Eq. (23), it is required to

calculate the derivative values of final layer neurons’ output spike generation time with

respect to each synaptic weight in the network. This is behavior is implemented in the

function ‘CalculateFinalderivativesWRTWeights’.

Figure 3.2: Calculating derivative of output spike time w.r.t. synaptic weight

To adjust synaptic weights as per the reconstruction error, backpropagation is used by

calculating the derivative of Output Spike time w.r.t. a selected synaptic weight variable.

By applying the Multivariable chain rule (Eq. (24)) to the output spike generation time

function given in Eq. (19), it is possible to derive equations for desired derivative

functions of Output Spike time with respect to a given synaptic weight variable as

illustrated using Eq.(25) and Eq.(26) for the sample scenario represented in Figure 3.2.

y.dy/dtz/+x.dx/dtz/=dz/dt  (24)

For the scenario represented in Figure 3.2, the output spike time of a neuron in layer “d”

can be written as a multivariable function of spike times of neurons in immediate

previous layer (i.e. Layer “c”) using equation (19). Hence, Eq. (25) is derived by

applying Multivariable chain rule (Eq. (24)). Similarly, Eq. (26) is derived by applying

the same concept to 1st neuron in layer “c”. Likewise, applying the concept for each

neuron in the layer, the final equation can be derived.

1,1

2

2

1

1,1

1

1

1

1,1

1 ..
ba

c

c

d

ba

c

c

d

ba

d

dw

dz

dz

dz

dw

dz

dz

dz

dw

dz


 (24)

1,1

3

3

1

1,1

2

2

1

1,1

1

1

1

1,1

1 ...
ba

b

b

c

ba

b

b

c

ba

b

b

c

ba

c

dw

dz

dz

dz

dw

dz

dz

dz

dw

dz

dz

dz

dw

dz


 (25)

As described above, for a multilayer network, the final derivative equation consists,

primarily, multiple number of derivatives values corresponding to output spike time

w.r.t. input spike times (of neurons in succeeding layers) and one derivative value

corresponding to output spike time w.r.t given synaptic weight. Therefore, for each

neuron in the network, derivative corresponding to final layer neuron’s output spike time

w.r.t. spike time of the subject neuron is calculated. This functionality is implemented in

python function ‘CalculateFinalOutputDerivativeWRTInputSpikeTimes’. This function

is called from the function ‘CalculateFinalderivativesWRTWeights’ to calculate final

derivative values.

Once the final derivative values are derived, to calculate the weight adjustment values

for each synaptic weight, function ‘GetWeightAdjustmentArrayMap’ is used. Also as

described in the Mostafs’s model, the Frobenius norm threshold is used to avoid large

weight adjustments. When the summation of synaptic weights of a target neuron is

closer to 1, weight adjustment values can be very large which causes spikes in training

error where such non-smooth learning is discouraged. Hence weight adjustment values

are normalized using the Frobenius norm threshold. Also, if the summation of the

synaptic weights of a target neuron is less than 1, then a penalty value is adjusted to the

error function in the Mostafa’s model. This feature is used in the SNN Auto Encoder

model implementation also.

Also, the function ‘RegularizeWeight’ was implemented to enforce the L2 regularization

of synaptic weight array of a target neuron to avoid the scenario where one source

neuron purely determining the output spike generation time of a target neuron.

Additionally, functions were implemented to generate the initial synaptic weight matrix

when the network structure is given, convert image to spike time matrix (and vice

versa).

Example code snippet of training the network is provided below. Initially, all

configuration values of the model are set. Then the network structure is defined and the

initial synaptic weight matrix is generated (or if the network is already trained to a

certain extent, weight matrix snapshot can be loaded from disk). Then the input dataset

is loaded (in this context, MNIST handwritten digit data set) and the selected image set

is downsized. Then, iteratively trained the Auto Encoder. (Without explicitly calling

train data function, by setting a desired epoch value to the configuration

‘NUMBER_OF_ITERATIONS_OVER_TRAINNIG_DATA’, user can allow the

network to train over and over on the same data set).

4 CAHPTER 4

EXPERIMENTAL ANALYSIS & MODEL EVALUATION

4.1 Input Dataset

MNIST handwritten digit data set is used to evaluate the performance of the SNN Auto

Encoder. MNIST handwritten digit data set consists a total of 70,000 elements where

60,000 of them belong to the training data set and rest 10,000 elements are unlabeled.

The label of the data set is irrelevant in this context as Auto Encoders do not fall under

supervised training tasks.

Each image represents a digit and the size of the image is 28x28. As the data flow graph

technique is not used for the computations in the SNN Auto Encoder, the complexity,

time consumption (the number of clock cycles) for the computations and memory

consumption during the computations increases exponentially when the number of input

neurons increases.

For example, when the original image (28x28) is fed to the Auto Encoder with 1 Hidden

layer consisting of 196 neurons, dimensions of arrays that are used for computations in

SNN Auto Encoder will be 784x196. Hence the number of parameters to be trained will

be multiples of 784x196 (i.e. 153,664). However, if the original image downsized to

12x12 image, and Auto Encoder is used with 1 hidden layer with the same compression

factor (i.e. 4), the number of neurons in the hidden layer will be 36. Corresponding array

dimension will be 144x36 and number of parameters to be trained will be relatively very

low (i.e. 5184 – nearly 30 times lesser)

Hence, instead of using the original image which is 28x28 (i.e. 784 neurons in the input

and the output layers), each input image is downsized to a 12x12 image which is

adequate to represent the image. So the number of input/output neurons of the Auto

Encoder is set to 144.

4.2 Performance Comparison with ANN AutoEncoder developed using Keras

To demonstrate that the SNN Auto Encoder reconstructs the image comparatively to a

conventional Auto Encoder which has the same network structure, experiments were

carried out by setting similar values to common parameters as follows.

 Mini batch size = 5

 Number of epochs = 100

 Dataset size = First 100 images in MNIST handwritten digit data set (downsized

to 12x12)

A comparison between reconstructions by 3 layer SNN Auto Encoder and an equivalent

conventional Auto Encoder using Keras for a network structure 144x24x144 is shown in

Table 4.1. A similar comparisons are provided as follows. 5 layer Auto Encoder with

network structure 144x48x24x48x144 shown in Table 4.2, 6 layer Auto Encoder with

network structure 144x48x24x24x48x144 shown Table 4.3 in and 7 layer Auto Encoder

with network structure 144x48x24x16x24x48x144 shown in Table 4.4.

However, it should be noted that the comparative reconstructions by conventional Auto

Encoder (using Keras) are achieved using the optimizer ‘adadelta’. Reconstruction error

of conventional Auto Encoder with ‘SGD’ optimizer is significantly higher. The ‘SGD’

optimizer with a batch size (> 1) is equivalent to the training mechanism used in SNN

Auto Encoder whereas ‘adadelta’ is an improved optimization mechanism used by Keras

where the convergence rate is high (Accuracy can be less than the accuracy of ‘SGD’)

[16], [17]. Conventional Auto Encoder with ‘SGD’ optimizer requires 10,000 epochs to

generate an output with a decent reconstruction error. Therefore it can be concluded that

the SNN Auto Encoder outperforms equivalent conventional Auto Encoder in this case

by the convergence rate.

SNN Auto Encoder Keras-‘adadelta’-100 epochs Keras-‘SGD’-10,000 epochs

Table 4.1: [144 x 24 x 144] Reconstruction comparison

SNN Auto Encoder reconstruction Conventional Auto Encoder using

KERAs reconstruction

Table 4.2 : [144 x 48 x 24 x 48 x144] Reconstruction comparison

SNN Auto Encoder reconstruction Conventional Auto Encoder using

KERAs reconstruction

Table 4.3: [144 x 48 x 24 x 24 x 48 x144] Reconstruction comparison

SNN Auto Encoder reconstruction Conventional Auto Encoder using

KERAs reconstruction

Table 4.4 : [144 x 48 x 24 x 16 x 24 x 48 x144] Reconstruction comparison

Even though it is not possible to directly compare the error between SNN Auto Encoder

and equivalent conventional Auto Encoder as the outputs of SNN Auto Encoder are in z-

domain of output spike times, once the SNN Auto Encoder’s output is converted to pixel

values, reconstruction errors can be compared. Comparisons of reconstruction errors in

pixel values between SNN Auto Encoder and equivalent conventional Auto Encoder are

shown in Table 4.5 and Table 4.6. For the reconstruction error comparison, 2 metrics

were used.

