
A COST-EFFECTIVE AUTO-SCALING STRATEGY 

BETWEEN SERVER AND SERVERLESS 

ARCHITECTURES FOR CLOUD DEPLOYMENTS 

 

 

 

 

 

LDSB Weerasinghe 

 

(189357U) 

 

 

 

Degree of Master of Science in Computer Science 

 

 

 

Department of Computer Science and Engineering 

 

University of Moratuwa 

Sri Lanka 

 

 

May 2020



A COST-EFFECTIVE AUTO-SCALING STRATEGY 

BETWEEN SERVER AND SERVERLESS 

ARCHITECTURES FOR CLOUD DEPLOYMENTS 

 

 

 

 

 

LDSB Weerasinghe 

 

(189357U) 

 

 

 

Thesis submitted in partial fulfillment of the requirements for the degree  

Master of Science in Computer Science 

 

 

 

Department of Computer Science and Engineering 

 

University of Moratuwa 

Sri Lanka 

 

May 2020 



ii 
 

DECLARATION 

 

I declare that this is my own work and this dissertation does not incorporate without 

acknowledgment any material previously submitted for a Degree or Diploma in any 

other University or institute of higher learning and to the best of my knowledge and 

belief it does not contain any material previously published or written by another 

person except where the acknowledgement is made in the text. 

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce 

and distribute my dissertation, in whole or in part in print, electronic or other medium. 

I retain the right to use this content in whole or part in future works (such as articles 

or books). 

 

 

Signature: …………………….     Date:………………. 

Name: Sidath Weerasinghe 

 

 

The supervisor should certify the dissertation with the following declaration. 

 

The above candidate has carried out research for the Masters Dissertation under my 

supervision. 

 

 

Signature of the supervisor: ………………………….  Date: ……………….. 

Name: Dr. Indika Perera 

 

 

  



iii 
 

ABSTRACT 

Nowadays, cloud computing is marking as an emerging technology in the universe. Most of 

people use cloud environments to deploy their systems. Many enterprise systems give their 

benchmarks according to the specific instances in the cloud.  Cloud providers provide primary 

services as SaaS, PaaS, IaaS and FaaS, then Cloud consumers use those services as per their 

demands.  

The systems which are developed on several years ago are still running upon on-premise 

environments. They are tightly coupled legacy systems. Hence people cannot adopt new 

technologies to those monolithic systems.  Nevertheless, people who are in the software 

industry need to integrate new technologies into their systems to stay competitive in the IT 

industry. To get into the new technology that should be cost-effective, more reliable, and 

should need to cater the new and existing functionalities of the system. One of the problems is 

that migrating the whole system or partial system to the new technology is hazardous. 

Sometimes the system needs to handle substantial traffic loads, according to the business 

needs. In order to satisfy sudden traffic spikes, systems need to scale horizontally or vertically.  

If their application server is deployed upon the on-premise server, scaling is complicated, and 

if the application is deployed on the cloud, VMs scaling is possible, but it can be very costly.   

In this research, the goal is to overcome these scaling problems. The research component 

presents the strategy to load balancing the traffic between the server and serverless function. 

The cost of the serverless function calculated only for the executes requests, so it is cheaper 

than running a new server. Therefore this hybrid strategy is a highly cost-effective way to 

scaling the servers and also proven that the proposed system is capable of load balancing the 

traffic according to the server loads with the analytical results.  Other researches are proven 

that this research component is the right solution for ongoing industry problems. 

 

Keywords: Cloud Computing, Serverless, Load Balancing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

ACKNOWLEDGMENTS 
 

My sincere appreciation goes to my family for the continuous support and motivation given to 

manage my MSc research work. I also express my heartfelt gratitude to Dr. Indika Perera, my 

supervisor, for the supervision and advice given throughout to this research period. I also thank 

my batch mates, for their untiring help to find research materials. I am also thankful to WSO2 

Telco (Pvt) Ltd, for providing support to complete this research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

TABLE OF CONTENTS 

 

 

DECLARATION ..................................................................................................................... ii 

ABSTRACT ........................................................................................................................... iii 

ACKNOWLEDGMENTS ...................................................................................................... iv 

TABLE OF CONTENTS ......................................................................................................... v 

LIST OF FIGURES ............................................................................................................... vii 

LIST OF TABLES .................................................................................................................. ix 

LIST OF ABBREVIATIONS .................................................................................................. x 

CHAPTER 1  INTRODUCTION ............................................................................................ 1 

1.1 Preamble ........................................................................................................................ 1 

1.2 Motivation ...................................................................................................................... 2 

1.2.1 Infrastructure as a Service (IaaS) ............................................................................ 2 

1.2.2 Platform as a Service (PaaS) ................................................................................... 2 

1.2.3 Software as a Service (SaaS) .................................................................................. 3 

1.2.4 Cloud types ............................................................................................................. 3 

1.3 Monolithic Applications ................................................................................................ 5 

1.4 Microservices ................................................................................................................. 7 

1.5 Serverless Computing .................................................................................................... 8 

1.6 Problem Description ...................................................................................................... 9 

1.6.1 Goal ......................................................................................................................... 9 

1.6.2 Objectives ............................................................................................................. 10 

CHAPTER 2 LITERATURE REVIEW ................................................................................ 11 

2.1 Introduction .................................................................................................................. 11 

2.2 Cloud Computing ......................................................................................................... 11 

2.2.1 Infrastructure as a service (IaaS) ........................................................................... 11 

2.2.2 Platform as a service (PaaS) ................................................................................. 13 

2.2.3 Software as a service (SaaS) ................................................................................. 15 

2.3 Serverless Computing and Microservices .................................................................... 15 

2.4 Workload Load Balancing ........................................................................................... 21 

2.4.1 Round Robin Method ............................................................................................ 21 

2.4.2 Central Manager Load Balancing Algorithm ........................................................ 22 



vi 
 

2.4.3 Self-Adaptive Load Balancing Algorithm ............................................................ 23 

2.5 Workload Prediction and Resource Allocation ............................................................ 24 

2.1.5 Auto Scaling ......................................................................................................... 29 

CHAPTER 3 METHODOLOGY .......................................................................................... 32 

3.1 Introduction .................................................................................................................. 32 

3.2 Converting Monolithic application to Microservices .................................................. 32 

3.3 Converting Microservices into serverless .................................................................... 34 

3.4 Serverless (AWS) ........................................................................................................ 37 

3.5 Server Status Monitoring – NRPE ............................................................................... 40 

3.6 Architecture Design ..................................................................................................... 43 

3.7 Implementation ............................................................................................................ 44 

3.8 Integration to Existing Systems ................................................................................... 47 

CHAPTER 4 RESULT AND EVALUATION ...................................................................... 49 

4.1 Introduction .................................................................................................................. 49 

4.2 Testing on System ........................................................................................................ 49 

4.3 Test Strategies and Procedure ...................................................................................... 50 

4.4 Evaluation .................................................................................................................... 52 

4.4.1 Performance Evaluation ........................................................................................ 52 

4.4.2 Cost Evaluation ..................................................................................................... 61 

CHAPTER 4 CONCLUSION ............................................................................................... 64 

4.1 Introduction .................................................................................................................. 64 

4.2 Problems Faced and the Benefits of the Research Module .......................................... 64 

4.3 Revisited the Objectives .............................................................................................. 65 

4.4 Limitations ................................................................................................................... 67 

4.5 Further works ............................................................................................................... 67 

4.6 Summary ...................................................................................................................... 67 

REFERENCES ...................................................................................................................... 68 

 

 

 

 

 

 

 

 

 



vii 
 

LIST OF FIGURES 

 

 

Figure 1 : Cloud computing stack .................................................................................. 1 

Figure 2: Monolithic application architecture .................................................................. 6 

Figure 3: Microservices architecture .............................................................................. 7 

Figure 4: How developer control the serverless cloud .................................................... 16 

Figure 5: Architecture of serverless platform ................................................................ 17 

Figure 6: IO overhead while concurrent execution ......................................................... 19 

Figure 7: Serverless function throughput on concurrent invocations ................................ 19 

Figure 8: CPU utilization during the concurrent execution.............................................. 20 

Figure 9: Price comparison ......................................................................................... 20 

Figure 10: Round Robin method ................................................................................. 21 

Figure 11: Central manager algorithm .......................................................................... 22 

Figure 12: Work flow of self-adaptive load balancing algorithm ..................................... 23 

Figure 13: How work perdition happen ........................................................................ 26 

Figure 14: Components of the rule based resource allocation .......................................... 27 

Figure 15: Results graph after resource allocation ......................................................... 27 

Figure 16: CPU load average’s difference .................................................................... 28 

Figure 17: Horizontal scaling ...................................................................................... 29 

Figure 18: Vertical scaling ......................................................................................... 30 

Figure 19: Hybrid approach ........................................................................................ 33 

Figure 20: Microservices communication architecture ................................................... 34 

Figure 21: Java dependency for AWS serverless ........................................................... 35 

Figure 22: Java wrapper for microservices ................................................................... 36 

Figure 23: Creating Lambda function .......................................................................... 37 

Figure 24: Creating roles on Lambda ........................................................................... 38 

Figure 25: Uploading jars to Lambda ........................................................................... 38 

Figure 26: Adding API gateway .................................................................................. 39 

Figure 27: Integration on Lambda ............................................................................... 39 

Figure 28: NRPE architecture ..................................................................................... 40 

Figure 29: NRPE configurations on security ................................................................. 41 

Figure 30: NRPE implantation .................................................................................... 41 

Figure 31: NRPE plugins ........................................................................................... 42 

Figure 32: Java dependency for NRPE ......................................................................... 42 

Figure 33: Creating JNRPE client ............................................................................... 42 

Figure 34: Results for JNRPE ..................................................................................... 43 

Figure 35: High-level architecture ............................................................................... 44 

Figure 36: Configuration file ...................................................................................... 45 

Figure 37: Allow all traffic ......................................................................................... 45 

Figure 38: Logical flow diagram ................................................................................. 46 

Figure 39: Schedule tasks ........................................................................................... 46 

Figure 40: Existing system architecture diagram ........................................................... 47 

Figure 41: Architecture with new component................................................................ 48 



viii 
 

Figure 42: Load test with Jmeter ................................................................................. 50 

Figure 43: Testing with research component ................................................................. 51 

Figure 44: Graph of statistics for test case 1 .................................................................. 53 

Figure 45: Graph of statistics for test case 1 with research component ............................. 54 

Figure 46: Graph of statistics for test case 2 .................................................................. 55 

Figure 47: Graph of statistics for test case 2 with research component ............................. 56 

Figure 48: Graph of statistics for test case 3 .................................................................. 57 

Figure 49: Graph of statistics for test case 3 with research component ............................. 58 

Figure 50: Graph of statistics for test case 4 .................................................................. 59 

Figure 51: Graph of statistics for test case 4 with research component ............................. 60 

Figure 52: Cost calculation for 20TPS ......................................................................... 61 

Figure 53: Cost calculation on 20TPS in serverless ....................................................... 62 

Figure 54: Cost calculation on 100TPS in serverless ...................................................... 62 

