Study for Effective Lightning protection System for Floating Roof Tanks in Petroleum Refinery

B.A.T.Bamunuarachchi

159352X

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

February 2020

Study for Effective Lightning protection System for Floating Roof Tanks in Petroleum Refinery

B.A.T.Bamunuarachchi

159352X

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science in Electrical Installations

Department of Electrical Engineering

University of Moratuwa Sri Lanka

February 2020

Contents

Declaration, copyright statement and the statement of the supervisor	8
Abstract	9
Acknowledgement	10
CHAPTER 1	11
INTRODUCTION	11
1.1 Background	11
1.2 Statement of Problem	12
1.3 Reported Damages on oil storage tanks at Refinery	13
1.4 Objectives	14
1.5 Purpose of Study	14
1.5.1 Study Area	14
1.6 Literature Survey	15
1.7 Methodalogy	15
1.8 Outline of Thesis	16
CHAPTER 2	17
LIGHTNING EXPOSURE OF REFINERY OIL STORAGE TANKS	17
2.1 Introduction	17
2.2 Mechanism of Lightning	17
2.3 Lightning Stroke Types	19
2.4 Ground Flash Density (GFD)	20
2.5 Lightning Flash Current Amplitude and Dispersment	22
2.6 Lightning Effects on Large Oil Storage Tanks	23
2.6.1 Direct lightning Flash	23
Figure 2. 5 Tank geometry	24
2.7 Evaluation of Conventional Methods of Roof-Shell Bonding & Earthing	24
2.7.1 Effects of grounding cable length	27
2.7.2 Surge impedance of roof shell interface	28
2.8 Magnitude of Grounding surge currents	29
CHAPTER 3	30
LIGHTNING IMPULSE MODEL IN PSCAD	30
3.1 Determining Steep Front Model Parameters	30
3.2 Lightning Impulse Surge Calculation	31

3.2.1 50kA Lightning Impulse Surge of 10/350 µs (Direct Impulse Surge)	31
3.2.2 100kA Direct Lightning Surge of 10/350 µs	34
3.2.3 25kA Lightning Impulse Surge of 10/350 μs	34
3.2.4 75kA Lightning Impulse Surge of 10/350 µs	35
3.3 Lightning Impulse Surge Calculation	36
3.3.1 50kA Lightning Impulse Surge of 8/20 µs (Indirect Impulse Surge)	36
3.3.2 100kA Lightning Impulse Surge of 8/20 µs	36
3.3.3 25kA In Direct Lightning Surge of 8/20 µs	37
3.3.4 75kA In Direct Lightning Surge of 8/20 µs	38
3.4 Equations for 10/350µs and 8/20µs Lightning Surge Impulse Current for PSCAD Models	39
3.5 PSCAD Simulation Models for Direct and Indirect Lightning Surges	40
CHAPTER 4	41
VALIDATION OF CALCULATED PARAMETERS WITH SCALED MODEL TANK	41
4.1 Parameters of the Large Floating Roof Crude Oil Storage Tank	41
4.2 Floating roof Crude oil tank Parameters	42
4.3 Parameters of the Scaled Model a Floating Roof Crude Oil Storage Tank	42
4.4 Floating roof Crude oil tank Model Parameters	44
4.6 Laboratory Testing of Designed model of Floating Roof Storage Tank	46
4.7 Testing Instruments used for Laboratory Testing	48
4.8 Measured Values of Characteristics parameters	49
4.9 Developed PSCAD Model of a floating roof tank	50
4.10 Model Tank Test Values Comparison for PSCAD Validation	51
CHAPTER 5	53
RESULTS FOR THE SIMULATION MODEL	53
5.1 Results of the PSCAD model for 25kA output and induced surge currents 8/20 μs	53
5.1.1 Obtained Graphs for Above Tabulated Values	54
5.2 Results of the PSCAD model for 50kA output and induced surge currents 8/20 μs	55
5.2.1 Obtained Graphs for Above Tabulated Values	56
5.3 Results of the PSCAD model for 75kA output and induced surge currents 8/20 μs	57
5.3.1 Obtained Graphs for Above Tabulated Values	58
5.4 Results of the PSCAD model for 100kA output and induced surge currents 8/20 μs	59
5.4.1 Obtained Graphs for Above Tabulated Values	60
5.5 Results of the PSCAD model for 25kA output and induced surge currents 10/350 μs	61
5.4.1 Obtained Graphs for Above Tabulated Values	62
5.6 Results of the PSCAD model for 50kA output and induced surge currents 10/350 μ s	63