 Mean Squared Error (MSE) in pixel values (where pixel value range is 0-255)

 Peak Signal-To-Noise Ratio (PSNR) – Higher PSNR values means lesser the

reconstruction error.

i.e. 𝑃𝑆𝑁𝑅 𝑣𝑎𝑙𝑢𝑒 = 20. 𝑙𝑜𝑔[
255

√MSE
]

Provided MSE value is the average MSE across all images used for the testing.

Minimum, maximum and average PSNR values provided (Minimum PSNR value is for

the most distorted image). From the MSE and PSNR values of the reconstructions, it can

be concluded that SNN Auto Encoder outperforms equivalent standard Auto Encoder.

Network

structure

SNN AutoEncoder Standard AutoEncoder

(‘AdaDelta’)

Mean

Squared

Error

PSNR Mean

Squared

Error

PSNR

Min Max Avg. Min Max Avg.

3 layers

144 x 24 x 144

(100 epochs)

353.92

19.94

26.96

23.03

2560.46

11.36

17.05

14.21

5 layers

144 x 48 x 24 x

48x 144

(150 epochs)

1097.15

13.90

24.76

18.49

2350.32

12.20

18.08

14.63

6 layers

144 x 48 x 24 x

24x 48x 144

(350 epochs)

1086.88

15.12

22.44

18.21

1246.21

14.21

24.90

17.84

7 layers

144 x 48 x 24 x 16

x 24x 48x 144

(350 epochs)

1170.20

14.61

22.21

17.99

1494.07

13.11

24.66

17.05

Table 4.5 : Reconstruction Error comparison of SNN AutoEncoder vs. Standard

AutoEncoder (Optimizer - 'AdaDelata')

Network

structure

SNN AutoEncoder Standard AutoEncoder

(‘sgd’)

Mean

Squared

Error

PSNR Mean

Squared

Error

PSNR

Min Max Avg Min Max Avg

3 layers

144 x 24 x 144

(100 epochs)

353.92

19.94

26.96

23.03

12051.05

6.70

7.89

7.33

5 layers

144 x 48 x 24 x 48x 144

(150 epochs)

1097.15

13.90

24.76

18.49

11617.34

6.80

7.99

7.49

6 layers

144 x 48 x 24 x 24x 48x

144

(350 epochs)

1086.88

15.12

22.44

18.21

11563.91

6.85

8.07

7.54

7 layers

144 x 48 x 24 x 16 x 24x

48x 144

(350 epochs)

1170.20

14.61

22.21

17.99

11655.50

6.80

8.05

7.48

Table 4.6 : Reconstruction Error comparison of SNN AutoEncoder vs. Standard

AutoEncoder (Optimizer -'SGD')

4.3 Performance of Auto Encoder vs network structure

During the experiments carried out, training error is in z-domain value for spike

generation time. As the minimum spike generation time and maximum spike generation

times are respectively set to 1 (i.e. exp(0)) and 20.0855 (i.e. exp(3)), percentage error

can be calculated as follows.

𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 𝑎𝑠 𝑎 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑠𝑝𝑖𝑘𝑒 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛

(𝑒3−𝑒0)
 % (26)

4.3.1 Performance vs Number of Hidden layers

To analyze the impact of number of layers of the network on performance in terms of

the reconstruction error and the number of epochs to train the network such that the

training reconstruction error reaches an acceptable level, experiments were carried out

using Auto Encoders with different number of layers. As shown in the Figure 4.1 and

Table 4.8, number of iterations to train the network increases drastically with the

number of layers of the Auto Encoder. This behavior is in line with training of

conventional artificial neural networks with any training mechanism based on

backpropagation (i.e. gradient decent, stochastic gradient decent and Mini Batch) due to

the increased number of parameters to be learned and other inherent issues in

backpropagation such as vanishing gradient problem.

Network structure SNN AutoEncoder

Mean Squared Error PSNR

Min Max Avg

3 layers

144 x 24 x 144

(100 epochs)

353.92

19.94

26.96

23.03

5 layers

144 x 48 x 24 x 48x

144

(150 epochs)

1097.15

13.90

24.76

18.49

6 layers

144 x 48 x 24 x 24x

48x 144

(350 epochs)

1086.88

15.12

22.44

18.21

7 layers

144 x 48 x 24 x 16 x

24x 48x 144

(350 epochs)

1170.20

14.61

22.21

17.99

Table 4.7 : Reconstruction Error with number of layers

Also from Table 4.7, it can be seen that reconstruction error increases from MSE and

PSNR values when the number of layers is increased. SNN Auto Encoders with higher

number could be trying to learn general representations (higher order features) and

hence the reconstruction error could be higher. However to analyze this behavior,

extensive tests will have to be carried to out.

Figure 4.1: Training error curve Vs. Number of layers

Network Structure Number of epochs to

Achieve acceptable

training error

Training error at the

end of the training

phase

144x24x144 100 0.697021465

144x48x24x48x144 200 1.197019799

144x48x24x24x48x144 350 1.150954263

144x48x24x16x24x48x144 350 1.431811091

Table 4.8 : Network Structure vs. Training Error

0

2

4

6

8

10

12
1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1
1

1
1

1
2

1
1

3
1

1
4

1
1

5
1

1
6

1
1

7
1

1
8

1
1

9
1

2
0

1
2

1
1

2
2

1
2

3
1

2
4

1
2

5
1

2
6

1
2

7
1

2
8

1
2

9
1

3
0

1
3

1
1

3
2

1
3

3
1

3
4

1

Tr
ai

n
in

g
er

ro
r

epoch number

Training error curve Vs. Number of layers

5 Hidden Layers
144x48x24x16x24x48x144

4 Hidden layers
144x48x24x24x48x144

3 Hidden layers
144x48x24x48x144

1 Hidden layer
144x24x144

4.3.2 Performance vs compression ratio

To analyze the impact of Compression ratio on performance of the SNN Auto Encoder

in terms of the number of epochs to train the network such that the training

reconstruction error reaches an acceptable level, experiments were carried out by setting

the number of neurons in the hidden layer to achieve the desired compression ratio as

shown in Table 4.9. Auto Encoder with 1 hidden layer is used for the test. (200 images

were used for the test)

From Table 4.9 and Figure 4.2 / Figure 4.3, it can be seen that when the compression

ratio increases, the training reconstruction error increases. This is in line with the general

fact that in lossy compressions, the reconstruction error increases with the compression

ratio.

Compression

ratio

Number of Neurons

in Hidden Layer

Training error after 50 epochs

Mini Batch size = 5 Mini Batch size =

10

9:1 16 1.200582669

(6.29%)

1.566901714

(8.21%)

6:1 24 0.982066042

(5.15%)

1.174818221

(6.15%)

4.5:1 32 0.879138981

(4.60%)

1.139022948

(5.97%)

3.6:1 40 1.05927208

(5.55%)

1.078116341

(5.65%)

3:1 48 0.883807026

(4.63%)

1.575804122

(8.26%)

Table 4.9 : Compression ratio vs Training error

Figure 4.2 : Training Error curve vs. Compression ratio 1

0

2

4

6

8

10

12

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Tr
ai

n
in

g
Er

ro
r

Epoch Number

Training Error curve vs. Compression ratio (Mini batch size = 5)

HIDDEN_LAYER_NUERONS =
16
MINI_BATCH_SIZE = 5

HIDDEN_LAYER_NUERONS =
24
MINI_BATCH_SIZE = 5

HIDDEN_LAYER_NUERONS =
32
MINI_BATCH_SIZE = 5

HIDDEN_LAYER_NUERONS =
40
MINI_BATCH_SIZE = 5

HIDDEN_LAYER_NUERONS =
48
MINI_BATCH_SIZE = 5

Figure 4.3 : Training Error curve vs. Compression ratio 2

4.4 Hyper parameter analysis

The training performance of Auto Encoder with respect to each hyperparameter is

discussed below. All experiments were carried out with the below configurations.

 3 Layer SNN Auto Encoder (1 hidden layer)

 SNN Auto Encoder with network structure – 144x24x144 (Compression ratio

6:1)

 200 images were used for the training.

