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Abstract

Anomaly detection in video data has been a challenge always. After the introduc-

tion of many state-of-art designs, this still poses a challenge as those systems may

fail to work in all types of environments. Even though many supervised methods

claimed to have some good results in this domain, supervised systems may not

be suitable for all the contexts such as in an open area, any type of anomaly can

occur and it can be very difficult to train a system in a supervised manner to iden-

tify an unanticipated anomaly. On the other hand, it would be difficult for the

user to annotate data each time when they change the context under surveillance

for the device. Thus the ultimate solution should be an unsupervised solution

with a appreciable accuracy. Recently deep learning techniques have emerged in

many areas of computer science based solutions and so it is involved for anomaly

detection tasks also. In this research, deep learning techniques are involved to

solve the problem of video stream based anomaly detection of crowds.
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Chapter 1

Introduction
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The world is moving towards making the next generations safety mechanisms

for their communities due to the lack of security in public places. Thus every

country recently has invested largely in those security related domains such as

mapping of incidents throughout the world, social graph analysis, and most im-

portantly surveillance. The governmental agencies are equipping their security

forces with tools and skills to quickly react for any sudden event that could oc-

cur in public places so that they can minimize the damage being done. But the

information is sometimes delayed and thus the damage becomes large due to the

lack of incorporation of real time information sources. For this reason, investing

in real time surveillance systems has become major concerns nowadays where

capturing of anomalous events in the real time has gained much focus than ever

in the history. One sub section of the real time surveillance domain is detection of

anomalies in crowded scenes. The importance of detection of anomalies in crowds

is mainly contributing to the social security monitoring activities. If an abnormal

event like a street fight or some other unpredictable event happens these systems

can have a flag in their security cameras or in an extreme condition, they also

can alert the relevant authorities based on the severity of the anomaly.

Human activity recognition has always been a challenge throughout many

years and the improvements of the subject has lead the focus onto real time

activity recognition. Crowded scenes analysis is one of the sub categories that

fall under the vast scope of human activity analysis. These crowded scene analysis

methodologies are used in real time environments and the major area that lies

is the detection of the abnormal events or in other words the anomalies in the

scene. In the past few years a massive amount of research has been performed

in the domain of human pose, activity and anomaly classification and especially

in terms of anomaly detection. The real value of such mechanisms is lying in

the domain of real time automated surveillance for the security sector. Thus

the main focus of this research is driven with the same idea that improving the

detection of abnormalities for the surveillance with some automated mechanism

will benefit immensely when it comes to the vast amount of dynamic varieties

of contexts in the real world scenarios. For example, the detection of anomalies

in a busy market area would be entirely different from a subway area where

there are periodic movements of people in a specific pattern and less movements

during other times. So with the diversity of these environmental contexts, the

importance of an unsupervised and accurate surveillance monitoring system has

emerged. Another driving factor is the overabundance of the surveillance data

that are available versus the manpower that are available for processing them
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manually is of shortage.

Anomaly detection narrows down to two classes in terms of what to detect.

The model can either classify two classes or one class or in other words it has

to learn both normality features and abnormality features or it can learn either

of those only in order to distinguish one from the other. The most popular

and practical method is to detect one class. Anticipation of the types of the

abnormalities by learning the abnormality feature was one of the older approaches

which failed due to various reasons. The major reason is that the fact that

the anomalies are rare and the types are unimaginable such that one cannot

comprehensively train a system effectively to detect all kinds of anomalies. So

the state of art systems tend to use the reverse of this approach which is detection

of the anomalies via the prior knowledge of the normality features of the scene.

When the system can predict the what will happen in the near future, any event

that significantly deviates from the predicted metrics would be considered as an

anomaly with respect to the context.

1.1 Anomaly Detection

Anomaly detection or novelty detection refers to the problem of detecting patterns

in data that fall away from the expected behavior. The anomalies are also referred

to as outliers in the literature. There are many use cases of anomaly detection.

Fraud detection for credit cards, intrusion detections, anomalies in distributed

systems, fault detection in critical systems, and most commonly in military and

security systems in public areas.

1.1.1 Definition of Anomalies

Anomalies can be stated as the pattern that do not conform to a well-defined

notion of normal behavior. Anomaly detection is sometimes wrongly identified

as noise removal. But noise removal has its own definition that can be clearly

distinguished from anomaly detection. Noise is nothing but some unwanted piece

of data which in fact acts as a hindrance for the real analysis task but on the

other hand anomalies often become the whole purpose of analysis.
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1.1.2 Challenges in Anomaly Detection

Even though it is very straightforward to state the process as a formal definition,

the process is a very challenging task due to several reasons. One main challenge

is that there is no generic measure to interpret the normality due to the domain

specific variance.Thus a methodology in one domain is not as straightforward as

it seems to be applied in a different domain. It is generally not straightforward

to encompass an area that will contain all the normal behavior as due to the

difficulty of capturing all the possible normal behaviors. The boundary between

the normal and abnormal behavior is often blurred and some anomalies which

lie close to the normal behavior are often hard to distinguish, and vice-versa.

Another challenge is the lack of availability of labeled data. For example, in a

video based anomaly detection approach, the model may need sufficient amount

of anomalous events in a video stream to train effectively. But there is always

a shortage of sufficient amount of anomalous events present in the video frames.

So the analysts will have to use some data augmentation methodologies in order

to feed sufficient amount of data.

1.1.3 Aspects of Anomaly Detection Problem

This section elaborates on the different aspects of the anomaly detection problem.

The problem is viewed as a broach domain and different aspects of the problem

space is discussed briefly.

1.1.3.1 Data As Input

One of the most important aspects is the nature of the input data. In all kinds

of analysis approaches the GIGO(Garbage In Garbage Out) principle is the key

rule applicable. This essentially means that if the input is garbage, the output is

naturally becoming garbage. Input is nothing but a collection of data instances

where a small portion of that will be noise or in other words garbage. So as an

analyst, it is essential to get rid of these garbage before starting the analysis.

1.1.3.2 Type of Anomaly

Another important aspect is the type of anomaly. The type basically can be

categorized into following three categories.

• Point Anomalies
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• Contextual Anomalies

• Collective Anomalies

Point Anomalies

If an individual point is identified as an anomaly, compared to rest of the data,

then that point is identified as point anomaly.

Contextual Anomalies

If a data point is considered to be anomalous in a given specific context, and not

otherwise, then such anomalies are called contextual anomalies as they consider

the context in which the specific behavior becomes an anomaly.

Collective Anomalies

In this type of anomaly, the requirement is that a set of data points being anoma-

lous with respect to the entire data set. In this case an individual anomalous point

taken alone may not be an anomaly but rather taken as a collection, they may

form an anomalous behavior altogether.

1.1.3.3 Availability of Labeled Data

The data labels are used to denote whether a particular data point is anomalous

or not. But the most exhaustive task regarding the labeling is obtaining data

to be labeled for all types of anomalous event which is often very expensive in

nature. The labeling process is often done by a domain expert who decides on

the label and in this process the human expert will have to go through each

and every data point and label them accordingly which is a cumbersome process.

Obtaining labeled data for all types of anomalous data is generally more difficult

than getting a set of labeled points representing the normal behavior. Since the

anomalous behavior is often dynamic in nature, many new types of anomalous

data might appear where such labeled data is not present at the moment. For

example, in a video stream, if we have all types of anomalous behaviors observed

so far labeled properly, there would still be a new behavior of a person who is

acting differently than all other people observed so far. Based on the extent to

which the labels are available, anomaly detection approaches can operate in one

of the following three modes:

• Supervised anomaly detection
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• Semi-supervised anomaly detection

• Unsupervised anomaly detection

Supervised anomaly detection

In this detection method the data labels are expected to be present in both the

classes anomalous and normal. Often the methodology used in such cases is train-

ing a model in order to capture the normal and abnormal class in a predictive

manner. Thus if a new data point is encountered, the model is used to classify the

class that it belongs to. In this methodology, there are two basic issue that may

arise. The main issue is the amount of anomalous data is of shortage. In order to

overcome this issue, we can use data augmentation methodologies. This problem

can also be interpreted as the problem of class distribution being imbalanced.

The other issue, which is an issue that is tightly bound with the latter problem,

is the inability to obtain accurately for the anomalous class.

Semi-supervised anomaly detection

This is the most popular way of making a model for anomaly detection. In this

method, the basic assumption is that assuming the labeled data exists only for

the normal class. This method addresses the two main issues faced with the su-

pervised methods and thus this method is widely applied in the practice. In this

approach typically the anomalous data is defined as whatever the data points

that deviate from the assumed normal model. It is also important to note that

there are other methods as well in which the basic idea is to have labeled data

only for the anomaly class. These techniques are not commonly used due to the

fact that it is not often possible to obtain a data set that covers all types of

anomalous behaviors as the space of anomalous probabilities are not comprehen-

sively perceivable and often ambiguous.

Unsupervised anomaly detection

This is the scenario where the training data is not required thus the applicability

is high. The methods incorporate an implicit assumption that normal instances

are frequent and the anomalies comprise only a smaller portion. This leads to a

high false alarm rate if the assumption does not comply with the data. In order

to overcome this issue, the model trained using a semi-supervised model can be

used against the data and that will provide a robust methodology that will handle

the few anomalies.
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1.2 Abnormal Human Behavior Recognition

Due to the increased global security concerns, intelligent vision based solutions

has gained more focus in the modern era. The most attractive research area is

monitoring human behavior and patterns in surveillance footage. The idea is

to learn, model, detect, or recognize interesting events that may be defined as

suspicious events related to human behaviors in crowded scenes.

The task is not a straight forward due to a number of reasons. The following

section describes the difficulties that can be identified when it comes to video

based abnormal human behavior modeling.

1.2.1 Challenges of modeling the human behavior in videos

One of the main challenges is that the video stream itself being high dimensional,

the stream cannot directly be fed into a classifier. The reason is that they contain

much redundant information and thus cause high computational complexity. So

the video data has to be represented in a manner that can be efficiently processed

and be accurate on the task given. The key to a successful model is choosing a

suitable representation which is also the most challenging task of all.

