FLOOD FORECASTING MODEL USING HEC-HMS FOR NAGALAGAM STREET HYDROMETRIC STATION WITH RELATIVE IMPACT OF ANTECEDENT RAINFALL IN KELANI RIVER BASIN

Akila Senadhinatha

(158566 A)

Degree of Master of Science in Water Resources Engineering and Management

Department of Civil Engineering

University of Moratuwa Sri Lanka

April 2020

FLOOD FORECASTING MODEL USING HEC-HMS FOR NAGALAGAM STREET HYDROMETRIC STATION WITH RELATIVE IMPACT OF ANTECEDENT RAINFALL IN KELANI RIVER BASIN

Nawarathne Mudiyanselage Akila Senadhinatha

(158566 A)

Supervised By Dr. R. L. H. L. Rajapakse

Thesis submitted in partial fulfillment of the requirements for the Degree of Master of Science in Water Resources Engineering and Management

> UNESCO Madanjeet Singh Centre for South Asia Water Management (UMCSAWM)

> > Department of Civil Engineering

University of Moratuwa Sri Lanka

April 2020

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the text.

Also, I hereby grant to the University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic, or other medium. I retain the right to use this content in whole or part in future works (Such as articles or books).

.....

Date

The above candidate has carried out research for the Master's thesis under my supervision.

.....

Dr. R. L. H. L. Rajapakse

Date

Flood Forecasting Model using HEC-HMS for Nagalagam Street Hydrometric Station with Relative Impact of Antecedent Rainfall in Kelani River Basin

ABSTRACT

The recurrent occurrence of major floods around the world as well as in Sri Lanka has significantly increased in the recent past. Thus, flood forecasting models have been developed to provide reliable and accurate simulation results to mitigate risk and reduce damage. It has been established that antecedent rainfall is an important factor in the determination of runoff magnitude and required to be incorporated in flood forecasting systems, however, lack of quantitative data is a major issue. The Kelani river is 192 km long with a catchment area of 2,292 km² and the heavily populated downstream basin is highly flood prone due to its inherent low-lying characteristics. Water levels at downstream Nagalagam Street station with pre-established threshold values are traditionally used to forecast the flood risk to Colombo and suburbs, however with a minimum or no lead time. The present research is focused to better comprehend the adequacy of existing rainfall-runoff models and the effect of antecedent moisture content on flood forecasting models focusing on downstream Kelani Basin as the case study site.

The Nagalagam Street hydrometric station is the selected outlet measuring location which is situated in latitude 60° 57' E, longitude 79° 52' N close to the Kelani River estuary. Since measured flow data are not available at the downstream, the river flow time series was generated by measured stage data at the station with the establishment of a rating curve and verified against discharge values available in the literature. Digital elevation model and GIS applications for generating stream features and a HEC-HMS rainfall-runoff simulation model was formulated based on the delineated basin data and collected meteorological and calculated streamflow data focusing on Nagalagam Street sub-catchment. The model with daily resolution was initially calibrated and validated based on parameter data available in the literature using SCS Curve Number method as the loss method and Unit Hydrograph method as the transform method and fine-tuned until the best fit was obtained by adjusting the parameters following selected objective functions. The calibrated and validated model was then effectively used in the rainfall-runoff simulation of the downstream Kelani basin focusing on multiple scenarios of flood events with different antecedent rainfall conditions to analyze the effect of soil moisture on runoff generation.

The model performance was relatively strong with reported Nash-Sutcliffe Coefficient (NASH) values of 0.80 for calibration stage and 0.89 for validation. Similarly, the coefficient of determination (R^2) indicated 0.83 for calibration and 0.90 for validation. The scenario analysis revealed a significant increment of streamflow while increasing the number of days with antecedent rain and a tendency of increment of runoff was noted even though the total rainfall is decreased. The resultant runoff flow increment was simultaneously accumulated while the antecedent moisture condition of the ground was varied. The study demonstrates that with an increasing number of rainy days from A0 to A10 (in days), 50% to 100% increment in runoff is observed. Further, even when the rainfall is decreased by 85% to 90% for the tenth rainy day (A10) with compared to the first rainy day (A1), the runoff continued to increase.

The results of the study firmly and quantitatively indicate that basin streamflow generation is positively affected by antecedent rainfall. It further emphasizes and concludes the importance of incorporating a factor for antecedent rainfall while estimating catchment runoff. The model was capable of capturing the antecedent moisture condition as a criterion to improve model performance for flood forecasting in downstream Kelani Basin under extreme rainy conditions.