Figure 55: Graph on cost comparison .......................................................................... 63 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

LIST OF TABLES 

 

 

 

Table 1: Comparison on Azure & Google..................................................................... 13 

Table 2: Algorithm comparison .................................................................................. 23 

Table 3: Server specification ...................................................................................... 51 

Table 4: Server specification (with research component) ................................................ 51 

Table 5: Test case 1 details ......................................................................................... 52 

Table 6: Test case 1 with research component details .................................................... 53 

Table 7: Request count on test case 1 ........................................................................... 54 

Table 8: Test case 2 details ......................................................................................... 55 

Table 9: Test case 2 with research component details .................................................... 55 

Table 10: Test case 2 request count ............................................................................. 56 

Table 11: Test case 3 details ....................................................................................... 57 

Table 12: Test case 3 with research component details ................................................... 57 

Table 13: Test case 3 request count ............................................................................. 58 

Table 14: Test case 4 details ....................................................................................... 59 

Table 15: Test case 4 with research component details ................................................... 59 

Table 16: Test case 4 request count ............................................................................. 60 

Table 17: AWS cloud cost estimation .......................................................................... 61 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 
 

LIST OF ABBREVIATIONS 

 

 

SaaS  Software as a Service 

PaaS  Platform as a Service 

FaaS  Function as a Service 

IaaS  Infrastructure as a Service 

NRPE  Nagios Remote Plugin Executor 

AWS  Amazon Web Services 

GCP   Google Cloud Platform 

TPS  Transitions Per Second 

 



CHAPTER 1  

INTRODUCTION 

1.1 Preamble 

 

Cloud computing is a rapidly emerging technology in today’s era. It is referred to as 

accessing computing service over the internet. Cloud computing came into its presence 

because of the evolution and endorsement of already existing paradigms and 

technologies.  A recent quantitative survey by on the taking on rates of cloud 

computing technology by companies reported that  77%  of large companies are using 

the cloud, although 73% of small and medium-sized companies are adopting the 

cloud[1].  

The main object of using the cloud is to gain benefits from different Computing 

paradigms. The cloud objectives to reduce the costs and helps the clients to focus on 

their business rather than to care about the obstacles and barriers within the 

information technologies. There are have three main pillars in cloud computing. They 

are infrastructure as a service (IaaS), platform as a service (PaaS) and software as 

service (SaaS). 

 

 

 

 

 

  

Figure 1 : Cloud computing stack 



2 
 

1.2 Motivation 

 

This research shows that cost-effective way to handle the sudden heavy traffic between 

server and serverless. Most of the businesses run their applications upon on-premise 

servers or cloud servers. Nevertheless, most of those applications are tightly coupled 

monolithic applications. With the current practice, those monolithic applications need 

to horizontally scale for catering to the traffic spikes. That means every time there is a 

spike in traffic, those companies need human resources, server resources, and 

additional effects to satisfy the end-user demands. Considering the cost, the existing 

method is very costly, and it will take more time, such as doing a new production 

deployment, testing and so on. 

 

1.2.1 Infrastructure as a Service (IaaS) 

 

Most of the industries use this service to host their servers and maintain storage and 

several other infrastructures. Cloud consumers need to manage the application, 

middleware, OS, and runtimes, which are deployed in the cloud server and data, which 

is stored in the cloud storage. Cloud providers, by default, provide security for those 

applications and data which are managed by cloud consumers. If you store more 

sensitive data in the cloud, then you can request strict security mechanisms from the 

cloud provider, which may cost extra. Amazon EC2 is a real example for IaaS, and 

users can configure and set up a virtual server within one minute [2]. Users are enabled 

to choose the operation system, type of storage, what kind of file system, network rules 

for the server and etc.  

 

1.2.2 Platform as a Service (PaaS) 

 

Industries that use the platform solution are empowered to manage the deployed 

application and storage data. The cloud provider undertakes all types of maintenance 

in the infrastructure and the OS. They are scaling their infrastructure to cater the 

application load, and for that cloud, consumers are required to pay a fee. PaaS allows 

creating and modifying applications. PaaS environments provide consumers with 



3 
 

infrastructure as well as fully functioning and development environments for the 

deployment of consumer applications.  

 

1.2.3 Software as a Service (SaaS) 

 

Cloud providers provide software for consumers to use. It is similar to a multi-tenancy 

technology adapted to the software, and each vendor/customer utilizes it as a tenant. 

The consumer can customize the software a little. The SaaS model comprises 

methodical support of the software, rather than yearly maintenance, fixes and patches, 

to all subscribers. The SaaS model allows every cloud consumer to take advantage of 

the latest technological features without the interferences and costs related to software 

updates and upgrades. 

 

1.2.4 Cloud types 

 

Consumers can choose their cloud usage requirements in terms of infrastructure, 

applications, OS, and development platforms. Furthermore, consumers can consume 

the usage of the cloud services permitting the defined service level agreement (SLA) 

that consists of the desired Quality of Service (QoS)  constraints for each service[3]. 

Those services can be categorized into several aspects using the infrastructure strategy. 

In that scenario public, private, hybrid, and community clouds come to the picture. 

Cloud providers sell the public clouds over the internet and cloud consumers can buy 

those for a pay-per-usage fee. Public clouds can be bought by any person and can be 

used for any kind of operation using public internet access from any internet service 

provider. Amazon, Google and Microsoft are some examples of public cloud vendors. 

There are several advantages of using public clouds such as 100% data and resource 

availability, easy scaling facility, knowledge of technical experts, any time support, 

and quick and inexpensive setup. There are several drawbacks to the public clouds too. 

The main concerns are data security and the privacy of the application of public clouds. 

Another concern is the reliability of the public cloud. These purchase instances start 

from the same or different servers as virtual machines so that one server is shared with 

several cloud consumers. They cannot guarantee that all the servers are allocated to 



4 
 

the same cloud consumer.  If the cloud consumer uses the public cloud, then they need 

to think about the application's sensitive data and the company policies.  

For the application, which is using compassionate data, public clouds are not suitable 

for those purposes. They are using private clouds. In the private cloud, cloud 

infrastructure is managed by the organization (on-premise) or a trusted third party in 

off-premise situations. Those clouds can use only for organization users or trusted 

third-party people and not exposed to public consumers. A private cloud is hosted in 

the private data center, which belongs to that organization and provides its services 

only to users inside that organization or its partners. Private clouds give more security 

for cloud consumers than public clouds.  In the private data centers we know how 

Virtual Machines (VM) are provisioned and how the storages are shared with multiple 

VMs. So that the people can maintain their own security through private clouds and 

can protect company policies. In the security and the privacy perspective, private 

clouds are take advantages and also have several disadvantages of other areas as 

follows [4],  

 In order to maintain the private cloud, we need to maintain the servers, which 

are quite costly. Need to think about physical server security, backup 

electricity, networking side and so on.  

 Need highly technical people and support people to make the service 

availability.  

 The main disadvantage is the scaling facility and limited resources. In the 

private clouds cannot increase the server resources on the fly, and also it takes 

much time to increase the server resources and it is very costly.  

Most organizations cannot afford these kinds of costs.  As a solution, people are 

moving to a hybrid solution. In that case, hybrid clouds are come to the world to 

overcome those limitations. There is no such deployments type in the hybrid clouds 

and it varies on the organization to organization according to their needs.  A hybrid 

cloud is an arrangement of at least one public cloud and at least one private cloud. A 

hybrid cloud is usually offered in one of 2 ways such as an organization has a private 

cloud and starts a partnership with a public cloud provider, or a public cloud provider 

starts a partnership with an organization that provides private cloud platforms [5]. 



5 
 

People who have sensitive data can store the private cloud and can run the application 

on the public cloud or whole application run on the private cloud and to cater the high 

traffic, and people can move to public clouds only for that. Preferably, the hybrid cloud 

method allows the industry to take advantage of the dynamic scalability and cost-

effectiveness that a public cloud environment gives without exposing sensitive 

applications and data to third-party vulnerabilities.  

 

Advantages of hybrid clouds:  

 Reduce the organization cost by using public clouds along with the private 

clouds 

 Help to optimize the company cloud infrastructure 

 Rapid scaling facility to cater the application load 

 Protect application and data privacy 

 Extreme improvements in the global business agility 

 Ability to influence public clouds and leading to improved opportunities.  

 

Disadvantages of hybrid clouds:  

 Introduce the application latency because of the connectivity between the 

public and the private cloud  

 Very complex infrastructure 

There are risks related to the security policies across the hybrid cloud environment. 

 

 

1.3 Monolithic Applications 

 

In ancient time most of the applications deployed in the cloud are monolithic 

applications. Monolithic applications are a single application that contains all the 

modules as a single package. That means application modules such as 

authentication module, business logic and the user interface part are all packaged 

into a single application. When considering the data layer, most of the monolithic 

applications typically use one single database to handle all the application data. 



6 
 

 

 

There are have several advantages and disadvantages of developing monolithic 

applications. 

 

Advantages –  

 In the monolithic application, all the code base is maintained as a single 

repository so that debugging, patching and maintains of that code base is very 

easy 

 Most of the development IDEs support monolithic application development 

 Very easy to scale the monolithic application because it is a single container 

 Easy to deploy the monolithic applications.  

 

Disadvantages –  

 All the modules are packed into single binary which decreases application 

performance 

 Monolithic application is very complex   

 There are several security problems 

 Adaptation of the new technology is very difficult 

 Cannot maintain the CI/CD pipeline with the monolithic applications 

Figure 2: Monolithic application architecture 



7 
 

 Not suitable for container orchestration because its takes lot of time to start up 

the application 

 If one module fails in the monolithic application it will cause for whole system 

failure.  

 

1.4 Microservices 

 

To overcome the limitation on the monolithic applications people move to micro 

services. This is new technology to the world and most of the organizations are going 

to move to their monolithic application to the micro service architecture. Micro Service 

Architecture is a combination of running several independent modules to achieve a 

common goal. Those modules running as independently and communicate using the 

APIs by using different protocols such as http, https, JMS, thrift and so on. Micro 

services can developed using several languages and have several well-known 

framework also.  In the micro service architecture all the modules have their own data 

layer, and required data will get using API calls. 

 

 

 

Figure 3: Microservices architecture 



8 
 

There are a number of advantages of using the micro services but also several 

disadvantages.  

Advantages –  

 High scalability and the availability. 

 If one microservice fault not causes for the whole system downtimes. 

 Can perform CI/CD pipeline. 

 Container orchestration friendly. 

 Parallel development is possible in the microservice architecture. 

 

Disadvantages –  

 Maintaining several codebases is very difficult. 

 Monitoring the whole system is very difficult because of independent 

distributed modules.  

 Application performance impacts due to network latency between modules.   

 

1.5 Serverless Computing  

 

With the world going with microservices, people think about serverless computing 

with the concept of the containers and micro services[6]. Serverless computing is 

referred to as a function as a service in the cloud computing perspective. That is 

emerging technology and cloud providers facilitate that to the cloud consumers. AWS 

provides that as lambda services[7] and google provides that as google cloud 

functions[8]. Serverless architecture is similar to microservice and behaves 

independent functions on cloud.  