• Same class of action having a variety of patterns

One class of action can vary immensely that can be very hard to represent

in a manner that is generic enough to capture all the small variations in the

same class but distinctive enough to distinguish between other classes. For

example, a walking person might carry a bag or might interact with another

person, but the behavior should still be captured under the walking class.

But if a person starts running, the model should be able to distinguish the

running person from a walking person.

• Noise

In a real world scenario, the scenes would contain a lot of noise due to

various reasons. The reason may be a background change or a change in

the illumination. One of the key expectations of a robust system is that the

ability to work under various environments regardless of the expected level

of noise.

• The Context

The contextual information is also a crucial factor that affects the accuracy

of the model. If the scene to be analyzed is a crowded scene, the behavioral
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model need to take account of the gathered gestures of humans. This chal-

lenge is not present in an isolated environment where there are only a few

people walking in the area. One example is a factory environment where

there are only a few workers walking and performing various tasks. But in

a crowded pedestrian environment, the modeling can be much challenging

due to the high density of the people in one location.

• The Illumination based on the time of day

This is when the illumination varies along with the time of the day. In

the day time the detection would be much easier than at night. During the

night time a night vision camera can be utilized but the image preprocessing

may have to be altered based on the illumination.

1.3 Problem

The main research problem trying to address via this research is that to develop

a human abnormality detection system that works well on crowded scenarios.

Currently there are many systems that are capable of capturing anomalies in

crowds, but those systems are developed based on conventional methods. Along

with the recent uprising of the deep learning domain, such systems could be

developed to be more accurate and adaptable to various environments. Many of

those conventional systems needed to be highly supervised during the training

period as the anomalies can differ from situation to situation. But with novel

deep learning approaches those systems can be improved to be semi-supervised

or unsupervised, which would be a great leap above many barriers that were

there in this domain. Main issue of using a supervised system is that the user

will have to manually annotate the data and feed into the system. In case if

the user decides to change the location of the device and aim it to a different

context, the system will have to be re-trained with a new set of annotated data,

which is very cumbersome as the user will have to manually annotate data each

time the context is changed. If the system requires also the anomalous data to

be annotated and fed apart from the normal data, there could be a difficulty in

providing anomalous data due to the fact that the anomalous data is not easy to

gain. In comparison to normal data, anomalies are rare scenarios and may not

be in a sufficient amount to be fed to a learning algorithm. On the other hand

the anomalies cannot be limited to a certain set of categories due to the diverse

nature of the events. Anomalies are mostly unintended and unanticipated. Hence
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the system should be able to identify anything outside the scope of a normal

event. Another issue of supervised learning is that these systems are ultimately

expected to be manufactured in a production level and if the users have to train

their systems in a supervised manner, then that would require the users to be

equipped with a data science knowledge, which is very unlikely the case of a real

world scenario. The users need to be able to plug and play such a device with a

minimum level of configurations that can be provide by an average user. Hence,

the only option left is make the system unsupervised and let the users only be

aware that there is a training period before actual usage. Due to this requirement,

deep learning methodologies become very useful as they can be trained as a black

box with a minimum level of supervision. There are currently some deep learning

based systems developed for the problem, but those systems lack adaptability

to the environment and also since those are commercial systems, they are not

actively used in 3rd worlds countries due to unaffordability.

Since the deep learning approaches unarguably deliver better accuracies and

atop amongst other systems in terms of adaptability and robustness with the

proper amount of data given, this research is focusing only on deep learning

approaches. Nevertheless, for the sake of comprehensiveness, other conventional

approaches are also noted under the literature review.

1.4 Objectives

The main objective of this research is to create a tool that can identify anomalies

in a crowd situation in the real time. The general objective of the research can

be stated as below. To create a tool that can accurately flag anomalous events in

crowd scenarios in a real time video frame. The anomalous event can vary from

situation to situation, and the tool should still be able to successfully distinguish

those anomalous events regardless of the context.

The following items listed are the important characteristics of the system.

• The system should be adaptable

The system should be adaptable, ie. this system should simply be able

to be adapted to any environment with some fully unsupervised training

sessions.

• Should not be constricted to a certain type of anomalies

With the proper amount of training data given, the system should distin-
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guish the anomalous events of a vast diversity and should not be constricted

to a certain type of anomalies.

• Should be able to identify context based anomalies

The anomalies can differ from context to context. For example, on a pedes-

trian pathway, a person running would be treated as an anomaly. But on

a jogging pathway, a person running is a normal scene. The system should

be able to find anomalies based on the context.It should be able to define

what is anomalous and what is not by comparing with the usual context.

• Should have a good sensitivity

The system should identify the true positives correctly and it is tolerable

to have a certain amount of false positives. The false negatives should be

avoided as much as possible.

Another objective of this research is to explore how to minimize the data

requirement with the introduction of a suitable architecture. Also with

that architecture, the system is expected to be more robust and accurate.

Exploration of different deep neural architectures that can cater these re-

quirements hence stands amongst the main objectives of this research.

This tool could be used for crowd observation security purposes. In case of

any anomalous event, a flag would be inserted along with the time frame,

and later could be allowed to be viewed by any interested party.

1.4.1 Specific Objectives

• To develop a deep neural architecture that can cater for the expected per-

formance measures (low false negative rate/ higher sensitivity)

• Make the system adaptable to crowded environments

• Improve the flexibility of the tool

• Improve the sensitivity(reduce the amount of true negatives) of the tool

• Improve the reliability of the tool

• Future extension: Draw/Mark the area in the video frame that is identified

as anomalous
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1.5 Prior Work

1.5.1 Models and Algorithms for Abnormality Detection

in Video Streams (Conventional Models)

This section discusses about the conventional methods of anomaly detection that

were there before the massive up-wave of the deep learning usage that was made

possible by the recent advancements of hardware like GPUs. Those methods

basically consist of clustering and classification methodologies that were mostly

supervised. Unsupervised methods were not very easy to model as those conven-

tional methods mostly required a reference target to be matched against.

The method of evaluating spatial information was to consider local patches and

run the training algorithms in multi-scale mode. The way to model temporal

dependency was to incorporate HMMs. These methods needed careful feature

engineering and mostly a knowledge about the anomaly types that can occur.

These models were not robust towards the new types of anomalies. On the other

hand providing at least those few anomaly classes was also a challenge due to

lack of anomalous events captured.

Since the features had to be manually engineered, these models did not have the

capability to go up to high accuracy values where in deep learning models the

same is a possibility.

This section briefly introduces a few most commonly used conventional models

and their strengths and weaknesses.

1.5.1.1 Dynamic Bayesian Network

HMM is one of the most popular methods for behavior modeling and this fact

is well utilized by the domain of anomaly detection. It has gained this much

popularity in this domain probably due to the inherent temporal dependence

achieved by it in its own nature. HMM models, unlike other models, are capable of

handling inherently dynamic behavior patterns applied in the domain of anomaly

detection.HMM is basically a set of nodes connected according to a time series

structure and the nodes are connected via transition links. Every node has a

corresponding state that is hidden hence the name Hidden Markov Model. An

observation is made at each state and this observation corresponds to a set of state

probabilities. Most commonly an HMMs are represented by two matrices that

represent the probable states and the probability of their observations. Those
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two matrices are namely the emission matrix and the state transition matrix.

There have been various prior studies in HMM modeling which primarily differ

in three main aspects. The formation of the model, meanings of observations,

states assigned to nodes are them. Nodes can used to represent any concept like

positions, movement metrics, or even postures which are crowd behavior or could

be also some local behaviors like any type of individual behaviors like walking,

standing & etc. Observations would represent some crowd activity level or some

quantitative measurement.

There have been two drawbacks that were under the focus as per mentioned

by the authors of [1]. These were mentioned respective to their area of study. But

it could be an important note for anyone studying in any application of anomaly

detection. The first point that they mention is that difficulty of foreseeing the

trends of anomalies that may not be visible presently but in the future. This

inability may lead the system to fail in detecting sudden changes of the environ-

ment. Decisions are made considering a particular context and this would lead to

considerably higher false alarm rates. This is the second key point that they had

listed. To overcome the aforementioned difficulties, they had developed a system

that integrates Fuzzy Logic with HMM. The techniques that they employed were

two fold. One is considering the whole training data set as normal data. The

other is integrating the some amount of anomalous data to the training data. If

the whole training data set is considered as normal data, there is a necessity of

using a threshold value to bound the normal data and identify the abnormalities.

In the case of incorporating abnormal data in the training set, they had to use

two hidden states.

1.5.1.2 Bayesian Topic Models

Many efforts have been invested in Bayesian Topic Models to that were able to

evaluate the regularity if local events(word) while looking into interactions(topic)

between them [2],[3].These were only run in batch mode[4]. These approaches did

not require them to be fed them explicitly of any spatial or temporal dependen-

cies between local events. There are two models, namely LDA and HDP. LDA

stands for Latent Dirichlet Allocation and HDP stands for Hierarchical Dirichlet

Process. These are basically hierarchical Bayesian models and they were utilized

for processing linguistics[2]. Authors in [2] are proposing a method to improve

the models LDA and HDP using hierarchical Bayesian models. The intention was

to model the interactions unsupervised. They were able to provide a probabilis-
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tic explanation to surveillance tasks such as anomaly detection and clustering in

video sequences. Over-fitting issue would be avoided due to the availability of

sufficient parameters coming from a hierarchical model as the data is hierarchi-

cal. However this was not able to model global behavior patterns and failed in

modeling complex behaviors[3]. The reason was the fact that this approach only

focuses on the local motion features. This was also not able to model correlations

between moving and fixed objects due to the same reason.

1.5.1.3 Clustering

Clustering can be done without labeling the data or in other words unsupervised.

In addition to fully unsupervised clustering, in [5] and [6], semi-supervised clus-

tering is also explored. Clustering process is very expensive in terms of speed and

resource consumption for computations. This had lead for this method to be less

used for the abnormal detection tasks especially when it comes to complex unsu-

pervised learning tasks with many classes involved even though it is smooth and

fast after the clusters are detected. The clustering process becomes the critical

factor of deciding the performance of the anomaly detection algorithm. If the pro-

cess leads to bad clusters, the same would lead to bad detection [7]. The k-means

is one of the broadly used algorithms to cluster features. Some researchers have

worked on further advanced improvements that have made them overcome the

limitations of k-means when implemented for behavior clustering like k-medoids

[8], radius-based clustering [9], and ant-based clustering [10].