Keywords: Antecedent soil moisture, Flood forecasting, River flow model

ACKNOWLEDGEMENT

I wish to express my heartfelt gratitude to my research supervisor, Dr. R.L.H.L. Rajapakse - Senior Lecturer, Department of Civil Engineering, University of Moratuwa for the continuous support of this study, for his patience, motivation, and guidance. Without his dedicated supervision and continued guidance, the completion of this thesis work would not have been a success. I am really grateful to him for the initiative to help me with despite his busy work schedule and spending his valuable time with me towards completing this research.

My sincere thanks and deep gratitude to the Centre Chairman, Senior Professor N.T.S. Wijesekera for extending all necessary help to achieve success in the program. I wish to convey my sincere thanks to Late Shri Madanjeet Singh (Founder of South Asia Foundation), the South Asia Foundation (SAF) and the University of Moratuwa for enabling this study towards a Master Degree in Water Resource Engineering and Management, at UNESCO Madanjeet Singh Centre for South Asia Water Management (UMCSAWM), at the Department of Civil Engineering, University of Moratuwa, Sri Lanka.

My sincere gratitude is extended to the staff of the UNESCO Madanjeet Singh Centre, the University of Moratuwa for the enormous assistance given to me. I wish to convey a special thanks to Mr. S. Premalal – Director General, Department of Meteorology, and Eng. R.M.M.R. Alawatugoda (Director of Irrigation - Hydrology, Department of Irrigation) who gave me support to acquire meteorology data and hydrology data for this research work.

Finally, I would like to express my very profound gratitude to my parents and my friends for providing unfailing support and continuous encouragement throughout this research works.

TABLE OF CONTENTS

DECLARATION	i
ABSTRACT	ii
ACKNOWLEDGEMENT	iii
LIST OF FIGURES	viii
LIST OF TABLES	xi
LIST OF ABBREVIATIONS	xiii
1 INTRODUCTION	1
1.1 General Aspects	1
1.2 Background	2
1.3 Monsoon and Rainfall Characteristics of Kelani River Basin	3
1.4 Reservoirs and Hydrometric Stationsin Kelani Basin	4
1.5 Antecedent Rainfall and Hydrology	5
1.6 Historical Background	6
1.7 Why Real-Time Water Level Forecasting is Important?	7
1.8 Impact of Antecedent Rainfall is How Importance to Hydrological Foreca	st? 7
1.9 Problem Statement	8
1.10 Main Objective	9
1.11 Specific Objectives	9
1.12 Scope and Limitation	9
2 LITERATURE REVIEW	10
2.1 General	10
2.2 Hydrological Flow Simulation Model Selection and Development	10
2.3 Data Requirement for Model	13
2.3.1 General data requirement for model	13
2.4 Impact of Antecedent Rainfall on Stream Flow Generation	14
2.4.1 Infiltration and soil moisture	14

	2.4.2 Antecedent rainfall and Soil moisture account	. 15
	2.5 Real-time Flow Forecasting Model	. 17
	2.6 Reliability of River Flow Simulation Model	. 18
	2.7 Hydrological Modeling in Sri Lanka and Kelani River Basin	. 20
	2.8 Parameters Estimation, Parameter Response and Performance Criteria of Hydrological Model	21
	2.8.1 Calibration and validation of hydrological model	
	2.8.2 Objective function and sensitivity analysis	22
	2.9 Linear Regressions	24
	2.10 Initial Conditions and Boundary Conditions	25
	2.11 Stream Flow Routing	26
	2.11.1 Hydrological Routing	26
	2.11.2 Hydraulic Routing	27
3	METHODS AND MATERIALS	
	3.1 Methodology	
	3.1.1 Development of HEC-HMS streamflow simulation model	
	3.1.2 Selection of objective function and parameter estimation	. 32
	3.1.3 Stage-Flow Relationship	. 34
	3.1.4 Methodology flow chart	. 37
	3.2 Study Area	. 38
	3.3 Data	.41
	3.3.1 Data collection	.41
	3.3.2 Catchment characteristics	.41
	3.3.2.1 Sub catchment characteristics	
	3.3.3 Meteorological and hydrological data processing	. 50
	3.3.3.1 Estimation of missing data	. 50
	3.3.3.2 Inserting missing data and adjustment of record	. 51

