

MOBILE DEVICE POWER MANAGEMENT MODEL FOR LOCATION BASED SERVICE APPLICATIONS

by Hettiarachchige Don Sajitha Priyankara (168256H)

A thesis submitted to University of Moratuwa in partial fulfilment of the requirements for the Master of Computer Science, Specialized in Mobile Computing

Department of Computer Science & Engineering University of Moratuwa, Sri Lanka

March 2020

MOBILE DEVICE POWER MANAGEMENT MODEL FOR LOCATION BASED SERVICE APPLICATIONS

by Hettiarachchige Don Sajitha Priyankara (168256H)

A thesis submitted to University of Moratuwa in partial fulfilment of the requirements for the Master of Computer Science, Specialized in Mobile Computing

Department of Computer Science & Engineering University of Moratuwa, Sri Lanka

March 2020

Declaration

I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any University or other institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the text.

H.D. Sajitha Priyankara

Approved by:

Dr. Indika Perera Department of Computer Science and Engineering University of Moratuwa Date

Date

Copyright Statement

I hereby grant the University of Moratuwa the right to archive and to make available my thesis or dissertation in whole or part in the University Libraries in all forms of media, subject to the provisions of the current copyright act of Sri Lanka. I retrain all proprietary rights, such as patent rights. I also retain the right to use in future works (such as articles or books) all or part of this thesis or dissertation.

H. D. S. Priyankara

I have supervised and accepted this thesis/dissertation for the award of the degree.

Dr. Indika Perera Department of Computer Science and Engineering University of Moratuwa Date

Date

Abstract

Location based solutions for smartphones and other smart hand-held devices have been significantly increased. Geo location is one of the key contexts which can be easily captured with the current localization or geo positioning technologies. Most recent geo-localized Points of Interest (POI) aware systems perform much intelligent decisions and proactive actions by identifying nearby places and the nature of the surrounding. For achieving that proactiveness, Location Based Service (LBS) approaches utilize continuous feed of Global Positioning System (GPS) which consumes more energy, makes a significant battery drain and generates heat resulting in a severe reduction of operation time.

Objective of this research is to introduce enhanced power utilization mechanisms for POI aware systems by implementing intelligent location extraction methods along with Application Programming Interface (API) level optimizations as well.

In the relevant research literature mobile device power optimization has been discussed and many solutions have been introduced and those have been discussed and referred during the research work.

Applicable use cases which can be integrated with power management mechanisms have been identified to address the above mentioned problem as the first step. GPS and WiFi based hybrid positioning system has been identified as the main supportive GPS adaptation. Then intelligent GPS sampling mechanisms and intelligent communication with the location based service provider have been studied and classified based on the state differentiation of the applications.

In the implementation phase a prototype called "DealTella" has been created. Activity recognition has been implemented for intelligent decision making in location sampling. GPS adaptation using Wi-Fi trace based reversed location extraction is the most important power utilization adaptation introduced during the research work.

A considerable percentage of energy saving could be achieved by enabling

all the mechanisms explained under the implementation section along with enabling intelligent sampling. Proposed implementation has been tested under three main scenarios while enabling better battery consumption strategies. Accuracy has been measured against the battery consumption and recommendations have been provided based on results.

Further as part of the research work, a prototype has been developed just to prove the concept and it will be enhanced and released as a marketable and production quality application.

Modern leading operating systems invest more on optimizing battery consumption natively. Since modern smart applications are heavy process oriented for providing the best and most context related user experience. Those applications consume more and more energy for achieving that proactiveness and to feed the intelligence into applications. Still there exist a lot of research opportunities in the context and some of the extensions have been proposed to be carried out in a future phase.

Acknowledgements

I would like to pay my sincere gratitude towards my supervisors, Dr. Indika Perera and Dr. Malaka J. Walpola, Senior Lecturers, Department of Computer Science and Engineering, Faculty of Engineering University of Moratuwa, for their valuable guidance, feedback and continuous support.

Further I would appreciate all the support and the coordination received from the department and I would be much indebted to my colleagues for their motivation and support.

Furthermore, I extend my heartfelt thanks to my wife Mrs. Hemani Herath, for her immense support, encouragement and faith in me and my mother and father for their heartiest blessings which made this work a success.

Abbreviations

A–GPS – Assisted Global Positioning System

AI – Artificial Intelligence

API – Application Programming Interface

CDF – Cumulative Distribution Function

CLA – Centroid location algorithm

CNP - Cellular Network Provider

EEPS – Energy-Efficient Positioning Scheme

GPS – Global Positioning System

GSM - Global System for Mobile Communications

HMM – Hidden Markov Models

IDC – International Data Corporation

iOS – iPhone Operating System

ISP – Internet Service Provider

KNN – K-nearest neighbor

LBS – Location Based Services

MAC – Media Access Control Address

NoSQL – Not Structured Query Language

POI – Points of Interest

RSS - Received Signal Strength

TTFF – Time to First Fix

Wi-Fi – Wireless Fidelity

Table of Contents

D	eclar	ation		\mathbf{v}
C	opyri	ght St	atement	vi
A	bstra	\mathbf{ct}		vii
A	cknov	wledge	ments	ix
A	bbre	viation	s	x
Li	st of	Tables	3	xiv
Li	st of	Figure	es	xv
1	Intr	oducti	on	1
	1.1	Resear	ch Problem	2
	1.2	Resear	ch Objectives	3
	1.3	Organ	ization of the Thesis	3
2	Loc	ation I	Based Services	5
	2.1	Locati	on Based Services in Mobile Computing	6
	2.2	Comp	onents in LBS	7
		2.2.1	Location Extraction and Mapping System	8
		2.2.2	Consumer and Provider System	9
		2.2.3	Types of LBS Based on the Service Fetching Mechanism	9
	2.3	Applic	ations of LBS	10
	2.4	Geo-lo	calized POI Aware System	11
	2.5	Locati	on Extraction Technologies	11
		2.5.1	Global Positioning System Based Positioning	12
			2.5.1.1 Space Segment \ldots	12