In general applications, model-based clustering algorithms unlike the k-means

do not expect a predetermined number to be fed as the total number of clus-

ters expected. But without having a knowledge about the data and its distri-

bution beforehand, these methods might be a bit difficult to develop. Gaus-

sian mixture model (GMM) [11] is an excellent method in which the number of

clusters is derived from a Gaussian distribution [9]. However, in the researches

[12],[13],[14],[15],[16],[17], GMM is used to detect anomalies in automated surveil-

lance streams.

1.5.1.4 Decision Trees

A decision tree’s structure is nothing but a structure of nodes formed in a cascaded

manner. The node connections are formed in a structure of a tree and each node

belonging to a layer that defines a certain depth of the tree in which each node

is connected to upper and lower layer in a manner where upper layer is parent
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and only one parent is connected.But there can be any number of children nodes

connected from the lower layer. The interpretation capability is one of the main

highlights when it comes to using a decision tree. Decisions are represented

by each node and connections are representing states and their probabilities.

Decision tree is one of the most common techniques for representing classifiers.

A decision tree can be either regression or classification tree depending on the

nature of the target variables For continuous data, regression tree is used and

for discrete data, a classification tree is formed. Nodes represent decisions and

branches represent the transition probability of entering into states.

In the research carried out in [18], the authors introduced a new method for

anomaly detection using an N-array tree classifier. In this method, the classifier’s

tree is formed into different layers in which each layer represents a certain period

of time. A supervised way was used to learn the probabilities of the tree links from

both regular and irregular training data instances. After a number of training

iterations, a formerly unseen behaviour is learned. If a higher probability is

shown for entering a particular state, its probability of entering is evaluated for

each connecting state. The higher the probability the higher the possibility of

entering an anomaly state.

The conventional methods were the most successful till the time the deep

learning took over with the uprising of the vast amount of data available alongside

improved processing power which is specialized in parallel processing huge chunks

of data. Under the literature review, more into the deep learning related work

will be discussed.
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Chapter 2

Literature Review
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2.1 Anomaly Detection using Deep Learning

In the following section, recent deep learning models for anomaly detection tasks

that were reviewed and compared with their pluses and minuses. The recent

focus in this areas has been towards the generative models but none of the pre-

vailing models have yet been tried with sequence generation of crowd data but

the 2 dimensional MNIST data. The most recent researches for crowd anomaly

detection have been performed by [19], [20], [21], and [22].

2.1.1 Representation Learning(RL)

The representation learning as per the definition is as following. Building a

parameterized model fx ,such that fx : X → Z . This can either be input

domain to a lower dimensional space or to the input domain itself. Z is generally

invariant to the local changes of the input. In this case modeling expect prior

information such as transformations in the normal sample points. In the context

of this research, this is modeling of the spatio-temporal regularity, trajectory

or local relative motion and temporal correlation of the structure.For anomaly

detection tasks in video surveillance, the most famous type of modeling technique

is the representation learning. This very domain can be categorized under three

categories that can be used for anomaly detection purpose.

2.1.1.1 RL For Reconstruction

The idea here is to reconstruct a given image by using a generative model training

method. The successful recreations are understood as non-anomalous frame. The

more it deviates from being a successful recreation, the more anomalous it is.

Thus any frame representation that is poorly reconstructed are considered as to

be an anomaly. Deep learning approaches like (PCA), and AE that can be used

to model how to compress temporal and spatial information or in other words the,

image and the flow of the objects by modeling the normal behavior in surveillance

videos, can be categorized under this section.

2.1.1.2 RL for Predictive Modeling

The video frames are viewed time series or in other words temporal data. The

models are supposed to observe the past video frames and predict the cur-

rent video frame or any representation that can be generated from the cur-
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rent video frame. The basic idea here is to construct a basic conditional model

P (xt|xt−1, xt−2, xt−3....xt−p). Auto-Regressive models and Convolutional LSTMs

generally come under this category.

2.1.1.3 RL for Generative Models

For the supervised learning setup, (Xi, yi) ∈ R × {Cj}Kj=1 where i is the index

number of the samples i = 1 : K in the data set, generative models estimate the

class conditional posterior probability distribution P (X | y). This can be difficult

in case of a higher d, the dimentionality. The spatio-temporal video streams can

thus be a challenging input for these models. In order to model the likelihood

of normal video samples in an end to end deep learning structure, Generative

Adversarial Networks (GAN), Variational Autoencoders (VAE), and Adversarial

Auto-Encoders (AAE) can be used.

2.1.2 Reconstruction Models

Let’s consider an input training video that is represented as below. X ∈ R(N×d)

where N is the number of frames, and d is pixels per each frame as given by

d = r × c. The degree of dimensions of each vector is represented by this . The

main goal of the methods under this section is to reduce the expected reconstruc-

tion error. Convolutional Auto-Encoder (ConvAE), Contractive Auto-Encoders

(CtractAE), and Principal Component Analysis (PCA) are described in detail

under this section. Their structures will be described in the purpose of recon-

struction and the reduction of dimensions.

2.1.2.1 Principal Coponent Analysis(PCA)

In PCA it basically attempts to find the direction of the maximul variance in the

training data which in this case is nothing but the video frames. The main goal

of representing videos is that modeling information that is contained in the form

of spatial and temporal dimensions which in turn would become the principal

components of a vector representing a video at a given time step t.

min
WTW=I

‖X − (XW )W T‖2F = ‖X − X̃‖2F (2.1)

Where W ∈ Rd×k is a matrix that has a lower number of columns or in other

words lower number of components than X and XW represents the projection

into lower dimensional subspace. This dimensionality reduction can be utilized

17



in identifying the novelty behavior. The output which are not properly recon-

structed or reconstructed with an error above a predefined threshold are identified

as anomalies. Mahalanobis distance is used to as the anomaly score.

2.1.2.2 Auto-Encoders

Autoencoder is an alternative to the PCA with some additional functionality that

essentially can be used in the same way as PCA to reduce the dimensionality. But

one advantage that the autoencoders possess is that the flexibility of using non

linear activation functions that will enable the AEs to find a different subspace

than the PCA. Otherwise AEs would be equivalent to the result of the PCA. A

single layer auto encoder with linear transfer function can be stated as similar or

closely equivalent to PCA, where closely means that the W parameters calculated

by AE and PCA may not be similar; but the latent space spanned by the W s

will be similar.

The autoencoder functionality is as below. It takes a input of z ∈ Rd and

maps the input to the latent space representation z ∈ Rk with dimensionality

reduced (d > k). This was done using a function z = σ(Wx+ b)

The non-linearity of AutoencodersAE is gained by using a non-lilnear acti-

vation function that transforms the input in a point-wise fashion. This function

is required to be a differentiable function. The functions are typically a Recti-

fied Linear Unit(ReLU) or a Sigmoid function. For the AE also similarly we can

write the minimization function for reconstruction of the input data given by the

equation (2.2)

min
U,V
‖X − σ(XU)V ‖2F (2.2)

In the equation (2.2), σ(XU) denotes the low dimensional representation. The

matrix U is a linear encoding and that should minimize the reconstruction loss.

Amongst the ways to regularize the parameters of U and V, one of the popular

ways is to apply constraints. The average of the activations in the latent layer is

one of the constraints. This is in a form of enforcing sparsity.

2.1.2.3 Convolutional Autoencoders

In CAEs the main idea is to let the filters learn themselves like in a regular CNN

but use the output of those filters to reconstruct the input image. The CAEs

comprise two stacks as the firsts being the convolution stack and the second one

being the transposed convolution or in other words the decoding convolution
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stack. CNNs aim to classify the provided input while learning the filters by iden-

tifying features that are required for classification. CNNs are generally termed

as supervised learning methodologies. But on the other hand, the task of CAEs

is to learn filers that enable successful reconstruction of the inputs, instead of

classifying into classes.

Convolutional AutoEncoders (CAEs) filter definitions are mostly manually

engineered in terms of their number. Providing sufficient number of filters means

learning the same number of distinct features and such learned filters can be

reused in other computer vision tasks as well in the means of transfer learning

and parameter initialization for the purpose of faster convergence and model

guidance.

CAEs are the best method of learning convolutional filters in unsupervised

manner. After a successful learning rounds these learned features can be utilized

for feature extraction in new data sets. The latent space or the bottleneck layer

is a compact representation of the input data and this can be very useful in many

tasks including data compression where areas of data storage optimization and

communication bandwidth reduction lie.

CAEs are more capable of learning features in comparison with AEs. The

reason behind is that in AEs the parameters are global in all means and there

is no concept of local features. Hence, this introduces parameter redundancy

and the resource utilization is increasing exponentially for a small introduction

of additional layer. This also constricts the models being able to handle larger

inputs. But CAEs solves this issue due to their inherent structure of spatial

locality. Here, the parameters are not global and in initial layers only the local

features are leaned and gradually as it goes deeper, the learned features apply to

the global scale.

The latent or bottleneck vector representation of the kth filter for a single

channel input x would be as in (2.3)

hk = σ
(
x ∗W k

)
+ bk (2.3)

The reconstruction is obtained by the latent maps H(hk for k ∈ H) for decoding

convolutional filter W̃ .

The σ function here is a non-linearity function that does point-wise operations.

The bias values are broadcast into all the components of the latent map. Since

there are several CAE layers are stacked together, the output of the first layer is

input into the next layer.

In contrast with PCA, CAEs have some advantages. PCA ignores the spatial
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structure and how the pixels are formed locally or in simple terms pixel location

in the image. This is called permutation invariant. PCA introduces a large

redundancy of parameters for considerably large images (100 × 100) and also it

spans over the entire receptive field. CAEs have comparatively a lower number

of parameters as the weights are being shared across many input locations.

In the recent research of anomaly detection, in [21] a deep CAE has been

trained in a way when an input frames sequence is given, the network tries to

reproduce the same sequence or fail with an error significant enough to separate

out the anomaly. Spatio-Temporal Stacked frame Auto Encoder (STSAE) in

[21] treats the image frames of each time slice and stack them together to form

a sequence of p stacks. xi = [Xi Xi−1.....X1−p+1] As mentioned, each slice is

essentially treated as a different channel. The model is depicted in the figure 2.1.