3.3.4 Visual display assessment of data		
3.3.5 Thiessen weighted rainfall and evaporation		
4 ANALYSIS AND RESULTS		
4.1 Analysis and Results of Model Calibration and Validation		
4.2 Sensitivity Analysis of Calibrated Catchment Model70		
4.3 Scenario Identification Basis71		
4.4 Scenario Analysis and Results72		
5 DISCUSSION		
5.1 Data and Data Period83		
5.2 Usage of GIS and HEC-HMS Software to Construct the Model		
5.3 Sensitivity and Uncertainty Involve in Calibration and Validation Process84		
5.4 Identified Features of Antecedent Rainfall Scenarios		
6 CONCLUSIONS AND RECOMMENDATIONS		
6.1 Conclusions		
6.2 Recommendations		
REFERENCES		
APPENDICES		
APPENDIX 01:- Runoff Curve Numbers According to Antecedent Moisture Class 94		
APPENDIX 02:- Mathematical Expressions for Several Objective Function		
APPENDIX 03:- Thiessen Weighted Rainfall and Water Level Comparision 101		
APPENDIX 04:- The Land Uses Categories in Sub Catchment		
APPENDIX 05:- Screenshot of HEC-HMS Model 109		
APPENDIX 06:- Calculation of Parameter Values for HEC-HMS Model114		
APPENDIX 07:- River Cross Section at Nagalagam Street and Observed Discharge		
for the Period of 2008 Jan. to 2017 Dec		
APPENDIX 08:- HEC-HMS Model Flow with Thiessen Rainfall for Antecedent		
Rainfall Scenario126		

LIST OF FIGURES

Figure 3-1 Rating curve for Nagalagam Hydrometric station	. 35
Figure 3-2 Log curve of variation of peak discharge with the probability	.36
Figure 3-3 Methodology Flow Chart	. 37
Figure 3-4 Map of the Study Area	.40
Figure 3-5 Map of the Sub Catchment and River	.43
Figure 3-6 Percentage of Landuse Categories	.45
Figure 3-7 Percentage of Soil Categories	.45
Figure 3-8 Landuse Map of the Study Area	.46
Figure 3-9 Soil Classification Map of the Study Area	.47
Figure 3-10 Map of the Elevation variation along the Catchment	.49
Figure 3-11 Single Mass Curve for Rainfall Data	. 52
Figure 3-12 Single Mass Curve for Water Level Data	. 52
Figure 3-13 Single Mass Curve for Evaporation Data	. 53
Figure 3-14 Double Mass Curve for Rainfall Data	. 55
Figure 3-15 Double Mass Curve for Evaporation Data	. 55
Figure 3-16 Rainfall Thiessen Polygon Map of Nagalagam Street Catchment	. 58
Figure 3-17 Evaporation Thiessen Polygon Map of Nagalagam Street Catchment	. 59
Figure 4-1 Flow hydrograph for observed flow and simulated flow in the calibratio stage	
Figure 4-2 Flow hydrograph for observed flow and simulated flow in the calibratio stage (Log scale)	
Figure 4-3 The daily average discharge observed and simulated with Thiessen rainfall in the calibration stage	. 61
Figure 4-4 The flow duration curves for observed and simulated flows in the calibration stage	. 62

Figure 4-5 The flow duration curves (log scale) for observed and simulated flows in the calibration stage
Figure 4-6 Flow hydrograph for observed flow and simulated flow in the validation stage
Figure 4-7 Flow hydrograph for observed flow and simulated flow in the validation stage (Log scale)
Figure 4-8 The daily average discharge observed and simulated with Thiessen rainfall in the validation stage
Figure 4-9 The flow duration curves for observed and simulated flows in the validation stage
Figure 4-10 The flow duration curves (log scale) for observed and simulated flows in the validation stage
Figure 4-11 Simulated streamflow Model performance with respect to observed streamflow in calibration stage
Figure 4-12 Simulated streamflow Model performance with respect to observed streamflow in validation stage
Figure 4-13 The event No E1-2008
Figure 4-14 Simulated flow and Thiessen rainfall for the year 2008
Figure 4-15 Increment of simulated flow and Thiessen rainfall for the year 2008 73
Figure 4-16 Increment of Simulated flow for the year 2008
Figure 4-17 Increment of simulated flow and Thiessen rainfall for scenario E3 - 2008
Figure 4-18 Increment of simulated flow and Thiessen rainfall for scenario E2 - 2008
Figure 4-19 Percentage increment of simulated flow and Thiessen rainfall for scenario E3-2008
Figure 4-20 Simulated flow and Thiessen rainfall for the year 2010
Figure 4-21 Increment of simulated flow for the year 201076
Figure 4-22 Increment of simulated flow and Thiessen rainfall for the year 201076