			2.5.1.2	Control Segment	13		
			2.5.1.3	User or Consumer Segment	13		
			2.5.1.4	Geo positioning with GPS	14		
		2.5.2	Wi-Fi or	Mobile Network Cell Identity Based Positioning	15		
			2.5.2.1	Trilateration	15		
			2.5.2.2	Triangulation	16		
			2.5.2.3	Centroid Localization	16		
3	Literature Review						
	3.1	Main	Methods of	of Location Extraction	17		
	3.2	Adapt	ive Metho	ods of Location Extraction	19		
	3.3	Privac	y Concern	ns in Location Based Services	26		
	3.4	Locati	ion Extrac	tion Methods for Indoor Positioning	26		
	3.5	Locati	ion Recogn	nition and Prediction	27		
		3.5.1	Location	Recognition	27		
		3.5.2	Location	Prediction	29		
4	Met	Methodology					
	4.1	Cause	s for Batt	ery Draining in LBS Based POI Aware Systems	31		
	4.2	Classi	fication of	Location Based Services	31		
	4.3	Overv	iew of Pov	ver Management Strategies	32		
	4.4	Imple	mplementation Aspects of Power Management Strategies 3				
		4.4.1	Utilizing	Assisted Technologies for GPS	34		
			4.4.1.1	Assisted-GPS	34		
			4.4.1.2	GPS and Wi-Fi Based Hybrid Positioning Sys-			
				tem	36		
		4.4.2	Enabling	g Intelligent GPS Sampling Mechanisms Based			
			on the S	tate Differentiation of the Application	39		
			4.4.2.1	Differentiate High, Medium and Low Accuracy			
				Acceptable Modes	40		
		4.4.3	Enabling	g Intelligent Communication with the Location			
			Based Se	ervice Provider Based on the State Differentia-			
			tion of the	he Application	42		
			4.4.3.1	Differentiate High, Medium and Low Accuracy			
				Acceptable Modes	42		
		4.4.4	Mobile 7	Cask Offloading	44		

5	Implementation			
	5.1	Prototype Creation		
		5.1.1	Location Service Client Implementation	48
		5.1.2	Location Based Service Implementation	48
		5.1.3	Prototype Behavior	52
	5.2	Optim	nizing Power Consumption	53
	5.3	Supportive Technology Implementations		
		5.3.1	Activity Recognition	55
		5.3.2	Wi-Fi Tracing and Storing	58
		5.3.3	Wi-Fi Trace Based Reverse Location Extraction	60
	5.4	Mode	Differentiation	64
	5.5	Config	guration Loading	64
6 Evaluations			18	65
	6.1	Result	S	65
		6.1.1	Scenario 1 - Before Enabling Power Saving Mode	66
		6.1.2	Scenario 2 - After Enabling Power Saving Mode	68
			6.1.2.1 Accuracy Measuring	70
		6.1.3	Scenario 3 - Extra Power Saving Mode for Identified	
			Routes	71
			6.1.3.1 Accuracy Measuring	73
	6.2	Discus	ssion \ldots	74
7	Conclusions			
	7.1	Limita	ations	80
	7.2	Future	e Work	81
		7.2.1	Creating the Product DealTella	83
R	efere	nces		85

List of Tables

3.1	Properties of positioning techniques [2]	18
$4.1 \\ 4.2$	State differentiation for GPS sampling	41 43
5.1	Types of activity recognition	58
6.1	Scenariowise battery usage	68
6.2	Scenariowise battery usage	70
6.3	Scenariowise battery usage	73
6.4	Result summarization	76
6.5	Comparison of Scenario 2 and Scenario 3 tested using three	
	devices	78

List of Figures

2.1	Architecture of Location Based Services	7
2.2	Components of Location Based Services [30]	8
2.3	Applications of Location Based Services [5]	10
2.4	Overview of Location Based Service applications [4] 1	1
2.5	GPS constellation $[44]$	13
2.6	Trilateration in GPS $[1]$	14
2.7	Trilateration	15
2.8	Triangulation	16
2.9	Centroid of a triangle	16
3.1	Geo positioning pyramid [16]	18
3.2	Different localization techniques and their accuracy details [53] 2	20
3.3	Ping pong effect 2	22
3.4	Dynamic model for calculating accuracy requirement [32] 2	25
3.5	KNN illustration $[7]$	28
3.6	KNN based classification [7]	28
4.1	Architecture of Assisted-GPS	35
4.2	Application bound database of access point locations 3	37
5.1	Enhanced architecture of the prototype Location Based Appli- cation	17
5.2	DealTella landing interface displaying nearby deals within 2 km radius - Map view	1 9
5.3	DealTella result listing interface - List view	50
5.4	DealTella service - Collection of tags in Firebase database 5	51
5.5	DealTella service - Collection of deals in Firebase database 5	51
5.6	Reversed location extraction	52
5.7	Optimizing power consumption	54

5.8	DealTella service - Collection of locations in Firebase database	59
5.9	Wi-Fi trace based reverse location extraction	61
6.1	Battery history	67
6.2	Battery history	69
6.3	Precision of a single instance in scenario 2	71
6.4	Battery history	72
6.5	Precision of a single instance in scenario 2	74
6.6	Scenario wise percentage of battery consumption	75
6.7	Comparison of Scenario 2 and Scenario 3	77
6.8	Comparison of Scenario 2 and Scenario 3 tested using three	
	devices	78
7.1	DealTella mobile application	83
7.2	DealTella web application	84