0

2

4

6

8

10

12

1 3 5 7 9 1113151719212325272931333537394143454749

Tr
ia

in
g

Er
ro

r

Epoch Number

Training Error curive Vs. Compression ratio (Mini Batch Size = 10)

HIDDEN_LAYER_NUERONS =
16
MINI_BATCH_SIZE = 10

HIDDEN_LAYER_NUERONS =
24
MINI_BATCH_SIZE = 10

HIDDEN_LAYER_NUERONS =
32
MINI_BATCH_SIZE = 10

HIDDEN_LAYER_NUERONS =
40
MINI_BATCH_SIZE = 10

4.4.1 Mini Batch Size

To analyze the impact of Mini Batch Size on the training performance of the SNN Auto

Encoder, individual tests were carried out with different Mini Batch Sizes. Training

error at each epoch number is shown for Mini Batch sizes 2, 5, and 8 in Figure 4.4. It is

observed that training error minimizes quickly for lower Mini Batch sizes (For lower

Mini Batch sizes, learning is achieved quickly). However, in all cases, after 100 epochs

training error is recovered to acceptable values as shown in Table 4.10.

Figure 4.4 : Training Error curve with Mini Batch size

Mini Batch size Training Error after 100 epochs

2 0.609811117 (3.20%)

5 0.648047928 (3.40%)

10 0.777276331 (4.07%)

Table 4.10 Training error after 100 epochs for different mini batch sizes

0

2

4

6

8

10

12

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Tr
ai

n
in

g
Er

ro
r

epoch number

Training Error change with Mini Batch Size

MiniBatch Size = 5 MiniBatch Size = 2 MiniBatch Size = 10

4.4.2 Learning Rate

To analyze the impact of Mini Batch Size on the training performance of the SNN Auto

Encoder, individual tests were carried out with different learning rates. Training error at

epoch number is shown in Figure 4.5 for learning rates from 0.0005 to 0.1. It is observed

that the training error smoothly diminished for learning rates in range 0.0005 to 0.001.

For higher learning rates, peaks in the training error can be observed. Such peaks in the

training error can be caused by large adjustments of synaptic weights so that the drastic

changes in input spike times and causal sets associated with neurons in the layers in the

latter part of the network.

Figure 4.5 : Training Error curve with Learning Rate

0

2

4

6

8

10

12

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Tr
ai

n
in

g
Er

ro
r

epoch number

Training Error curve with Learning Rate

LR = 0.0005

LR = 0.005

LR = 0.001

LR = 0.01

LR = 0.05

LR = 0.1

4.4.3 Frobenius norm threshold

To analyze the impact of Frobenius norm threshold on the training performance of the

SNN Auto Encoder, individual tests were carried out with different Frobenius norm

threshold values as shown in Figure 4.6 . To avoid applying large adjustment values to

synaptic weights, Frobenius normalization is applied as discussed in section 3.6. (When

summation of synaptic weights of a target neuron is closer to 1, weight adjustment

values will large). From Figure 4.6, it is observed that when small adjustments to

synaptic weights are allowed, the Auto Encoder network’s weights are changed

drastically which leads to unsuccessful learning.

Figure 4.6 : Training Error curve with Frobenius norm threshold

4.5 Hidden Layer Spike Time Analysis

Figure 4.8 shows a heat map of the hidden layer spike generation times of an SNN Auto

Encoder with 1 hidden layer consisting of 24 neurons for 10 input images shown in

0

2

4

6

8

10

12

14

16

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Tr
ai

n
in

g
Er

ro
r

epoch number

Training Error curve with Frobenius norm threshold

FR_NORM = 0.002

FR_NORM = 0.02

FR_NORM = 0.2

FR_NORM = 2.0

Figure 4.7. The SNN Auto Encoder was trained for 100 input images. By analyzing the

heat map, it can be identified that for this set of input images, some of the neurons in

hidden layers do not represent descriptive information or they represent redundant

information. (E.g. Neuron index 14 has generated spikes for inputs early for all input

images). This supposition can be confirmed by analyzing the average spike generation

time for each neuron in the hidden layer across all 100 training input images is shown in

Table 4.11 (Average spike generation time for Neuron index 14 is at a minimum level

and this neuron generates an early spike for input images, hence the neuron can be

considered as redundant).

Also, it can be identified that hidden layer spike generation times (compressed

representation) have a higher correlation for similar input images from the heat map

shown in Figure 4.8.

Neuron
Index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Avg.
Spike
 Time 9.3 7.3 18 12 20 12 7.4 12 11 12 7.9 9.9 13 1.8 18 7.8 21 12 15 18 16 21 12 7.7

Table 4.11 : Avg. Spike generation time for hidden layer neurons

Figure 4.7: Reconstructions for sample 10 images:

Input

 Image
 Index

0 1 2 3 4 5 6 7 8 9

Neuron
Index

1 3.041 7.382 8.117 10.86 8.079 2.642 8.562 1.319 17.18 20.26

2 1.802 1.865 21.62 16.56 6.691 20.25 10.29 5.029 10.67 8.564

3 8.472 15.51 18.59 19.94 22.67 3.491 21.19 10.95 21.4 20.37

4 20.38 4.84 2.674 20.64 2.324 4.976 21.79 6.907 22.18 1.973

5 20.28 21.05 17.49 20.34 22 21.85 20.45 21.12 21.18 21.62

6 2.536 3.689 19.69 2.791 9.33 14.63 17.35 6.841 20.3 21.2

7 11.08 2.213 20.4 6.612 3.066 1.867 13.17 1.391 18.27 3.778

8 14.12 1.866 22.5 13.79 24.17 2.162 14.47 5.082 20.93 21.71

9 5.202 17.99 2.447 11.31 20.48 21.46 15.04 6.503 20.22 4.242

10 14.35 16.92 14.42 21.07 5.169 3.534 1.635 21.08 2.608 20.72

11 20.54 14.23 3.457 1.654 2.517 4.216 21.33 5.786 21.22 3.962

12 15.61 4.528 16.2 1.754 13.74 6.776 19.17 10.41 15.29 4.606

13 15.68 2.386 19.74 20.11 7.829 14.07 21.72 13.69 21.03 11.08

14 1.713 1.721 2.954 1.647 1.716 1.811 1.384 1.32 2.445 1.653

15 14.68 9.506 15.87 18.55 21.53 20.85 19.52 20.6 20.66 20.43

16 10.65 16.32 17.37 9.561 2.408 2.695 1.317 9.772 2.199 1.503

17 22.38 2.541 3.32 20.67 23.62 22.4 26.04 21.55 24.86 21.78

18 2.046 6.051 20.49 6.069 23.22 5.307 20.7 15.27 21.41 3.977

19 16.88 22.22 13.02 20.61 2.926 22.45 2.146 18.02 3.285 22.4

20 3.52 17.17 11.08 9.83 23.37 21.21 21.77 5.478 21.56 4.938

21 4.474 20.75 2.777 16.01 23.45 16.57 22.29 2.758 22.93 20.68

22 10.34 10.67 15.93 23.08 24.85 26.89 21.47 21.66 21.08 18.6

23 11.99 10.24 3.558 14.15 20.79 20.79 8.579 7.004 20.38 10.51

24 1.924 6.689 20.93 1.509 23.37 10.97 1.794 1.54 5.333 16.46

Figure 4.8 : Heat map of Hidden layer spike time for different input images

4.6 Hardware information

Tests were executed on Redhat Linux 7.2 operating system. Hardware specifications are

shown in Table 4.12. Python 3.6 version is used.

Property Value

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit

Byte Order: Little Endian

CPU(s): 4

On-line CPU(s) list: 0-3

Thread(s) per core: 1

Core(s) per socket: 2

Socket(s): 2

NUMA node(s): 1

CPU family: 6

CPU MHz: 3465.680

BogoMIPS: 6931.36

Virtualization type: full

L1d cache: 32K

L1i cache: 32K

L2 cache: 4096K

NUMA node0 CPU(s): 0-3

Table 4.12 : Hardware information

5 CAHPTER 5

CONCLUSION

5.1 Contribution

As discussed in the literature survey, there are only a handful of Auto Encoder models

developed using Spiking Neural Networks. None of them supports Auto Encoders with

multiple layers as per the knowledge of the author. In this research, a model has been

introduced for Auto Encoder and implemented which supports multiple hidden layers

and the model is based on spiking neural networks using the temporal coding scheme.