Most of the businesses are moving from the monolithic application to the microservice 

or serverless applications.  Business owners are willing to bear the cost of service 

migration but they are in a risk of complete service migration to microservice or 

serverless. Business owners always think about the cost of the whole operations and 

they are looking for revenue to the business within a short period. There are no existing 

monolithic systems that can work with the microservises as subsystems to satisfy the 

core system requirements.  



9 
 

There are having several advantages of using serverless functions as applications in 

the business domain. 

 No need to maintain the servers and that cost can be saved by the organization.  

 Easy scalability on the services which are running on the serverless.  

 Lower cost by considering other cloud services and on premise services. 

 Less latency for execution in serverless cloud.  

 When considering the development and the deployments, both are very easy 

and can do with a short time period.  

As same as the advantages we see there are some disadvantages also in serverless 

architecture. One of the many things is serverless architecture is not suitable for 

massive processing executions. Not suitable means that serverless can process the 

heavy query, but the cost will be high for that heavy processing. Another thing is 

debugging on the serverless is a bit hard for the developer because in all the 

compilation on the code level is done by the cloud provider and didn’t have any 

visibility to the developer about the backend processing.  Different cloud providers 

provide the different implementations and features to serverless architecture on their 

cloud environment. If the architect chooses the serverless vendor, they also need to 

consider all of the features and the implementation on that particular vendor. 

Otherwise, changing the vendor while implementation or after deployment is very 

hard. 

 

1.6 Problem Description 

 

1.6.1 Goal 

 

The proposed solution will satisfy a cost-effective way to handle the traffic load 

between server and serverless cloud in a seamless way.  This solution will get the 

server stats such as memory, CPU and disk in the on-premise servers or cloud servers 

and determine that servers can handle the traffic any more. If that server stats are in a 

warning state (that can pre-define), this research component can able to reroute the 

traffic to the particular serverless function which is hosted on any cloud provider. 

Because of that, traffic is not got failed and can give more user experience without 0% 



10 
 

downtime when traffic spikes. The organization who needs to migrate their monolithic 

system to the microservices or serverless cloud this research component is much 

suitable for satisfies that requirement with low risk. Meantime they can run their 

monolithic system as well as the microservices or serverless cloud application.  

 

1.6.2 Objectives 

 

Objective of this research include the following: 

 Analyze the existing cloud provider’s services. 

 Deeply investigate the cost on maintaining both on premise servers and the 

cloud servers.  

 Prediction of server workloads based on current server statistics. 

 Analyze server resource statistics with respect to their capabilities (Load 

average, memory, and disk) and cost. 

 Developing a component to load balance the traffic base of the current server 

workload.  

 Analyze the integration points to integrate newly developed component with 

the monolithic systems.  

 Deeply go through the performance on the microservices.  

 Analyze a method for deploy existing microservices on the serverless.  

This research shows the cost effective method to load balance between server and 

serverless cloud. Chapter two talks about critical review of the serverless and 

monolithic systems. 

 

 

 

 

 

 

 

 

 

 

 



11 
 

CHAPTER 2 

LITERATURE REVIEW 

 

 

2.1 Introduction 

 

Nowadays, many types of research are conducted in the field of cloud computing. The 

goal of this section is to identify the latest research related to cloud computing and 

what are the problems people are facing in the legacy system. People are trying to 

move from the monolithic legacy system to cloud solutions. The concept of serverless 

computing is the biggest trends in the enterprise world. In the literature part researcher 

is going to analyze this all kind of technologies and have some evaluation about those 

technologies with respect to performance, scaling and cost.  

 

2.2 Cloud Computing  

 

Over the last years,  there has  been an intensified  interest  in  the used of cloud 

computing by organizations for their product deployments. Cloud computing concept 

induction to the world in the 1960s and from onwards that area is growing very highly.  

Most of the companies moving to the cloud because of several reasons such as its 

available for anywhere, easy to use, reliable, maintain cost is low, can get all the 

services from the cloud provider, and so on. Nowadays, there are have several cloud 

providers such as Amazon, Google, Microsoft, IBM, Verizon and so on. 

 

2.2.1 Infrastructure as a service (IaaS) 

 

Cloud providers provide the server spaces, memory, CPU, storage, network and other 

IT infrastructure for the cloud consumers. IaaS cloud provider gives several important 

fundamental services such as provider takes care of all the IT infrastructure 

complexities, the provider provides all the infrastructure functionalities, provider 

guarantees qualified infrastructure services and so on. Cloud consumers can request 

different storage sizes, different network bandwidths, and different operating systems 

to match their requirements. The client does not need to worry about resource 

availability; if you have money, you can buy the IT infrastructure as pay as you go 



12 
 

model. If the client uses the IaaS, then client needs to manage the deployed 

applications, application data and runtime environment. Generally IaaS can be 

obtained as a public or private infrastructure or a hybrid model. These days AWS EC2, 

Google cloud, RackSpace Cloud, Linode and GoGrid are the famous IaaS providers in 

this domain. There are have several frameworks and tools that can help to manage the 

cloud infrastructure. Those tools giving some extra tools for the enduser to manage the 

IaaS. OpenStack, Nimbus, OpenNebula and Eucalyptus are some examples for the 

frameworks.  

OpenStack – Openstack is used to manage private and public cloud infrastructure. 

Developed by the Rackspace and NASA in 2010 and publish it as an open-source 

project [9]. Openstack framework provide the resource scalability feature, give 

flexibility and it is compatible for any private cloud managements. Dashboard service 

(Horizon), authentication service (Keystone), compute service (Nova), block storage 

service (Cinder), image service (Glance) and object service (swift) are some key 

services in the openstack [10] [11]. Most of the people use the devstack for creating 

openstack development environment. Devstack is testing tool and it’s not suitable for 

the production environment.  

Nimbus – This consists of the two main parts, such as nimbus platform and the nimbus 

infrastructure. Nimbus platform provides the tools for the infrastructure management 

and Nimbus infrastructure compatible for managing Amazon EC2 and Amazon S3 

(storage) [12].  

OpenNebula – This is also open source IaaS toolkit which is facilitate dynamic 

resource scaling, live migration of cloud infrastructure, and the making snapshots. It 

supports various interfaces such as REST base interfaces, open cloud computing 

interface and so on[13].  

Some researchers are researched IaaS base tool to modelling cloud infrastructure. 

Researcher developed simulator to IaaS, which is named as cloudSim and it is capable 

for provisioning of a host to a VM, create VMs, destruction of VMs and VM 

migrations [14]. CloudSim developed using the java language and it gives graphical 

view of cloud reports to the end user. Using those reports,  end user can get the decision 

about resource utilization. 

 



13 
 

2.2.2 Platform as a service (PaaS) 

 

Platform as a service (PaaS) is a cloud computing model in which a third-party cloud 

provider delivers software and hardware tools for those who wanted for product 

development to use over the internet. A PaaS provider hosts the software and hardware 

on its own infrastructure. Hence the developer can develop the applications using 

programming languages and tools supported by the PaaS provider. In the client’s 

perspective, reduce the complexity and responsibility of cloud infrastructure and 

provide the automatic management to provision resources. Cloud consumers may not 

be aware of whether provided IT resource is dedicated to a client or shared with other 

clients. Reduce the responsibility of the runtime environment form the cloud 

consumers, and they need to manage their application and the data. Do not need to care 

about how to build, configure, manage and maintain the backend environment. The 

runtime environment is automatic control such that consumers can focus on their 

services such as load balancing, fault tolerance, dynamic provisioning and system 

monitoring. PaaS provides a development and testing platform for running developed 

applications on the runtime environment so that the development time becomes very 

short. Microsoft Windows Azure, Google App Engine are some examples of the PaaS 

providers. 

Table 1: Comparison on Azure & Google 

Attributes Azure Google app engine 

integrity encryption 

authentication 

encryption  

authentication 

availability provided by SLA no SLA, no mention of 

guaranteed uptime 

confidentiality privacy policy 

encryption 

privacy policy 

encryption 

authentication single sign-on 

username & password 

single sign-on 

username & password 

system call/ write to file 

system 

denied denied 

 



14 
 

Most of the people use the PaaS frameworks for get their job done without using the 

PaaS on cloud providers. OpenShift, AppScale, Cloudify and Cloud Foundry are some 

example for the open source PaaS environments. Those PaaS can be deployed on the 

private, public, hybrid or any community clouds and can choose the development 

languages like java, ruby and etc. Also, it enables to choose the services like mysql, 

mongoDB and so on.  

OpenShift- Open source framework and that enable to manage, create and deploy the 

application over the cloud as a PaaS. There is two main parts in the openShift called 

broker and the node. Broker is responsible for managing all the application activities. 

Frontend applications use the broker API and interact with the broker. Nodes are the 

component that host client’s applications. OpenShift support to client to choose the 

resource capacity for their application deployed on the OpenShift PaaS and support to 

various development languages, various management tools and several database 

engines.  

AppScale – Open source cloud run time system that can run on the cloud servers or 

virtual machine like XEN or KVM. This execute over the cluster resources and gives 

the fault tolerance, scalability and availability. AppScale consists of standard three-

tier web deployment model with several components such as app controller, app load 

balancer, app server, database and app scale tools.   

Cloud Foundry – This makes the application development and deployment so faster 

and easier. This is an open source distribution can be used for the private or public 

cloud environment.  Cloud factory supports multiple languages such as java, ruby, 

Node an also supports several runtimes like grails, groovy, and scala. Also this is 

support for the rabitmq for the messaging, redis for cache, mongodb for nosql and 

msql, PostgreSQL for the relational databases.  

Cloudify – PaaS contain the 3 main components such as manager, agent and command-

line interface client. Manager bootstrapping and managing application is one by the 

command line interface client, which is written in the python language. Cloudify agent 

mange the manger’s commands with the help of the plugins. Each application has 

agent to main the application resources in the PaaS cloud. Manager deploys and 

manages applications on the Cloudify. In this all the operation is done by the REST 

APIs. 



15 
 

 

2.2.3 Software as a service (SaaS)  

 

Software as a service is a software program made available on a subscription basis and 

is centrally hosted by a cloud provider. Instead of installing/running software on-

premise, rent the services from a SaaS provider offered online. Historically application 

service providers gave a similar offerings, but SaaS changed the model to 

accommodate multi-tenanted architecture, reducing operating costs and increases 

manageability and maintenance. Cloud consumers can get several advantages such as 

no installation, monitoring, and maintenance to worry about and no setup time needed, 

can be accessed from anywhere, can get the service form low cost and so on. In this 

model, all the application, data and infrastructure is managed by the cloud provider. 

The main concept of the SaaS is the multi-tenancy. That means getting the software 

service for the cloud provider and that provider is maintaining service for each tenant. 