5.7 Results of the PSCAD model for 75kA output and induced surge currents 10/350 μs	65
5.7.1 Obtained Graphs for Above Tabulated Values	66
5.8 Results of the PSCAD model for 100kA output and induced surge currents 10/350 μs	67
5.8.1 Obtained Graphs for Above Tabulated Values	68
CHAPTER 6	70
PROPOSED PROTECTION MECHANISM	70
6.1 Inductance Calculation for Cu Braded AGC (Adjustable Grounding Conductor)	70
6.2 Inductance variance due to size of the AGC	71
CHAPTER 7	78
DISCUSSION	78
7.1 Discussion	78
CHAPTER 8	81
CONCLUSION & FUTURE WORK	81
8.1 Conclusion and Recommendations	81
8.2 Following are the difficulties associate with the Research	83
References	84

List of Figures

Figure 2. 1 Formation of Lightning Flash	
Figure 2. 2 Types of Lightning Flashes	
Figure 2. 3 Isokeraunic Map of Sri Lanka [2]	
Figure 2. 4 Probability of Lightning Current being exceeded	
Figure 2. 5 Tank geometry	
Figure 2. 6 Lighting Wave Form	
Figure 3. 1 Impulse wave shape expressed as sum of two exponential functions [21], [22]	
Figure 3. 2 Impulse Wave Specification (Applications of PSCAD [™] / EMTDC [™])[21], [22]	
Figure 3. 3 Standard curve for determining b/a [10]	
Figure 3. 4 Standard curve for determining at ₁ [10]	
Figure 3. 5 Standard curve for determining $I_1/I_2[10]$	
Figure 3. 6 10/350 µs Lightning Surge PSCAD Simulation Model	
Figure 3. 7 8/20 µs Lightning Surge PSCAD Simulation Model	
Figure 4. 1 Practical size of a Refinery Floating roof Crude oil tank in Refinery	
Figure 4. 2 Scaled Tank model (Top View)	
Figure 4. 3 Scaled Tank model (Side view)	
Figure 4. 4 Tank Model Dimensions and Test point Distances for measurements	
Figure 4. 5 Tank Model under test at UOM Laboratory	
Figure 4. 6 Tank Model under test at UOM Laboratory	
Figure 4. 7 Tank Model under test at UOM Laboratory	
Figure 4. 8 LCR Bridge used for the test (Model LCR 740)	
Figure 4. 9 High Resolution TRMS Multi meter used for the test	
Figure 4. 10 PSCAD Model of a floating roof tank	50
Figure 4. 11 Comparison of Error between Actual Tank & Model Tank	
Figure 5. 1 Current through ladder shell connection	
Figure 5. 2 Current through primary seal	
Figure 5. 3 Current through secondary seal	55
Figure 5. 4 Current through ladder shell connection	
Figure 5. 5 Current through primary seal	
Figure 5. 6 Current through secondary seal	
Figure 5. 7 Current through ladder shell connection	
Figure 5. 8 Current through primary seal	
Figure 5. 9 Current through secondary seal	59
Figure 5. 10 Current through ladder shell connection	
Figure 5. 11 Current through primary seal	
Figure 5. 12 Current through secondary seal	61
Figure 5. 13 Current through ladder shell connection	
Figure 5. 14 Current through primary seal	
Figure 5. 15 Current through secondary seal	
Figure 5. 16 Current through ladder shell connection	
Figure 5. 16 Current through ladder shell connection Figure 5. 17 Current through primary seal	65
Figure 5. 16 Current through ladder shell connection Figure 5. 17 Current through primary seal Figure 5. 18 Current through secondary seal	
Figure 5. 16 Current through ladder shell connection Figure 5. 17 Current through primary seal Figure 5. 18 Current through secondary seal Figure 5. 19 Current through ladder shell connection	
Figure 5. 16 Current through ladder shell connection Figure 5. 17 Current through primary seal Figure 5. 18 Current through secondary seal Figure 5. 19 Current through ladder shell connection Figure 5. 20 Current through primary seal	
Figure 5. 16 Current through ladder shell connection Figure 5. 17 Current through primary seal Figure 5. 18 Current through secondary seal Figure 5. 19 Current through ladder shell connection Figure 5. 20 Current through primary seal Figure 5. 21 Current through secondary seal	

Figure 5. 22 Current through ladder shell connection	
Figure 5. 23 Current through primary seal	
Figure 5. 24 Current through secondary seal	