Experimental evidence shows that the performance (in terms of reconstruction error) of

the new SNN Auto Encoder is in par with the performance of conventional Auto

Encoder with a similar network structure and in fact in certain experiments, SNN Auto

Encoder shows superior performance compared to the equivalent conventional Auto

Encoder in terms of convergence rate.

Also, it suggests that the power consumption could be low when implemented on neuro-

morphic hardware as the SNN model uses Temporal Coding Scheme and one neuron is

allowed fire only once.

5.2 Limitations

The required number of passes through the data set (epochs) to train the network

increases with the number of layers of the network. Even though the model enables the

user to configure an Auto Encoder with any number of layers, a high number of training

epochs will make the user reluctant to go for deep Auto Encoders. This behavior is

similar to the training in conventional neural networks that use backpropagation to

adjust network parameters where issues such as vanishing gradient come into play [18].

Also, as per the current implementation, the time required for computations increases

exponentially with the dimension of input images which urges the user to resize the

input image to an acceptable level before feeding to the Auto Encoder.

5.3 Future work

Calculations in the python implementation of the SNN Auto Encoder model are

basically based on multi-dimensional ‘numpy’ arrays. Support of ‘numpy’ library for

mathematical operations on multi-dimensional arrays and linear algebra functions such

as Frobenius norm has leveraged the implementation of the SNN Auto Encoder network.

However, computation time increases exponentially with the size of the ‘numpy’ multi-

dimensional arrays. This is the primary reason to downsize the input image before

feeding to the SNN Auto Encoder during the experiments. Also, when the number of

layers in the Auto Encoder is increased, training time increases exponentially as the

number of multi-dimensional arrays involved in computations increases. As a result,

even though the model is capable of creating Deep SNN Auto Encoders (as the

implementation enables the user to provide the number of layers as a parameter when

declaring the Auto Encoder instance), a significant time period is required to train such

Deep SNN Auto Encoders compared to the training time of Conventional Deep Auto

Encoders implemented using libraries such as Keras.

These bottlenecks can be avoided by incorporating libraries such as ‘Theano’ and

‘TenserFlow’ to optimize the multi-dimensional array calculations using data flow /

tenser programming techniques [19]. Current python implementation will need

significant changes to incorporate such data flow programming techniques enhanced

with GPU support.

Also, to resolve aforementioned scalability issues, it is possible to use services provided

by AWS (such as EC2 / Amazon Machine Image) and Google Cloud AI (with tenser

flow) where GPUs, and TPUs / ASIC (Application Specific Integrated Circuits) can be

used which will speed up the computations when training the AutoEncoder for large

data sets.

When using the AutoEncoder model for different image datasets, several preprocessing

steps will be required such resizing, removing noise (or add noise for De-noising

AutoEncoders) and morphing. Also, when applying the AutoEncoder model for data sets

other than image data, suitable coding mechanism is needed.

In addition, other optimizers such as NAG, ‘adagrad’, ‘adadelta’/‘RMSProp’ etc. can be

implemented for the Auto Encoder model to support fast training at the cost of the

reconstruction error.

REFERENCES

[1] M. Kiselev, “Rate coding vs. temporal coding - Is optimum between?,” Proc. Int.

Jt. Conf. Neural Networks, vol. 2016-Octob, no. November, pp. 1355–1359,

2016, doi: 10.1109/IJCNN.2016.7727355.

[2] Tim Utz Krause, “Rate Coding and Temporal Coding in a Neural Network,”

Thesis Diss., 2014, [Online]. Available:

http://www.ini.rub.de/PEOPLE/rolf/articles/krausetim-msc.pdf.

[3] E. Hunsberger and C. Eliasmith, “Spiking Deep Networks with LIF Neurons,” pp.

1–9, 2015, [Online]. Available: http://arxiv.org/abs/1510.08829.

[4] T. Iakymchuk, A. Rosado-Muñoz, J. F. Guerrero-Martínez, M. Bataller-

Mompeán, and J. V. Francés-Víllora, “Simplified spiking neural network

architecture and STDP learning algorithm applied to image classification,”

Eurasip J. Image Video Process., 2015, doi: 10.1186/s13640-015-0059-4.

[5] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural networks

using backpropagation,” Front. Neurosci., vol. 10, no. NOV, pp. 1–10, 2016, doi:

10.3389/fnins.2016.00508.

[6] M. Kiselev, “A synaptic plasticity rule providing a unified approach to supervised

and unsupervised learning,” Proc. Int. Jt. Conf. Neural Networks, vol. 2017-May,

no. May 2017, pp. 3806–3813, 2017, doi: 10.1109/IJCNN.2017.7966336.

[7] A. Tavanaei and A. Maida, “BP-STDP: Approximating backpropagation using

spike timing dependent plasticity,” Neurocomputing, 2019, doi:

10.1016/j.neucom.2018.11.014.

[8] H. Paugam-Moisy, R. Martinez, and S. Bengio, “A supervised learning approach

based on STDP and polychronization in spiking neuron networks,” ESANN 2007

Proc. - 15th Eur. Symp. Artif. Neural Networks, pp. 427–432, 2007.

[9] A. Tavanaei, M. Ghodrati, S. R. Kheradpisheh, T. Masquelier, and A. Maida,

“Deep learning in spiking neural networks,” Neural Networks. 2019, doi:

10.1016/j.neunet.2018.12.002.

[10] A. Kasiński and F. Ponulak, “Comparison of supervised learning methods for

spike time coding in spiking neural networks,” International Journal of Applied

Mathematics and Computer Science. 2006.

[11] F. Ponulak and A. Kasiński, “Supervised learning in spiking neural networks with

ReSuMe: Sequence learning, classification, and spike shifting,” Neural

Computation. 2010, doi: 10.1162/neco.2009.11-08-901.

[12] H. Mostafa, “Supervised learning based on temporal coding in spiking neural

networks,” IEEE Trans. Neural Networks Learn. Syst., 2018, doi:

10.1109/TNNLS.2017.2726060.

[13] S. M. Bohte, H. La Poutré, and J. N. Kok, “Error-Backpropagation in Temporally

Encoded Networks of Spiking Neurons,” Neurocomputing, 2000.

[14] S. R. Kheradpisheh, M. Ganjtabesh, S. J. Thorpe, and T. Masquelier, “STDP-

based spiking deep convolutional neural networks for object recognition,” Neural

Networks, 2018, doi: 10.1016/j.neunet.2017.12.005.

[15] K. S. Burbank, “Mirrored STDP Implements Autoencoder Learning in a Network

of Spiking Neurons,” PLoS Comput. Biol., 2015, doi:

10.1371/journal.pcbi.1004566.

[16] S. Ruder, “An overview of gradient descent optimization algorithms,” pp. 1–14,

2016, [Online]. Available: http://arxiv.org/abs/1609.04747.

[17] S. Sun, Z. Cao, H. Zhu, and J. Zhao, “A Survey of Optimization Methods From a

Machine Learning Perspective,” IEEE Trans. Cybern., pp. 1–14, 2019, doi:

10.1109/tcyb.2019.2950779.

[18] R. Grosse, “Exploding and Vanishing Gradients,” Cs.Toronto.Edu, pp. 1–11,

2017, [Online]. Available:

http://www.cs.toronto.edu/~rgrosse/courses/csc321_2017/readings/L15

Exploding and Vanishing Gradients.pdf.

[19] A. Shatnawi, G. Al-Bdour, R. Al-Qurran, and M. Al-Ayyoub, “A comparative

study of open source deep learning frameworks,” 2018 9th Int. Conf. Inf.

Commun. Syst. ICICS 2018, vol. 2018-Janua, no. April, pp. 72–77, 2018, doi:

10.1109/IACS.2018.8355444.

APPENDIX

Python implementations for functions mentioned in section 3.6 are provided below.