 

2.3 Serverless Computing and Microservices  

 

Serverless computing is the trending technology and compelling paradigm for the 

deployment of cloud-based applications in the modern era. In these days, most of the 

enterprise applications moving to the container bases applications and the 

microservice-based applications. While Infrastructure as a Service (IaaS) clouds give 

users with access to capacious cloud resources, that resource elasticity is control at the 

virtual machine level, frequently resulting in over-provisioning of cloud resources 

leading to increased cloud hosting costs, or less provisioning cause for degrade 

application performance. Serverless platforms, referred to as Function as a Service 

(FaaS). It reduced cloud hosting costs, fault tolerance, high availability, and dynamic 

elasticity through programmed provisioning and managing of compute infrastructure 

to host individual functions known as microservices. Basically, serverless is different 

than application services hosting with PaaS or IaaS clouds. Applications are 

modularized into many microservices, which are essentially independent functions. 

Serverless environments holds operating system containers such as scale microservice 

and Docker to deploy. Small and powerful code deployment hitch up containers 



16 
 

enables incremental, quick scaling of server infrastructure surpassing the elasticity 

afforded by dynamically scaling instances. Cloud providers can load balance many 

small containers placing across servers helping to minimize idle server capacity better 

than with VM placements. Those providers are accountable for creating, destroying, 

and load balancing requests over container pools. Containers can be re-provisioned 

and aggregated more rapidly than bulky VMs. To preserve server real estate and 

energy, cloud providers allow infrastructure to go COLD or de-provisioning containers 

when service demand is low and freeing infrastructure to be harnessed by others. These 

efficiencies embrace promise for improved server utilization prominent to workload 

association and energy savings. 

The first serverless platform is the Amazon’s AWS Lambda and they define the key 

dimensions of the serverless functions such as programming model, cost, resource 

limits, security, deployment and monitoring. In first stage Node.js, Java, Python, and 

C# are supported for the serverless functions [7]. The platform takes advantage of a 

vast AWS ecosystem of services and makes it easy to use Lambda functions as event 

handlers and to provide glue code when composing services. Recently Google and the 

Microsoft introduced the serversless facility for their cloud consumers [15]. Google 

Cloud Functions gives basic FaaS to execute serverless functions written in Node.js 

and other languages in response to HTTP/HTTPS calls or events from some Google 

Cloud services [16]. Microsoft Azure Functions provides HTTP/HTTPS webhosts and 

integration with Azure cloud services to execute user delivered functions on using their 

service. Azure platform supports C#, Python, F#, Node.js, PHP and bash [15]. 

 

Figure 4: How developer control the serverless cloud 



17 
 

 

Figure 4 show that in the serverless developer only responsible for the code that is 

execute in the serverless function. Developer not need to worry about the deployment 

aspects of the server, fault tolerance of the function and the scaling factor.  Number of 

servers, server capacities are decide based on the code written in the serverless function 

by the cloud provider[6]. 

 

Figure 5 show that how serverless worked in the cloud. Serverless platform receive the 

http traffic and the events from the event source. Then the dispatcher dispatch the event 

to the correct function to proceed the request. This platform is capable for efficient and 

quick execution of function and deliver the work in high frequency.  

There are have various characteristic that can motivate the cloud consumers to use the 

serverless clouds.  

 Debugging and monitoring – Serverless platform provide the basic debugging 

capability to the developer to fix the problem such as custom logs, custom 

traces and etc. Developer can monitor the execution of his function over the 

serverless cloud.  

 Security – Serverless is exposed as multi tenancy but the function execute is 

done by the isolation and separately by protecting the security.  

Figure 5: Architecture of serverless platform 



18 
 

 Composability – Serverless platform provide the easy way to call a function 

from another function.  

 Deployment – Developer just need to make a source code file or a developer 

can make his executor as a Docker image to deploy that as a serverless function 

[17]. 

Most of the universities done research about the serverless performance by comparing 

various cloud providers. University of Bloomington did a research about the serverless 

performance and the serverless function throughput using the data processing tasks 

[18].  They compare the performance in the memory, CPU and the disk utilization of 

the serverless function by invocation the requests on sequential and concurrent way. 

Using that researches can identify the bottleneck on the system. Also researches 

measure the overall throughput of the http traffic, maximum in/out flow of the storage 

read and write and the database throughput from the serverless function. They use the 

three types of triggers to do this performance evaluation.  

HTTP Trigger – This means invocation the serverless function via http request with 

the different format such as JSON, XML, Text and so on. And also http request with 

different method types such as POST, GET, DELETE, PUT and so on. Non-blocking 

asynchronous calls are used for the make the concurrent requests for the function. 

Database Trigger – Function invoke the database with the insertion, querying, updating 

and deletion operations. Google functions don’t have the database triggers and it 

supports pub/sub triggers. Then they do their performance analysis using the AWS 

DynamoDB and the IBM Cloudant.  

Object Storage Trigger – Object storage use for the read and write data from the 

function. Object storages support by the all the cloud providers. Researchers did the 

comparison on AWS S3, google cloud storage and IBM storage. 

Below figure 6 show the throughput of the http triggers on various serverless 

provider’s environments such as AWS, Google, Azure and IBM. For this performance 

testing they use 500 to 10000 concurrent executions at a given time. As per the test 

results AWS lambda functions generate 400 TPS in average and it rapidly reach the 

maximum throughput by executing small number of requests.  According to the graph 



19 
 

one execution is assigned to a one single server instance which is have shared compute 

resource serverless functions may take double longer than the sharing CPU. 

 

 

Figure 7: Serverless function throughput on concurrent invocations 

Figure 6: IO overhead while concurrent execution  

 



20 
 

 

Above figure 7 shows that the how serverless function perform the IO operations 

(read, write). According to the results over 100 executions, AWS overhead is 91%, 

Google function overhead is 145% and IBM overhead is 338%.  Within the 5 min of 

time Azure function got failed [18]. 

 

 

 

Researchers done the price comparison between serverless and the cloud servers 

(figure 9). Using this comparison we can conclude that the serverless function is much 

better than the normal cloud servers. And also it gives a better performance than the 

cloud servers and it makes the developer more easily. 

 

Figure 8: CPU utilization during the concurrent execution 

Figure 9: Price comparison 



21 
 

2.4 Workload Load Balancing 

 

In the modern world give the most significant place to distributed computing.  With 

this placement, load balancing comes into the world to equally balance the workload 

on the distributed servers. Most of the researches give many solutions to the load 

balancing using the various technologies. The world is moving to the cloud era so that 

researchers focus on cloud technologies to set up distributed environments and load 

balance using cloud technologies. Those researches explain the advantages and as well 

as the drawbacks on the load balancing methods [19].  Load balancing on the 

distributed environment should not be a static one. It should be an adaptive method of 

traffic behaviour. However, most of the load balancing algorithms are bounded to 

some constraints [20]. Most of the researches suggestion is to use AI technologies such 

as neural networks, evolutionary technologies to build workload balancing algorithms 

[21].  In the distributed environments communication is happing using the TCP/IP 

layer. Because of using this mechanism load balancing algorithms face lot of problems. 

TCP/IP layer is not consistence one. Small changes in the environment will cause some 

issue on the TCP/IP layer. So it introduces the inconsistency to the load balancing 

algorithms by introducing the uncertain latency. With this network issue, most of the 

load balancing algorithms can’t perform the expected behaviors to the workload 

balance. Rest of the chapter show some load balancing algorithms.  

 

2.4.1 Round Robin Method 

 

Figure 10: Round Robin method 



22 
 

 

Round robin stays the most straightforward algorithm by considering the other load 

balancing algorithms. It has less complexity compared to other algorithms. Because of 

that, many researches practice RR algorithm to balance the traffic load with the peer 

systems[22]. It treated as a first come first served manner, which is names as the queue 

to the incoming traffic and assigns those traffic to the virtual machines by considering 

the scheduling time. The researcher’s commitments on utilizing the RR algorithm for 

load balancing at instances within the cloud instances as the first request reach the 

initial instance, and the second request will relocate to the second instance. Besides, 

the traffic load are decreased to VMs by using this algorithm. Researchers adjust the 

simple RR process to time scheduling manner. The primary purpose of addling the 

schedule component to the RR algorithm is to get higher performance during the 

runtime.  The problem of this algorithm is when the instance goes down within the 

cloud premises that the RR algorithm can’t alter on the runtime.  

 

2.4.2 Central Manager Load Balancing Algorithm 

 

In this algorithm, all the decision is made from the central manager node.  The overall 

algorithm load factor is decided from the connected node and the manager nodes. The 

central manager node maintains the status of each node workload and gives the jobs to 

those connected node based on the load status[23].  Every connected node sending its 

workload to the central manager to keep the status updated. Based on this behavior, 

sometimes central manger waits for other nodes to complete their assigned worked. 

Because of that, system performance can be degraded. In that case, the Central 

Manager algorithms are most fitting for the dynamic environment with less number of 

nodes. 

 

Figure 11: Central manager algorithm 



23 
 

Table 2:  Load balancing algorithm comparison 

 

Cluster is the new technology in the load balancing. With this technology, people can 

share the data inside the cluster for load balancing. But when come to the adaptive 

balancing it is huge computing power to process those data and get the decision. That 

will cause for the application performance and introduce a lot of complexity to the 

application. 

 

 

2.4.3 Self-Adaptive Load Balancing Algorithm 

 

 

 

Most of the algorithm does not consider the server response time, server load average 

and several other request details. They only consider the traffic hit to the algorithm. 

Round robin load balancing algorithm and the weighted load-balancing algorithm is 

Parameters Local Queue 
Central 

Manager 
Round Robin 

Resource Utilization Less Less Less 

Centralized or Decentralized Decentralized Centralized Decentralized 

Stability No Yes Yes 

Fault Tolerant  No  Yes  Yes  

Dynamic or Static Dynamic Static Static 

Overload Rejection  Yes No No 

Figure 12: Work flow of self-adaptive load balancing 

algorithm 



24 
 

some example for simply algorithmic module. Self-adaptive algorithms are can mark 

as dynamic algorithms which are better than static algorithms. Self-adaptive load 

balancing system mainly includes two main parts. First one is monitoring the load 

statistics of servers and the second one is assigning the request to the relevant servers.  

In this researchers server CPU load is determining as per the below rule [24].  

 

 

 

Some algorithm developed to consider the server statistics and get the decision using 

those variables. The self-Adaptive load-balancing algorithm is similar to that. 

Centralize server collected all server statistics and make the decision that which server 

has the low statistics and traffic routed to that server. According to this research, all 

the servers help to the main algorithm to get the decision. It is a collective centralized 

work management. 

 

2.5 Workload Prediction and Resource Allocation 

 

Nowadays resource provisioning is one of the key challenge in cloud computing by 

considering the cost and the actual workload. Most of the cases engineers do the over 

provisioning and that cause for heavy costing for the business. Some of the 

organization allocation the less resources for the server and finally it will cause for the 

live traffic interruptions and the quality of service level. To achieve the proper resource 

Equation 1: Load calculation 



25 
 

allocation people want know the application and the traffic patterns. It is not easy to 

the determine the traffic pattern of the application because throughout the year users 

get on board to the services so we can’t predict the end user behaviors. To overcome 

these kind of things people need to proactive resource allocations. Below are the 

challenges for proactive resource allocations in the cloud environment [25],  

 

 Implementing the server resource prediction models for proactive auto scaling 

in the cloud environment and in order to do that application need to understand 

the fluctuation in the current traffic and the workload.  