Figure 2.1: Spatio-Temporal Stacked frame Auto-Encoder

The L2 regularized loss function is minimized over frames from the training
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video.

L(W ) =
1

2N

∑
i

‖xi − fW (xi)‖22 + ν‖W‖22 (2.4)

In the above equation, the tensor xi ∈ Rr×c×p is a 3 dimensional tensor with

it’s spatial dimensions being r, c and p being number of frames in the sequence

upto p time steps back in time dimension, with hyperparameter ν that is used to

balance the reproduction error and the norm of parameters. N is the size of the

mini-batch.

In the model discussed in [19] is shown in the figure 2.2. The reconstruction

error at the tth time step is given by Et =
∣∣∣Xt − X̂t

∣∣∣ while the regularity in terms

of a score is given by the equation (2.5):

s(t) = 1−
∑

(x,y)Et −min(x,y) (Et)

max(x,y) (Et)
(2.5)

In this equation, the σ operators for min(x,y) and max(x,y) are directly upon

the x and y spatial indices. One could either directly use the reconstruction error

as the anomaly score or use Mahalanobis distance. This is evaluated as the error

between the input and the reconstructed output from the AE.

21



Figure 2.2: Convolutional LSTM based autoencoder

2.1.2.4 Sparse Autoencoders

Sparse autoencoders are acting in a similar way as the normal autoencoder, but

it has higher number of hidden units than the number of input neurons. Using a

structure like that we can still find some interesting patterns in image sequences

and can be used for anomlay detection purposes. This generally involves a sparsity

penalty Ω(h) on the latent layer in addition to the reconstruction error.

L(x, g(f(x))) + Ω(h) (2.6)

Here g(h) is the decoder input and h = f(x) which is the decoder output.

In the research published by Medhini et. al. [23] describes a system that uses

local and global descriptors that can identify an localize anomalies in a video

frame. The local descriptors aid in learning local and temporal relationships
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which is utilized for localizing anomalies and global descriptos constructed using

deep sparse autoencoders are used for interpreting the video as a whole.

2.1.2.5 Contractive Autoencoders

The contractive autoencoders add the jacobian of the latent space representation

to the reconstruction loss and and due to that, the latent space representation

does not vary for comparatively smaller changes in the inputs [24]. If the latent

space representation z is z = f(x), and the decoder that maps to the input space,

r(x) = g(z) the regularized loss function can be written as,

L(W ) = EX∼X train

[
L(x, r(x)) + λ

∥∥∥∥∂f(x)

∂x

∥∥∥∥] (2.7)

Due to the regularized error function, the autoencoder becomes less sensi-

tive to the input variation but enforcement of the minimal reconstruction error

maintains sensitivity to the manifold having higher density. These type of au-

toencoders are sensitive to the variations along the manifold but not orthogonal

to it, or in other words, it approximates the tangent plane of the data manifold.

[25].

2.1.2.6 De-Noising autoencoders

In the area of unsupervised learning, these autoencoders are vastly known for

being one of the most robust feature extraction methodologies[26]. Instead of

minimization of reconstruction error, reconstruction from the corrupted inputs is

used. Stacked De-Noising Autoencoders (SDAE) are used to learn features from

a frame sequence using both in terms of appearance and motion information.

Appearance is captured using raw values and motion information is captured

using the optical flow between consecutive frames[27]. These two types of SDAE

pipelines are coupled together to learn a joint representation that captures both

the above aspects.

2.1.2.7 Adversarial Autoencoder

Adversarial encoders are somewhat similar to variational autoencoders but in

contrast to variational autoencoders the training process consists of an adver-

sarial part that makes sure the latent space is regularized according to a given

distribution. One advantage this has over variational autoencoder is that this

has the ability to force any type of distribution over the latent space where in
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variational autoencoder the latent space had no option but to follow a normal

distribution.

Figure 2.3: Adversarial Autoencoder

As an autoencoder the encoder and decoder combination tries to reconstruct

the original input image as closely as possible using an error function, usually

mean squared errorMSE or mean absolute errorMAE.

The equation for the autoencoder part is as below. This is exactly same as a

usual autoencoder functionality.

Lrec(E,G) =
1

2N

N∑
i

(xi − x′i)
2

(2.8)

The goal of the AAE is to learn the two functions (E,D) where x′ = E(G(x))

is close to the original input x

The latent vector regularization is performed in a adversarial fashion where

the optimization function is as below.

V (E,D) = min
E

max
D

Ez∼pz [logD(z)] + Ex∼p(x)[log 1−D(E(x))] (2.9)

The function V (E,D) is solved while aiming to distinguish the distribution

q(z ∼ E(x)) from prior distribution p(z)

2.1.2.8 Deep Belief Networks

These type of networks are created by stacking multiple hidden layers. Restricted

Boltzmann Machines RBMs are stacked and trained in a greedy fashion to con-
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struct Deep Belief Networks (DBN). Those are trained in an unsupervised manner

in a greedy fashion to perform feature learning. They are capable of reconstruct-

ing the original inputs and thus called generative models.

In [28] the DBNs are used to represent raw image representations. The re-

searchers have proposed a unified energy-based methodology for video abnormal-

ity detection. Their model is based on RBMs (DBNs) to capture data irregular-

ity. Their system can distinguish and pinpoint the anomaly in the spatial plane.

It is trained directly on the image in a fully unsupervised manner. For video

streaming, they further introduce a streaming type methodology that can update

parameters in the real time incrementally while a video frames are being input.

2.1.3 Predictive Modeling

If the current output frame at time t is Xt, the basic idea of predictive modeling is

that to represent the current frame in terms of past p frames [Xt−1, Xt−1, ....., Xt−p−1, Xt−p].

This principal is used in auto-regressive models for time series analysis which em-

ploys a linear function over the past data. The same is used with non-linear func-

tions such as sigmoid functions in Recurrent Neural Networks(RNN), modeled as

recurrent relationships. The standard method for these type of modeling is the

LSTM which in fact is a extended RNN that has a gating functionality introduced

in order to cater for the issue of vanishing gradient that was present in normal

RNNs when they were subject to backpropagation through time. Recently there

have been some researches done on the video prediction domain using convolution

networks by minimizing mean squared error(MSE) between predicted and future

frame [29]. A similar research is [30], which uses a CNN-LSTM-deConv network

by combining mean sqared error and adverserial loss.

2.1.3.1 Usages of LSTM (Long-Short-Term-Memory)

LSTMs are capable of remembering past frames while resolving issues aroused by

vanishing gradient. This is performed by enabling various gate mechanisms that

allow it to filter and carry forward the required information and retain only the

necessary part. LSTM principal is used combined with other models as well. One

such successful combination is Convolutional LSTM, which is a LSTM network

formed in a 2D convolution network pattern.
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2.1.3.2 Convolutional Long Short Term Memory (ConvLSTM)

This is an encoder model that is a composite of the LSTM model and the encoder

decoder model. The fully connected LSTM is a powerful model but it is too

redundant for spatial data. Convolutional LSTM takes a encoding -forecasting

structure that has stacks of Concolutional LSTM layers.

This model is basically designed to overcome the major drawback of fully con-

nected LSTM models where they are densely connected in terms of input-to-state

and state-to-state transitions. ConvLSTM is nothing but adding a convolution

operator between state-to-state and input-to-state transitions.

The operations of a ConvLSTM are represented by the equations shown below.

The convolution operation is denoted by ∗ and the Hadamard product is denoted

by ◦ (the element-wise product of matrices).

it = σ (Wxi ∗ Xt +Whi ∗ Ht−1 +Wci ◦ Ct−1 + bi)

ft = σ (Wxf ∗ Xt +Whf ∗ Ht−1 +Wcf ◦ Ct−1 + bf )

Ct = ft ◦ Ct−1 + it ◦ tanh (Wxc ∗ Xt +Whc ∗ Ht−1 + bc)

ot = σ (Wxo ∗ Xt +Who ∗ Ht−1 +Wco ◦ Ct + bo)

Ht = ot ◦ tanh (Ct)

(2.10)

The encoding network compresses the input tensor to the hidden state and the

forecast network unfolds the hidden state network to make predictions. Hidden

representations can be utilized to capture mobile objects as used in the this

research, where the main objective would be to capture moving pedestrians. If

a larger kernel is used, faster moving objects can be captured and if a smaller

nucleus is used, slower objects can be captured [31].

An encoder decoder model is used in the researches performed in [32] and [33]

with some outstanding results. In their models, a ConvLSTM model was used

along with an encoder decoder model as a unit in a composite LSTM model, with

two branches, where one reconstructs the input and the other tries to predict the

future inputs.

2.1.3.3 Slow Feature Analysis (SFA)

Slow feature analysis is based on the principal of slow features. In a series of

image frames that change over time, or in other words, in a video frame, there

are slowly moving features that can be captured. Even though the individual pixel

values change drastically, and more frequently over time, these slow features are
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not changing as frequent as much as in each pixels. These higher order internal

visual representations very slow on time scale and identifying these would be

useful in prediction of the future inputs and thus formulating a anomaly detection

framework. This is entirely based on the slowness principal.

The Slow Feature Analysis algorithm formulates the general intuition behind

the slowness principle in terms of a non-linear optimization problem : Given a

input signal x(t) , find gj(x) functions such that the output signals. This is an

optimization problem which is denoted by the following equations.

Figure 2.4: SFA

yj(t) := gj(x(t)) (2.11)

Optimization problem

• Minimize : ∆ (yj) :=
〈
ẏ2j
〉
t

Constraints:

• Zero mean : 〈yj〉t = 0

• Unit variance :
〈
y2j
〉
t

= 1

• De-correlation of different signal outputs : ∀i < j : 〈yiyj〉t = 0

The constraints enforce the representation to have a unique solution and unit

covariance to avoid trivial zero solution. Also uses de-correlation of the feature

to avoid redundancy in them.