#!/usr/bin/env python

#imports
import sys
import inspect
import imageio
import os

import numpy as np
from numpy import linalg as LA
from random import shuffle
import matplotlib
from matplotlib import pyplot as plt
import scipy
import scipy.misc
from PIL import Image

EXP_MAX_SPIKE_TIME = np.exp(3)

FUNCTION_LOG_LEVELS= {
 "GetCausalSetWithOuputSpikeTime": 0,
 "GenerateWeightMatrix": 0,
 "GetOutputVectorSpikeTimes": 0,
 "CalculateFinalOutputDerivativeWRTInputSpikeTimes": 0,
 "CalculateFinalderivativesWRTWeights":0,
 "GetWeightAdjustmentArrayMap":0,
 "regularizeWeight":0
}

Figure A: 1 Imports and Definitions

def DEBUGPRINT(LogLevel, callerFunctionName, *args, **kwargs):
 allowewdLogLevel = 2
 allowewdLogLevel = FUNCTION_LOG_LEVELS.get(callerFunctionName, 2)
 if allowewdLogLevel >= LogLevel:
 print("__",callerFunctionName,"__"+" \t".join(map(str,args))+"", **kwargs)

Figure A: 2 Log print function

def GenerateWeightMatrix(neuronCountArray):
 numberOfLayers = len(neuronCountArray)
 weghitMatrixList = [None] * (numberOfLayers - 1)

 for layerIndex in range(1,numberOfLayers): #first layer is input layer, so no weights associated
 currentLayerNeuronCount = neuronCountArray[layerIndex]
 previousLayerNeuronCount = neuronCountArray[layerIndex - 1]

 initialWeightPerNeuron = INITIAL_SUM_OF_WEIGHTS_PER_NEURON / previousLayerNeuronCount
 currentLayerWeightMatrix = np.full((previousLayerNeuronCount,currentLayerNeuronCount), initialWeightPerNeuron)
 for prevNeuronIndex in range(0,previousLayerNeuronCount):
 for currNeuronIndex in range(0,currentLayerNeuronCount):
 perturbationFactor = ((np.random.rand(1)[0]) / 10)
 currentLayerWeightMatrix[prevNeuronIndex][currNeuronIndex] = (currentLayerWeightMatrix[prevNeuronIn-

dex][currNeuronIndex])*perturbationFactor

 weghitMatrixList[layerIndex - 1] = currentLayerWeightMatrix
 return weghitMatrixList

Figure A: 3 Function to generate initial weight matrix

def GetCausalSetWithOuputSpikeTime(inputSpikeTimeArr,weightVector):
 causalIndexSet = np.empty(shape=(0, 0))
 estimatedOutputSpTime = MAX_SPIKE_TIME
 totalWeight = 0.0

 inputTimeColIndex = 1
 inputWeightColIndex = 2
 ArrayIndexColIndex = 0

 if len(inputSpikeTimeArr) != len(weightVector):
 raise Exception('Mismathced array lengths in GetCausalSet function!')

 numberOfInputNeurons = len(inputSpikeTimeArr)
 neuronIndexSet = np.arange(numberOfInputNeurons)
 neuronIndexSet = np.reshape(neuronIndexSet, (numberOfInputNeurons, 1))
 mergedArray = np.concatenate((neuronIndexSet,inputSpikeTimeArr,weightVector),axis=1)
 sortedinputSpikeTimeArr =

mergedArray[np.lexsort((mergedArray[:,ArrayIndexColIndex],mergedArray[:,inputWeightColIndex],mergedArray[:,inputTimeColIn

dex]))]

 for nueronIndex in range(0, numberOfInputNeurons):
 if nueronIndex == (numberOfInputNeurons - 1):
 nextInputSpikeTime = MAX_SPIKE_TIME
 else:
 nextInputSpikeTime = sortedinputSpikeTimeArr[(nueronIndex+1),inputTimeColIndex]

 totalWeight = sortedinputSpikeTimeArr[:(nueronIndex+1),inputWeightColIndex].sum()
 if totalWeight > 1:
 inputSpikeTimeBywieght = 0
 for neuronInnerIndex in range(0, (nueronIndex+1)):
 inputSpikeTimeBywieght +=

sortedinputSpikeTimeArr[neuronInnerIndex,inputTimeColIndex]*sortedinputSpikeTimeArr[neuronInnerIndex,inputWeightColIndex]

 estimatedOutputSpTime = inputSpikeTimeBywieght / (totalWeight - 1)
 if estimatedOutputSpTime < nextInputSpikeTime:
 causalIndexSet = sortedinputSpikeTimeArr[0:(nueronIndex+1),ArrayIndexColIndex]
 return causalIndexSet,estimatedOutputSpTime,totalWeight

 estimatedOutputSpTime = MAX_SPIKE_TIME
 totalWeight = 0.0
 return causalIndexSet,estimatedOutputSpTime,totalWeight

Figure A: 4 Function to get output spike time with causal set

def GetOutputVectorSpikeTimes(inputTimesArray, neuronCountArray,weightMatrixList):

 numberOfProcessingLayers = len(weightMatrixList)
 neuronCountInOutputLayer = neuronCountArray[len(neuronCountArray) - 1]
 outputSpikeTimeArray = np.full((1, neuronCountInOutputLayer), MAX_SPIKE_TIME)

 #Variables to store data required for differentiation calculations
 ds_causelSetForNN = []
 ds_outputSpikeTimeForNN = [None]*(numberOfProcessingLayers)
 ds_DERWRTspikeTime = [None]*(numberOfProcessingLayers)
 ds_DERWRTspikeTime = [None]*(numberOfProcessingLayers)

 currentLayerOutputSpikeTimeArray = np.asarray(inputTimesArray)

 for layerIndex in range (1,(numberOfProcessingLayers+1)): #Lets ignore input layer. Start from 1st hidden layer

 numberOfNeuronsInPrevLayer = neuronCountArray[layerIndex - 1]
 numberOfNeuronsInCurrentLayer = neuronCountArray[layerIndex]

 DEBUGPRINT(2, 'GetOutputVectorSpikeTimes','In GetOutputVectorSpikeTimes function, Processing the layer : ',

layerIndex,', numberOfNeuronsInPrevLayer : ',numberOfNeuronsInPrevLayer
 ,'numberOfNeuronsInCurrentLayer',numberOfNeuronsInCurrentLayer)

 ds_DERWRTspikeTime[layerIndex - 1] = np.full((numberOfNeuronsInPrevLayer, numberOfNeuronsInCurrentLayer), 0.0)
 ds_DERWRTspikeTime[layerIndex - 1] = np.full((numberOfNeuronsInPrevLayer, numberOfNeuronsInCurrentLayer), 0.0)
 ds_outputSpikeTimeForNN[layerIndex - 1] = np.full((1, numberOfNeuronsInCurrentLayer), MAX_SPIKE_TIME)

 CurLyrInputTimeArr = currentLayerOutputSpikeTimeArray
 currentLayerOutputSpikeTimeArray = np.full((1, neuronCountArray[layerIndex]), MAX_SPIKE_TIME)

 for neuronIndex in range (0,numberOfNeuronsInCurrentLayer):
 weightMatrixForCurrentLayer = weightMatrixList[layerIndex - 1]
 curNeuronWeightArr = (weightMatrixForCurrentLayer[:,neuronIndex]).reshape(numberOfNeuronsInPrevLayer,1)
 CurLyrInputTimeArr = CurLyrInputTimeArr.reshape(numberOfNeuronsInPrevLayer,1)
 CauselSetWithOutputSpikeTime = GetCausalSetWithOuputSpikeTime(CurLyrInputTimeArr,curNeuronWeightArr)
 currNeuronSpikeTime = CauselSetWithOutputSpikeTime[1]
 currentLayerOutputSpikeTimeArray[0][neuronIndex] = currNeuronSpikeTime
 causalSetForNeuron = (CauselSetWithOutputSpikeTime[0]).astype(int)
 totalWeightOfInputNuerons = CauselSetWithOutputSpikeTime[2]

 #Store derivative values
 #Derivate WRT weights and input spike time
 if (currNeuronSpikeTime < MAX_SPIKE_TIME and len(causalSetForNeuron) != 0 and totalWeightOfInputNuerons > 1):
 denomonatorVal = totalWeightOfInputNuerons - 1 #TODO - Use Tensors

 for subjectNueronIndex in causalSetForNeuron:
 spikeTimeDiff = (CurLyrInputTimeArr[subjectNueronIndex][0] - currNeuronSpikeTime)

 (ds_DERWRTspikeTime[layerIndex - 1])[subjectNueronIndex][neuronIndex] = (spikeTimeDiff