 Implementing the application that can optimal allocation the CPU and the sever 

memory to incoming traffic.  

 Encompassing the prediction algorithms, which are allowing for single 

dimension of the server application, to also examine all dimensions of the 

applications. 

 Avoiding bottleneck workload by correlating the server resources.  

 Manipulating the resource provisioning scheme. 

 Implementing the approaches for provisioning the resources to cloud 

applications that reduce the overall costing 

 Designing the failover mechanism 

The workload prediction model can be categorized into 4 classes [26]. Those are Naive 

workload predictors, Regression-based workload predictors, Temporal (Time-Series)-

based Workload Predictors and Non-temporal Workload Predictors. Native workload 

predictors consist with the mean and the resent mean based algorithms. Regression-

based workload predicators consist with the linear (1-degree) or polynomial (2 or more 

degrees) models. Temporal (Time-Series)-based Workload Predictors exist numerous 

temporal (time-series) approaches for the upcoming workload prediction since these 

predictors are commonly used to analyze workload patterns for cloud computing. Non-

temporal Workload Predictors are the predictors that have not been applied to the cloud 

resource scaling before. They have delivered accurate prediction results within a 

deterministic amount of time. Researchers consider numerous non-temporal methods 

to forecast the next job arrival time. 



26 
 

 

 

 

Above image show the how predicates are used in the actual environment for allocate 

the resources to the cloud resources.  

There are have some challenges perdition approaches;  

 Examine of the future behavior pattern of the application in different 

perspectives such as TPS, promotion campaigns, service level agreements is 

a challenging task. 

 In the perdition algorithm should be good in time complexity.  

 In the initial state data generality is more importance to make the flexible 

perdition model. But long term data will cause for effectiveness of the model.   

Finding the relation between the attributes on the perdition model is very hard on the 

cloud environment. 

 

Some of the researchers bring the rule base resource allocation methods, which are 

considered the server memory, CPU and storage. Researchers prove that the resource 

allocation rate should be greater than the resource request rate from their research [27]. 

Figure 13: How work perdition happen 



27 
 

 

 

Figure 14 shows that the major components of the rule-based resource allocation 

system are cloud priority manager, cloud resource allocation, virtualization system 

manager, and result collection. From the research results, they show that cloud 

resource allocation is very efficient using the rule-based allocation algorithm.  

Grid and Service Computing Technology Lab did research related to the effective 

resource allocation problem based on real-time information on workload and 

performance feedback of running services in the production environment [28]. 

Figure 14: Components of the rule based resource allocation 

Figure 15: Results graph after resource allocation 



28 
 

Researches proposed a stochastic model for the server resources on the virtualized 

environment and scheduling heuristics algorithms and resource allocation with the 

SLA (Service Level Agreement) constraints. In this research, researchers marked front 

face resource (external LB, VM server) as a performance feedback mechanism to the 

source because that is the place all the traffic come into the system. That is the better 

place to get the details regarding the current workload and the past workloads.  The 

developed algorithm interact with the server resources by using the closed-loop   

policies   to   set   a   nontoxic    performance level    in addition it    considers the    

synchronized optimization  of several  SLA  requirements together.  This method 

address the address the hotspots problem between multiple VMs through migrations 

[29].    

 

Figure 16 shows how that developed algorithm works with the actual environment. 

According to the above graph estimation level and the real stats are somewhat similar. 

 

 

 

 

Figure 16: CPU load average’s difference 



29 
 

2.1.5 Auto Scaling 

 

In the computing world, there are having two types of scaling. They are horizontal 

scaling and vertical scaling. Vertical scaling meaning that add the server resources 

(RAM, Cores, and Disks) to the existing server. Horizontal scaling means adding 

another server which can run parallel to existing resources.  

 

Figure 17 shows horizontal scaling on the servers. This scaling type is having 

advantages and disadvantages.  

Advantages –  

 Lower cost by comparing to the vertical scaling.  

 Increase high availability.  

 Introduce the fault tolerance to the application level.  

 Ability to scale our much more by placing the load balancer in front of the 

servers.  

 

Disadvantages –  

 Most of the software does not support horizontal scaling.  

 Higher cost for server managing the maintenance.   

  The software needs to handle the logic across multiple environments.  

Figure 17: Horizontal scaling 



30 
 

 

 

Figure 18 shows that the vertical scaling on the server and from the vertical scaling we 

have advantages and the disadvantages also.  

Advantages –  

 Most of the monolithic and microservices systems are support for this type of 

scaling  

 Very easy to scaling 

 Most of the virtualization engines support for vertical scaling 

Disadvantages –  

 There is limitation to a certain limit to scale.  

 Required very big amount of costing. 

 High risk of failing the hardware. 

 Having a low availability.  

 

Cloud providers also provide the auto-scaling facility to their cloud consumers. In the 

AWS cloud, they are providing this feature and consumers can set up according to the 

defined user policies. There is another service called as predictive scaling on the AWS 

uses the machine learning algorithms and detect changes in daily and weekly patterns, 

then automatically adjusting their forecasts.   

 

 

Figure 18: Vertical scaling 



31 
 

When the cloud consumer used the AWS auto-scaling that person can earn several 

benefits such as,  

 Can setup quickly 

 Can make smart scalable decisions 

 Only cost for scale up resources  

Google Cloud also supports the auto-scaling services for their VMs. Alibaba Cloud 

also provides the same mechanism as Google cloud to scaling. These all scaling are 

under the horizontal scaling and load-based scaling and the time bases scaling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 



32 
 

CHAPTER 3 

METHODOLOGY 

 

 

3.1 Introduction  

 

This section will introduce the method of the dynamic load balancing between the 

serverless architecture and the servers. This strategy will help to build a hybrid model 

between monolithic applications and microservices architecture. This model helped to 

seamless migration to the between monolithic and the microservices architecture. 

In order to implement this research project, it is mandatory to do a qualitative and 

quantitative research analysis on the different research areas and different 

technologies. Such as all the aspects of cloud computing, serverless computing 

research areas, microservices and its frameworks, load balancing mechanism and 

scheduling tasks. Chapter 2 constructs a literature review about similar researches 

conducted by other people in this field of study. In that chapter, we critically evaluate 

how those researches use emerging technologies to solve the problem and make their 

research successful.  

Those researches provide evidence that using the latest technologies will be helpful 

for the success of this research. We will utilize those research experience for the 

betterment of this research. Moreover, we will need to come up with new 

methodologies to build up this component.  

 

3.2 Converting Monolithic application to Microservices 

 

Monolithic architecture is a traditional method used by organizations to build their 

application. Most of the monolithic applications are single-tier applications and all the 

components combined into a single program. Older days, people are moved to the 

monolithic application because of that is very easy to build and can deliver the 

application within a short time period. Older day’s software engineers focus on the 

web application, which is built for desktops or laptops. So that those applications are 

browser oriented applications. After the technology changed, every person is trying to 

access to the system through the smart phones such as tablets, phones, ipads and so on.  



33 
 

With the many devices come into the picture, developers think that to expose services 

via APIs to access from any components. Then they pretended to developed small 

components as a service by exposing the service via API. The easiest way to expose 

APIs is by building the program as microservices. Then most of the new enterprise 

applications were build as microservices.  

There are three main strategies to move monolithic applications to the microservices. 

It’s not a straight forward task to get done with months. People can develop new 

features as microservices can work with the existing monolithic application. However, 

this approach takes a long time to move the whole of the system. Another strategy is 

to separate the application front end part from the backend part. A monolithic 

application is tightly couple application so that separating UI modules and the backend 

modules is not an easy task. Another complex strategy is to write business logic as a 

service on the monolithic system. So those three strategies are very costly and it takes 

a lot of time to move from the monolithic to the microservices environment. 

In this research presents the hybrid way, which is shown in figure 19 to handle the 

monolithic and the microservice as one platform. This is the combination of the above 

three strategies. From this strategy, the business owners can evaluate both systems as 

performance-wise, quality-wise and as well as cost-wise. This will help to bring the 

enterprise system into the latest technology in the modern world. 

Figure 19: Hybrid approach 



34 
 

3.3 Converting Microservices into serverless 

 

When building microservices architecture, developers need to think about what are the 

services/modules in the whole application.  As a business-wise, also we need to think 

about what are the business logic we can develop as separate components to reduce 

the complexity. After defining the services, then need to expose those service via APIs. 

Because each service has a dependency on each service. So one service needs to access 

other service responses to complete the task. 

 

 

 

 

As per the figure 20, those services cannot run on the individual to perform the job. 

But they can run separately and produce the assigned job.  When designing the 

microservices architecture, we need to follow a Conway’s Law anti-pattern. Conway’s 

law elaborates the system architecture as same as the organizational structure. That 

structure is very hieratical and tightly coupled with the entities and those model 

suitable for the monolithic systems. Because of that, when designing the 

microservices, developers need to follow the Conway’s Law anti-pattern.  When 

developing the microservices architecture, developers need to think about service 

quality and the agreed SLAs to the relevant parties. Microservices can be developed 

Figure 20: Microservices communication architecture 



35 
 

using several languages Java, Ruby, Python and so on. But in this research only focus 

on the Java implementation because most of the industry using the Java languages and 

it’s frameworks for implement microservices. In the java, there are have several well-

known frameworks for microservices such as spring boot, DropWizard and Jersey. 

Spring-Boot – This is the most famous framework used to develop the microservices 

using Java. It has a consistent infrastructure that is appropriate for any kind of apps 

such as big data, security and etc. That framework facilitates the 3 layer architecture 

modules to build the microservices efficiently and reliably. 

DropWizard - This microservices framework facilitates to develop very industrious 

RESTful web services. This DropWizard framework is an open-source and holds 

tested in practice Java libraries. This reduces the developer’s time and efforts when 

building and testing web services.  

Jersey - Formed on JAX-RS specification, Jersey is known for high speed, simple 

routing, clear documentation. Jersey is most famous as a web server among the 

developers.  

We can’t deploy the microservices into the serverless as it is. Because in the serverless, 

they need some of the handlers, some cloud tokens to identify the API calls and so on. 

So we need to convert existing microservices to the serverless model which can deploy 

the services as functions. In this research, we talk about the Spring-boot services and 

the AWS lambda services.  The application should need to based on the spring-boot-

starter-web. Developed code needs to include a StreamLambdaHandler class, which is 

the main entry point for AWS Lambda and the rest of the Application class can define 

as a basic Spring Boot application.  

To implement those classes first, you need to import the following artifacts.  