Figure 4-23	Increment of simulated flow and Thiessen rainfall for scenario E1 - 2010
Figure 4-24	Percentage increment of simulated flow and Thiessen rainfall for scenario E4-2010
Figure 4-25	Increment of simulated flow and Thiessen rainfall for the year 201378
Figure 4-26	Increment of simulated flow for the year 201378
Figure 4-27	Increment of simulated flow and Thiessen rainfall for scenario E1 - 2013
Figure 4-28	Increment of simulated flow and Thiessen rainfall for scenario E3 - 2013
Figure 4-29	Percentage increment of simulated flow and Thiessen rainfall for scenario E4-2013
Figure 4-30	Increment of simulated flow for the year 2016
Figure 4-31	Increment of simulated flow and Thiessen rainfall for scenario E1 - 2016
Figure 4-32	Increment of simulated flow and Thiessen rainfall for scenario E4 - 2016
Figure 4-33	Increment of simulated flow for the year 2017
U U	Percentage increment of simulated flow and Thiessen rainfall for scenario E2-2017

LIST OF TABLES

Table 1-1 Hydrometric station, Alert level and Major flood level in Kelani River
Table 1-2 Gauge post Reading at Nagamam Street during significant Flood Event
Table 2-1 Characteristics of Model 12
Table 3-1 Values of Parameter for flow Simulation Model
Table 3-2 Values of high and low flow event frequency 30
Table 3-3 Coordinate of River Gauging Station 38
Table 3-4 Distribution of Gauging Station in Kelani River Catchment
Table 3-5 Coordinate of Rain Gauging Station
Table 3-6 Coordinate of Evaporation Station
Table 3-7 Data sources and Resolution
Table 3-8 Name of Sub catchment and River 42
Table 3-9 Type of Landuse and Coverage Area 44
Table 3-10 Soil Type of Study Area 44
Table 3-11 Hydrological Soil group of Sub catchment 48
Table 3-12 Details of Missing Data in each Gauging Station
Table 3-13 RMS Values of DMC in each Rain Gauging Station 54
Table 3-14 Values of Extrem Minimum 50
Table 3-15 Rainfall Thiessen Polygon Area and Weighting Factors for Nagalagam Street Catchment
Table 3-16 Evaporation Thiessen Polygon Area and Weighting Factors for Nagalagam Street Catchment 5'
Table 4-1 HEC-HMS Model Performance of streamflow modeling at different Flow for the Calibration stage
Table 4-2 HEC-HMS Model Performance of streamflow modeling at different Flow for the Validation stage 68

Table 4-3 HEC-HMS Model Performance of streamflow modeling for the	
Calibration stage and Validation stage	68
Table 4-4 Result of Sensitivity Analysis	70
Table 4-5 Notation of Antecedent Rainfall	71
Table 4-6 Thiessen rainfall and Simulated flow for event E1-2008	72

LIST OF ABBREVIATIONS

AMC	- Antecedent Moisture Content
ANN	- Artificial Neural Networks
API	- Antecedent Precipitation Index
AW	- Antecedent Wetness
CN	- Curve Number
DEM	- Digital Elevation Model
DOI	- Department of Irrigation
DS	- Divisional Secretariat
FFC	- Flood Forecasting Centre
GIS	- Geographic Information System
HBV	- HBV model (Swedish Met. and Hydrological Institute)
HEC-HMS	- Hydrologic Engineering Centre - Hydrologic Modelling System
HRS	- Hydrology Report Series
IFM	- Integrated Flood Management
MCM	- Million Cubic Meters
MLR	- Multiple Linear Regression
MW	- Megawatt
NOF	- Normalised Objective Function
NSE	-Nash-Sutcliffe-Efficiency
PRF	- Peak Runoff Factor
R	- Correction Coefficient
RMS	- Root Mean Squire
RMSE	- Root Mean Squire Error
\mathbb{R}^2	- Coefficient of Determination
SA	- Sensitivity Analysis
SCS	- Soil Conservation Service
SMA	- Soil Moisture Account
TOPMODEL	- Topmodel Developed by Beven, University of Lancaster
USGS	- United State Geological Survey
Vol	- Volume
WMO	- World Meteorological Organization
$\&_{\mathrm{b}}$	- Percentage Bias