/denomonatorVal)
 (ds_DERWRTspikeTime[layerIndex - 1])[subjectNueronIndex][neuronIndex] =

(curNeuronWeightArr[subjectNueronIndex][[0]] / denomonatorVal)

 #Lets calculate and return derivatives for future weight adjustment

 ds_outputSpikeTimeForNN[layerIndex - 1] = currentLayerOutputSpikeTimeArray

 if layerIndex == numberOfProcessingLayers:
 outputSpikeTimeArray = currentLayerOutputSpikeTimeArray

 DEBUGPRINT(1, 'GetOutputVectorSpikeTimes',' \n__outputSpikeTimeArray__: \n', outputSpikeTimeArray)
 return outputSpikeTimeArray,ds_outputSpikeTimeForNN,ds_DERWRTspikeTime,ds_DERWRTspikeTime

Figure A: 5 Function to calculate output spike times

def CalculateFinalOutputDerivativeWRTInputSpikeTimes(derivativesWRTspikeTime):

 noOfLayers = len(derivativesWRTspikeTime) + 1

 outputSpikeTimeDerivativeWRTAllinputSpikeTimeMap = {}

 lastLayerIndex = (noOfLayers - 1) - 1

 numberOfNueronsInLastLayer = ((derivativesWRTspikeTime[lastLayerIndex]).shape)[1]

 for layerIndex in range (lastLayerIndex, -1, -1):

 if layerIndex == lastLayerIndex:

 outputSpikeTimeDerivativeWRTAllinputSpikeTimeMap[layerIndex] = derivativesWRTspikeTime[lastLayerIndex]

 else:

 nextLayerfinalDERArray = outputSpikeTimeDerivativeWRTAllinputSpikeTimeMap[layerIndex + 1]

 CurrLyrLocalDERArray = derivativesWRTspikeTime[layerIndex]

 numberOfNueronsInCurrentLayer = ((derivativesWRTspikeTime[layerIndex]).shape)[0]

 derivativesMatrixForCurrentLayer = np.full((numberOfNueronsInCurrentLayer, numberOfNueronsInLastLayer), 0.0)

 for currLayerNeuronIdx in range (0,numberOfNueronsInCurrentLayer):

 currNeuronFinalDER = np.full((1,numberOfNueronsInLastLayer),0.0)

 nextLyrNeuronCount = ((derivativesWRTspikeTime[layerIndex]).shape)[1]

 for nextLayerNeuronIdx in range (0,nextLyrNeuronCount):

 currNeuronFinalDER +=

(CurrLyrLocalDERArray[currLayerNeuronIdx][nextLayerNeuronIdx]*nextLayerfinalDERArray[nextLayerNeuronIdx])

 derivativesMatrixForCurrentLayer[currLayerNeuronIdx] = currNeuronFinalDER

 outputSpikeTimeDerivativeWRTAllinputSpikeTimeMap[layerIndex] = derivativesMatrixForCurrentLayer

 return outputSpikeTimeDerivativeWRTAllinputSpikeTimeMap

Figure A: 6 Function to calculate derivatives of output spike time w.r.t. input spike times

def GetWeightAdjustmentArrayMap(outputArr, expectedOutputArr,FinalDERMap):

 if len(expectedOutputArr) != (outputArr.shape)[1]:

 raise Exception('In CalculateErrorDerivateWRTWeight. outputArr and expectedOutputArr lengths mismatch')

 errorDerivateWRTToWeightMap = {}

 numberOfNueronsInLastLayer = len(expectedOutputArr)

 for key, value in FinalDERMap.items():

 lyrIdx = key

 ouputDerivative3DArr = value

 numberOfNueronsInCurrentLayer = (ouputDerivative3DArr.shape)[0]

 numberOfNueronsInNextLayer = (ouputDerivative3DArr.shape)[1]

 errorDerivateWRTToWeightMap[lyrIdx] = np.full((numberOfNueronsInCurrentLayer,numberOfNueronsInNextLayer), 0.0)

 if (ouputDerivative3DArr.shape)[2] != numberOfNueronsInLastLayer:

 raise Exception('In CalculateErrorDerivateWRTWeight. ouputDerivative3DArr length does not match with

numberOfNueronsInLastLayer')

 for currLyrNeuronIdx in range(0, numberOfNueronsInCurrentLayer):

 for nextLyrNeuronIdx in range(0, numberOfNueronsInNextLayer):

 weightChangeVal = 0.0

 for lasttLyrNeuronIdx in range(0, numberOfNueronsInLastLayer):

 if outputArr[0][lasttLyrNeuronIdx] < EXP_MAX_SPIKE_TIME:

 weightChangeVal += (outputArr[0][lasttLyrNeuronIdx] -

expectedOutputArr[lasttLyrNeuronIdx])*(FinalDERMap[lyrIdx][currLyrNeuronIdx][nextLyrNeuronIdx][lasttLyrNeuronIdx])

 else:

 weightChangeVal += (EXP_MAX_SPIKE_TIME -

expectedOutputArr[lasttLyrNeuronIdx])*(FinalDERMap[lyrIdx][currLyrNeuronIdx][nextLyrNeuronIdx][lasttLyrNeuronIdx])

 totalWeightAdjustement = (-1*WEIGHT_ADJUSTMENT_FACTOR)*weightChangeVal

 errorDerivateWRTToWeightMap[lyrIdx][currLyrNeuronIdx][nextLyrNeuronIdx] = totalWeightAdjustement

 ##FrobeniusNorm to avoid large jumps in weights due to small denominator values

 for lyrIdx, errorDerivateWRTToWeightMatrix in errorDerivateWRTToWeightMap.items():

 FrobeniusNormForCurrentMatrix = LA.norm(errorDerivateWRTToWeightMatrix)

 numberOfSourceNeurons = (errorDerivateWRTToWeightMatrix.shape)[0]

 if (FrobeniusNormForCurrentMatrix / numberOfSourceNeurons) > FROBENIUS_NORM_THREASHOLD_PER_SOURCE_NEURON:

 normalizationValue = FrobeniusNormForCurrentMatrix /

(numberOfSourceNeurons*FROBENIUS_NORM_THREASHOLD_PER_SOURCE_NEURON)

 errorDerivateWRTToWeightMap[lyrIdx] = (errorDerivateWRTToWeightMap[lyrIdx] / normalizationValue)

 return errorDerivateWRTToWeightMap

Figure A: 7 Function to calculate final weight adjustment values

def CalculateFinalderivativesWRTWeights(finalDERWRTInputTimes, DERWRTweight):

 if len(finalDERWRTInputTimes) != len(DERWRTweight):

 raise Exception('Mismathced array lengths in CalculateFinalderivativesWRTWeights function!')

 finalWeightDERMap = {} # each element will have a 3D array

 numberOfLayers = len(finalDERWRTInputTimes) + 1

 lastLayerIndex = (numberOfLayers - 1) - 1

 numberOfNueronsInLastLayer = ((finalDERWRTInputTimes[lastLayerIndex]).shape)[1]

 for lyrIdx in range (lastLayerIndex, -1, -1):

 CurLayerNueronCount = ((DERWRTweight[lyrIdx]).shape)[0]

 numberOfNueronsInNextLayer = ((DERWRTweight[lyrIdx]).shape)[1]

 finalWeightDERMap[lyrIdx] = np.full((CurLayerNueronCount,numberOfNueronsInNextLayer,numberOfNueronsInLastLayer),

0.0)

 if lyrIdx == lastLayerIndex:

 for currLyrNeuronIdx in range (0,CurLayerNueronCount):

 for nextLyrNeuronIdx in range (0,numberOfNueronsInNextLayer):

 for lastLayerNeuronIndex in range (0,numberOfNueronsInLastLayer):

 if lastLayerNeuronIndex == nextLyrNeuronIdx:

 finalWeightDERMap[lyrIdx][currLyrNeuronIdx][nextLyrNeuronIdx][lastLayerNeuronIndex] =

DERWRTweight[lyrIdx][currLyrNeuronIdx][nextLyrNeuronIdx]

 else:

 if (((finalDERWRTInputTimes[lyrIdx+1]).shape[0]) != ((DERWRTweight[lyrIdx]).shape[1])):

 raise Exception('Mismathced matrix shapes in CalculateFinalderivativesWRTWeights function!')