 

 

 

 

Figure 21: Java dependency for AWS serverless 



36 
 

This dependency will automatically import the aws-serverless-java-container-core and 

aws-lambda-java-core libraries. Dependency injection with Spring boot can have a 

major impact on serverless function's cold start time. As the entry points in the 

application level, needs to declare a new class and need to implement the Lambda's 

RequestStreamHandler interface.  If your architecture configured AWS API Gateway 

with a proxy integration, that automatically built-in POJOs AwsProxyRequest and 

AwsProxyResponse in the integration layer. The next step is to write the container 

handler object in the application class. The library representations the efficacy static 

method that can configure a SpringBootLambdaContainerHandler object for AWS 

proxy events. That method receives a class annotated with Spring Boot's 

@SpringBootApplication. And the object should be declared as a class property and 

be static. Because of this, Lambda will re-use the instance for subsequent requests and 

that will bring more performance to the lambda function.  The handleRequest method 

of the class can use the handler object that declared in the previous step to send requests 

to the Spring application. 

 

From wrapping the exciting spring boot microservices with this interface developer’s 

can easily deploy the application on the serverless function at the AWS lambda. 

 

 

 

Figure 22: Java wrapper for microservices 



37 
 

3.4 Serverless (AWS) 

 

Serverless is a native cloud architecture for the application and can move all the 

responsibilities to the cloud providers. The only developers need to consider the code 

and the business logic on that function.  Serverless eliminates the people to think about 

infra management, resource provisioning, operation system maintenance, patching, 

security and so on. Serverless manages all computations, maintains the high 

availability and all of the infra related things manage by the serverless provider. If you 

use the serverless, you can develop modern applications into enterprise-level with 

increased quickness and lower total cost of manage and ownership. This minimized 

the overhead of the developer's dev time and energy that can be spent on developing 

great products which scale and that are reliable. 

Lambda is serverless computing service on the AWS and developers can write the 

code using Java, python, Ruby, Go and the C# languages. This research talk about 

related to the java development on the AWS lambda. 

In the lambda you can create a function from scratch or can use the temples which is 

provided by the cloud provider and also can choose the language. 

 

 

 

Figure 23: Creating Lambda function 



38 
 

Afterwards, developer can enable the permissions for the lambda functions. From this, 

it secures the business functions and data from the outsiders. We can assign role bases 

permission to each function on the AWS lambda.  

 

 

After entering the whole configuration and the permissions developer can upload the 

application file to the serverless.  

 

 

After uploading the code, it is ready for the invocation. People can directly invoke the 

lambda function after this. But when it comes to the integration, we need to front the 

gateway in front of the business logic to manage and monetize the of APIs. In this 

configuration, we can define the API as a new API and can provide the security with 

the API key. After creating a new API you can see the API details with the API key. 

 

 

 

 

Figure 24: Creating roles on Lambda 

Figure 25: Uploading jars to Lambda 



39 
 

 

 

 

Above figures 25 and 26 show the integration architecture of the serverless (Lambda) 

deployment on the AWS. From this architecture all the logs and the all the monitoring 

is managed by the AWS. 

 

 

 

 

Figure 26: Adding API gateway 

Figure 27: Integration on Lambda 



40 
 

3.5 Server Status Monitoring – NRPE  

 

Nagios is a very powerful monitoring system across both on-premise and the cloud 

environments. Most Nagios used for the monitors the environment infrastructures 

rather than the service calls.  Nagios architecture is intensely predisposed by a 

separation of concerns approach that differentiates the monitoring infrastructure from 

the analyses that monitor the resources.  This method is taken to the design of a plugin 

oriented framework. So the best plugin is Nagios Remote Plugin Executor (NRPE). 

There are two modes on the NRPE such as server and client mode. The server module 

is need install on the every cloud or on-premise resource. 

 

 

 

 

Figure 28 shows the NRPE architecture that joins the constancy given by the use of a 

standard protocol and by the integrated development of the NRPE plugins with the 

flexibility of the plugin mechanism, which allows the continuous overview and 

improvement of plugins. The NRPE server gives remote access via IP whitelisting on 

the configurations to a number of servers which are designed to perform hardware and 

software checks of the remote host. Finger 29 shows the configuration on the nrpe.cfg 

file. The monitoring servers control the execution of remote plugins hosted by NRPE 

servers, and gets data with a secure connection via a standard protocol like SSL. 

 

 

 

Figure 28: NRPE architecture 



41 
 

 

Figure 29: NRPE configurations on security 

 

In this research implementation, used the NRPE plugin in each server to get the data 

on reach remote servers.  

 

 

 

 

 

 

Figure 30: NRPE implantation 



42 
 

According to the figure 30, there is having a Java-based NREP client that is capable to 

get the data from the installed NRPE plugins on the remote servers. 

 

 
Figure 31: NRPE plugins 

 

 

In the NRPE plugin side, we need to define the threshold values for each check as per 

the above image. When Java client calling it returns the value and the statue whether 

that value is on warning state or in a critical state. 

 

 

To use the NRPE client in Java, we need to get the libraries to call the NRPE service. 

The above artifact facilitate the import required dependency class to the java program.  

As per the below, developers can initialize the JNRPEClient by giving the IP, port and 

other necessary arguments. 

 

 

 

 

Figure 32: Java dependency for NRPE 

Figure 33: Creating JNRPE client 



43 
 

After initializing the client, can send the comments to check the server status as per 

the above. We can send the commands with the argument. 

 Check_disk 

 Check_mem 

 Check_load 

 Check_users 

 

 

 

 

After sending the commands from the java method, NRPE plugin installed in the 

remote server sends the server status according to the send command as per the above. 

Likewise, we can get the remote server status to the java client. 

 

 

3.6 Architecture Design 

 

The high overview of the proposed system is to realize cost-effective auto-scaling 

components between server and serverless cloud. The proposed system is monitoring 

all server’s statistics such as RAM, CPU usage, load average and disk utilization.  

Based on the server stats proposed system is capable for handling traffic between 

servers and serverless functions. When the server resource are fully utilized, that 

application not be able to handle the more traffic. If they were going to handle this, it 

would cause system downtimes. A possible scenario is to scale the servers horizontally 

or vertically. If we provide the cloud servers, it’s very costly. If they run on those 

servers in on promise, it is very difficult to scale. 

  

 

 

Figure 34: Results for JNRPE 



44 
 

 

 

 

Research component has the ability to monitor the server stats and get the decision to 

route the specific traffic to serverless functions. Those decisions are not round-robin 

load balancing it get based on the priorities. Serverless function cost is making based 

on the requests execute on the function. For handing this kind of huge traffic, you did 

not need to provide additional resources. Its all handled by the research component.  

 

 

3.7 Implementation 

 

Research component is developed as a microservice using the JAVA spring boot 

framework. Because it should be a light weighted and should need to handle traffic 

than other servers handling traffic. In the spring boot microservice comes with the 

embedded tomcat server so that we no need additional applications to host this research 

component. 

 

 

 

Figure 35: High-level architecture 



45 
 

 

 

As per the above, each other server IP address are needs to configure in the 

configuration file on microservice. In the research, component reads the values form 

the NRPE commends which are send by other serves [30]. Those results consist of 

respective server statistics such as memory usage, CPU usage, load average and disk 

utilization [31].  Based on those values research component will choose what the works 

are should need to divide to the serverless functions.  

 

 

 

 

In microservices, it cater the all the traffic and map with the configuration file for 

resources. If API context map with the API resource, then microservices get the 

request inside otherwise, it returns an error. 

 

 

 

Figure 36: Configuration file 

Figure 37: Allow all traffic 



46 
 

 

Based on the server statistics research module come up with the decision on the traffic 

routing. If the server statistics such as memory, CPU usage and the disk usage is on 

the warning state, then traffic route to the serverless function. Before routing to the 

serverless side, the application request got intercepted to make that request according 

to the serverless function such as add authentication header, add content types and so 

on.  

In the application, use the separate Java time schedulers for each server to get the 

server details and update the global variable on configured time gaps. In this 

implementation its running as separate threads and worked as a non-blocking separate 

work for API path. 

Figure 38: Logical flow diagram 

Figure 39: Schedule tasks 



47 
 

3.8 Integration to Existing Systems 

 

The most critical path is how this research component is working with the existing 

systems. Value addition in this component can work with the existing system and load 

balance between the server and the serverless. In this research will explain the 

architectural-wise integration using the one use case.  

 

In the above architecture (figure 40) deployed on the on-premise servers running with 

the monolithic application. In that front end load balancer only have access with the 

internet and it placed on the demilitarized zone. Other all the VMs are deployed on the 

non - demilitarized zone which don’t have any incoming traffic from the external 

parties. This architecture is fully running on the active-passive mode; hence it brings 

the HA to the whole system. In this setup DB also configured as a master-slave so DB 

layer also having high availability. Used the internal load balancer to the load balancer 

the traffic between the business logic. Those all VMs are deployed on the same subnet 

network so that can reduce the network latency also. In this scenario, business owners 

need to manage the lot of VM and need to run the manage services for the whole setup 

and that will cost a lot. 

Figure 40: Existing system architecture diagram 



48 
 

 
To overcome the limitation and seamless migration, the service to the serverless will 

help this architecture. In the above figure show how the research component plugs into 

the existing system. Using the API calls from the external load balancer research 

component, check the traffic with the provisioned or not. If it is a valid traffic research 

component will route traffic to the serverless function or on-premise servers. All the 

high availability and the manager service are managed by the cloud provider and the 

cloud database also maintained by the cloud provider. 

 

 

 

 

 

 

 

 

 

 

Figure 41: Architecture with new component 



49 
 

CHAPTER 4 

RESULT AND EVALUATION 

 

4.1 Introduction 

 

Before this chapter, we discussed how the research component behaves on the real 

environment, and it will help to understand how each section on the research 

component works according to the archive the outcome. All system need to be tested 

and evaluated with respect to its non-functional requirements and functional 

requirements. That will help to produce the bug-free software to the as a final output. 

System evaluation help to set the system benchmarks as well as the achieve the goal 

into the expected level.  In this chapter, discuss how system tested and how the system 

evaluates on the real environment to capture the actual goal. 

 

4.2 Testing on System   

 

Testing is a necessary process to ensure that system function is up to the standard level 

on the acceptance criteria. The proper testing process brings the procedure to check 

the functional and the non-function requirements in the system with the perspective of 

both developer and the end-user. That means the system needs to cater to the end-user 

goal by with proper software development process. A small mistake on the 

development process can cause for whole system crash, and maybe that will not reflect 

the final system and the end-user. Do the testing on each unit on the development time 

also an essential task for the researcher. After the system developed need to run the 

test to make sure all system work as expected as well as the connected systems also 

working as expected with the new research component.  

  

Performance: How system response to the input. It depend on the external factors. 

 

Accuracy: Software must be ensured to give full functionality correctly.   

 

Functionality: Proper software should be able to achieve the required functional 

requirements. Test the system functional requirement is the most crucial task on the 



50 
 

project. Uncertainty, the developed software is not capable of achieving its functional 

requirements; it is useless.   