In [34] and [35] SFA has been used for pattern recognition. An incremental

updating mechanism of slow features was introduced by the authors in [36]. The
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SFA here is calculated using the batch PCA method by iterating two times. In

order to produce a traceable solution, another two layered localized SFA archi-

tecture is introduced by the researches who performed [37].

2.1.3.4 Other Predictive Models

2D convolution nets are appropriate for image recognition tasks, but they are

not a good fit in terms of detecting the information in the temporal dimension

encoded in subsequent frames in video sequence analysis tasks. As a solution,

the authors in [38] are using a 3D convolutional architecture, which is used in

the layers of an autoencoder. Such an autoencoder is capable of learning features

that are invariant to spatial and temporal changes or in other words, mobility,

encoded by 3D convolutional feature mappings. The kernel is a 3d tensor and the

output of such a kernel is also another 3D tensor with one temporal dimension

which is expected to encode motion related information. Authors in [39] have

proposed a 3D kernel that was created by stacking T-frames on top of each other,

as in [21].

Another prediction model is used in [40] in which a CNN’s features were input

to a LSTM model so as to predict the formed latent layer representation. The

obtainable prediction error was employed to evaluate novelties in applications

related to robotics. In [41] authors have attempted to create a video forgery

detection system by using a recurrent autoencoder that utilizes an LSTM which

is used to model the temporal dependency between patches from a sequence of

video frames.

2.1.4 Deep Generative Models

If a supervised learning setup (Xi, yi) ∈ Rd × {Cj}Kj=1 is indexed by i where

i = 1 : N in the data set, a generative model estimates the class conditional

posterior distribution P (X|y). Training this could become unstable if the input

data is high quality images or spatio-temporal tensors.

2.1.4.1 Variational Autoencoders

Variational Autoencoders basically models the data distribution P (X) of a high

dimensional input X which could be an image or video. A encoder decoder

architecture is used with some parameters θ and φ which essentially achieves the

variational approximation of the latent space.
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The goal of a variational autoencoder is to learn a dimensionaly reduced

representation z by modeling P(X—z) with more simpler distribution, usually

a Gaussian, i.e. P (X|z; θ) = N(X|f(z; θ), σ2 ∗ I). The loss function has two

terms. One is the reconstruction error and the other is the KL-divergence term.

Anomaly detection using variational autoencoders is experimented in [42]. They

evaluate the reconstruction probability Eqφ(z|x) [log pθ(x|z)]. First, for a new sam-

ple x(i) the mean and the standard deviation vectors are evaluated with the

encoder, (µz(i), σz(i)) = fθ(z|x(i)). Then the latent space vectors are sampled,

z(i,l) ∼ N (µz(i) ,σz(i)). Then the parameters for the input distribution are recon-

structed using the L samples, µx̂(i,l) ,σx̂(i,l) = gφ(x|z(i,l)). Thus the reconstruction

probability for the sample x(i) is given as follows.

P recon

(
x(i)
)

=
1

L

L∑
l=1

pθ
(
x(i)|µx̂(i,l) ,σx̂(i,l)

)
(2.12)

In a variational autoencoder one of the main distinctions from a standard

autoencoder is that, sampling the latent variable distribution lets the variability

to be taken into account by the reconstruction error rather than in a case where

latent variables are defined by deterministic mappings.

2.1.4.2 Generative Adversarial Network(GAN)

GANs were initially introduced by researches in [43]. The GAN contains a gener-

ator G which is a decoder usually and a discriminator which is usually a encoder.

The task of the generator is to learn a distribution pg over the data x by mapping

G(Z) of the samples z to 2-dimensional images in the image space manifold X.

The image space X is populated by regular data samples. Here, z is a 1D vector

from the input noise that is uniformly distributed and sampled from the latent

space Z. The generator G is generally a convolutional decoder but there are some

variations to this where this may not necessarily be a correct term. In researches

like [44](Adversarial Dual Autoencoder(ADAE)) the generator is an autoencoder

which takes in an input image instead of the latent vector z.
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Figure 2.5: The basic structure of a GAN

The discriminator is usually a CNN that maps the 2D input to a signal score.

The discriminator output is an interpreted as the probability (a value between 0

and 1) which indicates whether the given input is a real image sampled from X

or a generated image faked using G(z) by the generator G. Again there can be

variations to the discriminator as well. The best example is that the [44] in which

the discriminator is also an autoencoder where the reconstruction error us used

instead of the likelihood score which was automatically generated by an ordinary

discriminator.

Discriminator D and Generator G are both optimized simultaneously through

the minimax function mentioned below.

min
G

max
D

V (D,G) = EX∼p data
[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.13)

The discriminator is optimized to give the maximum probability for ”real” for

those samples that are sampled from the real samples and ”fake” to the samples

that are generated by the generator. The main objective of the generator G is

to minimize log(1−D(G(z))) by maximizing D(G(z)), thus it essentially tries to

fool the discriminator D by doing so.
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In [45] a GAN model was applied for the task of identifying the anomalies

in medical images. GANs are generative models that are capable of generating

training data points x ∼ Pdata(x) where Pdata represents the probability density

of the training data points.

For anomaly detection, the GANs can be used in many different ways. One is

to threshold the final output of the discriminator for each input for the generator.

The other method is that to consider a score like MSE for the output of the well

trained generator output. Another interesting way would be to separate out the

discriminator and use it as a judge for other different types of reconstruction

methods like CAEs. If deformity in the reconstructed image are visible and

detectable, the separated discriminator can be used out take on the reconstructed

output and provide judgement.

In order to obtain a likelihood in GANs, a mapping from the input image

domain to the latent domain is required. The authors in [45] have made a success

in creating this mapping. In this research, the authors attempt to find a point

z in the latent vector space that corresponds to an image G(z), which is close

to the image x and this is located in manifold X. The similarity of x and G(z)

depends on how much the input image adheres to the data distribution pg, on

which the generator was trained upon.

Figure 2.6: ADAE
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2.2 State-Of-The-Art Models

2.2.1 AMDN

This is the model proposed by [46] in 2015. Currently this model performs well

for both PED1 and PED2 but specifically provide state-of-the-art AUC/EER for

PED1.

This method uses an optical flow base score and raw image score combining

method called double fusion.

Figure 2.7: AMDN

2.2.2 ConvLSTMAE

This model was introduced in 2017 by [19]. Provides it’s best performance on

PED2 and currently holds the state-of-the-art AUC/EER for PED2. Some LSTM

layers are used.
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Figure 2.8: ConvLSTMAE

2.2.3 ConvAE

This model is an autoencoder which was introduced by [21] in 2016. This model

does not have LSTM layers for temporal data capturing. Used HOG+HOF fea-

tures.

Figure 2.9: ConvAE
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Chapter 3

Methodology
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3.0.1 Model Architecture

This section describes the architecture and metrics that were used to train the

model. The current literature in the domain directed the search towards deep

learning as deep learning has become the new star in the area of video processing.

The non-deep learning methods were very useful till the time that processing

power was still an issue. But since processing power is available at a lower cost

than before, it is always worth putting efforts in deep learning. On the other

hand, deep learning is giving promising results that were not achievable through

non-deep learning methods. In terms of accuracy and robustness deep learning

proves to be the best. The only drawback is that it needs a huge amount of data

to gain such better accuracy. Data is at abundance and with the huge amount

of data at hand, a large processing power is also a requirement. Even though

processing power is cheaper than before, it is still a considerable cost. If the

target architecture is a deep learning based method, it should also be feasible in

terms of cost of processing.

3.0.1.1 Motivation

This system is a unsupervised system which is hard to achieve using the conven-

tional non-deep learning based methods. Hence the only choice left is to use a

deep learning method that can be trained without any supervision.

The most common way of anomaly detection in the deep learning world is the

use of autoencoders. Since the introduction of the methodology in [19], there have

been many variations to the methodology. Even though [19] has demonstrated

the methodology using the UCSD crowd data set, most of the later introduced

methodologies were introduced using the MNIST data set. MNIST is a very basic

data set of which the images are of 28x28 dimensions and no continuity is expected

but the mere image pattern observation. But in contrast, UCSD data set is more

complex (dimensions 158x238). Not only it has a higher resolution, but also

it has its anomalies in sequences which requires adding a temporal dimension

into our equation. Due to these two reasons, the the input data becomes 3

dimensional and requires a higher number of parameters in the model to be

trained. This very thing makes it extremely difficult to train on GANs which

are already very unstable in nature. Experimentation with GAN architectures

showed that the models are highly unstable with such larger volumes and always

tend to drop into a local minima. The only architecture that shows a appreciable

level of robustness towards such high dimensional data is the autoencoder and
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any variation of autoencoders seemed to be able to train and obtain good results.

Among the autoencoder types, two of the most promising types are adver-

sarial autoencoder and the variational autoencoder. Even though both try to

approximate the latent space using a distribution, adversarial autoencoder facil-

itates a few additional flexibility points that are to be noted. The main point

is that we can use any distribution to be followed by the latent space where as

in variational autoencoder it is only a normal distribution. This quality can be

utilized and different distributions would show different results on the learned

error rate. The other advantage is that the AAE has a part that is trained in ad-

versarial fashion. An adversarial discriminator is nothing but an improved error

function that cannot be designed by human intelligence. Hence, AAE provides

the chance of utilizing an improved error function, which in turn can also be used

as an anomaly score. This anomaly score would be able to detect even small

anomalous behaviours in sequences where a general error function like MSE or

MAE would not be very sensitive to them. But this outputs very fluctuating

non-smooth curves which may need a lot of effort spent on curve smoothing and

threshold decisions. Attributing to the sensitivity to even small variations of the

input, its quite common to see many false positives if the anomaly score is taken

solely based on latent dimension. Hence the adversarial training on the latent

dimension is only performed as a regularization methodology. Discriminator’s

output was not directly taken as the anomaly score. Instead the reconstruc-

tion error from the main decoder was taken as the anomaly score. Due to the

additional regularization step, this score would yield smoother curves, that are

smoother than in [19]. In addition to that, the research carried out by [47] claims

that the reconstruction outputs obtained by AAE are sharper than what was ob-

tained by VAE. VAE reconstruction outputs are sharper in quality than from an

AE due to the fact that latent space being continous. Since the research by [47]

indicates that AAE gives better quality than VAE, AAE automatically becomes

a sharper results producer than a regular AE.