 for currLyrNeuronIdx in range (0,CurLayerNueronCount):

 for nextLyrNeuronIdx in range (0,numberOfNueronsInNextLayer):

 finalWeightDERMap[lyrIdx][currLyrNeuronIdx][nextLyrNeuronIdx] =

DERWRTweight[lyrIdx][currLyrNeuronIdx][nextLyrNeuronIdx] *finalDERWRTInputTimes[lyrIdx+1][nextLyrNeuronIdx]

 return finalWeightDERMap

Figure A: 8 Function to calculate final derivatives w.r.t. synaptic weights

def regularizeWeight(weightMAtrixList,L2adjustementFactor, smallWeightAdjustFactor):

 regularizationMap = {}

 numberOfLayers = len(weightMAtrixList)

 for lyrIdx in range (0,numberOfLayers):

 regularizationMap[lyrIdx] = np.full((weightMAtrixList[lyrIdx].shape),0.0)

 ArrayOfWeightSumForEachNueron = np.sum(weightMAtrixList[lyrIdx], axis=0)

 if (weightMAtrixList[lyrIdx].shape)[1] != len(ArrayOfWeightSumForEachNueron):

 raise Exception('In regularizeWeight. ArrayOfWeightSumForEachNueron does not match with weightMAtrixList

shape')

 numberOfNeurons = len(ArrayOfWeightSumForEachNueron)

 for neuronIdx in range (0,numberOfNeurons):

 if ArrayOfWeightSumForEachNueron[neuronIdx] < 1: ##Sum Weights should be > 1, otherwise neuron will

not fire

 regularizationMap[lyrIdx][:,neuronIdx] =

smallWeightAdjustFactor*abs(weightMAtrixList[lyrIdx][:,neuronIdx])

 regularizationMap[lyrIdx][:,neuronIdx] += -1*L2adjustementFactor*weightMAtrixList[lyrIdx][:,neuronIdx]

 return regularizationMap

Figure A: 9 Function to regularize weights

def ConvertPixelValueToSpikeTime(inputData, revertConversion = False):

 maxPixelValue = 255

 minSpikeTime = 0.0

 maxSpikeTime = 3.0

 if revertConversion == False: ##Convert Pixel Value To Spike Time

 inputPixelValues = inputData

 multilyingFactor = ((maxSpikeTime - minSpikeTime) / maxPixelValue)

 inputSpikeTimes = [(maxSpikeTime - PixelVal * multilyingFactor) for PixelVal in inputPixelValues]

 inputSpikeTimesInZDomain = np.exp(inputSpikeTimes)

 return inputSpikeTimesInZDomain

 else: ##Convert SpikeTime to PixelValue

 inputSpikeTimes = inputData

 inputSpikeTimes = np.log(inputSpikeTimes)

 multilyingFactor = (maxPixelValue / (maxSpikeTime - minSpikeTime))

 inputPixelValues = [(maxSpikeTime - spikeTime) * multilyingFactor for spikeTime in inputSpikeTimes]

 print("shape : ", (inputPixelValues[0]).shape[0])

 for Index in range((inputPixelValues[0].shape[0])):

 if (inputPixelValues[0])[Index] < 0.0:

 print("Val : ", (inputPixelValues[0])[Index])

 (inputPixelValues[0])[Index] = 0.0

 return inputPixelValues

Figure A: 10 Mapping between pixel value and z-domain spike time

def TrainAutoEncoder(Train_data,givenNetworkStruct,givenweightMAtrix):
 NumberOfTrainingData = len(Train_data)
 NumberOfRowsInTrainingData = Train_data[0].shape[0]
 NumberOfColumnsInTrainingData = Train_data[0].shape[1]
 totalNumberOfInputNuerons = NumberOfRowsInTrainingData*NumberOfColumnsInTrainingData
 totalNumberOfOutputNuerons = totalNumberOfInputNuerons

 NetworkStructure = givenNetworkStruct
 weightMatrix = givenweightMAtrix
 numbeOfLayers = len(weightMatrix)
 shuffledInputDataIndexList = list(range(NumberOfTrainingData))
 ##shuffle(shuffledInputDataIndexList) ##Lets do shuffling only once, All epochs use same shuffled data order
 for epochIteator in range (0,NUMBER_OF_ITERATIONS_OVER_TRAINNIG_DATA):
 miniBatchIndex = 0
 weightAdjustmentValueMap = {}
 curBatchNueronWiseErr = np.full((1,totalNumberOfOutputNuerons),0.0)
 ouputNueronWiseErrorForwholeDataSet = np.full((1,totalNumberOfOutputNuerons),0.0)
 for curDataIdx in range (0,NumberOfTrainingData):
 miniBatchIndex = miniBatchIndex + 1
 shufflednputDataIndex = shuffledInputDataIndexList[curDataIdx]
 rearrangedInputData = (Train_data[shufflednputDataIndex]).reshape(1,(NumberOfRowsInTrainingData*NumberOfCol-
umnsInTrainingData))
 inputSpikeTimesArr = ConvertPixelValueToSpikeTime((rearrangedInputData.reshape(-1,)).tolist())

 K = GetOutputVectorSpikeTimes(inputSpikeTimesArr,NetworkStructure,weightMatrix)
 outputSpikeTimeDerivativeWRTEachinputSpikeTimeMap = CalculateFinalOutputDerivativeWRTInputSpikeTimes(K[2])
 outputDerivateWRTToCurrWeightMap = CalculateFinalderivativesWRTWeights(outputSpikeTimeDerivativeWRTEachin-
putSpikeTimeMap, K[3])
 weightAdjustmentMap = GetWeightAdjustmentArrayMap(K[0], inputSpikeTimesArr,outputDerivateWRTToCurrWeight-
Map)
 AdjustedOutputtimeArr = np.array(K[0],copy=True)
 for indexOutSpikeTimeArr in range(0, AdjustedOutputtimeArr.shape[1]):
 if AdjustedOutputtimeArr[0][indexOutSpikeTimeArr] > EXP_MAX_SPIKE_TIME:
 AdjustedOutputtimeArr[0][indexOutSpikeTimeArr] = EXP_MAX_SPIKE_TIME

 weightAdjustmentValueMap[miniBatchIndex] = weightAdjustmentMap
 curBatchNueronWiseErr = curBatchNueronWiseErr + abs(AdjustedOutputtimeArr - inputSpikeTimesArr)
 ouputNueronWiseErrorForwholeDataSet = ouputNueronWiseErrorForwholeDataSet + abs(AdjustedOutputtimeArr - in-
putSpikeTimesArr)

 if ((miniBatchIndex == MINI_BATCH_SIZE) or (curDataIdx == (NumberOfTrainingData - 1))):
 weightRegularizationArr = regularizeWeight(weightMatrix, L2_REGULARIZATION_ADJUSTMENT_FACTOR,
SMALL_WEIGHTS_REGULARIZATION_ADJUSTMENT_FACTOR)
 curBatchWeighAdjustmets = {}
 for layerIndex3 in range (0,numbeOfLayers):
 curBatchWeighAdjustmets[layerIndex3] = np.full(((weightRegularizationArr[layerIndex3]).shape),0.0)

 for inputDataIndex, weightAdjustmentVal in weightAdjustmentValueMap.items():
 if len(weightMatrix) != len(weightAdjustmentVal):
 raise Exception('Invalid lengths (number of layers) in weightMatrix and weightAdjustmentMap')
 for lyrIdx in range (0,numbeOfLayers):
 if len(weightMatrix[lyrIdx].shape) != len(weightAdjustmentVal[lyrIdx].shape) != (weightRegulari-
zationArr[lyrIdx].shape) != (curBatchWeighAdjustmets[lyrIdx].shape):
 raise Exception('Invalid lengths in weightMatrix and weightAdjustmentMap')
 curBatchWeighAdjustmets[lyrIdx] += weightAdjustmentVal[lyrIdx]

 for lyrIdx2 in range (0,numbeOfLayers):
 weightMatrix[lyrIdx2] = weightMatrix[lyrIdx2] + curBatchWeighAdjustmets[lyrIdx2] + weightRegulariza-
tionArr[lyrIdx2]

 detailWeightAdjustmentMap = weightAdjustmentValueMap
 weightAdjustmentValueMap = {}