 

4.3 Test Strategies and Procedure  

 

The previous topic discusses the importance of the testing of the newly developed 

software. To capture the software, each drawback testing needs to done as a sequential 

manner. In the first stage, testing need to start with the unit testing on each software 

unit. After unity testing done without any defects, then the tester can move to the 

second phase, which is integration testing. In the second phase, the tester needs to 

integrate the subsystem to the developed system and need to start the whole end to end 

testing. In this phase need to test the software clustered setup as well as the standalone 

setup.  Using this testing, we can identify the system defects and user acceptance 

criteria. After testing done with the zero defects, then can conduct the user acceptance 

testing with the involvement of the end-user / customer.  Those testing need to cover 

all of the functional and the non-functional requirements on the whole system, which 

need to cover all components and integrated subsystems. If those test cases did not 

cover the whole system that ends up with the bugs in the actual production system 

which can disappoint the end-user/custom which used the system but didn't found the 

expected behaviors on the system. To get the bug free research component researcher 

to conduct the testing in a conventional manner. The rest of this chapter will discuss 

that.  

 

 

 

Figure 42: Load test with Jmeter 



51 
 

Table 3: Server specification 

 

 

 

 

Using the above resources and the architecture did an integration testing with the 

servers. For that used the Jmeter client for generating the traffic with the different TPS. 

 

Table 4: Server specification (with research component) 

Server Type Purpose RAM CPU OS 

HP Laptop Testing Client (Jmeter) 16 4 Linux - Mint 

t2.micro (AWS) Research Component 1 1 RH 

t2.micro (AWS) Business Logic Hosted 1 1 RH 

t2.medium 

(AWS) 
Business Logic Hosted 4 2 RH 

 

Changing the service type and did the load test with the different TPS and collect the 

statistics for evaluation purpose. 

Server Type Purpose RAM CPU OS 

HP Laptop Testing Client (Jmeter) 16 4 Linux - Mint 

t2.micro (AWS) Business Logic Hosted 1 1 RH 

t2.medium 

(AWS) 
Business Logic Hosted 4 2 RH 

Figure 43: Testing with research component 



52 
 

4.4 Evaluation 

 

Research component deployed in the real environment and evaluated on two main 

criteria.   

 Performance  

 Cost 

During the testing collect the CPU usage, memory usage and the disk usage statistic 

under the different TPS and different server specs. To evaluate the performance of the 

research component did testing with the without research component and took the 

above statistics to do the comparison.   

 

 

4.4.1 Performance Evaluation  

 

 

Test case 1 – Without research component 

 

In this test used the business logic without the research component and collected the 

statistic with 20TPS traffic generated from the jmeter which is place on the remotely. 

 

 

 

 Table 5: Test case 1 details 

 

 

Instance Type TPS Duration  CPU RAM 

t2.micro 20 30min 1 1GB 



53 
 

 
Test case 1 – With research component 

 

In this test used the business logic and the research component in a hybrid way and 

collected the statistic with 20TPS traffic generated from the jmeter which is placed 

remotely.  

 

Table 6: Test case 1 with research component details 

 

 

 

 

  

Instance Type TPS Duration  CPU RAM 

t2.micro 20 30min 1 1GB 

With AWS API gateway and lambda function 

-5%

0%

5%

10%

15%

20%

25%

30%

35%

40%

Memory, Disk and CPU Variance

Disk

CPU

Memory

Figure 44: Graph of statistics for test case 1 



54 
 

  Figure 45: Graph of statistics for test case 1 with research component 

 

Table 7: Request count on test case 1 

 

 

 
Test case 1 – Summery 

 

By comparing the above two graphs with the research component graph is pretty good 

than the other. In the first graph can see the memory drop and that time traffic got 

interrupted and also CPU is got very high during the load testing.   

 

Test case 2 – Without research component 

 

In this test used the business logic without the research component and collected the 

statistic with 50TPS traffic generated from the jmeter, which is placed on the remotely.  

 

 

0%

5%

10%

15%

20%

25%

30%

35%

40%

Memory, Disk and CPU Variance

Disk

CPU

Memory

Server Request Count  32658 

Serverless Request Count 1918 



55 
 

Table 8: Test case 2 details 
 

 

 

  Figure 46: Graph of statistics for test case 2 

 
Test case 2 – With research component 

 

In this test used the business logic and the research component in a hybrid way and 

collected the statistic with 50TPS traffic generated from the jmeter, which is placed on 

the remotely.  

 

Table 9: Test case 2 with research component details 

 

 

 

0%

5%

10%

15%

20%

25%

30%

35%

40%

Memory, Disk and CPU Variance

Disk

CPU

Memory

Instance Type TPS Duration  CPU RAM 

t2.micro 50 30min 1 1GB 

Instance Type TPS Duration  CPU RAM 

t2.micro 50 30min 1 1GB 

With AWS API gateway and lambda function 



56 
 

 
Figure 47: Graph of statistics for test case 2 with research component 

 
 Table 10: Test case 2 request count 

 

 
Test case 2 – Summary 

 

By comparing the above two graphs with the research component graph is pretty good 

than the other. In the first graph, we can see the high CPU and memory.  But when 

come to the solution with the research component CPU and the memory is stable.  

 

Test case 3 – Without research component 

 

In this test used the business logic without the research component and collected the 

statistic with 100TPS traffic generated from the jmeter which is placed remotely. 

 

 

 

0%

5%

10%

15%

20%

25%

30%

35%

40%

Memory, Disk and CPU Variance

Disk

CPU

Memory

Server Request Count  85861 

Serverless Request Count 4863 



57 
 

 Table 11: Test case 3 details 
 

 

 

 

 
Figure 48: Graph of statistics for test case 3 

 
Test case 3– With Research Component 

 

In this test used the business logic and the research component in a hybrid way and 

collect the statistic with 100TPS traffic generated from the jmeter which is placed 

remotely.  

 

Table 12: Test case 3 with research component details 

 

 

 

 

 

 

0%

20%

40%

60%

80%

100%

120%

140%

Memory, Disk and CPU Variance

Disk

CPU

Memory

Instance Type TPS Duration  CPU RAM 

t2.micro 100 30min 1 1GB 

Instance Type TPS Duration  CPU RAM 

t2.micro 100 30min 1 1GB 

With AWS API gateway and lambda function 



58 
 

 
Figure 49: Graph of statistics for test case 3 with research component 

 

 

Table 13: Test case 3 request count 

 

 

 

 

 

 

Test case 3 – Summary 

 

By looking at the graph, you can see the huge difference on the CPU load on between 

without and with the research component. Research component help reduce the server 

load by load balance between server and serverless functions.  

 

Test case 4 – Without research component 

 

In this test used the business logic without the research component and collected the 

statistic with 100TPS traffic generated from the jmeter, which is placed on the 

remotely.  

 

-10%

0%

10%

20%

30%

40%

50%

60%

Memory, Disk and CPU Variance

Disk

CPU

Memory

Server Request Count  17653 

Serverless Request Count 141858 



59 
 

 

Table 14: Test case 4 details 

 

 

 

 

 

 
 

 Figure 50: Graph of statistics for test case 4 

 

Test case 4 – With Research Component 

 

In this test used the business logic and the research component in a hybrid way and 

collected the statistic with 100TPS traffic generated from the jmeter, which is place on 

the remotely.  

 

Table 15: Test case 4 with research component details 

 

 

 

 

 

 

 

0%

5%

10%

15%

20%

25%

30%

Memory, Disk and CPU Variance

Disk

CPU

Memory

Instance Type TPS Duration  CPU RAM 

t2.medium 100 30min 2 4GB 

Instance Type TPS Duration  CPU RAM 

t2.medium 100 30min 2 4GB 

With AWS API gateway and lambda function 



60 
 

 

Figure 51: Graph of statistics for test case 4 with research component 

 

 

Table 16: Test case 4 request count 

 

 

 

 

 

Test case 4 – Summary 

 

In this test case, we increased the server specification as follows and didn’t change the 

TPS. We increase the RAM by 3GB and CPU by one more additional core. Then we 

collect the statistics with a research component and without it. By comparing those 

graphs with the previous test (test3) after increasing the server resources can handle 

the requests without any major interruptions, but sometimes CPU status got warning 

state. With the research component, CPU usage is quite stable by load balancing 

between server and serverless.  

 

 

 

 

 

 

-5%

0%

5%

10%

15%

20%

25%

30%

Memory, Disk and CPU Variance

Disk

CPU

Memory

Server Request Count  128589 

Serverless Request Count 49977 



61 
 

 

4.4.2 Cost Evaluation  

 

Cost is a very important factor in the business world. Because most of the 

organizations not moving to the new technologies because of the cost and the 

operational risk. We evaluate the cost for infra and the operational with the monolithic 

system and the research component.  

 

Table 17: AWS cloud cost estimation 

 

Serverless solution cost is basically static cost as per the request count. It will not cost 

any other additional things. However, the people who are using the on-premise or 

cloud servers they will have some more cost.  

1. Infrastructure maintained cost  

2.  Security maintain cost 

3. 24*7 Support team cost for service monitoring 

 

 

Figure 52: Cost calculation for 20TPS 

 

Image 52 shows the how cost involve for the 20TPS on the AWS account. Cloud 

provider sends the details bill to the cloud consumer then that person can evaluate it 

can do the necessary things to reduce the costs. 

Instance Type TPS per 1 Month Cost per 1 Year Cost 

  Server Serverless 

Solution 

Server Serverless Solution 

t2.micro 20 62.42 46.1 749.04 553.2 

t2.medium 100 87.67 260.97 1,052.04 3131.64 



62 
 

 

 Figure 54: Cost calculation on 100TPS in serverless 

 

 

Above two images (figure 53 & figure 54) show the how AWS cost for the serverless 

in a detail manner. According to that we can analyze the cost and can abject the code 

line according to reduce the cost. 

 

 

Figure 53: Cost calculation on 20TPS in serverless 



63 
 

 

By looking at the cost on the On-premise, cloud and the serverless we can conclude 

that cost-effective method is serverless solution. But the problem organizations did not 

move from the monolithic to the serverless. So by combining the serverless and the 

servers are the good initiative to move older technology legacy system to the new 

technologies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

1000

2000

3000

4000

On-Premise AWS Serverless

Cost Comparison (Onpremise vs AWS vs 
Serverless)

Server Storge Network IT-Labor

Figure 55: Graph on cost comparison 



64 
 

CHAPTER 4 

CONCLUSION 

 

 

4.1 Introduction  

 

In the previous chapters, discuss other researches works and as well the developed 

research component in an in-depth. This chapter brings the facts to evaluate the 

research hypothesis, which is load balancing between the server and the serverless is 

a cost-effective way. For that research conduct, the testing can collect the data to 

evaluate the system up to the standard way. Those details will elaborate on upcoming 

topics with some limitations and future works. 

 

4.2 Problems Faced and the Benefits of the Research Module 

 

These days, some of the companies using the monolithic application for their 

businesses. Nevertheless, most of the companies moving from the monolithic 

application to the microservice bases applications or serverless architecture. People 

need new technologies to get more revenue from the business. New technologies 

cannot be embedded into legacy systems because those are not supported, and those 

systems are tightly coupled. People are afraid that moving the whole system to the new 

platform directly. The people who are using the legacy systems, they always used the 

horizontally and vertically scaling to absorb more traffic. If their system on the cloud 

environment, it is very costly for them. However, if their system deployed in the on-

premise server, it is very difficult to increase the server instance and increase the server 

resources (number of cores, RAM).  Hence there are facing much trouble because of 

that. In this research proposed a system that capable of switching traffic between 

serverless and the servers. It’s something like cost-effectively scaling the system and 

not need to vertically and horizontally scale the system. There are several advantages 

of using this research component to the business owners. Then organization who are 

willing to go for the serverless functions they can use this research component and can 



65 
 

run their system in a hybrid way. Another advantage can cost-effectively scale the 

system when traffic spicks according to the server loads.  