Figure 6. 1 Inductance variance of AGCs for different cable lengths	72
Figure 6. 2 Transient voltage rise of AGC for different cable lengths for 25kA surge	74
Figure 6. 3 Transient voltage rise of AGC for different cable lengths for 50kA surge	74
Figure 6. 4 Transient voltage rise of AGC for different cable lengths for 75kA surge	75
Figure 6. 5 Transient voltage rise of AGC for different cable lengths for 100kA surge	75
Figure 6. 6 Transient voltage rise of AGC for different cable lengths for 200kA surge	76
Figure 6. 7 Transient voltage rise for different count of AGC assembly	77

List of tables

Table 1. 1 Reported tank fires due to lightning in the recent past at the Refinery	13
Table 2. 1 Relationship between Isokeraunic level and lightning flashes per Sq km per year [4] Table 2. 2 Number of Thunder Days	21 21
Table 3 1 Direct and Indirect Lightning Surge Current Fauations	39
Table 4. I Measured characteristic Values of model tank	49
Table 4. 2 Weighted characteristic Values of model tank and calculated actual values	51
Table 5. 1 Tabulated results for 25kA indirect lightning surge	53
Table 5. 2 Tabulated results for 50kA indirect lightning surge	55
Table 5. 3 Tabulated results for 50kA indirect lightning surge	57
Table 5. 4 Tabulated results for 50kA indirect lightning surge	59
Table 5. 5 Tabulated results for 50kA direct lightning surge	61
Table 5. 6 Tabulated results for 50kA direct lightning surge	63
Table 5. 7 Tabulated results for 75kA direct lightning surge	65
Table 5. 8 Tabulated results for 100kA direct lightning surge	67
Table 6. 1 Inductance variance of two different AGCs	72
Table 6. 2 Transient voltage rise with the level variation of floating roof	73
Table 6. 3 Transient voltage rise with the variation of AGC assembly count	77

Declaration, copyright statement and the statement of the supervisor

I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)

Signature:

Date: 2020-02-28

The above candidate has carried out research for the Masters Dissertation under my supervision.

Signature of the supervisor:

Date: 2020-02-28

Abstract

Refinery is considered as the foremost division of the Ceylon petroleum corporation which ensures the safety of the operation of process plant as well as for maintaining the required country's demand for petroleum products to enhance the energy sector of the country.

Since the un-interruptible continuous refinery operation is critically important to maintain national requirement of petroleum product and protecting the tanks and process equipment is essential.

In this study, main concern about floating roof large crude oil storage tank facility. The most general method to prevent the possible damage to floating roof crude oil storage tank is using good earthing. The earthing system provides an electrical path to the ground and performance of the earthing system gets better as the earth loop impedance becomes lower.

Since it is among the major concerns currently Refinery engineering staff is struggling with; and a proper method for reducing the sparks due to lightning mainly at critical locations were studied and simulations were done by using the floating roof tank model prepared by using PSCAD software which was validated with the actual model tank tested in the UOM laboratory.

Direct and In-direct surge currents were calculated theoretically for 25 kA, 50 kA, 100 kA and 200 kA surges of $10/350 \ \mu$ S & $8/20 \ \mu$ S by applying calculated surge currents to the tank model.

Finally, by analyzing all the results and the protection methods of different types of grounding devices were studied and proposed adjustable grounding conductor (AGC) with suitable locations as the optimum solution.

Acknowledgement

I would like to express my sincere gratitude to my thesis supervisors Prof. J.R. Lucas and Dr. Asanka Rodrigo for having guidance and for their cordial support throughout the research and the thesis. Dr. Asanka's support and motivations were invaluable driving forces for me for the successful accomplishment of this study. It is for me a great pleasure and a great experience to having work under such a friendlier supervisor, who is having a broad scientific knowledge related to lightning protection and Earthig systems.

I am also very grateful to my masters' coordinator Dr. Prasad for his precious advices on thesis writing and for providing me encouragements to complete the thesis in time.

I would like to gratefully thank Refinery Manager Eng. E.A.S. Edirisinghe, Deputy Refinery Manager Eng. L.G.M.R. Perera, Senior Electrical Engineer Eng. D.D.U.S. Jayasundera and my collogues, staff and the subordinates in the Refinery Electrical Department who helped me to complete this research and thesis successfully.

Furthermore, I would like to thank each individual who has supported me in various ways throughout the entire process.

B.A.T. Bamunuarachchi