 curBatchNueronWiseErr = (curBatchNueronWiseErr / miniBatchIndex)
 DEBUGPRINT(2,'TrainAutoEncoder','AverageError for current Mini Batch : ', curBatchNueronWiseErr)
 totalErrorForCurrentMiniBatch = np.sum(curBatchNueronWiseErr) / totalNumberOfOutputNuerons
 DEBUGPRINT(0,'TrainAutoEncoder','OverAll Error for current Mini Batch : ', totalErrorForCurrentMiniBatch)
 curBatchNueronWiseErr = np.full((1,totalNumberOfOutputNuerons),0.0)
 miniBatchIndex = 0
 detailWeightAdjustmentMapOld = {}
 weightMAtrixListOld = {}
 if(epochIteator != (NUMBER_OF_ITERATIONS_OVER_TRAINNIG_DATA - 1)):
 detailWeightAdjustmentMapOld = detailWeightAdjustmentMap
 weightMAtrixListOld = weightMatrix
 ouputNueronWiseErrorForwholeDataSet = (ouputNueronWiseErrorForwholeDataSet / NumberOfTrainingData)
 totalErrorForCurrentMiniBatch = np.sum(ouputNueronWiseErrorForwholeDataSet) / totalNumberOfOutputNuerons
 return weightMatrix, K, detailWeightAdjustmentMap,detailWeightAdjustmentMapOld,weightMAtrixListOld, weightRegulariza-
tionArr

Figure A: 11 Auto Encoder training function

def GenerateReconstruction(givenNetworkStruct,givenWeightMAtrixList,TestDataSet):

 NetworkStructure = givenNetworkStruct

 weightMAtrixList = givenWeightMAtrixList

 NumberOfRowsInTestDataSet = TestDataSet[0].shape[0]

 NumberOfColumnsInTestDataSet = TestDataSet[0].shape[1]

 totalNumberOfInputNuerons = NumberOfColumnsInTestDataSet*NumberOfColumnsInTestDataSet

 totalNumberOfOutputNuerons = totalNumberOfInputNuerons

 NumberOfTestData = len(TestDataSet)

 print('NumberOfTestData : ', NumberOfTestData)

 for trainingDataInstanceIndex in range (0,NumberOfTestData):

 rearrangedInputData =

(TestDataSet[trainingDataInstanceIndex]).reshape(1,(NumberOfRowsInTestDataSet*NumberOfColumnsInTestDataSet))

 inputSpikeTimesArr = ConvertPixelValueToSpikeTime((rearrangedInputData.reshape(-1,)).tolist())

 K = GetOutputVectorSpikeTimes(inputSpikeTimesArr,NetworkStructure,weightMAtrixList)

 genratedoutputspiketimeArr = K[0]

 for indexOutSpikeTimeArr in range(0, genratedoutputspiketimeArr.shape[1]):

 if genratedoutputspiketimeArr[0][indexOutSpikeTimeArr] > EXP_MAX_SPIKE_TIME:

 genratedoutputspiketimeArr[0][indexOutSpikeTimeArr] = EXP_MAX_SPIKE_TIME

 DEBUGPRINT(2,'TestOnArtifialData_2','TestDataSetInstanceIndex : ',trainingDataInstanceIndex,', Err : \n\n',(K[0]

- inputSpikeTimesArr))

 ouputNueronWiseError = abs(genratedoutputspiketimeArr - inputSpikeTimesArr)

 AvgErrPerNeuron = np.sum(ouputNueronWiseError) / totalNumberOfOutputNuerons

 DEBUGPRINT(0,'TestOnArtifialData_2','Average Error for current TestDataSetInstanceIndex : ', AvgErrPerNeuron)

 return K[0]

Figure A: 12 Function for Generating Reconstruction

#!/usr/bin/env python
import SNNAutoEncoder

SNNAutoEncoder.WEIGHT_ADJUSTMENT_FACTOR = 0.005
SNNAutoEncoder.L2_REGULARIZATION_ADJUSTMENT_FACTOR = 0.0
SNNAutoEncoder.FROBENIUS_NORM_THREASHOLD_PER_SOURCE_NEURON = 0.02
SNNAutoEncoder.INITIAL_SUM_OF_WEIGHTS_PER_NEURON =100.1
SNNAutoEncoder.SMALL_WEIGHTS_REGULARIZATION_ADJUSTMENT_FACTOR = 2.1
SNNAutoEncoder.MAX_SPIKE_TIME = 100000000.0
SNNAutoEncoder.MAX_ITERATION_COUNT_FOR_A_INPUT = 1000

SNNAutoEncoder.MINI_BATCH_SIZE = 5
SNNAutoEncoder.NUMBER_OF_ITERATIONS_OVER_TRAINNIG_DATA = 1

NetworkStructure = [(IMAGE_HIGHT*IMAGE_WIDTH),48,24,48,(IMAGE_HIGHT*IMAGE_WIDTH)]

##Resized input image dimensions a
IMAGE_HIGHT = 12
IMAGE_WIDTH = 12
TOTAL_NUMBER_OF_SAMPLES_TO_CONSIDER = 1000
NUMBER_OF_EPOCHS = 100
STARTING_EPOCH = 0
if (len(sys.argv) - 1) > 0:
 STARTING_EPOCH = int(sys.argv[1])

########### LOAD INITIAL WIGHT MATIX FROM DISK ###########
if STARTING_EPOCH == 0:
 initialWeightMatrix = SNNAutoEncoder.GenerateWeightMatrix(NetworkStructure)
else:
 lastSavedArrIndex = STARTING_EPOCH - 1
 loadedInitWeightArr = np.load('SavedWeightSnapShot.npz', allow_pickle=True)
 initialWeightMatrix = loadedInitWeightArr['arr_0']

SelectedSampleSet = np.zeros((TOTAL_NUMBER_OF_SAMPLES_TO_CONSIDER,IMAGE_HIGHT, IMAGE_WIDTH))
mnistDataIndex = 0

##load mnist data set and initiate arrays
Mnistdataset= np.load('mnist.npz')
SelectedSampleSet = np.zeros((TOTAL_NUMBER_OF_SAMPLES_TO_CONSIDER,IMAGE_HIGHT, IMAGE_WIDTH))
for ministDataIndex in range (0,TOTAL_NUMBER_OF_SAMPLES_TO_CONSIDER):
 resizedImage =

np.array(Image.fromarray(Mnistdataset['x_train'][ministDataIndex]).resize((IMAGE_HIGHT,IMAGE_WIDTH),Image.BILINEAR))

 if (SelectedSampleSet[ministDataIndex].shape[0] != IMAGE_HIGHT) or (SelectedSampleSet[ministDataIndex].shape[1] !=

IMAGE_WIDTH):
 sys.exit('Resized image size is incorrect')

##Train the network
for epochNumber in range (STARTING_EPOCH,(STARTING_EPOCH+NUMBER_OF_EPOCHS)):
 if epochNumber == STARTING_EPOCH:
 print("First iteration - using initial weights")
 M = SNNAutoEncoder.TrainAutoEncoder(SelectedSampleSet,SelectedSampleSet,NetworkStructure,initialWeightMatrix)
 else:
 print("subsequent iteration - using adjusted weights. Iteration NUMBER : ",epochNumber)
 M = SNNAutoEncoder.TrainAutoEncoder(SelectedSampleSet,SelectedSampleSet,NetworkStructure,M[0])

Save synaptic weight snapshot - for future loading purposes -> retrain the network
np.savez('SavedWeightSnapShot',M[0])

Figure A: 13 Sample code for training Auto Encoder

from keras.layers import Input, Dense

from keras.models import Model

from keras import losses

inputImageSize

hiddenLayerNueronCount = 24

inputData = Input(shape=(inputImageSize,))

hiddenLayer = Dense(hiddenLayerNueronCount, activation='relu')(input_img)

outptutLayer = Dense(inputImageSize, activation='sigmoid')(hiddenLayer)

autoEncoderInstance = Model(inputData, outptutLayer)

autoEncoderInstance.compile(optimizer='sgd', loss=losses.mean_squared_error)

autoEncoderInstance.fit(inputTrainDataSet, inputTrainDataSet,

 epochs=100,

 batch_size=5,

 shuffle=True,

 validation_data=(inputTestDataSet, inputTestDataSet))

reconstructedoutput = autoEncoderInstance.predict(unseenDataSet)

Figure A: 14 Equivalent Conventional Auto Encoder