In [22], the researchers have used an AAE to detect anomalies and the method-

ology that they had used lacks a few points. The anomalies are not always visible

in a single image alone and observing patterns in a single image would not suf-

fice to detect anomalies of a more complex context. An example would be two

people fighting on the pathway. In order to detect these type of anomalies, there

is a need to capture the anomalous behaviour in the temporal dimension, which

essentially suggests the use of a recurrent network, an LSTM to be precise. Since

there is also a spatial dimension to be considered, the most suitable would be to
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use a Convolutional LSTM network.

For this research the model used is an adversarial autoencoder. Instead of

using convolutional layers alone, there are some colvolutional LSTM layers added

so that the history is efficiently managed to reproduce in a predictive manner.

The expectation is that whenever the input contains abnormalities, the recon-

structed image would be reproduced in a deformed manner. This deformity is

also detectable form observing the latent space.

3.0.1.2 Model Definition

Layer Filters Kernel Stride Normalization

TimeDistributed(Conv2D) 128 11x11 4 Layer Normalization/ReLU

TimeDistributed(Conv2D) 64 5x5 2 Layer Normalization/ReLU

ConvLSTM2D 64 3x3 1 Layer Normalization

ConvLSTM2D 32 3x3 1 Layer Normalization

Flatten - Latent Vector 327680 - - -

Table 3.1: Encoder Network

The encoder network consists of time distributed convolution layers and convolutional

LSTM layers.The original image sequence of dimensions (10, 256, 256, 1) is given as

input. The latent vector of size 327680 is given as the output.

Layer Filters Kernel Stride Normalization/Activation

Flattened Latent Vector 327680 - - Reshaped (10, 32, 32, 32)

ConvLSTM2D 32 3x3 1 Layer Normalization

ConvLSTM2D 64 3x3 1 Layer Normalization

TimeDistributed(Conv2D) 64 5x5 2 Layer Normalization/ReLU

TimeDistributed(Conv2D) 128 11x11 4 Layer Normalization/ReLU

TimeDistributed(Conv2D) 1 11x11 - sigmoid

Table 3.2: Decoder Network

The decoder network consists of time distributed convolution layers and convolutional

LSTM layers. The latent vector of size 327680 is given as the input. Original input

dimensions (10, 256, 256, 1) as output
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Layer Filters Kernel Stride Normalization/Activation

Flattened Latent Vector 327680 - - Reshaped (10, 32, 32, 32)

TimeDistributed(Conv2D) 16 3x3 2 Relu

MaxPool3D 128 2x2x2 2 -

Flatten 24576 - - -

Dropout(0.4) - - - -

Dense 1 - - sigmoid

Table 3.3: Discriminator Network

The discriminator network consists of 2D convolution layers Dense Layers. The latent

vector of size 327680 is given as the input. Dense layer with sigmoid activation as

output

The model layer descriptions are as depicted in tables 3.1 , 3.2 and 3.3.

Figure 3.1: Overall Model Architecture
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3.0.1.3 Training

The training setup consists of two parts. First some level of pre-processing had

to be performed before applying the training algorithm. The images were first

resized to 256x256 size from their original sizes and normalized to have values

between 0 and 1. in [19] the pre-processing step was to resize them to 224x224

resolution. In the proposed model, the resolution was slightly increased expecting

better detection of the deformities at reconstruction.

On Ped1 and Ped2, the model was trained for 100 epochs each and with batch

size of 4. The input is of dimensions, (10, 256, 256, 1). Images were divided into

sequences of 10 and created clips of the above shape. Since the data set was not

sufficiently large for a deep learning model, as a data augmentation technique,

clips were created using variable strides of 1, 2, and 3.

The encoder and decoder were trained without any adversarial effect. The

loss were the reconstruction error that was measured by MSE. Then the encoder

vs discriminator training was performed in an adversarial manner. The error

used was binary cross entropy. When the discriminator is trained, a vector that

matches the same size as the latent vector is given as the input to the discrimi-

nator. This vector is sampled form a prior p(z) such that z ∼ N(0, 1).

The optimizer used was the Adaptive Moment Estimation(Adam) with learning

rate 10−4, decay 10−5, and epsilon 10−6.

Reconstruction error between the generator and decoder was Euclidean dis-

tance between input and reconstructed images.

e(t) = ‖x(t)− fW (x(t))‖2 (3.1)

fW represents the model weights of encoder-decoder network. The reconstruc-

tion error of all pixel values in frame t of the video clip is calculated using the

Euclidean distance as in (3.1).

3.0.1.4 Anomaly Detection

The abnormality score is calculated based on the (3.1).

sa(t) =
e(t)− e(t)min

e(t)max

(3.2)

This error function is as same as used in [19].
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And then the anomaly score sa(t) is converted to a regularity score sr(t) so

that the more anomalous the data, the lower the score would become.

sr(t) = 1− sa(t) (3.3)

In order to make the graph smooth so that threshold intersection points are

easily measured, Persistance1D(.3) algorithm was used.

3.0.1.5 Variations of Anomaly Score Calculation

The model is three-fold in terms of anomaly score calculation. The method varies

with the mode of weighting the individual pixels. The weights for the pixels are

applied identically to both input reference and reconstructed frames. The three

types are, the vanilla model, the model with edge based weighting, the model

with background subtraction based scoring. Each of the three forms perform

differently on the PED1 and PED2 data sets and this is explained in greater

detail under the results section.

In the vanilla model, no weighting was used for reconstruction error calcula-

tion. It is the pure output of the model that is trained.

In the edge based weighting methodology, the weights are increased along

the edges and this makes the model react to only object margins and internal

textures of the objects are not evaluated. This way, the deformations of the

reconstructions are better captured.

The used edge detector is ’Canny’ edge detection’(.1)
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Figure 3.2: Edges found in PED1 video clips

In the background subtraction based system, the anomaly score is improved

by calculating the score only on moving areas. MOG2 background subtraction

method is used to perform the background removal process. For the detected

foreground area, a higher weight is given so that the reconstruction error stands

more sensitive to the deformations and it becomes more robust towards the un-

necessary noise.

The used background subtraction method is MOG2(.2)
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Figure 3.3: Background Subtraction on PED1 video clips

Unlike in 3.2, in 3.3 only the moving objects are visible. This enables the

system to manage the reconstruction error more effectively.
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Chapter 4

Experiments and Results
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4.1 Data Set

The research is performed on two of the most cited and widely used data sets,

namely UCSD crowd anomaly data set, PED1 and PED2 where PED1 is about

twice the size of PED2. PED1 has 34 training clips and 36 testing clips, each video

containing 200 frames. In PED2 16 training and 12 testing videos are present

and each clip contains a variable number of frames. The videos are created with

a fixed position camera for each data set. PED1 has been filmed over-watching

the crowd walking towards and away from the camera at a distance while PED2

has been filmed watching the crowd walking parallel to it. The training data

only consist of normal clips and no abnormal event is included. Testing videos

on the other hand has abnormal behavior varying over a number of classes. The

categories as bikers, skaters, carts, wheelchairs and people walking in the grass

area as well as anomalous pedestrian motion patterns.

In order to enhance the data set to make it more suitable for data hungry deep

learning tasks, each video is divided into frames of 10 sequences and the 10 frame

sequences were gathered over the same video using a stride varying from 1 to 3.

This was able to increase the data set size by 3 times.

4.2 Experiments

The research is performed focusing on two models. The Ped1 and Ped2 of UCSD

crowd data set are commonly used by the vast majority who are experimenting

on crowd anomaly detection. Hence it is easy to compare performance with other

models. All three types of models(Vanilla, edge weighted, background subtraction

based weighting) are extensively tested on the PED1 and PED2 data sets.

This research has also performed experiments on the CHUK Avenue data set,

which is another data set that is filmed using a fixed camera viewing the activities

near a campus entrance. This data set is not cited by all the researchers but only a

few. Thus Avenue data set was trained and tested as an extended experimentation

task. This data set does not have a variety of anomalous classes, instead this has

classes mainly runners, walkers towards camera, and throwing objects.

Further experiments focus on the possibility of utilizing the latent space in-

formation and the discriminator decision to detect the anomalies instead of ex-

amining the reconstructed image.
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4.2.1 Hardware Settings

The hardware that were used are as below. The models were run on google

collab services using Keras with tensorflow-2.0 back-end with the following spec-

ifications.

• NVIDIA-SMI 440.64.00 : Driver Version: 418.67

• CUDA Version: 10.1

• Tesla P100-PCIE

• RAM : 16280MiB

4.2.2 Anomaly Count

Anomalous events are detected based on the following criteria.

• A predefined threshold is used to capture the anomalous events

• If there is a local minima that has a lower value than the threshold, the

local maximas on either sides enclosing the particular local minima are

considered as the endpoints of the range of detected frames.

• If the detected range covers at least 50% of the frame span of the ground

truth, the detection is considered as a true positive

• The coverage is considered as the accumulated coverage area of all the local

minimas that has a lower value than the threshold

• For a detection to be a true positive, only the accumulated coverage from

local minimas residing within the ground truth range are considered. Or

at least the local minima should lie within 10 frames of either sides of the

ground truth bounds.

• Similarly, if the accumulated coverage of local minimas is covering at least

50% of the non-ground truth areas, the detection is a false positive.
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4.2.3 Experiment Methodology

All the test cases are run through the adversarial autoencoder and scores are

calculated as per (3.2), and (3.3). In [22], they have used a adversarial autoen-

coder, but they have utilized only the discriminator score. Discriminator score

is a useful piece of information, but since it looks at the distribution of the la-

tent dimension, this will not have the capability to distinguish a skateboarder

from a walking passenger. But it would be very useful in terms of understanding

anomalies in the static background. For instance a passenger entering the grass

area outside the pathway would be successfully flagged. Also different types of

vehicles would be giving a considerable score in the latent vector evaluation.

In this research, the score is evaluated by calculating (3.3) and evaluating

against an appropriate threshold value.