 

4.3 Revisited the Objectives 

 

In the final stage in the last chapter on this thesis will discuss the objectives and its 

success criteria in briefly. Using this can come to the conclusion about the research. 

 

Objective 1: Analyze the current cloud provider’s services. 

Nowadays, there are having a large number of cloud providers in the technological 

world. Such as Google, AWS, Alibaba, Azure and etc. In this research does the 

literature review related to the existing cloud providers and what are the services they 

have provided to the cloud consumers. 

 

Objective 2: Deeply investigate the cost of maintaining both on-premise servers and 

cloud servers.  

This thesis clear showed how the cost calculated on the servers and the serverless by 

providing the calculations for every single level. In the on-premise deployment cost 

factors are deeply reviewed and illustrated in the previous chapter.  

 

Objective 3: Prediction of server workloads based on current server statistics. 

Based on the current workloads on the servers, the research component able to load 

balance traffic. Because of the server resources on the warning state, it can become the 

critical state in a short time of period. Hence on the warning state traffic routed to the 

serverless to prevent the traffic failures.   

 

Objective 4: Analyze server resource statistics with respect to their capabilities (Load 

average, memory, and disk) and cost. 

Using the NREP technology, get the remote server details to the research component 

and doing the analysis. The research component used the JNRPE java libraries to get 

the server stats. The previous chapter shows that the cost analysis on this solution is 

good than maintaining the monolithic system.  



66 
 

 

Objective 5: Developing a component to load balance the traffic base of the current 

server workload.  

Developed a component using the Java Spring boot framework to load balance the 

traffic based on the remove server loads. The methodology chapter described the 

implementation of this research component.  

 

Objective 6: Analyze the integration points to integrate newly developed component 

with the monolithic systems.  

The most important part is how research components plug into the existing systems. 

Providing the actual use cases shows how the research component integrates into the 

existing systems. 

 

Objective 7: Deeply go through the performance on the microservices.  

Deeply investigate the performance of the microservices and its features. After that, 

choose the Java Spring boot framework, which is used for developing the enterprise 

software in the software industry.  

 

Objective 8: Analyze a method for deploying existing microservices on the serverless.  

Under this objective by wrapping the existing microservices with the hander and 

adding some dependencies can easily deploy the existing microservices on the 

serverless platform.  This thesis clearly showed how to do that in step by step on 

previous chapters.  

By looking at all objectives, this research satisfies all the mention objectives in detail 

manner. Therefore, the author has proven the research hypothesis. 

 

 

 

 

 

 



67 
 

4.4 Limitations 

 

Currently, the main limitation is for adding new API to the research component that 

service need to restart. So in that short time period traffic can be lost if they don’t have 

the active passive deployment.  

 

4.5 Further works 

 

In this thesis presents the ongoing technology research to the cloud and load balancing. 

Those fields are vastly evolving areas and this research can continue with the following 

areas, 

 Adding a machine-learning algorithm to predict future loads 

 Improve the load balancing by considering error descriptions, response times  

4.6 Summary 

 

The major objectives of this research and the limitations of this research component 

mention in this section. To continue this research this section gives further works as a 

foundation to another research. Using that anyone can enhance this system. Using the 

dynamic scheduling methodology, build the research component to balance the load 

between server and serverless cloud with cost-effective way. Hence the aim of this 

research is satisfied.  Using this approach showed that can scale the existing system to 

cater the sudden traffic loads on low-cost manner and without having any downtimes 

or traffic interruptions with giving the analytics results. Using this hybrid strategy, 

business owners can evaluate their monolithic system on the new serverless 

technologies. In this research critically evaluated the research component and make 

sure this research accomplish the research objectives and the aim with respect to the 

research hypothesis. 

 

 

 

 

 



68 
 

REFERENCES 

 

[1] R. F. El-Gazzar, “A Literature Review on Cloud Computing Adoption Issues in 

Enterprises,” in Creating Value for All Through IT, vol. 429, B. Bergvall-Kåreborn and 

P. A. Nielsen, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 214–242. 

[2] J. S. Hurwitz, R. Bloor, M. Kaufman, and F. Halper, Cloud Computing For Dummies. 

John Wiley & Sons, 2010. 

[3] “Deadline-constrained workflow scheduling algorithms for Infrastructure as a Service 

Clouds - ScienceDirect.” [Online]. Available: 

https://www.sciencedirect.com/science/article/pii/S0167739X12001008 

[4] T. P. Dufficy, “What is Private Cloud? Advantages and Disadvantages.” [Online]. 

Available: http://www.serverspace.co.uk/blog/what-is-private-cloud-plus-advantages-

disadvantages.  

[5] “What is hybrid cloud? - Definition from WhatIs.com,” SearchCloudComputing. 

[Online]. Available: https://searchcloudcomputing.techtarget.com/definition/hybrid-

cloud. 

[6] I. Baldini et al., “Serverless Computing: Current Trends and Open Problems,” 

ArXiv170603178 Cs, Jun. 2017. 

[7] “AWS Lambda – Serverless Compute - Amazon Web Services,” Amazon Web Services, 

Inc. [Online]. Available: https://aws.amazon.com/lambda/. 

[8] “Serverless Computing,” Google Cloud. [Online]. Available: 

https://cloud.google.com/serverless/ 

[9] “Build the future of Open Infrastructure.,” OpenStack. [Online]. Available: 

https://www.openstack.org/.  

[10] A. Beloglazov, S. F. Piraghaj, M. Alrokayan, and R. Buyya, “Deploying OpenStack on 

CentOS Using the KVM Hypervisor and GlusterFS Distributed File System,” p. 47. 



69 
 

[11] R. Kumar, “OpenStack Juno Release Includes Features of NFV, Big Data,” no. 2, p. 4, 

2014. 

[12] M. Mahjoub, A. Mdhaffar, R. B. Halima, and M. Jmaiel, “A Comparative Study of the 

Current Cloud Computing Technologies and Offers,” in 2011 First International 

Symposium on Network Cloud Computing and Applications, Toulouse, France, 2011, 

pp. 131–134, doi: 10.1109/NCCA.2011.28. 

[13] E. Caron, L. Toch, and J. Rouzaud-Cornabas, “Comparison on OpenStack and 

OpenNebula performance to improve multi-Cloud architecture on cosmological 

simulation use case,” p. 24. 

[14] A. Mehta and D. S. N. Panda, “Design of Infrastructure as a Service (IAAS) 

Framework with Report Generation Mechanism,” vol. 13, no. 2, p. 5, 2018. 

[15] “Azure Functions—Serverless Architecture | Microsoft Azure.” [Online]. Available: 

https://azure.microsoft.com/en-us/services/functions/. 

[16] “Cloud Functions - Event-driven Serverless Computing | Cloud Functions,” Google 

Cloud. [Online]. Available: https://cloud.google.com/functions/.  

[17] G. Fox, V. Ishakian, V. Muthusamy, and A. Slominski, Status of Serverless Computing 

and Function-as-a-Service(FaaS) in Industry and Research. 2017. 

[18] Hyungro Lee, K. Satyam, and G. C. Fox, “Evaluation of Production Serverless 

Computing Environments,” 2018, doi: 10.13140/rg.2.2.28642.84165. 

[19] U. Rencuzogullari and S. Dwarkadas, “A technique for adaptation to available 

resources on clusters independent of synchronization methods used,” in Proceedings 

International Conference on Parallel Processing, 2002, pp. 385–394, doi: 

10.1109/ICPP.2002.1040895. 

[20] D. L. Eager, E. D. Lazowska, and J. Zahorjan, “Adaptive load sharing in homogeneous 

distributed systems,” IEEE Trans. Softw. Eng., vol. SE-12, no. 5, pp. 662–675, May 

1986, doi: 10.1109/TSE.1986.6312961. 

 



70 
 

[21] J. F. Garamendi and J. L. Bosque, “Parallel Implementation of Evolutionary Strategies 

on Heterogeneous Clusters with Load Balancing,” in Proceedings of the 20th 

International Conference on Parallel and Distributed Processing, Washington, DC, 

USA, 2006, pp. 242–242. 

[22] R. K. Yadav, A. K. Mishra, P. Navin, and S. Himanshu, “An Improved Round Robin 

Scheduling Algorithm for CPU scheduling,” ResearchGate, vol. 2, no. 4, Jul. 2010. 

[23] H. Rahmawan and Y. S. Gondokaryono, “The simulation of static load balancing 

algorithms,” in ResearchGate, 2009, vol. 2, pp. 640–645, doi: 

10.1109/ICEEI.2009.5254739. 

[24] G. Kanagaraj, N. Shanmugasundaram, and S. Prakash, “Adaptive Load Balancing 

Algorithm Using Service Queue,” p. 4, 2012. 

[25] K. D. Kumar and E. Umamaheswari, “Resource Provisioning in Cloud Computing 

Using Prediction Models: A Survey,” p. 10. 

[26] I. K. Kim, W. Wang, Y. Qi, and M. Humphrey, “Empirical Evaluation of Workload 

Forecasting Techniques for Predictive Cloud Resource Scaling,” 2016, pp. 1–10, doi: 

10.1109/CLOUD.2016.0011. 

[27] T. R. G. Nair and M. Vaidehi, “Efficient resource arbitration and allocation strategies in 

cloud computing through virtualization,” in 2011 IEEE International Conference on 

Cloud Computing and Intelligence Systems, 2011, pp. 397–401, doi: 

10.1109/CCIS.2011.6045097. 

[28] C. Jiang, X. Xu, J. Zhang, Y. Li, and J. Wan, “Resource Allocation in Contending 

Virtualized Environments through VM Performance Modeling and Feedback,” in 2011 

Sixth Annual Chinagrid Conference, 2011, pp. 196–203, doi: 

10.1109/ChinaGrid.2011.44. 

[29] M. H. Mohamaddiah, A. Abdullah, S. Subramaniam, and M. Hussin, “A Survey on 

Resource Allocation and Monitoring in Cloud Computing,” Int. J. Mach. Learn. 

Comput., pp. 31–38, Feb. 2014, doi: 10.7763/IJMLC.2014.V4.382. 

[30] R. Johnson, “EVALUATING THE USE OF SNMP AS A WIRELESS NETWORK 

MONITORING TOOL FOR IEEE 802.11 WIRELESS NETWORKS,” p. 117. 



71 
 

[31] L. Andrey, O. Festor, A. Lahmadi, A. Pras, and J. Schönwälder, “Survey of SNMP 

performance analysis studies: SURVEY OF SNMP PERFORMANCE ANALYSIS 

STUDIES,” Int. J. Netw. Manag., vol. 19, no. 6, pp. 527–548, Nov. 2009, doi: 

10.1002/nem.729. 

 

 