Int [19], they use the decoder reconstruction based score. In [22], they use

latent latent vector evaluation. In [22] the the score fluctuates largely and the

robustness and the score consistency is affected by it. Hence, the proposed sys-

tems do not use the latent information for anomalous score calculation, instead

the reconstruction score error is used. But for the purposes of experimentation,

the same is tested in a few test cases.

The testing was done using the test clips provided in PED1 and PED2 data

sets in which they have provided the default set of ground truths. But the clips

contain other anomalies that were not included in the ground truths. Hence more

experiments were performed using the corrected ground truths.

4.3 Results

This section discusses the results obtained by the proposed systems(all 3 types)

and they are compared with the other best performing models. The results show

that the proposed systems outperforms the other systems in frame level detection

tasks in terms of AUC of the ROC curve and the EER.
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Method PED1 PED2

AUC EER AUC EER

Adam[48] 77.1 38.0 - 42.0

SF[49] 67.5 31.5 55.6 42.0

MPPCA[50] 66.8 40.0 69.3 30.0

MPPCA+SF[50] 74.2 32.0 61.3 36.0

HOFME[51] 72.7 33.1 87.5 20.0

ConvAE[21] 81.0 27.9 90.0 21.7

ConvLSTMAE[19] 77.1 27.5 [93.0] 13.0

AMDN[46] [92.1] 16.0 90.0 17.0

Proposed(Vanilla) 79.4 23.9 97.6 10.0

Proposed(Edge Weighting) 80.6 26.9 94.0 16.9

Proposed(BG Sub Weighting) 85 22.4 94.6 12.8

Proposed(BG Sub Weighting - Ground Truth Corrected) 91.6 13.28 - -

Table 4.1: The table lists the AUC(Area Under Curve) and EER(Equal Error

Rate) rates of state of the art models from 2010 to 2019. Along with listed

are the corresponding rates of the proposed model. Higher the AUC the better

and lower the EER the better. The current state-of-the-art rates are in square

brackets.

In the illustrations below, ’data index’ refers to frame number and ’data value’

refers to normality score value.
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4.3.1 UCSD PED1

Figure 4.1: ROC for PED1, vanilla model with uniform weighting

Figure 4.2: ROC for PED1, edge based weighting
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Figure 4.3: ROC for PED1, background subtraction based weighting

The results for UCSD PED1 data set is as shown in the table 4.1. According to

the table, the proposed model outperforms all other models clearly in terms of

AUC and EER, except the [46] model. The reason is due to several false positives

present. But if we examine all the false positives carefully, many of them are not

really false positives but true positives as the ground truth should be corrected

to add those as well. Some examples are extensively discussed under the section,

’True Positives Outside Ground Truth’. When ground truth values are corrected

to reflect the new ranges, the AUC becomes 91.6% and EER becomes 13.28%.

The AUC is less than the state-of-the-art. But the EER is better than the state-

of-the-art. Even though the numbers are not directly comparable due to changed

ground truths, it indicates that the proposed model is more sensitive to anoma-

lous events than the best performing models in the domain. The proposed model

seem to perform more accurately than other models in general.

When the background subtraction based weighting is replaced with edge weight-

ing the proposed system’s AUC drops to 80.6% from 85% and it is less than the

AUC by [21]. But still the EER is lower than the [21]. Hence the model performs

at least as good as [21] for PED1 with edge based weighting. With the vanilla

model as in 4.1, similar to the scenario of edge weighting, the model performs at

least as good as [21] with AUC of 79.7 and a comparatively less EER. This EER

is even lower than the edge based weighting case.

With background subtraction based weighting the model outperforms all other

models, except [46] but including [21] with a clear gap of AUC(85%) and EER(22.4%).

The weighting was done such that the foreground pixel values are weighted by 1
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and the background is weighted by a value close to zero.

Under the following subsections, some examples of true positive, false posi-

tives, false negatives and ground truth corrected scenarios are described. All the

examples are generated using the edge based weighting mechanism. The reason

was that, when generated with edge based weighting the generated graph closely

resembles to the vanilla graph but with higher differences between the event scores

so that the graph scales vertically and the explaination is more clear. With back-

ground subtraction weighting, the shape of the graph has significant changes,

hence not used for illustrations. Later in this sub section, all three model’s out-

puts are compared altogether and there, some illustrations are used to show the

improvements that the background subtraction brings.

4.3.1.1 True Positives

The below are some examples of true positives on various categories of anomalies.

Figure 4.4: True positive: Test01: Biker

In the clip 4.4, a biker moves away from the camera and the model is able to

successfully capture the event with a considerable difference in score.
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Figure 4.5: True positive: Test04: Skater

A skater in 4.5 moves among people away form the camera and the shape

almost matches that of a normal walker. But the model is able to capture the

anomaly based on the temporal behavior as the skater moves considerably faster

than a normal walker.This temporal dimension is captured using the LSTM com-

ponent in the model.

Figure 4.6: True positive: Test01: Van

This figure 4.6 shows a van moving towards the camera and this is easily

captured even without the help of LSTM component as the holistic shape of the

van is distinguishable from the shape alone with far apart scores.
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Figure 4.7: True positive: Test01: Biker

Similar to 4.6, this 4.7 also shows a vehicle, a cart that is moving towards the

camera. This one is also detected in the same manner as the van.

4.3.1.2 True Positives Outside Ground Truth

Some events that were not included in the ground truth values were detected

by the proposed model due to its high sensitivity. Some anomalies are obvious

detections that are missed in the original ground truth values. But there are some

others which are truly anomalies but not very significant in terms of the number

of pixels.

Figure 4.8: ROC for PED1, ground truth correction

The new ROC curve after ground truth correction is as shown in 4.8. This

shows a AUC of 91.6% and EER of 13.28%.
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There are 11 such scenarios and 10 out of 11 were successfully detected by the

proposed model. Some of the examples are illustrated in this sections.

Figure 4.9: Ground truth correction

Figure 4.10: Test22: Corrected ground truth added in 4.9

In image 4.10 after the frame 172, a wheel chair appears from the far end of

the road, but this is not included in the original ground truth values. Since the

proposed model is very sensitive to such smaller details as the reconstruction is

very accurate, such kind of detection turns out to be false positives compared

with the original ground truth values.
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Figure 4.11: Ground truth correction

Figure 4.12: Test26: Corrected ground truth added in 4.11

In figure 4.12 the biker in the circled area is arriving after the frame 144. But

the biker is travelling too slow to be detected as an anomaly. Hence not included

in the original UCSD ground truths. The only useful information is the shape of

the biker. This one is also detected as a false positive when compared with the

original ground truths as shown in 4.11.
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Figure 4.13: Ground truth correction

Figure 4.14: Test18: Corrected ground truth added in 4.13

In figure 4.14, a person is walking on the grass and as per the context, this

can be considered as a restricted area. This scenario is an easy detection for the

proposed models as the AAE’s output is very accurate in the background areas

compared to the foreground.
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4.3.1.3 False Positives

The proposed model has some false positives which are due to various reasons.

Some are due to odd directions, and sometimes it is the bright clothes. It could

be also due to change of the travel pattern and there is one false positive due to

camera shake as well.

Figure 4.15: False positive: Test34: change of travel pattern

The group of people shown in 4.15 are traveling down the pathway and around

the clip 130, they start slowing down and stop. This change of behavior triggers

the model to wrongly predict their motion and the model to reproduce with higher

error.

Figure 4.16: False positive: Test12: camera shake

There is one clip with camera shake. This affects the image predictions after

a few frames and leads to higher error rate.
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Figure 4.17: False positive: Test11: Odd direction

At the beginning of the clip, a person appears from the bottom right corner

and walks towards left while his upper body becomes visible in some number of

frames. This falls under odd direction category but since this is not considered

as anomaly, this is categorized as false positive.

4.3.1.4 The False Negatives

There is one true false negative that is not detected even at the threshold value

of 1.

Figure 4.18: False positive: Test11: False negative

As it is seen in 4.18, even though the natural graph has been able to capture

the anomaly at the threshold of 0.9 with at least 50% coverage, the smoothed

graph has not been able to capture one minima and the 50% rule does not comply.

Hence categorized as false negative. The ground truth corrected portion is not

considered for calculation.
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4.3.2 UCSD PED2

Figure 4.19: ROC for PED2, vanilla model with uniform weighting

Figure 4.20: ROC for PED2, edge based weighting
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Figure 4.21: ROC for PED1, background subtraction based weighting

The performance metrics for PED2 is comparatively better than the same met-

rics for PED1 as it’s size and variety is less complex than PED2. The model

proposed in [19] is the model that performs best among other models. The AUC

of [19] is less than that of the edge based method, even though EER is better

than the proposed. But other two proposed models clearly outperform in every

aspect compared with other models.

This data set contains pedestrians walking parallel to the camera and as anoma-

lies, similar to PED1, vehicles, bikers, skaters are the types of anomalies found.

In PED2 no ground truth correction was needed.

The background subtraction based weighting is giving outstanding results

where not only it increases AUC by 0.4 points but also it decreases the EER by

approximately 4 degrees(from 16.9 to 12.7), compared with edge based method.

But the best performance is achieved by the vanilla model where it gives an

exceptional AUC of 97.6 and EER of 10.0. The proposed methods are setting a

new state-of-the-art AUC and EER for PED2 data set by breaking the current

best performance record achieved by [19], which is AUC of 93.0% and EER of

13%.

The weighting was done such that the foreground pixel values are weighted by

1 and the background is weighted by 0.5. If the background pixels were assigned

with near zero values, even though it improves the score differences, the model

produces some false positives due to occlusions.
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4.3.2.1 True Positives

These are some examples of true positives.

Figure 4.22: Test04, PED2 true positive

Figure 4.23: Test06, PED2 true positive

Figure 4.24: Test07, PED2 true positive

As shown in figures, 4.22, 4.23, 4.24, such events are easily distinguishable.
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4.3.2.2 False Positives

The below false positive scenarios are having regular human activities but the

scenes are crowded making some occlusions. The false positives below are due to

different reasons like unusual objects in hand, suddenly stop moving etc.

Figure 4.25: Test01, Unusual objects in hand

Figure 4.26: Test02, Suddenly stop moving

Figure 4.27: Test12, Unusual objects in hand
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4.3.3 Improving Results - Weighted Pixel Values

In order to improve the scores, many methods were tried out. Among all the

efforts weighting the most relevant pixels appropriately stood as a promising op-

tion. Hence, the option that was left was to find a suitable way to dynamically

select the most important pixels and assign them a higher weight so that if a

difference is found, it gets magnified to show a clear contrast in the scores. As

a solution to find most important pixels in the image sequence, background sub-

traction and edge based weighting were used.

Using background subtraction is essentially as same as foreground segmentation.

But in this research more attention was given to mobility of the objects in the

frame. The Higher the mobility, the more it can be an anomalous event. This

mobility factor serves the propose better than merely segmenting the foreground.

But in contexts where anomalous events are not so mobile, this method may not

be very effective. But it is not a common scenario. In such cases, a simple convo-

lutional autoencoder without LSTM layers will suffice as there is less movement

involved. But since the sole purpose of this research is to detect crowd anomalies

in CCTV images, this assumption is always true.

This weighting is done in both reference and reconstructed images before cal-

culating the similarity error. There was a significant difference in scores when

background subtraction based weighting was introduced. The following sub sec-

tions illustrate how the scores get improved with weighting methodologies. PED2

data set is used to illustrate the difference.

4.3.3.1 Weighting Based Differences in Score

This sub section illustrates the anomaly score variations based on the method-

ology used to weight the pixels. According to the illustrations, the below key

points can be observed,

• Vanilla model contains the basic shape that is detectable

• Edge based weighting always tends to improve the detectable scores but the

area under detection does not seem to cover the majority

• Background subtraction based method gives significant improvement of the

score value differences and also tends to maintain a good portion under the

area of detection. The graph seems to be more flattened across the event

range with a lower regularity score.
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• 4.28 indicates that background subtraction without controlled weights may

introduce some false positive detections.

Figure 4.28: Test002 : Left to Right in order: vanilla model, edge detected, back-

ground subtraction based, background subtraction based increased background

weights

Figure 4.29: Test005 : Left to Right in order: vanilla model, edge detected, back-

ground subtraction based, background subtraction based increased background

weights

Figure 4.30: Test006 : Left to Right in order: vanilla model, edge detected, back-

ground subtraction based, background subtraction based increased background

weights

4.3.4 Further Experiments

4.3.4.1 Avenue Data set

The Avenue data set contains 16 training videos and 21 testing videos that are of

variable lengths. This data set has more foreground compared to UCSD data set.
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Crowd movement is parallel to the camera in general. The anomalous events are

of running and, and few other activities only. This does not have scenarios like

vehicle movements, skaters, carts etc. This is not very widely cited as much as

the UCSD data set. Hence was only experimented as part of robustness testing.

The training was done for 400 epochs. Some examples of the detections obtained

are shown below. These detections were performed by reducing the frame rate

by half.

Figure 4.31: 04.avi : Running behavior

Figure 4.32: 05.avi : Throwing objects

64



Figure 4.33: 06.avi : Different types of behavior

4.3.4.2 Latent Space Patterns

Since the model trained is a adversarial autoencoder, the latent space regulariza-

tion is used to approximate a given distribution, standard normal distribution in

this research, would reveal information related to anomalous behavior. Based on

that intuition, the discriminator score during training was observed on a single

test case. The below image is taken from the discriminator output at the 100th

epoch while training of PED1 data set.

Figure 4.34: Test008 : PED1 — Left:- reconstruction error, Rigt:- discriminator

score

The 4.34 clearly shows a pattern in the discriminator score where the same

pattern is followed in the reconstruction error.

The below image 4.35 is obtained from the 100th epoch while training PED2.
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Figure 4.35: Test001 : PED2 — discriminator score

There is no clearly visible pattern observed in the 4.35.

As it seems, the information from the latent space indicates some pattern

change for anomalous behaviors but this may need experimenting with different

distributions that would enhance the pattern observability in the discriminator

score.

4.4 Conclusion

The main focus of this research was to investigate and come up with an anomaly

detection methodology that minimizes the supervising effort. The model that

was created was an Adversarial Autoencoder based model, which requires no

supervision from an exterior source, instead it self-supervises and converges to a

solution.

Adversarial Autoencoders are regularized in the latent space and it greatly

improves the quality of the output. The latent space information is also a good

source of information which can be used to cluster the data. But in the domain

of anomaly detection we do not have any information of anomalous clusters dur-

ing training, due to which it is difficult to utilize in the manner of a clustering

algorithm. Hence the reconstruction error is utilized to find the anomalous events.

In order to gain better outcomes, pixel based weights are applied. Background

subtraction is used to remove the background and retain the moving objects

which are used to weight individual pixel values with slightly higher values than

the rest. The improvements were clearly visible in the AUC and EER values

obtained against other models. The proposed model was even capable of setting

new state-of-the-art values for PED2 in terms of AUC and EER.

In this research, three types of models(Vanilla model and two other variations)

were proposed. Each of them were nothing but a derived version of the vanilla
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model introduced. The performance of the three models were compared in terms

of AUC and EER with other previous models introduced in the domain of crowd

anomaly detection. All three types of the proposed models, outperform all other

prevailing state-of-the-art models with exceptional scores, AUC/EER - PED1 -

85%/22.4%, and PED2 - 94.6%/12.8%. There is one exception with [46] where

the proposed model falls a little behind on the AUC values obtained by [46]. But

the ground truth correction analysis reveals that, the proposed model’s sensitivity

is better than any other model in the domain including [46].

4.5 Future Work

This research fills the first step of a long journey of creating a comprehensive

system that can detect sophisticated anomalous events. This is currently detect-

ing the unseen behavior as anomalies. But if this system is integrated with a

behavioral analysis model and a face recognition model, this could also be used

to detect suspecting behaviors as well. For example, if the same person moves

around the same area or if he shows some repetitive behaviors & etc. In order to

achieve this, we need to have another supporting system that can perform human

behavioral analysis and face recognition based tracking. The systems proposed

by [52] can be integrated for real time fast human pose recognition and the system

proposed by [53] can be used for human face recognition based tracking. There

is also room for a system that can analyze non-human objects that may cause

suspicion. All such complex integrations open doors for a vast set of capabilities

that this system could be developed into.

The background subtraction performs a great job in terms of making a contrast

in the regular and abnormal events in the output score. This can be improved

by better background removal techniques. For instance a variational autoencoder

would do a better job in background seperation. Another idea worth experiment-

ing would be to use a foreground segmentation mechanism to weight the local

regions. This may also be done with an architecture similar to the famous U-Net.

In [44] they have used a adversarial dual autoencoders upon MNIST data in

which two identical autoencoders train adversarially to win over each other. In

a similar fashion, the loss function can be replaced with a suitable discriminator.

This type of training tends to provide better results as the loss function is not

fixed.

Another improvement would be to use the latent information to come up with

an optimized anomaly score. [22] is using a similar mechanism but it needs lot of
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smoothing in the output graph and may show a lot of inconsistency in different

a real world scenario.

An obvious improvement would be to increase the depth and number of filters

to capture more data. But this approach would cost in terms of processing power

as well as time consumed for training. The latent variable width should not

be increased unnecessarily as sparse latent spaces would always make the model

over-fit and fail in training.

The next step of the research is to develop a anomaly localization technique.

This is commonly done using optical flow based segmentation. But there can

be many other novel ways of segmenting the anomaly detected in output score.

The most basic way is to localize based on the score difference obtained for local

regions. But this would need a lot of other steps to get a meaningful output.

The proposed system involves many new techniques to improve scores and

these methodologies can be replaced with better approaches in the future that

yield finer outcomes. This would require more experimenting on the techniques.

Also another area to explore is to improve on the network layers and fine tune

the model outcome, thus lot more room to explore in the domain.

Autoencoders is the most feasible way of performing state-of-the-art anomaly

detection tasks. Recently generative adversarial networks have also been appear-

ing in the literature, but they have their inherent problem of instability which

hinders the performance when it comes to high dimensional data. But autoen-

coders on the other hand are more stable in nature and requires less parameter

tuning compared to generative adversarial methods. Among all types of autoen-

coders variational autoencoders and adversarial autoencoders are more optimized

for better outcomes. Thus, this methodology of using adversarial autoencoders

for anomaly detection would be subjected to more improvements in the future

without doubt.
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.1 Canny Edge Detection

Canny edge detector can suppress noise and detect edges at the same time. It is

a multi step algorithm.

• Step 1: Smooth the image using a Gaussian kernel. This step helps reduce

noise.

g(m,n) = Gσ(m,n) ∗ f(m,n) (1)

Gσ =
1√

2πσ2
exp

(
−m

2 + n2

2σ2

)
(2)

• Step 2: Computer the gradient of (1) using a gradient operator like Sobel,

Roberts etc.

M(n, n) =
√
g2m(m,n) + g2n(m,n) (3)

and

θ(m,n) = tan−1 [gn(m,n)/gm(m,n)] (4)

• Step 3: Threshold value M:

MT (m,n) =

{
M(m,n) if M(m,n) > T

0 otherwise
(5)

T is kept in a way such that all elements except the edges are suppressed.

• Step 4: In step 1 the edges might have been widened. Hence, suppress the

non maxima pixels in the edges in MT so as to make the edges thin.

• Use two different thresholds t1 and t2, such that t1 < t2 to come up with

two binary images where in the image obtained by t1 (image T1)has more

noise compared to the image obtained using t2(image T2). But on the other

hand in the image obtained using t2 has more accurate edges.

• Link the edge segments obtained in T2 using the connectivity help from T1
and complete the trace
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.2 MOG2 Background Subtraction

Background subtraction is the methodology of removing the background and

retaining the foreground in a image sequence. In order to do this, a single image

is not sufficient and a sequence of images is required. Among popular methods

of finding the foreground, MOG and MOG2 are widely used. More details about

MOG2 can be refered from [54]

.3 Persistence1d Algorithm

Persistence1D is a algorithm for locating local extremes and their persistence in

one-dimensional data. Local minima and local maxima are extracted, compared

and ranked in accordance with their constancy. More information can be referred

from [55]

Figure 36: Maxima detection using persistence1d

.4 UCSD Anomaly Detection Data set

More information can be found in UCSD site
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